
DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time

Richard A. Newcombe

newcombe@cs.washington.edu

Dieter Fox

fox@cs.washington.edu

University of Washington, Seattle

Steven M. Seitz

seitz@cs.washington.edu

Figure 1: Real-time reconstructions of a moving scene with DynamicFusion; both the person and the camera are moving. The initially

noisy and incomplete model is progressively denoised and completed over time (left to right).

Abstract

We present the first dense SLAM system capable of re-

constructing non-rigidly deforming scenes in real-time, by

fusing together RGBD scans captured from commodity sen-

sors. Our DynamicFusion approach reconstructs scene ge-

ometry whilst simultaneously estimating a dense volumet-

ric 6D motion field that warps the estimated geometry into

a live frame. Like KinectFusion, our system produces in-

creasingly denoised, detailed, and complete reconstructions

as more measurements are fused, and displays the updated

model in real time. Because we do not require a template

or other prior scene model, the approach is applicable to a

wide range of moving objects and scenes.

3D scanning traditionally involves separate capture and

off-line processing phases, requiring very careful planning

of the capture to make sure that every surface is cov-

ered. In practice, it’s very difficult to avoid holes, requir-

ing several iterations of capture, reconstruction, identifying

holes, and recapturing missing regions to ensure a complete

model. Real-time 3D reconstruction systems like KinectFu-

sion [18, 10] represent a major advance, by providing users

the ability to instantly see the reconstruction and identify

regions that remain to be scanned. KinectFusion spurred a

flurry of follow up research aimed at robustifying the track-

ing [9, 32] and expanding its spatial mapping capabilities to

larger environments [22, 19, 34, 31, 9].

However, as with all traditional SLAM and dense re-

construction systems, the most basic assumption behind

KinectFusion is that the observed scene is largely static.

The core question we tackle in this paper is: How can we

generalise KinectFusion to reconstruct and track dynamic,

non-rigid scenes in real-time? To that end, we introduce

DynamicFusion, an approach based on solving for a vol-

umetric flow field that transforms the state of the scene at

each time instant into a fixed, canonical frame. In the case

of a moving person, for example, this transformation un-

does the person’s motion, warping each body configuration

into the pose of the first frame. Following these warps, the

scene is effectively rigid, and standard KinectFusion up-

dates can be used to obtain a high quality, denoised recon-

struction. This progressively denoised reconstruction can

then be transformed back into the live frame using the in-

verse map; each point in the canonical frame is transformed

to its location in the live frame (see Figure 1).

Defining a canonical “rigid” space for a dynamically

moving scene is not straightforward. A key contribution

of our work is an approach for non-rigid transformation and

fusion that retains the optimality properties of volumetric

scan fusion [5], developed originally for rigid scenes. The

main insight is that undoing the scene motion to enable fu-

sion of all observations into a single fixed frame can be

achieved efficiently by computing the inverse map alone.

Under this transformation, each canonical point projects

along a line of sight in the live camera frame. Since the

optimality arguments of [5] (developed for rigid scenes) de-

pend only on lines of sight, we can generalize their optimal-

ity results to the non-rigid case.

Our second key contribution is to represent this volumet-

ric warp efficiently, and compute it in real time. Indeed,

even a relatively low resolution, 2563 deformation volume

would require 100 million transformation variables to be

computed at frame-rate. Our solution depends on a com-

bination of adaptive, sparse, hierarchical volumetric basis

functions, and innovative algorithmic work to ensure a real-



time solution on commodity hardware. As a result, Dynam-

icFusion is the first system capable of real-time dense recon-

struction in dynamic scenes using a single depth camera.

The remainder of this paper is structured as follows. Af-

ter discussing related work, we present an overview of Dy-

namicFusion in Section 2 and provide technical details in

Section 3. We provide experimental results in Section 4 and

conclude in Section 5.

1. Related Work

While no prior work achieves real-time, template-free,

non-rigid reconstruction, there are two categories of closely

related work: 1) real-time non-rigid tracking algorithms,

and 2) offline dynamic reconstruction techniques.

Real-time non-rigid template tracking. The vast ma-

jority of non-rigid tracking research focuses on human body

parts, for which specialised shape and motion templates are

learnt or manually designed. The best of these demonstrate

high accuracy, real-time performance capture for tracking

faces [16, 3], hands [21, 20], complete bodies [27], or gen-

eral articulated objects [23, 33].

Other techniques directly track and deform more gen-

eral mesh models. [12] demonstrated the ability to track

a statically acquired low resolution shape template and up-

grade its appearance with high frequency geometric details

not present in the original model. Recently, [37] demon-

strated an impressive real-time version of a similar tech-

nique, using GPU accelerated optimisations. In that sys-

tem, a dense surface model of the subject is captured while

remaining static, yielding a template for use in their real-

time tracking pipeline. This separation into template gen-

eration and tracking limits the system to objects and scenes

that are completely static during the geometric reconstruc-

tion phase, precluding reconstruction of things that won’t

reliably hold still (e.g., children or pets).

Offline simultaneous tracking and reconstruction of

dynamic scenes. There is a growing literature on offline

non-rigid tracking and reconstruction techniques. Several

researchers have extended ICP to enable small non-rigid

deformations, e.g., [1, 2]. Practical advancements to pair-

wise 3D shape and scan alignment over larger deformations

make use of reduced deformable model parametrisations

[14, 4]. In particular, embedded deformation graphs [25]

use a sparsely sampled set of transformation basis func-

tions that can be efficiently and densely interpolated over

space. Quasi-rigid reconstruction has also been demon-

strated [15, 35] and hybrid systems, making use of a known

kinematic structure (e.g., a human body), are able to per-

form non-rigid shape denoising [36]. Other work combines

non-rigid mesh template tracking and temporal denoising

and completion [13], but does not obtain a single consistent

representation of the scene.

More closely related to our work are template-free tech-

niques. An intriguing approach to template-free non-rigid

alignment, introduced in [17] and [26], treats each non-

rigid scan as a view from a 4D geometric observation and

performs 4D shape reconstruction. [30, 29] reconstruct

a fixed topology geometry by performing pair-wise scan

alignment. [24] use a space-time solid incompressible flow

prior that results in water tight reconstructions and is ef-

fective against noisy input point-cloud data. [28] intro-

duce animation cartography that also estimates shape and

a per frame deformation by developing a dense correspon-

dence matching scheme that is seeded with sparse landmark

matches. Recent work using multiple fixed kinect cameras

[8] [7] demonstrates larger scale non-rigid reconstruction by

densely tracking and fusing all depth map data into a novel

directional distance function representation.

All of these techniques require three to four orders of

magnitude more time than is available within a real-time

setting.

2. DynamicFusion Overview

DynamicFusion decomposes a non-rigidly deforming

scene into a latent geometric surface, reconstructed into a

rigid canonical space S ⊆ R
3; and a per frame volumetric

warp field that transforms that surface into the live frame.

There are three core algorithmic components to the system

that are performed in sequence on arrival of each new depth

frame:

1. Estimation of the volumetric model-to-frame warp

field parameters (Section 3.3)

2. Fusion of the live frame depth map into the canonical

space via the estimated warp field (Section 3.2)

3. Adaptation of the warp-field structure to capture newly

added geometry (Section 3.4)

Figure 2 provides an overview.

3. Technical Details

We will now describe the components of DynamicFusion

in detail. First, we describe our dense volumetric warp-field

parametrisation. This allows us to model per-frame defor-

mations in the scene. The warp-field is the key extension

over static state space representations used in traditional re-

construction and SLAM systems, and its estimation is the

enabler of both non-rigid tracking and scene reconstruction.

3.1. Dense Nonrigid Warp Field

We represent dynamic scene motion through a volumet-

ric warp-field, providing a per point 6D transformation

W : S 7→ SE(3). Whereas a dense 3D translation field

would be sufficient to describe time varying geometry, we

have found that representing the real-world transformation



(a) Initial Frame at t = 0s (b) Raw (noisy) depth maps for frames at t = 1s, 10s, 15s, 20s (c) Node Distance

(d) Canonical Model (e) Canonical model warped into its live frame (f) Model Normals

Figure 2: DynamicFusion takes an online stream of noisy depth maps (a,b) and outputs a real-time dense reconstruction of the moving

scene (d,e). To achieve this, we estimate a volumetric warp (motion) field that transforms the canonical model space into the live frame,

enabling the scene motion to be undone, and all depth maps to be densely fused into a single rigid TSDF reconstruction (d,f). Simulta-

neously, the structure of the warp field is constructed as a set of sparse 6D transformation nodes that are smoothly interpolated through

a k-nearest node average in the canonical frame (c). The resulting per-frame warp field estimate enables the progressively denoised and

completed scene geometry to be transformed into the live frame in real-time (e). In (e) we also visualise motion trails for a sub-sample

of model vertices over the last 1 second of scene motion together with a coordinate frame showing the rigid body component of the scene

motion. In (c) we render the nearest node to model surface distance where increased distance is mapped to a lighter value.

of objects with both translation and rotation results in signif-

icantly better tracking and reconstruction. For each canoni-

cal point vc ∈ S, Tlc = W(vc) transforms that point from

canonical space into the live, non-rigidly deformed frame of

reference.

Since we will need to estimate the warp function for each

new frame, Wt, its representation must be efficiently opti-

misable. One possibility is to densely sample the volume,

e.g. representing a quantised SE(3) field at the resolution

of the truncated signed distance (TSDF) geometric repre-

sentation. However, a typical TSDF volume reconstruction

at a relatively low resolution of 2563 voxels would require

the solution of 6 × 2563 parameters per frame, about 10

million times more than in the original KinectFusion al-

gorithm, which only estimates a single rigid transforma-

tion. Clearly, a completely dense parametrisation of the

warp function is infeasible. In reality, surfaces tend to move

smoothly in space, and so we can instead use a sparse set

of transformations as bases and define the dense volumet-

ric warp function through interpolation. Due to its compu-

tational efficiency and high quality interpolation capability

we use dual-quaternion blending DQB [11], to define our

warp function:

W(xc) ≡ SE3(DQB(xc)) , (1)

where the weighted average over unit dual quaternion trans-

formations is simply DQB(xc) ≡
∑

k∈N(xc)
wk(xc)q̂kc

‖
∑

k∈N(xc)
wk(xc)q̂kc‖

,

with each unit dual-quaternion q̂kc ∈ R
8. Here, N (x) are

the k-nearest transformation nodes to the point x and wk :
R

3 7→ R defines a weight that alters the radius of influence

of each node and SE3(.) converts from quaternions back to

an SE(3) transformation matrix. The state of the warp-field

Wt at time t is defined by the values of a set of n defor-

mation nodes N t
warp = {dgv,dgw,dgse3}t. Each of the

i = 1..n nodes has a position in the canonical frame dgi
v ∈

R
3, its associated transformation Tic = dgi

se3, and a ra-

dial basis weight dgw that controls the extent of the trans-

formation wi(xc) = exp
(

−‖dgi
v − xc‖

2/
(

2(dgi
w)

2
))

.

Each radius parameter dgi
w is set to ensure the node’s in-

fluence overlaps with neighbouring nodes, dependent on

the sampling sparsity of nodes, which we describe in de-

tail in section (3.4). Since the warp function defines a

rigid body transformation for all supported space, both posi-

tion and any associated orientation of space is transformed,

e.g., the vertex vc from a surface with orientation or nor-

mal nc is transformed into the live frame as (vt, 1)
⊤ =

Wt(vc)(v
⊤
c , 1)

⊤ and (nt, 0)
⊤ =Wt(vc)(n

⊤
c , 0)

⊤. We note

that scaling of space can also be represented with this warp

function, since compression and expansion of space are rep-

resented by neighbouring points moving in converging and

diverging directions. Finally, we note that we can factor

out any rigid body transformation common to all points in

the volume, e.g., due to camera motion. We therefore in-

troduce the explicit warped model to live camera transform,

Tlw, and compose this onto the volumetric warp function;



our complete warp-field is then given as:

Wt(xc) = TlwSE3(DQB(xc)). (2)

3.2. Dense NonRigid Surface Fusion

We now describe how, given the model-to-frame warp

field Wt, we update our canonical model geometry. Our

reconstruction into the canonical space S is represented by

the sampled TSDF V : S 7→ R
2 within a voxel domain

S ⊂ N
3. The sampled function holds for each voxel x ∈

S corresponding to the sampled point xc, a tuple V(x) 7→
[v(x) ∈ R,w(x) ∈ R]⊤ holding a weighted average of all

projective TSDF values observed for that point so far v(x),
together with the sum of all associated weights w(x).

We extend the projective TSDF fusion approach origi-

nally introduced by [6] to operate over non-rigidly deform-

ing scenes. Given the live depth image Dt, we transform

each voxel center xc ∈ S by its estimated warp into the live

frame (x⊤t , 1)
⊤ = Wt(xc)(x

⊤
c , 1)

⊤, and carry through the

TSDF surface fusion operation by directly projecting the

warped center into the depth frame. This allows the TSDF

for a point in the canonical frame to be updated by com-

puting the projective TSDF in the deforming frame without

having to resample a warped TSDF in the live frame. The

projective signed distance at the warped canonical point is:

psdf(xc) =
[

K−1Dt (uc)
[

u⊤c , 1
]⊤

]

z
− [xt]z , (3)

where uc = π (Kxt) is the pixel into which the voxel cen-

ter projects. We compute distance along the optical (z) axis

of the camera frame using the z component denoted [.]z .

K is the known 3× 3 camera intrinsic matrix, and π per-

forms perspective projection. For each voxel x, we update

the TSDF to incorporate the projective SDF observed in the

warped frame using TSDF fusion:

V(x)t =

{

[v′(x),w′(x)]⊤, if psdf(dc(x)) > −τ

V(x)t−1, otherwise
(4)

where dc(.) transforms a discrete voxel point into the con-

tinuous TSDF domain. The truncation distance τ > 0 and

the updated TSDF value is given by the weighted averaging

scheme [5], with the weight truncation introduced in [18]:

v
′(x) =

v(x)t−1w(x)t−1 +min(ρ, τ)w(x)

w(x)t−1 + w(x)

ρ = psdf(dc(x))

w
′(x) = min(w(x)t−1 + w(x), wmax) . (5)

Unlike the static fusion scenario where the weight w(x)
encodes the uncertainty of the depth value observed at the

projected pixel in the depth frame, we also account for un-

certainty associated with the warp function at xc. In the

case of the single rigid transformation in original TSDF

fusion, we are certain that observed surface regions, free

space, and unobserved regions transform equivalently. In

our non-rigid case, the further away the point xc is from an

already mapped and observable surface region, the less cer-

tain we can be about its transformation. We use the average

distance from xc to its k-nearest deformation nodes as a

proxy for this increase in uncertainty and scale: w(x) ∝
1
k

∑

i∈N(xc)
‖dgi

w − xc‖2. We note that our non-rigid

fusion generalises the static reconstruction case used in

KinectFusion, replacing the single (rigid) model-to-camera

transform with a per voxel warp that transforms the asso-

ciated space into the live (non-rigid) frame (see Figure 3).

This technique greatly simplifies the non-rigid reconstruc-

tion process over methods where all frames are explicitly

warped into a canonical frame. Furthermore, given a cor-

rect warp field, then, since all TSDF updates are computed

using distances in the camera frame, the non-rigid projec-

tive TSDF fusion approach maintains the optimality guar-

antees for surface reconstruction from noisy observations

originally proved for the static reconstruction case in [6].

3.3. Estimating the Warpfield StateWt

We estimate the current values of the transformations

dgse3 inWt given a newly observed depth map Dt and the

current reconstruction V by constructing an energy function

that is minimised by our desired parameters:

E(Wt,V, Dt, E) = Data(Wt,V, Dt) + λReg(Wt, E) . (6)

Our data term consists of a dense model-to-frame ICP

cost Data(Wt,V, Dt) which is coupled with a regular-

isation term Reg(Wt, E) that penalises non-smooth mo-

tion fields, and ensures as-rigid-as-possible deformation be-

tween transformation nodes connected by the edge set E .

The coupling of a data-term formed from linearly blended

transformations with a rigid-as-possible graph based reg-

ularisation is a form of the embedded deformation graph

model introduced in [25]. The regularisation parameter λ
enables a trade-off between relaxing rigidity over the field

when given high quality data, and ensuring a smooth con-

sistent deformation of non or noisily observed regions of

space. We defined these terms in the next subsections.

3.3.1 Dense Non-Rigid ICP Data-term

Our aim is to estimate all non-rigid transformation param-

eters Tic and Tlw that warp the canonical volume into the

live frame. We achieve this by performing a dense non-

rigid alignment of the current surface reconstruction, ex-

tracted from the canonical volume’s zero level set, into the

live frame’s depth map.

Surface Prediction and Data-Association: The current

zero level set of the TSDF V is extracted by marching cubes

and stored as a polygon mesh with point-normal pairs in the

canonical frame: V̂c ≡ {Vc, Nc}. We non-rigidly transform

this mesh into the live frame using the current warp field

Wt resulting in the warped point-normals V̂w.



Non-rigid scene deformation Introducing an occlusion

(a) Live frame t = 0 (b) Live Frame t = 1 (c) Canonical 7→ Live (d) Live frame t = 0 (e) Live Frame t = 1 (f) Canonical 7→ Live

Figure 3: An illustration of how each point in the canonical frame maps, through a correct warp field, onto a ray in the live camera frame

when observing a deforming scene. In (a) the first view of a dynamic scene is observed. In the corresponding canonical frame, the warp is

initialized to the identity transform and the three rays shown in the live frame also map as straight lines in the canonical frame. As the scene

deforms in the live frame (b), the warp function transforms each point from the canonical and into the corresponding live frame location,

causing the corresponding rays to bend (c). Note that this warp can be achieved with two 6D deformation nodes (shown as circles), where

the left node applies a clockwise twist. In (d) we show a new scene that includes a cube that is about to occlude the bar. In the live frame

(e), as the cube occludes a portion of the bar, the points in the canonical frame (f) are warped to correctly pass through the cube.

We obtain an initial estimate for data-association (corre-

spondence) between the model geometry and the live frame

by rendering the warped surface V̂w into the live frame

shaded with canonical frame vertex positions using a ras-

terizing rendering pipeline. This results in a prediction of

the canonical frame’s geometry that is currently predicted

to be visible in the live frame: P(V̂c). We store this pre-

diction as a pair of images {v,n} : Ω 7→ P(V̂c), where

Ω is the pixel domain of the predicted images, storing the

rendered canonical frame vertices and normals.

Given optimal transformation parameters for the current

time frame, the predicted-to-be-visible geometry should

transform close, modulo observation noise, to the live sur-

face vl : Ω 7→ R
3, formed by back projection of the depth

image [vl(u)⊤, 1]⊤ = K−1Dt(u)[u
⊤, 1]⊤. This can be

quantified by a per pixel dense model-to-frame point-plane

error, which we compute under the robust Tukey penalty

function ψdata, summed over the predicted image domain

Ω:

Data(W,V, Dt) ≡
∑

u∈Ω

ψdata

(

n̂⊤
u (v̂u − vlũ)

)

.(7)

augment. The transformed model vertex v(u) is simply

T̃u = W(v(u)), producing the current canonical to live

frame point-normal predictions v̂u = T̃uv(u) and n̂u =
T̃un(u), and data-association of that model point-normal

is made with a live frame point-normal through perspective

projection into the pixel ũ = π(Kv̂u).

We note that, ignoring the negligible cost of rendering

the geometry V̂w, the ability to extract, predict, and perform

projective data association with the currently visible canoni-

cal geometry leads to a data-term evaluation that has a com-

putational complexity with an upper bound in the number

of pixels in the observation image. Furthermore, each data-

term summand depends only on a subset of the n trans-

formations when computingW , and the region over which

each node has a numerically significant impact on the error

function is compact. In practice, the result is a computa-

tional cost similar to a single rigid body dense projective

point-plane data-term evaluation (as used in KinectFusion).

3.3.2 Warp-field Regularization

It is crucial for our non-rigid TSDF fusion technique to es-

timate a deformation not only of currently visible surfaces,

but over all space within S. This enables reconstruction

of new regions of the scene surface that are about to come

into view. However, nodes affecting canonical space within

which no currently observed surface resides will have no

associated data term. In any case, noise, missing data and

insufficient geometric texture in the live frame – an ana-

logue to the aperture problem in optical-flow – will result

in optimisation of the transform parameters being ill-posed.

How should we constrain the motion of non-observed ge-

ometry? Whilst the fully correct motion depends on object

dynamics and, where applicable, the subject’s volition, we

make use of a simpler model of unobserved geometry: that

it deforms in a piece-wise smooth way.

We use a deformation graph based regularization defined

between transformation nodes, where an edge in the graph

between nodes i and j adds a rigid-as-possible regularisa-

tion term to the total error being minimized, under the dis-

continuity preserving Huber penalty ψreg. The total regu-

larisation term sums over all pair-wise connected nodes:

Reg(W, E) ≡
n
∑

i=0

∑

j∈E(i)

αijψreg

(

Ticdgj
v −Tjcdg

j
v

)

, (8)

where E defines the regularisation graph topology, and αij

defines the weight associated with the edge, which we set

to αij = max(dgi
w,dg

j
w).



Hierarchical Deformation Tree: In original applica-

tions of the embedded deformation graph [25] approach to

non-rigid tracking, E is defined as the k−nearest neighbours

of each node or all nodes within a specified radius. We find

that either of these edge sets work well in practice, but have

further found that by constructing a hierarchical deforma-

tion graph with no explicit edge connectivity between sib-

lings, both stability of the deformation field increases while

computational costs of minimising the total energy func-

tion decreases. Given the current set of deformation nodes

Nwarp, we construct a hierarchy of regularisation nodes

Nreg = {rv, rse3, rw} (construction of the hierarchy is de-

scribed in section 3.4). Importantly, we do not use Nreg

within the warp functionW; they are used to induce longer

range regularisation across the warp function with reduced

computational complexity. Each level of the regularisation

node hierarchy also defines the node positions, transforms,

and support weights. Our regularisation graph topology is

then simply formed by adding edges from each node of the

hierarchy (starting in Nwarp) to its k−nearest nodes in the

next coarser level. Since the latent surface reconstruction

will grow within the canonical frame (until completely ob-

served), we need to continuously update the deformation

nodes and the regularisation graph, potentially at frame-

rate, which we describe in Section (3.4).

3.3.3 Efficient Optimization

Estimation of all transformation parameters, Tlw, dgse3

and rse3, is performed by minimising the total energy E
(Eq. 6). We minimise E through Gauss-Newton non-linear

optimisation, which requires iteratively re-linearising E
around the currently estimated deformation node parame-

ters and forming and solving the normal equations J⊤Jx̂ =
J⊤e. We formulate compositional updates x̂ through the

exponential map with a per-node twist ξi ∈ se(3), requir-

ing 6 variables per node transform, and perform linearisa-

tion around ξi = 0. It is crucial that our solver is effi-

cient, since a warp field of a deforming scene (for example

a person gesticulating) may require several hundred defor-

mation nodes, corresponding to many thousands of parame-

ters requiring solution at frame rate. Recently, [37] demon-

strated a real-time solution to a related non-rigid tracking

optimization using a GPU accelerated pre-conditioned con-

jugate gradient descent solver. We take a different approach,

using instead a direct sparse Cholesky factorization of each

linearised system. We note that direct solvers resolve low-

frequency residuals very effectively, which is critical to en-

suring minimal drift during reconstruction.

The main computational complexity in minimisingE in-

volves constructing and factorizing the Gauss-Newton ap-

proximation of the Hessian: J⊤J = J⊤
dJd + λJ⊤

r Jr.

First, we note that the k-nearest node field induces non-

zero blocks in the data term component J⊤
dJd for each pair

of nodes currently involved in deforming V into an observ-

able region of the live frame. Building the full linear system

on the GPU currently hinders real-time performance due to

requirements on global GPU memory read and writes. For-

tunately, since the associated weight of each deformation

node reduces to a very small value outside of 3dgw, any

data term there can be safely ignored. Approximating fur-

ther, we compute only the block diagonal terms for J⊤
dJd,

as if the effect of each node on the warp function were in-

dependent, resulting in a computational cost of building the

structure similar to a single rigid body transformation for

the frame. This technique is reasonable since, after solution

of the linearised system, the current canonical model sur-

face is re-warped into the live frame, resulting in a form of

time-lagged linearisation of the objective.

A second optimization efficiency comes in the form of

the sparse linear system that our hierarchical regularisation

term induces. We construct the regularisation Hessian ap-

proximation Jr
⊤Jr using the linearisation of the virtual de-

formation node parameters, laying out the parameter blocks

with a coarse to fine ordering. The resulting complete sys-

tem matrix has a block arrow-head form which is efficiently

factorized with a block-Cholesky decomposition.

Prior to non-rigid optimisation, given a new frame, we

first estimate the factorised transformation Tlw using the

dense ICP introduced in KinectFusion. This resolves the

relative rigid body transformation, i.e. due to camera mo-

tion and improves data-association for the non-rigid solver.

To that end, we re-render the predicted surface geometry V̂
and perform 2 or 3 iterations of the dense non-rigid opti-

mization. Finally, we factorise out any resulting rigid body

transformation T̃ common across all deformation nodes and

update Tlw ← T̃Tlw.

It is important that computation of W is fast, requiring

evaluation many millions of times per frame, all residing

on the GPU. We therefore pre-compute, for each updated

set of deformation node positions, a discretisation of the

k−nearest node field required in dual-quaternion blending

(DQB) with the same resolution of our volumetric TSDF:

I : S 7→ N
k. Due to the sparsity of the deformation nodes

relative to the sampling density of S, this is a very fine ap-

proximation and is efficiently updated on the GPU when-

ever the set of nodes is updated.

3.4. Extending the Warpfield

In the preceding subsections we defined how the canon-

ical space can be deformed through W (Section 3.1), in-

troduced the optimisation required to estimate warp-field

state through time (3.3), and showed how, given an esti-

mated warp field, we can incrementally update the canon-

ical surface geometry (3.2). As this model grows, so must

the support of the warp function. In this subsection we de-



Figure 4: The first frames and final canonical models from DynamicFusion results shown in our accompanying video, available on our

project website: http://grail.cs.washington.edu/projects/dynamicfusion.

scribe our approach to extending the warp-field parametri-

sation to ensure deformations are represented, over both the

newly emerging surface geometry and soon to be observed

space. This consists of incrementally updating the deforma-

tion graph nodes Nwarp, and then recomputing a new hier-

archical edge topology E that expands the regularisation to

include the new nodes.

Inserting New Deformation Nodes into Nwarp: Af-

ter performing a non-rigid TSDF fusion step, we extract

the surface estimate in the canonical frame as the polygon

mesh V̂c. Given the current set of nodes Nwarp, we com-

pute the extent to which the current warp function covers

the extracted geometry. This simply entails computing the

normalised distance from each vertex vc ∈ V̂c to its sup-

porting nodes. An unsupported surface vertex is detected

when the distance mink∈N(xc)

(

‖dgk

v
−vc‖

dgk
w

)

≥ 1. The set

of all unsupported vertices is then spatially sub-sampled us-

ing a simple radius search averaging to reduce the vertices

to a set of new node positions d̃gv that are at least ǫ dis-

tance apart. We note that ǫ is an important parameter in

DynamicFusion; while the regularisation parameter λ en-

forces global deformation smoothness, ǫ defines the effec-

tive resolution of the motion field. Each new node center

dg∗
v ∈ d̃gv requires an initialisation of its current transfor-

mation, which is obtained directly through DQB with the

current warp dg∗
se3 ← Wt(dg

∗
v). Finally, we update the

current set of deformation nodes to correspond to the cur-

rent timeN t
warp = N t−1

warp ∪ {d̃gv, d̃gse3, d̃gw}. For each

new node to be inserted, we perform an efficient GPU based

update to the pre-computed k nearest node field I.

Updating the Regularisation Graph E: Given the

newly updated set of deformation nodes, we construct an

L ≥ 1 level regularisation graph node hierarchy, where the

l = 0 level nodes will simply be Nwarp. We compute the

next l = 1 level of regularisation nodes by running the

radius search based sub-sampling on the warp field nodes

dgv to an increased decimation radius of ǫβl, where β > 1,

and again compute the initial node transforms through DQB

with the now updated Wt. We repeat this to compute the

remaining levels of the hierarchy. A completely new set

of regularisation edges E is then constructed, starting with

edges from l = 0 (i.e. Nwarp) to the nodes in Nreg at

l = 1. Edges are added for each node in the finer level to its

k-nearest neighbours in the coarser level.

4. Results

We demonstrate the system with a range of deforming

scenes captured directly from DynamicFusion in Figure (5),

and throughout the paper. In Figure (4) we show the first

frames and reconstructions for further results in our ac-

companying video. These examples highlight the ability of

DynamicFusion to (1) continuously track across large mo-

tion during reconstruction, (2) fill in initially occluded parts

of the scene, and (3) generate consistent geometry despite

many loop closures occurring during the capture process.

Parameters: results presented were obtained live from the

system with optimisation parameters λ = 200, ψdata =
0.01, ψreg = 0.0001; L = 4 levels in the regularisation hi-

erarchy with β = 4 and a decimation density of ǫ = 25mm
for all reconstructions except Figure (1) where ǫ = 15mm.

We have found that the system works reliably across a range

of dynamic scenes and settings of parameters. We urge

readers to view the associated video and supplementary ma-

terial for additional details of the reconstruction process and

to fully appreciate the live capabilities of the system.

Limitations and Discussion: While DynamicFusion can

easily handle closing topological surfaces (see the hands in

5b), it is currently limited in its ability to achieve dynamic

reconstruction of scenes that quickly move from a closed to

open topology (for example starting a reconstruction with

closed hands and then opening).

More generally, failures common to real-time differen-

tial tracking can cause unrecoverable model corruption or

result in loop closure failures. Large inter-frame motions, or

motion of occluded regions, will also lead to an inaccurate

surface prediction that prevents projective data-association

in later frames.

Stability of the warp field and subsequent reconstruc-

tion is achieved by the combined qualities of the as-rigid-

as-possible regularisation, warp field parametrisation, and

the use of a dense data-term. However, we have observed

limits on this stability when attempting reconstruction of

highly dynamic scenes. For example, reducing the regular-

isation weight and increasing the density of nodes enables

http://grail.cs.washington.edu/projects/dynamicfusion
http://grail.cs.washington.edu/projects/dynamicfusion


Canonical Model for “drinking from a cup”

(a) Canonical model warped into the live frame for “drinking from a cup”

Canonical Model for “Crossing fingers”

(b) Canonical model warped into the live frame for “crossing fingers”

Figure 5: Real-time non-rigid reconstructions for two deforming scenes. Upper rows of (a) and (b) show the canonical models as they

evolve over time, lower rows show the corresponding warped geometries tracking the scene. In (a) complete models of the arm and the

cup are obtained. Note the system’s ability to deal with large motion and add surfaces not visible in the initial scene, such as the bottom of

the cup and the back side of the arm. In (b) we show full body motions including clasping of the hands where we note that the model stays

consistent throughout the interaction.

tracking scenes with more fluid deformations than shown

in the results, but the long term stability can degrade and

tracking will fail when the observed data term is not able to

constrain the optimisation sufficiently. Finally, we show re-

construction results that are at the current limit of what can

be obtained in real-time with DynamicFusion, and there are

two limitations for scaling further. As in KinectFusion, vol-

umetric TSDF memory limits geometric extent; but there

are many solutions to this in the literature. More challeng-

ing is the estimation of a growing warp field. As the size

and complexity of the scene increases, proportionally more

is occluded from the camera, and the problem of predicting

the motion of occluded areas becomes much more challeng-

ing. This is a subject of our ongoing research.

5. Conclusions

In this paper we introduced DynamicFusion, the first

real-time dense dynamic scene reconstruction system, re-

moving the static scene assumption pervasive across real-

time 3D reconstruction and SLAM systems. We achieved

this by generalising the volumetric TSDF fusion technique

to the non-rigid case, as well as developing an efficient ap-

proach to estimate a volumetric 6D warp field in real-time.

DynamicFusion obtains reconstructions of objects whilst

they deform and provides dense correspondence across

time. We believe that DynamicFusion, like KinectFusion,

will open up a number of interesting applications of real-

time 3D scanning and SLAM systems in dynamic environ-

ments.
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