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Abstract

We present a software platform for reconstructing and analyzing the growth of a plant root

system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, con-

structs a geometric graph representation together with the function that records the time of

growth, and organizes the branches into a hierarchy that reflects the order of creation. The

software includes the automatic computation of structural and dynamic traits for each root in

the system enabling the quantification of growth on fine-scale. These are important ad-

vances in plant phenotyping with applications to the study of genetic and environmental in-

fluences on growth.

Introduction

Root system architecture plays a key role in plant fitness and crop productivity. Climate

change, a growing global population, and unsustainable use of fertilizers are responsible for the

pressing need to understand how root systems grow and interact with their environment, with

the goal to develop robust and efficient crops [1–3]. Studying plant roots systems has been hin-

dered by their complex three-dimensional branching topology, environmental growth plastici-

ty, as well as the opacity of the soil. In recent years, however, various imaging technologies

have been applied to monitor the formation and development of roots non-disruptively and

throughout a time period: X-ray [4–8], MRI [9], PET-MRI [10], laser [11], and optical imaging

[12, 13]. These technologies reconstruct the 3D shape of a root system and enable the assess-

ment of traits that were impossible to quantify by hand measurements before [5, 12–15]. Most

of the existing tools compute traits for static shapes, and if more than one shape representing

the same root system is available, the global traits are computed without separating the contri-

butions of individual branches [16]. Software that analyzes a time-series of 2D root images but

requires significant user input to track growth has been introduced in [17, 18]. Several high-

throughput platforms were developed for the analysis of video clips of growing dicot roots [19–

21]. Advances in the fields of computer graphics and computer vision make it possible to

quickly align large shapes that are at least partially similar [22, 23]. These methods can be used

to improve the analysis of time-series but have not yet been exploited for plant phenotyping.
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In this paper, we present the DynamicRoots software designed to automatically process a

time-series of 3D reconstructions of a growing root system. It registers the 3D shapes in a com-

mon coordinate system and creates a data structure that records the growth. Using this data

structure, we estimate dynamic traits of individual branches, which we aggregate to global

traits. Our contributions to the state-of-the-art are:

• a geometric graph representation of a root system that reflects its hierarchical structure;

• an algorithm that guarantees temporal coherence of the hierarchical decomposition and

computes the time function recording the growth process;

• a suite of structural and dynamic root traits including elongation rates and branching

frequency.

The computed traits facilitate the analysis of root systems in unprecedented resolution of time

and space. We illustrate the software by analyzing several time-series of reconstructed rice and

maize roots.

Outline. The Methods section gives a detailed description of the algorithm that constructs

the growth record for a time-series of 3D root shapes, and lists the structural and dynamic

traits computed from this record. The Results section explains how we validate the software

and presents experimental results for rice and maize root systems. We conclude the paper with

a discussion of current limitations and future research directions.

Methods

The goal of this work is to acquire the shape of a growing root system, to compactly represent

it in a unified data structure, and to compute traits that reflect the structural and dynamic

properties of the root system. We divide the process into five steps:

1. Take 2D images of root systems and construct a time-series of 3D shapes.

2. Align the shapes to define depth as the geodesic distance from consistently detected seed

areas.

3. Use the depth function to decompose each shape into a hierarchy of branches.

4. Construct the time function and reorganize the hierarchy by repairing inconsistencies be-

tween depth and time of growth.

5. Use the time function on the branch hierarchy to compute structural and dynamic traits of

the root system.

Correspondingly, we have five subsections explaining the steps in appropriate detail. Step 1 re-

lies on prior work presented elsewhere, while the other four steps are novel contributions re-

ported for the first time in this paper. Steps 2 to 4 construct the growth record, and Step 5

makes use of this unifying data structure.

Background and Assumptions

We review the prior work to the extent necessary to provide the context for our work. To over-

come the obstacle of opaque soil, we grow rice and maize plants in gel with nutrients inside

transparent cylindrical containers [13], monitoring the development of the root system for sev-

eral weeks. To construct the 3D shape of a root system, we place the container on a rotating

table connected to a camera and a computer, and we take 40 images at 9° increments. Current-

ly, 20 of these images are used to reconstruct the shape of the root system represented as a
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collection of voxels in 3D space [24]. Letting t be the time of the acquisition, we write Vt for the

reconstructed shape. Depending on the purpose, we will think of Vt as a subset of R
3, a collec-

tion of voxels, or a graph whose nodes are the voxels and whose arcs connect neighboring vox-

els. Drawn as straight line segments ending at voxel centers, the arcs have length 1,
ffiffiffi

2
p

, or
ffiffiffi

3
p

times the length of a voxel edge.

In order to analyze the growth of a root system, the same plant is reconstructed at different

moments in time. We thus get a time-series of shapes Vt, for t = 0,1, . . ., T, which provides a

much richer source of information about the root system than a single such shape. However,

harvesting this information is more difficult since we need to compare, quantify similarities

and differences, and resolve occasional contradictions. To do this automatically within our

software platform, we make use of the following three assumptions:

• A1: A root system grows in only two ways: by generating a new branch at a fork, and by elon-

gating an existing branch at the tip.

• A2: A root system is connected and contractible. In other words, the branches do not form

loops, and they do not surround voids in space.

• A3: The time-series is dense enough to observe the correct root hierarchy: when a side branch

first appears at a fork, it is shorter than the parent branch.

While we have biological reasons to believe that A1 and A2 are true, both assumptions are

sometimes violated by the reconstructed shapes. Our software can tolerate mild violations of

all of the three assumptions but will fail when the reconstructed shapes contain gross contra-

dictions to our expectations.

Depth, Seed, and Alignment

In this and the next two subsections, we explain how to construct the growth record of a root

system, which provides a decomposition into a hierarchy of branches together with the time of

growth. As a first step, we equip each reconstructed shape with a function φt;Vt! R that maps

each voxel to its geodesic distance from a seed area, a concept we will explain shortly. We call

this distance the depth of the voxel, and we call φt the depth function of Vt. After fixing a set of

voxels St� Vt as the seed area, we compute φt using Dijkstra’s shortest path algorithm [25].

Running this algorithm on the graph of voxels is straightforward, but the result crucially de-

pends on the choice of St, which is inspired by the biological idea that the root grows from a

particular first location. It will be more important that the location of this area is consistent

among all shapes in the time-series than to correctly identify the biological beginnings of the

root system. We therefore compute ST, and propagate its location to the other shapes after

computing an initial alignment of all shapes in the time-series. We will explain the alignment

first and return to computing the seed area thereafter.

Note that Assumption A1 implies Vs � Vt for all 0� s� t� T. To align the two shapes, we

can therefore use an algorithm that requires that the first shape be contained in the second.

Our algorithm of choice is the 4-point congruent sets (4PCS) algorithm described in [22]. To

apply it, we think of Vs as a collection of points in R
3, namely the centers of its voxels. The al-

gorithm selects four approximately coplanar points from Vs and searches for a congruent con-

figuration of four points in Vt. LetM be the matrix of the rigid motion that moves the 4-point

configuration in Vt to that in Vs. While the 4PCS algorithm is fast, the alignment it produces

can often be improved, and we use the iterative closest point (ICP) algorithm originally de-

scribed in [26] for this purpose. It computes a second matrixM0, and we setMst =M0 �M so

thatMst(Vt) is aligned with Vs. To align all T + 1 shapes in the time-series, it suffices to
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compute T rigid motions, and we choose to computeM0t for t = 1,2, . . ., T. To align Vt with Vs,

we then useMst ¼ M�1

0s �M
0t . Suppose now that we have computed the seed area in the last

shape, ST� VT. Using the rigid motions, we get St � Vt as the set of voxels closest toMtT(ST),

for 0� t� T.

To detect the seed area in VT, we perform principal component analysis (PCA) on a small

neighborhood of a radius R around every voxel. Covariance matrices with three similar eigen-

values indicate a similar spread of points along the principal axes, which in 3D space corre-

sponds to a spherical neighborhood. We find the biggest connected component of voxels with

roughly spherical neighborhoods and form the seed area by adding voxels with offset at most R

from this component. For the results reported in this paper, we used R = 3 and we suggest that

this parameter is set to a value from the interval [r,2r], in which r is the average radius of the

branches. If the seed was not detected—for example when the set of voxels with roughly spheri-

cal neighborhoods is empty or larger than an allowed fraction of the total volume—we choose

a voxel in the center of the topmost horizontal slice of the root system as the seed area.

Branch Hierarchy

As a second step in the construction of the growth record, we decompose each shape in the

time-series into branches, which we organize hierarchically. This decomposition is inspired by

the path decompositions of trees used in the design of efficient data structures; see e.g. [27].

Each branch starts at its tip at the bottom and extends upward, ending right before its fork,

which lies somewhere between the two ends of the parent branch; we therefore represent each

branch by the triplet of these entities: Bi = (Tipi, Forki, Parenti). An exception is the topmost

branch, which does not have a parent. Among all possible branch decompositions, we are inter-

ested in the one defined by the depth function.

To construct the decomposition, we traverse the voxels in the order of decreasing depth,

adding an arc right after its second endpoint. With each visited voxel, we create a new compo-

nent, and with each visited arc, we either form an additional connection within the component,

or we merge two components into one. After visiting all voxels and arcs, they are part of a sin-

gle component representing the entire root system, and we recover the branches and the rela-

tions between them by analyzing the history of events. To make this concrete, we equip each

voxel, v, with a pointer to another voxel, ρ(v). In the beginning, each voxel points to itself. After

completion of the algorithm, each voxel points to the tip of its branch, except for the tip itself,

which points to the tip of the parent branch. A tip is therefore identified by having other voxels

point to it, a branch is represented by its tip and consists in addition of all voxels pointing to

this tip, and the parent branch is given by the pointer stored at the tip.

The only interesting event during the course of the algorithm is when it encounters an arc

that connects two components. Let its endpoints be the voxels u and v, and write p = ρ(u) and q

= ρ(v) for the corresponding tips, noting that p 6¼ q by assumption. Assume without loss of

generality that q is deeper than p: φ(p)< φ(q). If the difference in depth between u and p is

smaller than some fixed threshold, then we declare the entire branch to be a part of the branch

of q by updating the pointer: ρ(p) = q. Otherwise, we consolidate the branch of p by declaring v

as its fork and the branch of q as its parent.

As mentioned earlier, each branch is represented by its tip, p, and consists of all voxels u

with ρ(u) = p, together with p. To avoid possible confusions arising from the two different uses

of the ρ-pointer, we save the pointer to the parent branch by setting Parent(p) = ρ(p), and

thereafter set ρ(p) = p to indicate that it belongs to the branch it represents. In addition, we

store a pointer Fork(p) to the fork in the parent branch. The thus linked branches form what

we call a branch hierarchy. At this moment, the hierarchy is determined by depth: a branch has

DynamicRoots for Analysis of Growing Plant Roots
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a tip that is necessarily less deep than the tip of the parent branch. Ultimately, we would like

the hierarchy be determined by age. In the next section, we will explain how the hierarchy can

be modified to achieve this goal.

Time Function

We are now ready to compute the time function of the last shape in the time-series, τ;V! R

with V = VT. Compressing the information of the time-series into a single shape, it maps every

voxel of V to the moment in time the voxel was created. The time function is piecewise con-

stant, with possibly large steps in particular but not exclusively at forks. We note that the time

function is the central piece of the growth record that enables the dynamic analysis of the root

system.

To prepare the computation, we initialize the time function to τ(v) = T for every voxel v 2
V. Traversing the other shapes in the time-series from back to front, we use the Euclidean dis-

tance between voxels to match the branches of Vt with those of V. It is therefore important that

the shapes in the time-series are aligned and registered into a common coordinate system,

which we henceforth assume. Specifically, for each tip in Vt, we find the closest voxel v 2 V,

and we match the branch of the tip with the branch J in V that contains v. Finally, we set τ(u)

= t for all voxels u of J whose depth satisfies φT(u)� φT(v).

After running the algorithm, the set of voxels u 2 V with τ(u)� t would ideally be the set of

voxels in Vt, for every 0� t� T. Of course, this will never be the case in practice, but there is a

reason other than the inevitable noise in the system that may lead to discrepancies between the

computed and the ideal time function, namely possible inconsistencies between the decompo-

sitions into branches between Vt and V. Instead of detecting inconsistencies between the

branch decompositions, we repair the time function. Suppose v 2 V is a fork at which the clas-

sification into main branch and side branch is incorrect. By Assumption A3, we get a conflict

between the depth and the time. Specifically, we observe neighbors u of v for which

φðuÞ < φðvÞ and tðuÞ > tðvÞ: ð1Þ

If we detect such a fork, we repair the inconsistency by an operation we call a switch. Letting p

and q be the tips of the two branches at v, with v = Fork(p) but v 6¼ w = Fork(q), we note that q

= Parent(p). To perform the switch, we reassign the part of the branch of q between v and w to

the branch of p; see Fig 1. In addition, the time at any voxel u within this part is set to the mini-

mum of the current value and the value at v.

Root Traits

Using the growth record explained above, we compute a suite of traits that describe a root sys-

tem captured in a time-series. Denoting the growth record by V = VT, we make essential use of

the decomposition into branches, which we denote as Bi. Recall that Bi
t � B

i is the sublevel set

of the time function on the branch. We call the voxel u 2 B
i
t with maximum depth the tip of

the branch at time t. We compute the following traits for every branch B
i and at every moment

of time 0� t� T:

• volume: the number of voxels in B
i

t
;

• depth of tip: the geodesic depth of the tip of Bi

t
;

• location of tip: the three Cartesian coordinates of the tip;

• length: the difference between the geodesic depth values of the tip and the fork;

DynamicRoots for Analysis of Growing Plant Roots
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• switch event: a logical variable that indicates whether or not Bi

t
is longer than its parent

branch;

• tortuosity: the ratio between the length of a branch and the Euclidean distance between tip

and fork;

• average radius: the square root of the volume divided by π times the length;

• angle to gravity: the angle between the major PCA axis of Bi

t
and the vertical direction;

• angle to parent branch: the angle between the major PCA axes of Bi

t
and of its parent

branch;

• number of children: the number of branches that have Bi

t
as parent branch.

There is an ambiguity about which part of a branch should be taken into account when com-

puting the root emergence angle or direction of growth. In order to avoid this uncertainty, we

use the major PCA axis of the branch which shows the main direction of the spread of all the

voxels forming this branch.

Only two of the measurements relate the root system to the surrounding, namely the loca-

tion of the tip and the angle to gravity. Both are useful to study the reaction of the root system

to nutrients and other local environmental conditions. The measurements we output for each

branch can of course be accumulated to obtain overall traits of the root system, such as the

total volume, the total length, the total average radius, and so on. Similarly, we can take dif-

ferences to compute dynamic traits, as for example the amount of growth from time t to time t

+ 1. Beyond the traits listed above, we compute the following characteristics of the seed area:

• seed volume: the number of voxels in the seed area of the root system;

• seed orientation: the angle between the major PCA axis of the seed area and the vertical

direction.

Fig 1. A switch at the fork v.

doi:10.1371/journal.pone.0127657.g001
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Comparing the seed volume with the total volume, we get the volume fraction of the seed area.

The concrete representation of the seed area is useful in turning the geometric hierarchy of the

branches into a biologically more meaningful one. The former is defined by assigning the index

0 to the topmost branch and increasing the index by 1 whenever we pass from a branch to a

child branch. A biologically more meaningful classification is into

• crown roots, which emerge above the seed area;

• seminal roots with forks located within the seed area;

• the primary root corresponding to the topmost branch;

• lateral roots, which are the children of other branches.

Unfortunately, crown roots often emerge from the stem above the reconstructed space, which

results in disconnected branches. The reconstruction software used in this study [24] enforces

connectivity and tries to find the shortest path between the biggest component of the root sys-

tem and a disconnected branch. This shortest path does not always join the branch in a biologi-

cally correct manner, making the classification into biological classes more challenging. At the

moment, we explore other ways to differentiate between crown, seminal, and lateral roots. In

particular, elongation rates might provide a good clue for detecting crown roots as their initia-

tion is developmentally delayed but typically proceeds faster than of the other root types, see

Fig 2.

Results

Applying our methods, we obtain insights into the growth behavior of rice and maize plants.

We note, however, that this is primarily a Methods paper, so we have limited the experiments

to a few examples selected to illustrate useful features of the DynamicRoots software. The

source code and the pre-compiled executable file for 64-bit Windows can be downloaded from

http://dynamicroots.sourceforge.net/. The software has a command-line interface. In addition,

we provide a python script, which organizes the input files and passes them as arguments to

scripts that perform format conversion, data alignment, and time-series processing. The Dyna-

micRoots software was developed in C++ using the Approximate Nearest Neighbor (http://

www.cs.umd.edu/mount/ANN/) and ALGLIB (http://www.alglib.net/) libraries. Dynamic-

Roots is an open source software distributed under the terms of the BSD license.

Datasets and Validation

We use the software to analyze four different time-series of 3D shapes, three obtained by imag-

ing growing rice and maize plants, and one artificially created to validate the software. The lat-

ter consists of three models forming a caricature of a growing root system; see Fig 3. Created

from a collection of discretized algebraic curves, the models are obtained by sweeping balls of

varying radii along the curves to get branches with prescribed thickness. Observe that the time-

series satisfies Assumptions A1 to A3 stated in Section 1. After designing the models, we 3D-

printed them from resin, imaged the three shapes, reconstructed the 3D shapes from the 2D

images, and finally processed the result with our software. Table 1 compares the hand measure-

ments of branch length, depth of tip, volume, average radius, and tortuosity with the values com-

puted by our software. The agreement in branch length and depth of tip is remarkably high,

with a somewhat larger relative error only for very short branches. The tortuosity of a branch

depends on the estimation of its length and agrees fairly well with our hand measurements,

with only 6% average relative error. The volume and therefore the average radius are slightly

underestimated by the software because the reconstruction of the 3D shapes tends to lose some
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Fig 2. Structural and dynamical analysis of a root system. Top row: images of a maize plant imaged between the first and ninth days after planting.
Bottom row: images of a rice plant imaged between the seventh and eleventh days after planting. Left: decomposition into a seed area and branches
distinguished by color.Center: the color-coded time function. Right: the color-coded branch hierarchy.

doi:10.1371/journal.pone.0127657.g002

Fig 3. A series of three 3Dmodels mimicking a growing root system designed to facilitate the validation of our software. The branches are labeled
as in Table 1. The color-coded model at the far right illustrates the time function.

doi:10.1371/journal.pone.0127657.g003
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Table 1. Comparison of traits measured by hand and computed with DynamicRoots. Length, vertical depth, and radius are given in millimeters (mm),
volume in cubic millimeters (mm3), angle in degrees, and tortuosity is dimensionless. The last column gives the average error of the DynamicRoots results
compared to hand measurements.

Trait Hand measurements DynamicRoots results Error

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

branch r0 Length 63.800 71.100 95.220 64.068 72.275 98.383 0.018

Depth 63.800 71.100 95.220 62.083 69.683 95.348 0.016

Volume 450.976 502.576 673.071 444.766 491.641 621.281 0.037

Radius 1.500 1.500 1.500 1.488 1.473 1.418 0.027

Tortuosity 1.000 1.000 1.000 1.030 1.040 1.030 0.033

Angle to parent 0.000 0.000 0.000 0.000 0.000 0.000 0.000

branch r1 Length 35.770 76.110 102.680 36.198 84.020 112.870 0.072

Depth 36.860 76.620 99.610 34.443 75.388 100.940 0.032

Volume 112.375 239.107 322.579 96.219 203.297 248.516 0.174

Radius 1.000 1.000 1.000 0.920 0.878 0.838 0.122

Tortuosity 1.140 1.050 1.058 1.120 1.120 1.120 0.048

Angle to parent 41.957 27.139 25.140 27.600 20.360 18.700 0.283

branch r2 Length 42.980 66.770 99.060 46.173 72.208 98.910 0.052

Depth 36.530 55.890 78.230 32.820 53.085 74.885 0.065

Volume 135.026 209.764 311.206 131.938 187.922 229.125 0.130

Radius 1.000 1.000 1.000 0.953 0.910 0.858 0.093

Tortuosity 1.075 1.136 1.237 1.120 1.160 1.180 0.036

Angle to parent 57.645 49.580 40.981 55.200 43.570 36.840 0.088

branch r3 Length 7.000 37.550 4.335 39.833 0.221

Depth 57.960 83.350 55.803 81.983 0.027

Volume 17.224 92.395 8.516 54.703 0.457

Radius 0.885 0.885 0.790 0.660 0.181

Tortuosity 1.127 1.097 1.000 1.110 0.062

Angle to parent 90.000 40.030 45.360 15.980 0.548

branch r4 Length 9.270 7.940 0.143

Depth 66.480 65.203 0.019

Volume 13.665 6.875 0.497

Radius 0.685 0.525 0.234

Tortuosity 1.150 1.070 0.070

Angle to parent 38.432 15.49 0.597

branch r5 Length 4.300 27.830 3.538 32.415 0.171

Depth 51.190 71.190 47.538 69.125 0.050

Volume 6.339 41.025 2.484 19.609 0.565

Radius 0.685 0.685 0.473 0.440 0.334

Tortuosity 0.883 0.984 1.000 1.110 0.130

Angle to parent 62.507 60.122 24.510 8.940 0.730

branch r6 Length 27.490 35.010 53.730 25.753 36.245 56.103 0.048

Depth 30.260 36.970 54.370 24.633 33.623 50.628 0.115

Volume 86.362 109.987 168.798 76.719 103.422 155.781 0.083

Radius 1.000 1.000 1.000 0.975 0.953 0.940 0.044

Tortuosity 1.180 1.113 1.130 1.070 1.100 1.110 0.041

Angle to parent 49.957 46.420 35.918 43.190 36.200 27.890 0.193

total Length 170.040 260.290 425.340 172.190 272.620 446.453 0.037

Volume 784.738 1084.997 1622.737 749.641 997.281 1335.891 0.101

Mass × Density 694.000 967.000 1397.00 749.641 997.281 1335.891 0.052

doi:10.1371/journal.pone.0127657.t001
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of the thickness due to small misalignments of the 2D images. Nonetheless, the total volume es-

timated by our software differs on average only by 5.2% from the volume computed as a prod-

uct of the mass of the printed model and the resin density. In order to validate the values of the

angle to parent branch, we represent the each branch as a line segment passing through the tip

and the fork and compute the angle between them. We note that the software computes the

angle between the branches using PCA and it is impossible to measure this value by hand. Nev-

ertheless, we observe a similar behavior in the values measured by hand and computed with

the software: the angles decrease as branches elongate. Unfortunately, there is no a common

way to measure branch angles, and DynamicRoots offers a new approach to estimate this trait.

The first of the three natural datasets consists of 478 time-series of 3 shapes each, recon-

structing root systems of growing rice plants on Days 12, 14, 16 after planting. Using static

traits, this data has been used in [16] to study the genetic control of shape and development of

the root architecture. We intend to extend this study with the dynamic traits and the informa-

tion about the branch hierarchy available from our software. The second natural dataset con-

sists of 4 time-series of 25 shapes each, reconstructing root systems of growing rice plants

imaged every two hours from 8am to 4pm for five days starting from Day 7 after planting. The

third natural dataset consists of 3 time-series of 23 shapes each, reconstructing root systems of

growing maize plants images from Day 1 to Day 9 after planting.

The relatively high temporal resolution in the last two datasets leads to detailed characteris-

tics of the root development not available in the first dataset.

Traits

The traits described in Section 1 are output in a file for each time-series; see the supplementary

material (S1 Table), which includes the file for the maize plant shown in the top row of Fig 2.

For complete disclosure, our software also outputs files containing the color-coded geometry of

the root system, representing the time function and the branch hierarchy, among other infor-

mation; see Fig 2.

We use the remainder of this subsection to demonstrate how DynamicRoots can be used to

analyze growth dynamics. As a first example, we look at the dynamic addition of volume to the

shapes for the two displayed time-series. Each vertical bar in Fig 4 represents the root system at

a moment in time, with the colored segments representing branches in the decomposition. The

displayed behavior reveals a remarkable dynamics in the growth process: the volume of the

maize root almost doubles in the course of just a few hours, with the bulk of the additional vol-

ume contributed by newly formed branches (see Fig 4 top, between 72 and 96 hours).

As a second example, we look at the branching dynamics, and in particular at the difference

between the number of branches formed during day- and night-time. Fig 5 shows the number

of branches as graphs over time for four rice plants. Observing the root systems during five

consecutive days, we note that there are more branches formed during day-time than during

night-time. The rice plants grew in the 12-hour cycle with the temperature of 28°C and 25°C at

day and night. In [28] the authors studied diurnal elongation rates in Arabidopsis thaliana and

observed higher elongation rates at night time than during the day. In [29] the authors demon-

strated that growth conditions have a great impact on the diurnal growth patterns in sorghum

and rice plants, they did not find differences in day-night elongation rates when the tempera-

ture was constant. In our data, we did not see differences in elongation rates at day and night

time for plants in Fig 5. While more experiments are needed to understand the branching dy-

namics of root systems, it is clear that DynamicRoots can be of valuable assistance in collecting

and analyzing the data.
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Performance

We distinguish between performance characteristics that pertain to the speed and the correct-

ness of the software. In addition to the traits discussed above, the software outputs performance

statistics, including the running time, the average distance between aligned 3D shapes, and

the number of switch events. For example, the average running time for one time-series from

our first dataset, including file format conversion, graphical file output, shape alignment and

processing, is 51 seconds on an Intel Core 3.4GHz desktop computer.

We use the remainder of this subsection to illustrate how we make use of the performance

measurements. A delicate step in our algorithm is the alignment of the 3D shapes in a time-se-

ries. We underline the fact that the alignment performs quite accurately due to the property of

the 4PCS algorithm which can robustly align shapes even with small overlap, noise, and

Fig 4. Volume dynamics of the root systems in Fig 2; maize at the top and rice at the bottom. The colored segments within each vertical bar show the
volume contributed by individual branches.

doi:10.1371/journal.pone.0127657.g004
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outliers [22]. To shed light on the quality of the alignment, we compute the average distance

between the aligned shapes and provide the result as an indicator of the quality of the achieved

alignment. More precisely, we sample 10% of the voxels in the first shape, V0, and we compute

the Euclidean distance to the closest voxels in V1 to VT. For a high quality alignment, the aver-

age distance will be small, namely less than the edge length of a voxel. In the first dataset, there

are several time-series for which the accuracy is compromised by technical difficulties with the

imaging platform. For these series, the average distance we observe is significantly larger than

for series that do not suffer from these imaging artefacts: e.g. 5.03 versus 0.84 times the length

of an edge. In our analysis of the first dataset, we have used a threshold of 10.00 edge lengths

for the average distance of the alignment beyond which a shape was excluded from the

computations.

Another measurement that varies significantly with the quality of the alignment is the num-

ber of switch events. On average, we observe 9.04 switches between shapes in the first dataset.

However, in the time-series affected by the mentioned image artefacts, this number increases

to 58.96. The number of switches by itself can be an interesting biological trait as it measures

how often a branch out-grows its parent branch. However, if the number is significantly higher

than the average, then this may be reason for concern since it might be caused by technical dif-

ficulties in the acquisition pipeline rather than biological reality.

Fig 5. The branching dynamics of rice plants during five consecutive days. The shading distinguishes day- from night-time, highlighting that more
branches are formed during day-time.

doi:10.1371/journal.pone.0127657.g005
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Discussion

The DynamicRoots software provides novel capabilities for the analysis of growing root sys-

tems of plants. The analyzed shapes come from plants grown in a gel substrate, but can be de-

rived from any growth and imaging system. A logical next step is the genome-wide analysis of

dynamic traits for root systems of agricultural plants. Given the availability of the decomposi-

tion into branches and the detailed per-branch information, it is time to study the local and

global response of plants to localized nutrients in the environment.

While we hope that our software finds many users and contributes to our understanding of

root systems, it is important to point out that there are pitfalls in using it. Most root systems we

considered have 3D reconstructions with touching branches that lead to violations of our As-

sumption A2. As a consequence, there are loops in the reconstructed shape which leads to

faulty decompositions into branches. Fortunately, such mistakes are local and do not affect

branches away from the loops. Ideally, the software would have the built-in capability to re-

move loops by separating touching branches, but this is a challenging problem that awaits a

satisfactory solution.

Nonetheless, the framework described here represents a major advance in root phenotyping

methodology. For the first time, the growth dynamics of each branch in a complex three-di-

mensional root system can be automatically tracked and quantified over time. Thus, Dynamic-

Roots will enable high-throughput analysis of local growth response to a wide-range of biotic

and abiotic plant-environment interactions, as well as provide a powerful tool to answer funda-

mental questions such as: “How is root growth regulated over the circadian clock?”, and “How

do local growth decisions of each root tip contribute to global root architecture?”.

Supporting Information

S1 Table. Root traits computed by DynamicRoots for the maize root shown in Fig 2. The

names and values of the traits are listed in columns, rows correspond to individual branches.

(TXT)
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