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Abstract—A mixed-signal very large scale integration (VLSI)
chip for large scale emulation of spiking neural networks is
presented. The chip contains 2400 silicon neurons with fully
programmable and reconfigurable synaptic connectivity. Each
neuron implements a discrete-time model of a single-compartment
cell. The model allows for analog membrane dynamics and an
arbitrary number of synaptic connections, each with tunable
conductance and reversal potential. The array of silicon neurons
functions as an address–event (AE) transceiver, with incoming and
outgoing spikes communicated over an asynchronous event-driven
digital bus. Address encoding and conflict resolution of spiking
events are implemented via a randomized arbitration scheme that
ensures balanced servicing of event requests across the array.
Routing of events is implemented externally using dynamically
programmable random-access memory that stores a postsynaptic
address, the conductance, and the reversal potential of each
synaptic connection. Here, we describe the silicon neuron circuits,
present experimental data characterizing the 3 mm � 3 mm chip
fabricated in 0.5-�m complementary metal–oxide–semiconductor
(CMOS) technology, and demonstrate its utility by configuring the
hardware to emulate a model of attractor dynamics and waves of
neural activity during sleep in rat hippocampus.

Index Terms—Address–event representation (AER), dy-
namically reconfigurable network, membrane conductance,
mixed-signal very large scale integration (VLSI), neural emulator,
neurotransmitter quantal release, switched capacitor.

I. INTRODUCTION

N
EUROMORPHIC systems engineering [1], [2] emulates

both structure and function of biological neural systems in

silicon, and correspondingly achieves high levels of efficiency

in the implementation of artificial sensory systems. To date,

facsimiles of the initial stages of visual and auditory informa-

tion processing have been implemented on single microchips

(e.g., [3]–[7]). However, the complexity of neural computation

beyond sensory perception requires a multichip approach and
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a proper communication protocol between chips to implement

higher levels of processing and cognition (see, e.g., [8]).

The common language of neuromorphic chips is the ad-

dress–event representation (AER) communication protocol

[9]–[11], which uses time-multiplexing to emulate extensive

connectivity between neurons. In its original formulation,

AER effects a one-to-one connection topology; to create more

complex neural circuits, convergent and divergent connectivity

are required. Several authors have discussed and implemented

methods of enhancing the connectivity of AER systems toward

this end [5], [12]–[18]. These methods generally employ AER

“transceivers” [12], [15], [16] and call for a memory-based

projective field mapping that enables routing an address–event

(AE) to multiple receiver locations. Accordingly, the chip

described in this paper contains 2400 neurons but no hardwired

connections between cells, rather depending on an external

infrastructure to route events to their appropriate targets.

Neural transceivers are useful alternatives to dedicated (hard-

wired) architectures for implementing large scale spiking neural

networks and models of spike-timing dependent synaptic plas-

ticity [20]–[23] because they are reconfigurable. In a typical

hardwired implementation, the size of the network is limited by

the number of cells integrated on-chip, where each cell imple-

ments a dedicated synapse in a fully connected network. This

approach is appropriate to study the dynamics of small, densely

interconnected networks, but does not scale to more complex

models involving large, sparsely connected networks, such as

those responsible for attention, object recognition, and language

processing in various areas of cortex. Generally, implementa-

tions of cortical models have so far been limited to software

simulations—because none of the cortical areas being studied

have been fully characterized, the models are always in flux and

it is often counterproductive to develop a chip hardwired to a

particular network architecture.

There are a few examples of reconfigurable neural array

transceivers in the literature [15], [16], [24]–[30]. The one de-

scribed here differs in some important aspects. First, the silicon

neuron implements a more biologically realistic discrete-time

model of membrane dynamics that includes conductance-based

synapses. Conductance-based synapses allow for different

neural dynamics than what can be emulated with standard

integrate-and-fire (I&F) models (including those that contain

leakage, an activity-independent conductance to the rest po-

tential, in the neural dynamics). Second, the design permits a

virtually unlimited number of connections between neurons,

with independent control of synaptic strength (conductance)

and reversal potential on a per-connection basis. The synaptic

1045-9227/$20.00 © 2006 IEEE
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“wiring” and parameters can be changed on the fly by re-

programming digital random-access memory. This ability

to rapidly alter synaptic connectivity and synaptic parame-

ters also supports the implementation of synaptic dynamics

(Section III-B) and spike-timing dependent synaptic plasticity

[31]. From a circuits and systems perspective, our approach

combines advantages of analog and digital processing by

dividing the network architecture into two main components:

neural membrane dynamics implemented in an analog VLSI

array, and synaptic connectivity implemented in dynamically

reconfigurable digital memory. Also, the silicon neuron uses a

switched-capacitor architecture to efficiently and reliably im-

plement the membrane dynamics in discrete time, obviating the

need for precisely matched linear transconductance elements in

a continuous-time implementation.

II. VIRTUAL SYNAPSES

Rather than hardwiring synapses to form a physically con-

nected network of neurons, we implement synapses as soft (vir-

tual) connections. In this system, each neuron is given a unique

address, and an off-chip lookup table (LUT) represents synapses

as a mapping between presynaptic and postsynaptic neuron ad-

dresses (Fig. 1) [16], [19]. When a neuron fires an action po-

tential, its address is transmitted over a shared bus to a decoder

that has access to the LUT—this is called an AE. Depending

on the data stored in the lookup table and the mechanism used

to determine postsynaptic targets, this technique can be used to

emulate one-to-one [9] or one-to-many [12] connections. Addi-

tionally, it allows for arbitrary and reconfigurable connectivity,

as any neuron can connect to any other, and synapses can be

rerouted dynamically by changing entries in the table. As long

as the bus speed is significantly faster than the event genera-

tion rate or the spike processing dynamics, a single connection

can be multiplexed in time to emulate extensive connectivity be-

tween neurons [12].

A schematic representation of the lookup table used to store

the network connectivity is shown in Fig. 1. Each entry repre-

sents a single “virtual synapse” and specifies both the presy-

naptic and postsynaptic neurons’ addresses, as well as the fol-

lowing four synaptic parameters:

number of release sites;

probability of release;

quantal postsynaptic response;

reversal equilibrium potential.

The overall strength of the synaptic connection can be expressed

as a conductance, , which is the product of the first three

parameters [32]

(1)

That is, the conductance is proportional to the product of the

number of synaptic release sites on the presynaptic neuron, the

probability of synaptic release, and the postsynaptic response

to a quantal amount of neurotransmitter. The polarity of the

synaptic connection (excitatory or inhibitory) is determined by

the synaptic reversal (equilibrium) potential , which functions

as an electrochemical “battery” across the cell membrane and

Fig. 1. (a) Virtual synapses: address-domain connectivity between presynaptic
and postsynaptic neurons. Numbers in parentheses correspond to the synaptic
parameters (q, n, p, and E) defined in Section II. (b) Lookup table storing ad-
dresses and parameters of the synaptic connections in random-access memory.
The address of a presynaptic action potential “event” is used as an index into the
table to identify postsynaptic target addresses and their corresponding synaptic
parameters [1].

varies according to the ionic species (K , Na , Cl , etc.) con-

ducted by the synapse. A model of how all of these parameters

interact at the postsynaptic site, adapted for analog VLSI imple-

mentation, is presented in Section III.

III. NEURAL MODEL

A number of silicon neurons have been presented in the lit-

erature with varying degrees of biological accuracy [33]–[40].

The most detailed and accurate silicon models feature many

parameters and are very flexible, but occupy a large on-chip

area and, therefore, limit the number of cells that can be fab-

ricated on a single chip. The simplest models contain only a

few transistors and are well suited for implementation in a large

scale network, but deviate significantly from the biology and

have few adjustable parameters. Many applications would ben-

efit from a balance between these two extremes: A more bio-

logically accurate neural model allows for more sophisticated

emulation of cognitive functions, but only in the context of a

sophisticated network architecture (see [15] and [25] for some

examples along these lines). We have, therefore, designed a

small-footprint, highly configurable, “general-purpose” silicon

neuron that implements a standard extensible model of biolog-

ical neural membranes.

The question of whether to use a linear I&F model or a

conductance-based model has become a popular subject among

neural modelers recently, with no clear resolution [41]–[43].

However, it is known that ion channels in real neurons act as

nonlinear conductances [44], and this may play an important

role in certain network computations (c.f. Section VI). For

example, conductance-based models exhibit a concave-down

charging characteristic, which has been shown to be useful

for synchronizing populations of neurons [45]–[47]. Con-

ductance-based models also exhibit a strong dependence on

the order of input events, which may be important for neural
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Fig. 2. Silicon single-compartment neuron and “general-purpose” synapse (inside dashed box, [19]), with event generation circuitry (shown right, [16]). When
the address of an incoming event is decoded, row- and column-select circuitry activate the cell’s neuron select (NS) line, the global signals W –W and E are
established, and the spike is registered by a pulse on � followed by a pulse on � .

calculations based on spike timing (e.g., [48]–[52], and the

references therein). For these reasons, we have decided to

implement a conductance-based model in our silicon neuron.

A. Membrane Dynamics

The single-compartment model (Fig. 3) is commonly used in

computational neuroscience to describe the ionic flux through

biological neural membranes. In this model (which has many

variations), a neuron is represented as a large membrane ca-

pacitance in parallel with a number of conductances and

batteries in series. Currents resulting from transient and static

inputs are integrated on the capacitor until the potential ex-

ceeds a threshold, at which point the cell fires an output (called

an action potential, or a spike). Each type of input to the cell is

represented by a conductance-battery combination ; tran-

sient inputs (e.g., synapses) are implemented with time-varying

conductances whereas static inputs have constant conduc-

tances. The primary static input is a very small “leak” conduc-

tance , and in the absence of any other inputs, the voltage

stored on the membrane capacitor relaxes to the “resting po-

tential” . In contrast, at any given synapse the conductance

is usually near zero except for a brief period of time following

an input event (modeling the transient opening of ion channels

triggered by neurotransmitter binding). The battery potential (or

synaptic reversal potential) and the maximum value of con-

ductance (synaptic strength) vary on a per-synapse basis, with

some synapses being excitatory (suprathreshold reversal poten-

tial) and others being inhibitory (subthreshold reversal poten-

tial).

The single-compartment model is specified by the membrane

equation

(2)

Although biology operates in continuous time, most neural in-

teractions occur on the millisecond time scale, so it is possible

to simulate the internal dynamics of a neuron using fast, dis-

crete-time steps. Similarly, while multiple synaptic inputs can

be active simultaneously in a real neuron, it is essentially equiv-

alent to activate a group of synapses in rapid succession due to

Fig. 3. Single-compartment model of a biological neuron with transmembrane
voltage V , lumped membrane capacitanceC , multiple synapses represented
by fg (t); E g pairs, and a static leak conductance to the resting potential
fg ; E g.

biology’s low precision in the time domain. We exploit both of

these observations in the implementation of our silicon neuron.

B. Implementation

Multiple different excitatory and inhibitory synaptic inputs to

the neuron are implemented by event-based time-multiplexing

of a single time-varying supply and the corresponding se-

ries conductance . For the th synaptic input event to the

neuron, the pair is generated from the corresponding

entries in the LUT (Fig. 1) and presented to the neuron’s inputs.

The three parameters described by the model in (1) can be em-

ulated, if desired, by repeatedly generating identical events of

magnitude , conditioned on the binary outcome of a random

draw with probability .

The neural cell schematic is shown in Fig. 2, along with event

generation circuitry to trigger and communicate output spikes

(Section IV). The cell size, including the event generation cir-

cuitry, is 40 m 60 m in 0.5- m double-poly triple-metal

CMOS technology. Using a simple switched-capacitor architec-

ture [53], [54], this circuit implements a discrete-time version of

the membrane equation (see Appendix for details)

(3)

The conductance is discrete in amplitude. The amount of

charge transferred [ in (1)] depends on which of the three

geometrically sized synaptic weight capacitors ( – ) are

active. These elements are dynamically switched on and off

by binary control voltages – on the gates of transistors

. Therefore, the binary coefficients – provide
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eight-level control of conductance values. A larger dynamic

range in effective conductance can be accommodated by mod-

ulating the multiplicity and probability of synaptic events

according to (1). Although the synaptic updates in (3) are

instantaneous, synaptic dynamics mimicking the time course of

postsynaptic potentials in biological neurons can be emulated

(at the cost of bandwidth) by repeatedly stimulating the same

synapse with gradual changes in , , and .

Incoming spikes are represented by a packet of data con-

taining the target neuron’s address, the synaptic weight, and the

synaptic reversal potential [Fig. 1(b)]. The address is processed

by row- and column-decoders, which activate the neuron select

(NS) lines to identify the postsynaptic target(s). The -compo-

nent of the weight (1) corresponds to the values of – ,

which are shared by all on-chip neurons. The synaptic reversal

potential is converted to an analog voltage off-chip and also

shared by all of the neurons. After these signals are established,

the spike is registered when an off-chip clock generates a pulse

on followed by a pulse on , which allows a packet of charge

proportional to the difference between the synaptic reversal po-

tential and the membrane potential to be accumu-

lated onto the membrane capacitor . These discrete-time

updates (3) model the transient opening of membrane channels

in the limit of a very short time window of postsynaptic re-

sponse.

To conserve bandwidth, reserved address words allow the

row- and column-decoders to select the entire chip or any indi-

vidual row or column of neurons. Because the signals –

and are global, many neurons can process events with the

same synaptic parameters simultaneously. This allows for an ef-

ficient implementation of the continuous leak conductance

in the membrane model (2): Leak is approximated by chip-wide

periodic (or otherwise repeated) events with low weight and a

synaptic equilibrium potential equal to the rest potential .

IV. EVENT GENERATION AND ARBITRATION

Information encoded by neurons in the array is represented

by the timing of spike events. Therefore, event generation, arbi-

tration, and communication are essential elements of the design.

A. Event Generation

The event generation circuitry of [16] is embedded in every

cell (Fig. 2, right). An event—signaled by a low voltage on

—is generated each time the total accumulated charge on

causes the neuron’s membrane potential to exceed

the spike threshold voltage . Because can rise

very slowly, the threshold comparator is implemented as a

current-starved inverter ( – ), with biased in weak

inversion for reduced power dissipation. is applied to

the source of ; this value is shared by all cells in the array

and is externally controlled. The corresponding input-referred

threshold is approximately equal to , where

is the threshold voltage of . When exceeds this value, a

positive feedback loop implemented by transistors – is

activated, triggering a spike event by driving to the positive

rail.

A high voltage on activates , the output node of a

row-wise wired-NAND, and indicates to the row arbitration cir-

cuitry that a cell in that row has generated an event and needs

to be serviced. Until this occurs, the row and column acknowl-

edge signals and remain low, maintaining the posi-

tive feedback loop and preventing any further inputs from af-

fecting the cell. The row arbitration circuitry indicates it has

selected a row by driving one pair of and signals

high. All cells in that row with pending events then pull their

signals low, indicating to the column arbitration circuitry

that they have generated events and need to be serviced. Fi-

nally, the column arbitration circuitry indicates which column

it has selected by driving one column’s signal high. At

that point, both and are asserted (for one cell only)

so the positive feedback loop is inactivated and the reset circuit

implemented by nMOS transistors and causes to

become (like , is shared by all cells in the

array and is externally controlled). As drops below the com-

parator’s threshold voltage, is pulled high by and

the column and row requests ( and ) are removed. This

completes the handshaking sequence between a cell and the ar-

bitration circuitry.

B. Address Encoding and Event Arbitration

The arbitration circuitry on the periphery of the neural array

serves two purposes. First, it identifies the location of a spiking

cell and converts this location into a row and column address.

Second, whenever there are two or more neurons with pending

events, it “decides” which one to service. The design is com-

pletely asynchronous and consists of a number of arbitration

stages, each consisting of a chain of multiple “request propa-

gation” (RP) subcircuits and one “selection unit” (SU) circuit.

The arbitration process begins when one or more neurons ac-

tivate their row request line(s), (Fig. 2). Within each stage

of arbitration, the RP subcircuits selectively transmit or prevent

the request from proceeding to the next stage, based on the de-

cisions made by the SU. The row that is eventually serviced is

the one whose request is propagated through all the stages of

arbitration. This row is then activated for column arbitration,

which proceeds in an identical fashion. At the conclusion of this

process, a single neuron is selected and its address is placed on

the external AER bus. When an external receiving device has

latched the address, it asserts the chip acknowledge line, which

resets the arbiter. Details on the circuit implementation of the ar-

bitration, and how it differs from other AER arbiters (e.g., [55]),

will be presented elsewhere [56].

V. EXPERIMENTAL CHARACTERIZATION

We constructed an array of 60 40 conductance-based I&F

neurons, with associated event coding and arbitration circuits,

on a 3 mm 3 mm chip in 0.5- m CMOS technology. A micro-

graph of the I&F array chip is shown in Fig. 4. With 5-V supply

voltage, the chip consumes 645 W of power at 10 synaptic

events per second.

A. Hardware Architecture

Because there are no hardwired connections between neu-

rons on-chip, the silicon I&F neuron array must be embedded
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Fig. 4. Conductance-based I&F array chip micrograph. This paper focuses on
the 2400-element neural array.

in an architecture that can store a network topology and

route incoming and outgoing AEs to their appropriate targets

(Section II). For this purpose, we developed a board-level

system [dubbed I&F array transceiver (IFAT)] that allows up

to 4 194 304 synapses to be implemented between up to 9600

neurons located on four I&F chips while processing up to 10

synaptic events per second [57].

A block diagram of the IFAT system is shown in Fig. 5. Its

components include a 100-MHz field-programmable gate array

(FPGA) (Xilinx XC2S100PQ208), 128 MB of nonvolatile

SRAM (TI bq4017), a high-speed digital-to-analog converter

(DAC) (TI TLC7524CN), a 68-pin digital input–output (I/O)

interface (DIO) to communicate with neuromorphic sensors or

a computer workstation, and four custom analog VLSI (aVLSI)

chips with 2400 I&F neurons each. The FPGA controls access

to both an internal and external AE bus, and is responsible

for routing incoming, outgoing, and recurrent events to their

appropriate postsynaptic targets according to the lookup table

stored in RAM.

For the following experiments, a computer was connected to

the IFAT’s digital I/O port in order to provide the inputs to the

system and monitor the output. The digital I/O link to the com-

puter limited the speed of operation, but was helpful to observe

and analyze internal network dynamics in the experiments.

B. Results

Fig. 6 illustrates the general functionality of one neuron in

the array as it receives a sequence of events while both the

synaptic reversal potential and the synaptic weight are varied.

It also clearly reveals the strong impact of the order of events on

the neural output due to the operation of the conductance-based

model, as opposed to a standard I&F model. As in biological

Fig. 5. Block diagram of IFAT system. Incoming and outgoing AEs are com-
municated through the digital I/O port (DIO), with handshaking executed by
the microcontroller (MCU). The MCU generates the random numbers for p in
(1) and provides the synaptic conductance g (binary coefficients W –W ) and
driving potentialE (through DAC) to the conductance-based I&F silicon neuron
array, according to the synapse parameters stored in memory (RAM).

neurons, an inhibitory event following a sequence of excitatory

events has a greater impact on the membrane potential than the

same inhibitory event following many inhibitory events (and

vice versa; compare events at arrows versus and versus

in Fig. 6). This effect is predicted by (2) and (3): For a fixed

conductance , as the difference between the reversal potential

and the membrane potential increases, increases.

When the synaptic reversal potential is close to the rest poten-

tial, the nonlinear interaction of neural activity gated by such a

synapse is referred to as “shunting inhibition,” an effect unique

to the conductance-based model and missing in both standard

and leaky I&F models (Section VII). The ability to implement

a form of shunting inhibition is one of the many consequences

of our design.

To quantify the neurons’ dependence on the synaptic param-

eters and , we performed three experiments. First, to de-

termine the effect of the weight capacitors – in the binary

expansion – (Fig. 2), each neuron’s membrane potential

was reset to a fixed voltage and a series of excitatory events at a

fixed reversal potential and synaptic weight were sent to the cell.

To simplify the experiment, no inhibitory or leak events were

implemented, so the effects are independent of input frequency.

The number of events required to elicit a spike was recorded and

after ten measurements at each synaptic weight, another cell in

the array was tested. The results over all 2400 cells in one chip

are summarized by plotting the average ratio of output events

to input events versus synaptic weight (Fig. 7). In the absence

of parasitics, we would expect a greater slope for the lines in

Fig. 7 and a -intercept of zero. In practice, bottom plate and

line capacitance accounts for a relatively large parasitic capac-

itance that is active even when all weight capacitors are in the

“off” state (which accounts for the nonzero -intercept). At the

maximum on-chip synaptic weight and an excitatory reversal
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Fig. 6. Data captured from an oscilloscope during operation of the chip. The
lower trace illustrates the membrane potential (V ) of a single neuron in the
array as a series of events are sent at times marked by vertical lines at the bottom
of the figure. The synaptic reversal potential (E) and synaptic weight (W ) are
drawn in the top two traces. Arrow labeledA points to the effects of a “shunting”
inhibitory input. See text for description of other symbols.

Fig. 7. Average ratio of output events to input events versus synaptic weight.
Data are averaged across ten trials per cell at each value of synaptic weight, and
then averaged over all 2400 cells. Error bars represent�1 standard deviation.

potential of 4.17 V, approximately five input events are required

to generate an output event. However, this can be decreased by

increasing or, at the expense of bandwidth, by increasing

as described in Section III-B.

The second experiment quantifies the effect of the synaptic

reversal potential . Here, each neuron’s membrane poten-

tial was reset to a fixed voltage and a series of events at a given

excitatory synaptic reversal potential and synaptic weight were

sent to the cell. Again, no inhibitory or leak events were imple-

mented, and the number of events required to elicit a spike was

recorded. The results over all 2400 cells were summarized by

plotting the average ratio of output events to input events versus

synaptic reversal potential using two different values of

(Fig. 8).

To quantify mismatch between neurons on the same chip,

we conducted a third experiment wherein all of the event

parameters (synaptic weight, synaptic reversal potential, spike

threshold voltage, and resting potential) were held constant

at values that were barely suprathreshold. The average ratio

Fig. 8. Average ratio of output events to input events versus synaptic reversal
potential E, measured in volts. Data are averaged across ten trials per cell at
each value of synaptic weight, and then averaged across all 2400 cells. Error
bars represent �1 standard deviation.

Fig. 9. (a) Histogram showing distribution of the average ratio of output events
to input events. (b) Map illustrating spatial trends in the variation of the average
ratio of output events to input events across the 60 � 40 array. Darker regions
indicate larger values on a range-normalized scale.

of the number of output events to input events for neurons

was measured as before, and the distribution was plotted as

a histogram [Fig. 9(a)] with a standard deviation of 0.0017

around the mean of 0.0210. Spatial patterns in the distribution

are indicated in the bitmap of Fig. 9(b), where darker pixels

correspond to a larger number of output events per input event,

normalized to the range of the histogram [Fig. 9(a)]. Evidently,

there is a gradient in the upper-right quadrant of this array.

VI. SYSTEM EXAMPLE: COMBINATORIAL

ATTRACTOR NETWORK

To demonstrate the utility of the IFAT system, we used it to

implement a combinatorial attractor (CA) network, a model that

exhibits some of the neural dynamics observed in hippocampal

“place cells” [58]. As shown, the dynamics depend on conduc-

tance-based synapses in the network model, which are naturally

and efficiently implemented on the IFAT system. The biological

basis and predictions of this model, as well as a complete anal-

ysis of the network, will be explained in detail elsewhere [59];

here, we will only briefly describe the motivation behind this

formulation and illustrate some salient functional properties of

the network, in the context of the IFAT system functionality.
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A. Biological Motivation

Hippocampal place cells are pyramidal neurons found in

layers CA1 and CA3 of the rat hippocampus. They are notable

for being active only when the rat is in a few particular locations

in space [60], [61]. In experimental settings, it has been shown

that as a rat traverses a closed room, its instantaneous position

can be uniquely identified by decoding the activity vector from

an ensemble of place cells [62]. Moreover, this activity vector

persists even after all sensory and motor clues are extinguished,

as long as the rat remains in a fixed location [63], [64]. This has

led to the notion that the rat hippocampus stores a virtual map

of space as an attractor network, wherein the present location

is represented as a stable “bump” of neural activity [65], [66].

Rat hippocampal activity within a closed room is similar to

that predicted by a two-dimensional (2-D) “plane attractor,”

where a stable activity bump can move smoothly between lo-

cations on the plane [67]. Exposing the rat to multiple different

rooms leads to the formation of different planar maps. The CA

network model allows for continuity between all states (similar

to multidimensional attractors), and allows each neuron to

participate in multiple nonadjacent attractors (similar to the

multichart model [67]). It also provides for smooth transitions

between stable states in different maps, as well as for “partial

remapping.”

The primary biological constraints on the CA network are

that it functions with spiking excitation and inhibition, and that

neurons must fire at realistic rates, i.e., neurons within a stable

bump should not be maximally activated. In Section VI-B, the

construction and operation of a CA network are described quan-

titatively, and its operation is illustrated by examples of a CA

network implemented on the IFAT hardware in Section VI-C.

B. Network Architecture

We implemented a CA network representing 400 distinct

places in a one-dimensional (1-D) ring using 200 excitatory

neurons and 20 inhibitory neurons. In this model, each exci-

tatory neuron was randomly assigned to represent two spatial

locations along the ring, which were typically nonadjacent

(Fig. 10). The network was fully interconnected, so that every

neuron received input from every other neuron, and the synaptic

weights between excitatory neurons were determined as a func-

tion of the distance between the spatial locations each neuron

represented. Specifically, for two excitatory neurons and

representing locations and , the synaptic

weights and were given by

(4)

where was a free parameter. In software simulations, these

values were directly translated into maximum synaptic conduc-

tances with a fixed reversal potential (2), whereas the IFAT

implementation used a discrete (nonlinear) mapping from to

a parameter set [see (1); we fixed 1 to simplify

analysis in both hardware and software]. This mapping ensured

that for each value of conductance, the number of input events

Fig. 10. Example of a simple CA network with four neurons. (a) Spatial rep-
resentation of the CA network. Each neuron (shaded circles) represents two lo-
cations along the perimeter of a large circular area (dashed line). For clarity,
only synaptic connections from neuron 4 are shown (solid lines), but the net-
work is fully interconnected. Distance between neurons along the perimeter is
represented by line width. (b) Neural representation of the same neuron 4 CA
network. Solid lines between neurons represent bidirectional synapses, and line
width is proportional to synaptic strength; see (4).

per output event was roughly equivalent in both hardware and

software.

In contrast to the excitatory cells in the CA network, the in-

hibitory neurons do not represent any particular location, but

rather act as a moderating force allowing stable states to emerge

without overtaking the entire network. Thus, as the net excita-

tion in the network increases during formation of a bump, the

net inhibition must increase faster to dampen the effects and en-

sure that the bump does not spread and create epileptic activity.

However, the inhibition must not increase too quickly or it will

quench the bump and force the network to a quiescent state. In

the IFAT implementation, this balance was achieved by allowing

every excitatory neuron to connect to the inhibitory neuron with

synaptic parameters 4.28 V, 1, and 0.125, and by

fixing synaptic parameters from the inhibitory neuron to every

excitatory neuron at 60 mV, 1, and 0.25, with

a global resting potential of 500 mV (these values were

chosen for convenience; other combinations of synaptic param-

eters were also effective).

Although one might expect to find only a small parameter

space in which the CA network can function properly, software

simulations show that the use of conductance-based synapses

greatly increases this range. For example, the maximum conduc-

tance for excitatory connections could vary significantly using

conductance-based synapses, whereas a grid search (with three

digits of precision) for acceptable values of conductance using

standard “linear” synapses (with independent of ) failed

to produce any results. The conductance-based synapses de-

scribed in Section III-B were, therefore, very useful (if not crit-

ical) for implementing this network on the IFAT, because the

IFAT has a limited range for synaptic parameters (as compared

to software). Furthermore, the qualitative experience of config-

uring the IFAT to implement a CA was relatively simple, with a

stable operating point located after only a few attempts.

One advantage of implementing the CA network on the IFAT

hardware instead of in software is a significant decrease in simu-

lation time. Because of the extensive connectivity between cells

(over 40 000 synapses in a 200-neuron network), the system of

coupled differential equations (2) takes over 40 min to simulate

approximately 4000 output spikes (approximately 5 s of neural
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Fig. 11. Traveling wave of neural activity. Approximately 40 000 events from
excitatory and inhibitory neurons (numbered 0–199 and 250–269, respectively)
are represented as individual points and plotted as a function of time.

activity) on a 3-GHz Intel computer with 2 GB of RAM. In con-

trast, the same network executes in just a few seconds on the

IFAT, even with a slow (kilohertz) link to a computer for data

logging. Of course, additional measures could be taken to im-

prove the software model’s performance [68]–[70], but the same

holds for the hardware model.

C. Functional Properties

The basic operation of the CA network was first tested by

implementing a “tilted” circular network. Here, neuron was

assigned to represent location , and instead of the symmetric

weight function given by (4), was set slightly greater

than . When a few suprathreshold input events were

applied to one neuron, the resulting activity generated a per-

sistent traveling wave that propagated clockwise around the

ring (Fig. 11). In software simulations, this can be a noiseless

process, but the intrinsic circuit noise in hardware generates a

few spurious and out-of-order events.

The continuous traveling wave in Fig. 11 is different than

those observed during rat sleep cycles, as the latter typically

contain discontinuous traveling waves interposed with periods

of quasi-stable activity bumps and spontaneous jumps between

states. However, these kinds of activity patterns can be created

by the CA model if the 400 different spatial locations are ran-

domly assigned to neurons in the network. An example of this

behavior is shown in Fig. 12. Because synaptic weights are as-

signed based on the spatial representations of the neurons (4),

there is little obvious structure to the events generated by ad-

jacent neurons in the network [Fig. 12(a)]. However, when the

same activity is plotted as a function of the physical locations

each neuron represents [Fig. 12(b)], the activity is observed to

move discontinuously through space.

An important feature of the neural outputs in Fig. 12 is that

the spike trains appear aperiodic. Aperiodicity typically arises

only when neural parameters are specifically chosen for this pur-

pose, but it seems to be an emergent property of the CA network

(in both software and hardware), possibly because of the inter-

actions between excitatory and inhibitory neurons, and because

conductance-based synapses add charge to neurons nonlinearly.

Fig. 12. Discontinuous traveling waves similar to those observed during rat
sleep cycles. (a) IFAT output events from excitatory neurons 0–199 and in-
hibitory neurons 250–269 plotted as neuron number versus time. (b) IFAT output
events plotted according to their representation of spatial location versus time.
Although there is no obvious structure to the events in neural space, a discontin-
uous traveling wave (circled) is evident in the neural representation of physical
space.

One useful side effect of spike aperiodicity is that it allows for

the aforementioned quasi-stability, wherein activity bumps form

spontaneously, persist for an arbitrary length of time, and then

collapse, sending the system into a different quasi-stable state

or a traveling wave. This does not usually occur during regular,

periodic spiking, but the chaotic combination of neurons firing

at any given time during aperiodic spiking is occasionally suffi-

cient to shift the center of activity away from a stable bump.

By removing the asymmetry in the weight matrix and imple-

menting (4) exactly, the CA network can generate stable bumps

of activity instead of traveling waves. In this configuration, it

can also represent “partial remapping,” which is a phenomenon

observed in the hippocampus when a rat enters a room that is

similar to another room it has visited—the new room “imports”

attractors corresponding to similar locations in other rooms in

addition to manifesting novel attractors. An example of partial

remapping is shown in Fig. 13, where the network was briefly

excited by two simultaneous inputs. Each of these inputs indi-

vidually represents a particular set of sensory clues and should

induce a unique stable activity bump. The parallel combination

of both inputs represents indeterminate, intermediate, or other-

wise novel sensory information, to which the network responds

with a unique persistent stable state that is a nonlinear combina-

tion of the two independent inputs. In Fig. 13(b), the new state is

manifested as four stable bumps, two of which represent the in-

dividual inputs (unfilled arrowheads) and two that emerge from

the nonlinear interactions between neurons (filled arrowheads).

Because linear combinations of independent inputs result in

nonlinear combinations of the outputs, the capacity of a CA

network is potentially very large. Although a theoretical result

may be computed mathematically, an empirical result requires

testing all combinations of inputs. These experiments are cur-

rently underway, and a full analysis of the capacity of the CA

network will be reported in a future manuscript. The IFAT is
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Fig. 13. Example of partial remapping and stable activity bumps. (a) IFAT
output events from excitatory neurons 0–199 and inhibitory neurons 250–269
plotted as neuron number versus time. (b) IFAT output events plotted as spa-
tial location versus time. Color scale as in Fig. 12. Arrowheads point to activity
bumps; see text for details.

well suited to this type of large scale simulation, and offers a

significant speed advantage over an equivalent software simula-

tion (by a factor of a few hundred in our tests).

VII. DISCUSSION

A. Comparison With Other AER Transceivers

There are some important differences between the imple-

mented AER architecture and previous AER-based neural

systems (e.g., [15] and [16]). First, the implemented system

allows for emulation of a large number of synapses on every

cell (limited only by the capacity of the LUT), as each in-

coming event can be assigned a unique weight and reversal

potential. Second, it emulates conductance-based synapses,

which can have important implications in neural models (c.f.

Sections III and VI). For example, shunting inhibition by

conductance-based synapses is key to some known complex

nonlinear interactions between synaptic inputs [71]–[74].

Unlike standard I&F models, the order of input events in a

conductance-based model is an essential factor in determining

the neural output (Fig. 6). Even so-called “leaky” I&F models,

which include a static conductance to the rest potential, fall

short of modeling such nonlinear interaction effects because

this conductance is activity independent. In contrast, shunting

inhibition by a conductance-based synapse is both level depen-

dent and activity dependent [32]. Third, charge-based circuits

exploit better matching between capacitors than between MOS

transistors due to threshold variations, which results in greater

uniformity of operation across the chip when compared to a

current-based implementation (Fig. 9). Finally, there is very

little charge leakage off the membrane capacitor, allowing for

the implementation of neural dynamics on various time scales.

Because neural integration is implemented in discrete time, it

is also possible to decouple event timing from emulated time,

and dynamically warp the time axis [31].

In biology, neurons are subject to leakage currents through

(Fig. 3), so excitatory events must occur in rapid succes-

sion to bring the membrane potential above threshold. In the

silicon neuron, leakage current is implemented by repeatedly

sending discrete events at a low synaptic weight and with

synaptic reversal potential . In both cases, the rate of

leakage essentially defines the time constant of the system;

without leakage, the neuron would be insensitive to absolute

time. Dynamic time warping allows for modulating the speed

at which the system operates by electrically changing the time

constant depending on the computational load. That is, by

varying the frequency of leakage events, we can accelerate or

decelerate the effective time constant and run small networks

faster than their biological counterparts, while larger or more

active networks may run slower than real-time, as limited by

bandwidth of the AE bus and any peripheral interfaces. Of

course, when our system interacts with a neuromorphic sensor

[75], operation is constrained to real-time.

B. Comparison With Digital Simulators

The event-driven approach to emulating spiking neural net-

works with dynamic synapses also lends itself to efficient im-

plementation in purely digital hardware or in software on digital

computers [76]. There are two fundamental differences in the

mixed-signal implementation described here. The first is paral-

lelization: When the network architecture is configured so that

postsynaptic targets with identical synaptic weights and equilib-

rium potentials are arranged in rows, columns, or whole chips,

the IFAT can perform up to 7.68 billion operations per second

[77]. The second difference between this mixed-signal system

and a purely digital system is that while the synaptic routing is

digital and therefore deterministic (other than stochastic gating

of events with the synaptic parameter in the model of quantal

release in Section II), the analog implementation of membrane

dynamics (3) contributes imprecision due to component mis-

match and noise. Though undesirable in many computational

tasks, these sources of imprecision account for variability nat-

urally present in biological neural networks. Computational ar-

tifacts of perfectly matched or noise-free network components

often give rise to biologically unrealistic results of simulated

network response.

One important implication of noise in the membrane dy-

namics is possible decoupling between timing of input and

output events. In particular, additive noise in membrane current

and in the membrane threshold potential may trigger

an action potential event even in the absence of a coincident

synaptic input event. Random neural firing patterns are accu-

rately registered by the event generation and arbitration circuits

in the AER architecture, yet are harder to emulate in digital

hardware or software with discrete-time steps.

While spiking patterns of individual biological neurons

are highly random and variable [52], coherent patterns of

synchronous firing activity in large neuronal populations arise

from complex synaptic interactions [78] and are possibly
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modulated by attention-driven mechanisms [79]. Externally

supplied additive noise on the terminal could emulate

some important functionality in modulating activity-dependent

synchronicity otherwise lost in a deterministic implementation

of the conductance-based I&F model.

Even though the event-driven approach to neural emulation

is inherently sequential, it can be extended to a parallel archi-

tecture in which multiple neurons and/or multiple synapses are

serviced at any given time. Partitioning of the neural network ar-

chitecture over multiple processors in a computer network has

been shown to deliver a linear increase in throughput, up to

2 10 synaptic events per second per processor node in a

modern PC cluster [70]. Similar improvements in throughput

can be attained, in principle, in the mixed-signal architecture by

partitioning the neural network over multiple AER processing

nodes, each with local IFAT transceivers and LUT memory, and

with asynchronously pipelined message parsing between pro-

cessing nodes [55]. Extending pipelining at all levels of the ar-

chitecture could allow throughputs on the order of 10 events

per second per AER node, limited by current read access rates

of DRAM memory.

C. Address-Domain Learning

The IFAT architecture is well suited for implementing

synaptic plasticity in the “address-domain” because the MCU

monitors both the incoming and outgoing synaptic events and

has read/write access to the synaptic parameters stored in RAM.

In this context, plasticity only requires modifying the LUT

in response to particular sequences of events. An additional

component of learning in biological systems is the creation

or elimination of synapses—on the IFAT, this is achieved by

inserting or deleting entries in RAM. Like address-domain

connectivity, the advantage of address-domain plasticity is

that the constituents of the implemented learning rule are not

constrained to be local in space or time. Various forms of

learning algorithms can be mapped onto the same architecture

by reconfiguring the MCU interfacing the IFAT and the LUT.

The IFAT can implement basic forms of Hebbian learning,

including spike-timing dependent plasticity (STDP) [80], with

very little processing overhead [31]. STDP-based learning rules

specify changes in synaptic strength depending on the time in-

terval between each pair of presynaptic and postsynaptic events.

An STDP synaptic modification rule can be implemented in the

address-domain by augmenting the AER architecture with two

event queues, one each for presynaptic and postsynaptic events,

and with a counter that is incremented every time a global decay

event occurs (this sets the time constant of the system). For

every presynaptic event, the sender’s address is entered into a

queue with an associated timestamp. A postsynaptic event then

triggers a sequence of synaptic updates by iterating backward

through the queue to find the causal spikes, locating the appro-

priate synaptic weights in the LUT, and increasing those values

by an amount based on the timestamps. Anticausal events re-

quire an equivalent set of operations, matching each incoming

presynaptic spike with a second queue of postsynaptic events.

Depending on the size of the network and the rate of learning,

the weight updates can occupy a large fraction of the MCU’s

resources, but because these operations are independent of the

silicon neurons and AER bus, they can be executed more quickly

with faster components.

VIII. CONCLUSION

The conductance-based I&F array chip provides a solution

for creating large scale networks of silicon neurons with arbi-

trary connectivity and reprogrammability. When combined with

the other hardware in the IFAT system, it is a powerful tool for

simulating cortical circuits. In general, the IFAT has been de-

signed for reconfigurability and ease of use (e.g., implementing

a new network only requires downloading a table of synaptic

values to the RAM) rather than speed or throughput. To date, the

system has been used to detect salience in a visual image [57],

spatially modulate a visual image [81], detect spatially oriented

changes in visual contrast in real time [75], compute a nonlinear

pooling function similar to winner-take-all [77], and implement

a model of attractor dynamics and waves of neural activity in rat

hippocampus (Section VI). Future work will focus on increasing

the breadth of applications to include sensory modalities other

than vision and more complex cortical models.

APPENDIX

DERIVATION OF DISCRETE-TIME MEMBRANE EQUATION

Equation (3) is derived using simple switched-capacitor anal-

ysis techniques. At the end of a previous update , switches

and (Fig. 2) are open and charge is stored on the

membrane capacitor in proportion to the membrane poten-

tial

(5)

When the next input event arrives, switch is closed first,

and charge is stored across the active weight capacitors

– in proportion to the synaptic reversal potential

(6)

Switch is then opened, and switch is closed, sharing

charge between the weight and membrane capacitors. The total

charge is simply the sum of the two stored charges, and

the resulting voltage is proportional to the total charge and the

total capacitance

(7)

(8)

Rearranging terms, and using (5)–(7) in (8), we obtain

(9)

which yields (3) with the following definition of terms:
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The membrane potential thus updated, switch is opened, and

the synapse is ready to process another event.
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