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A feasible neuron model can be effective to estimate the mode transition in neural activities in a complex electromag-

netic environment. When neurons are exposed to electromagnetic field, the continuous magnetization and polarization can

generate nonlinear effect on the exchange and propagation of ions in the cell, and then the firing patterns can be regulated

completely. The conductivity of ion channels can be affected by the temperature and the channel current is adjusted for

regulating the excitability of neurons. In this paper, a phototube and a thermistor are used to the functions of neural circuit.

The phototube is used to capture external illumination for energy injection, and a continuous signal source is obtained. The

thermistor is used to percept the changes of temperature, and the channel current is changed to adjust the excitability of neu-

ron. This functional neural circuit can encode the external heat (temperature) and illumination excitation, and the dynamics

of neural activities is investigated in detail. The photocurrent generated in the phototube can be used as a signal source for

the neural circuit, and the thermistor is used to estimate the conduction dependence on the temperature for neurons under

heat effect. Bifurcation analysis and Hamilton energy are calculated to explore the mode selection. It is found that complete

dynamical properties of biological neurons can be reproduced in spiking, bursting, and chaotic firing when the phototube is

activated as voltage source. The functional neural circuit mainly presents spiking states when the photocurrent is handled

as a stable current source. Gaussian white noise is imposed to detect the occurrence of coherence resonance. This neural

circuit can provide possible guidance for investigating dynamics of neural networks and potential application in designing

sensitive sensors.
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1. Introduction

Nervous system can encode and propagate physiologi-

cal electrical signals from several routes synchronously, and

it is considered as an effective intelligent signal processing

system because of the multiple biological function in neu-

rons. The occurrence of electrophysiological activities, e.g.,

random ions diffusion in the cell and pumping of ions (cal-

cium, potassium) across the membrane channels, can break

the balance of intracellular and extracellular ions concentra-

tions, as a result, firing can be induced to trigger action po-

tentials and pulses. Started from the pioneering work fin-

ished by Hodgkin-Huxley,[1] many artificial neurons and neu-

ron models[2–6] have been proposed to calculate the dynam-

ics in neural activities by applying external stimulus and pa-

rameter exciting.[7–10] In addition, the biophysical function of

astrocyte[11–13] has been confirmed to adjust the release and

exchange of calcium, in which the membrane potential of cell

can be adjusted effectively. Therefore, neuron-coupled astro-

cyte networks[14–16] are used to estimate the mode selection

and transition in neurons. From the viewpoint of cell de-

velopment and genetics, the formation of synaptic structure

accounts for the functional requirements of biological neu-

rons, in which the activation and release of neural activities

are dependent on the external stimuli. For example, forma-

tion of autapse[17,18] can enhance the self-adaption of neu-

ron to external stimuli, and an auxiliary feedback loop[19] is

formed to correct the blocked signal propagation along the

injured axon. Local distribution of autapse in networks can

induce continuous pulses and wave fronts for regulating the

spatial behaviors,[20–23] and the activation of autapse in an

isolated neuron[24–27] can enable appropriate mode selection

in the electrical activities. For a complete review on collec-

tive behaviors of neural networks and physical mechanism in

neurodynamics, readers can find possible suggestions about

model setting, pattern formation, and synchronization stabil-

ity in neuron and neural networks.[28–30]

As is well known, the dynamics of network is depen-

dent on the local kinetics of node and connection topology

between nodes. In a practical way, the biophysical effect

and property should be considered for building more reliable

neuron models or artificial neurons with high intelligence.

As suggested in Ref. [31], magnetic flux can be introduced
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to estimate the effect of electromagnetic induction in neu-

ron by incorporating the physical property of magnetic-flux

controlled memristor.[32–35] In fact, the involvement of mem-

ristor to couple neurons can form memristive synapse[36–38]

and then the synaptic plasticity can be released by apply-

ing time-varying radiation and electric stimuli on the neu-

rons and neural networks.[39–42] Furthermore, it is confirmed

that field coupling[43–46] provides another effective way to

stabilize neurons in network even synapse coupling is sup-

pressed completely. Both of capacitor and inductor are im-

portant electronic components for building and connecting

nonlinear circuits, and time-varying field can be induced in

these components[47] to capture and pump field energy across

the coupling channels. In particular, the electric field cou-

pling via capacitor connection explains the physical mecha-

nism for differential coupling[48,49] while the magnetic field

coupling via induction coil provides new definition for integral

coupling[50–52] between nonlinear circuits. When memristor

is used to couple nonlinear circuits,[53–55] synchronization can

be obtained by applying appropriate values for the intrinsic

parameters in the coupling channel, in which field energy is

pumped and exchanged effectively. In addition, Josephson

junction can also be used to couple neural circuits, and syn-

chronization is realized by taming the channel current and

phase error for the junction.[56] In a word, these functional

components can be used to build functional circuits,[57–60] and

they are effective to pump field energy across the coupling

channels and the combination of these components can design

hybrid synapse for neural circuits. Phototube is an important

physical component and the external optical signal can be cap-

tured for generating photocurrent, which is effective to excite

neurons. Therefore, phototube can be used as signal source

(voltage source or current source) for activating neural circuits

and the light-dependent neural circuit[61] can show potential

application in designing artificial electronic eyes. Temperature

has distinct impact on neural activities because the excitability

of neuron and conduction of channels can be changed.[62–65]

Thermistor is also an important electronic component, and its

resistance can be adjusted by the temperature. Therefore, the

nonlinear circuit can be used as artificial sensor for detecting

the changes of temperature when a thermistor is coupled with

the neural circuit.

Biological neurons can trigger different kinds firing pat-

terns in the electronical activities. Surely, mathematical neu-

ron models can be proposed to reproduce the main dynamical

properties of realistic neurons when the variables can present a

variety of oscillation modes. Furthermore, the intrinsic param-

eters and external equivalent forcing current can be changed

to get different firing patterns. However, the most important

thing is to know the biophysical mechanism for encoding ex-

ternal signals and obtain artificial signal processor and sensor

guided by the self-adaption function of biological neurons. It

is interesting to design artificial neurons with more biophysi-

cal functions. For example, the eyes can percept external il-

lumination and appropriate visual signal is induced to prop-

agate along the loop of the visual nervous system. That is,

external optical signal is converted into equivalent current to

excite the nervous system and right gaits can be activated. The

skin can percept the heat effect when the ambient temperature

is changed, and the activation of cells induced by tempera-

ture can also be effective to regulate the channel current of

cells. Phototube can capture external illumination and then

covert the light with high frequency into photocurrent. There-

fore, it can be used as signal source to drive nonlinear circuits.

Thermistor can change the resistance when the temperature is

changed, and the branch current can be adjusted when a ther-

mistor is connected to the circuit. Both thermistor and pho-

totube can be used as sensitive sensors. The function of non-

linear circuit can be enhanced when thermistor and phototube

are included to build a neural circuit by taming the intrinsic

parameters, external temperature for thermistor and illumina-

tion for phototube. In this way, this neural circuit and neuron

become dependent on the temperature and external radiation.

In this paper, both of thermistor and phototube are used to

rebuild a functional neural circuit. The phototube is used as

signal source for activating the circuit and thermistor in the

branch is used to percept the temperature effect. The circuit is

built and dynamics in this neural circuit is discussed in detail

for providing guidance and potential application in intelligent

computing and artificial neural networks.

In Section 2, the functional neural circuit is built by in-

corporating a thermistor and a phototube, and scale transfor-

mation is applied to obtain a neuron model, which can encod-

ing light (illumination) and temperature (heat). In Section 3,

numerical results are presented by calculating the bifurcation

analysis and statistical coherence, and appropriate discussion

is supplied to explain the biophysical mechanism of this func-

tional neuron. In the last section, conclusion is presented.

2. Model and scheme

Biological neurons can be thought as intelligent and smart

signal processors and thus functional artificial circuits can be

designed to realize these functions. In generic way, most of

these nonlinear circuits can be tamed in parameters and apply-

ing appropriate stimulus, and a neural circuit is obtained when

the output voltage can produce similar firing patterns (quies-

cent, spiking, bursting, and chaotic states) as electronical ac-

tivities from biological neurons. For simplicity, a capacitor

is used to generate output voltage, an induction coil is used

for generating time-varying current in the branch circuit, and

a nonlinear resistor is used to induce nonlinear relation be-

tween voltage and current. When more physical components
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are included, the function of the circuit can be enhanced. As

reported in Refs. [66,67], a nonlinear circuit can be tamed to

give similar behaviors generated in most of the biological neu-

rons. For simplicity, a phototube is used as exciting source and

a thermistor is used to replace the linear resistor in the sim-

ple oscillator circuit in Ref. [67]. The phototube is activated

when external illumination is applied to generate continuous

photocurrent for exciting the neural circuit, and the external

temperature is changed to adjust the resistance of the thermis-

tor for triggering time-varying branch/channel current. The

circuit is presented in Fig. 1.

iS

iL
iC

RT

RSL

C
K

A

E

NR

phototube

Fig. 1. Schematic diagram for the neural circuit, which is dependent on

the illumination and temperature. NR is a nonlinear resistor, C is the

capacitor, L represents an induction coil, RT denote a thermistor, R and

RS are linear resistors, and E is a constant voltage source. K denotes the

cathode and A represents the anode in the phototube. The relation be-

tween the resistance of thermistor and temperature T is estimated with

RT = R∞ exp(B/T ), and the material parameter B is determined by the

activation energy q and the Boltzmann’s constant K′ with the depen-

dence as B = q/K′.

The relation between the voltage and current of nonlinear

resistor NR is estimated by

iNR =−
1

ρ

(

V −
1

3

V 3

V 2
0

)

, (1)

where ρ is the normalized parameter for resistance, V0 repre-

sents the cutoff voltage, and V is the voltage across the nonlin-

ear resistor. The photocurrent across the phototube is depen-

dent on the external illumination and the material property of

the cathode, and it can reach a saturation value when the inten-

sity of external illumination is increased greatly. The relation

between the photocurrent and voltage[61] across the phototube

is estimated by

iS =
2IH

π
arctan(VS −Va), (2)

where Va denotes the reverse cut-off voltage, VS and IH de-

scribe the voltage and saturation current across the phototube,

respectively. According to the physical Kirchhoff’s theorem,

the circuit equations for Fig. 1 can be obtained by














C
dV

dt
= iS − iL − iNR,

L
diL

dt
=V −RT iL +E,

(3)

where V and iL denote the output voltage across the capacitor

C and the induction current across the induction coil L, respec-

tively. The parameters RT ,C,L,E indicate the resistance of

thermistor, capacitance, inductance, and constant voltage, re-

spectively. In addition, the photocurrent across the phototube

in the neural circuit can be approached by finding the solution

in the following equation:

iS =
2IH

π
arctan(VS −Va) =

VS −V

RS
, (4)

where the variable V has the same expression used for describ-

ing the output voltage of the capacitor, VS is the output voltage

across the phototube, and RS is the resistance of the linear re-

sistor. In fact, the selection of resistor RS dictates the output

property of the signal source (exciting source). For example,

the phototube can be handled as a voltage source when the

resistor RS is selected with a large resistance and then the volt-

age VS can be varied in a large scope. On the other hand, the

phototube can be treated as a current source by generating pho-

tocurrent with saturation value when the resistor RS is fixed at

small values. By applying standard scale transformation, these

physical variables and parameters in the circuit equations can

be replaced by


















































x =
V

V0
, y =

ρiL

V0
, τ =

t

ρC
,

a =
E

V0
, b(T ′) =

RT

ρ
= b0 exp

(

1

T ′

)

,

c =
ρ2C

L
, ξ =

ρ

RS
,

uS =
VSρ

RSV0
= ξ

VS

V0
, T ′ =

T

T0
=

T

B
.

(5)

As a consequence, the circuit equations shown in Eq. (3) can

be rewritten as














dx

dτ
= x(1−ξ )−

1

3
x3 − y+uS,

dy

dτ
= c[x+a−b(T ′)y],

(6)

where the dimensionless variables x and y are mapped from the

voltage and current, respectively. The variable x represents the

membrane potential and y denotes the current across the mem-

brane of the neuron. The neuron becomes dependent on the

temperature and the external stimulus uS can change the dy-

namics of the neuron. In fact, the temperature T ′ and external

voltage uS can be adjusted to estimate the dependence of firing

modes on these intrinsic parameters, and the phototube can be

activated as a stable voltage source. For simplicity, the voltage

can be adjusted as a combination of constant and periodical

terms in the form uS = u0 +Acosωτ . On the other hand, the

photocurrent can be regarded as a stable current source, and

this neural circuit is driven by time-varying current with cer-

tain saturation. The neuron oscillator is described by














dx

dτ
= x−

1

3
x3 − y+ iS,

dy

dτ
= c[x+a−b(T ′)y].

(7)
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In addition, the photocurrent defined in Eq. (4) can be ap-

proached by

iS = I0arctg(x− va), (8)

where I0 is the maximal value for dimensionless photocurrent

and the normalized threshold va is associated with the material

property of the cathode in the phototube. In this neural circuit,

field energy is propagated and pumped between the capacitor

and induction coil, and the field energy can be obtained by

W =
1

2
CV 2 +

1

2
Li2L =CV 2

0

(

1

2
x2 +

1

2
cy2

)

=CV 2
0 H. (9)

By applying the same scale transformation for the field energy,

the Hamilton energy is calculated by

H =
1

2
x2 +

1

2
cy2. (10)

As is well known, the resistance of the thermistor is dependent

on the temperature. In fact, the temperature for the thermistor

could be time-varying because the Joule heat can be accumu-

lated when the channel current passes through the thermistor

in the neural circuit. For simplicity, the temperature of the

thermistor is controlled by

T ′(τ)=











0.00008τ2 +5, 0 < τ 6 500,

10cosωτ +25, 500 < τ 6 1000,

−0.00008(τ −1000)2 +25, 1000 < τ 6 1500.

(11)

In the successive section, these parameters will be controlled

to trigger firing patterns with different oscillation modes, and

bifurcation analysis is carried out for detecting mode transition

dependence on the parameters and external excitation.

3. Results and discussion

For nonlinear analysis, the fourth order Runge–Kutta al-

gorithm is applied to find numerical solutions for Eqs. (6), (7),

and (10). The time step and initial values for the variables are

selected as 0.001 and (0.1, 0.3). For simplicity, in the numer-

ical studies, the dimensionless time τ is replaced by t in the

figures for presenting sampled time series. At first, we con-

sider the case when the phototube is used as voltage source

uS = u0 +Acosωτ, and the temperature is adjusted to detect

the mode selection and transition in the neural activities. The

formation of attractors and evolution of outputs are shown in

Figs. 2 and 3 when the temperature is fixed at certain constants.

By taming the amplitude of the voltage source, the neural

circuit can present firing patterns in periodical and/or chaotic

modes when the temperature is fixed. Furthermore, the tem-

perature is decreased and the resistance of the thermistor is in-

creased to change the branch current, and the results are shown

in Fig. 3.

It is found that a stable periodical oscillation can be in-

duced by adjusting the temperature and amplitude in the pho-

tocurrent. The sampled time series are further calculated to

estimate the dependence of firing modes on the amplitude of

the signal source, and the bifurcation analysis is presented in

Fig. 4.

Indeed, the firing pattern and oscillation modes are depen-

dent on the temperature greatly. In case of lower temperature,

the resistance of the thermistor is high and the branch channel

current is blocked to prevent possible exciting on the neural

circuit. When the temperature of the thermistor is increased,

appropriate setting for the amplitudes of the voltage source can

induce distinct mode transition from periodical type to burst-

ing, and chaotic states completely. Furthermore, the angular

frequency of the voltage source is adjusted to detect possible

occurrence of mode transition, and then the phase portraits are

plotted in Fig. 5.
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Fig. 2. Sampled time series for variable x and formation of attractors: (a), (e) A = 0.5; (b), (f) A = 0.66; (c), (g) A = 0.9; (d), (h) A = 1.3, and

the parameters are fixed at T ′ = 5, u0 = 0.2, ω = 1.004, b0 = 0.8, a = 0.7, c = 0.1, ξ = 0.175. b0 is the maximal resistance of the thermistor.
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the parameters are fixed at T ′ = 1, u0 = 0.2, ω = 1.004, b0 = 0.8, a = 0.7, c = 0.1, ξ = 0.175. b0 is the maximal resistance of the thermistor.
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ω = 0.005; (b), (e) ω = 0.01; (c), (f) ω = 0.05, and the parameters are fixed at T ′ = 10, A = 1, u0 = 0.2, b0 = 0.8, a = 0.7, c = 0.1, ξ = 0.175.

That is, the formation of attractors and firing patterns are

also dependent on the frequency of the voltage source. The

neural circuit can present distinct bursting and then it is tamed

to trigger periodical firing. Extensive results confirm that pe-

riodical oscillation can be enhanced to generate chaotic firing

by adjusting the frequency in the voltage source. Therefore,

more bifurcation calculation is carried out, and the results are

shown in Fig. 6.

Within a finite frequency range, it is confirmed that

chaotic firing can be induced while periodical firing can be
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generated by taming the frequency of the voltage source in a

wide range. Also, the dependence of firing pattern on ther-

mistor temperature is estimated by calculating the bifurcation

diagram in Fig. 7.
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Fig. 6. Bifurcation diagram is calculated by detecting ISIs from the sampled time series for the variable x when the frequency of voltage source is

changed: (a) T ′ = 0.5; (b) T ′ = 1; (c) T ′ = 5; (d) T ′ = 10, and the parameters are fixed at u0 = 0.2, A = 1, b0 = 0.8, a = 0.7, c = 0.1, ξ = 0.175.
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Fig. 7. Bifurcation diagram is calculated by detecting ISIs from the sampled time series for the variable x when the amplitude of thermistor

is changed: (a) T ′ = 0.5; (b) T ′ = 1; (c) T ′ = 5; (d) T ′ = 10, and the parameters are fixed at u0 = 0.2, A = 1, ω = 1.004, b0 = 0.8, a = 0.7,

c = 0.1, ξ = 0.175.

In Fig. 7, it is demonstrated that the parameter region

for generating chaotic states can be extended when the tem-

perature of the thermistor is increased. Distinct mode tran-

sition from chaotic state to periodical one occurs, and then

it can recovery to chaotic oscillation by changing the resis-

tance of the thermistor. Extensive numerical calculation is

applied, stable chaotic attractors can be formed at b0 = 0.6,

0.7 while b0 = 0.8, 0.9 can support the survival of periodical

attractors when the parameters are fixed at u0 = 0.2, A = 1,

ω = 1.004, T ′ = 13.5, b0 = 0.8, a = 0.7, c = 0.1, ξ = 0.175.

Furthermore, bifurcation analysis is presented to find depen-

dence of firing modes on the temperature for the thermistor,

and the temperature-induced bifurcation and mode transition

are shown in Fig. 8.

The maximal resistance of the thermistor has distinct ef-

fect on the firing patterns and mode selection, and it is con-

trolled by the intrinsic physical property of material. It is also

important to discuss the case when the temperature of the ther-

mistor is changed continuously, and the Hamilton energy is

also calculated to find the dependence of energy release on fir-

ing patterns, the results are presented in Fig. 9.

It is confirmed that slight changes in the temperature can

induce distinct response in the thermistor, as a result, the firing

patterns show rapid transition and then the Hamilton energy in

periodical oscillation is decreased to release energy for sup-

porting a chaotic firing. Therefore, this neural circuit becomes

sensitive to slight changes in the temperature of the thermistor.

In addition, the amplitude and frequency of the voltage source

can be further tamed to detect the occurrence of other firing

patterns and mode transition.
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Fig. 8. Bifurcation diagram is calculated by detecting ISIs from the sampled time series for the variable x when the temperature for thermistor is

changed: (a) b0 = 0.6; (b) b0 = 0.7; (c) b0 = 0.8; (d) b0 = 0.9, and the parameters are fixed at u0 = 0.2, A = 1, ω = 1.004, a = 0.7, c = 0.1, ξ = 0.175.
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Fig. 9. Correlation between temperature, resistance of thermistor, firing patterns and Hamilton energy are calculated by changing the tem-
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Interestingly, the second case is discussed when the pho-

totube is used as a stable current source, and the photocurrent

is defined in Eq. (8). The output voltage of the neural circuit is

adjusted by the time-varying photocurrent, and the evolution

of firing patterns is presented in Fig. 10.
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a = 0.7, c = 0.1, ξ = 0.175, va = 1 (black line), va = 0.1 (red line). The

photocurrent is released from t = 200 time units.

The results in Fig. 10 demonstrate that the excitation

of photocurrent depends on the inverse cut-off threshold va,

and the stimulus from the current source is blocked when the

threshold va is much small. The potential mechanism is that

the change of photocurrent can regulate the excitability of

neuron and thus the dynamics is controlled completely. In ex-

perimental way, the intensity of external light and illumination

can be changed in the amplitude and frequency, as a result, the
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va = 0.1.

photocurrent can be adjusted freely. When the temperature

for the thermistor is changed, the similar results are confirmed

and the neural circuit is excited for presenting periodical fir-

ing. Furthermore, the amplitude of photocurrent is increased

to detect the firing patterns, and the results confirm that the
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amplitude in the firing series is decreased greatly. Therefore,

the temperature for the thermistor and the amplitude of the

photocurrent are synchronously changed to trigger mode tran-

sition in neural activities, and the average duration of spiking

is calculated in Fig. 11.
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Fig. 12. Bifurcation diagram is calculated by detecting ISIs from the

sampled time series for the variable x when the amplitude for photocur-

rent is changed. For (a) va = 1.0; (b) va = 0.1, and the parameters are

fixed at b0 = 0.3, T ′ = 10 (black dots), T ′ = 30 (red dots), a = 0.7,

c = 0.1, ξ = 0.175.

It is found that the phase of the firing patterns is much

dependent on the amplitude and inverse voltage threshold in

the photocurrent across the phototube. Extensive bifurcation

analysis is carried out, and the results are plotted in Figs. 12

and 13 by calculating the dependence of ISIs on the amplitude

I0 and threshold va in the photocurrent.

From the results in Fig. 12, it is found that the firing mode

can be tamed effectively by regulating the intrinsic parameter

va and the amplitude of photocurrent in the phototube. Fur-

thermore, the mode transition of neural activities induced by

the cut-off voltage parameter is estimated by keeping the tem-

perature, and the results are shown in Fig. 13.
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a = 0.7, c = 0.1, ξ = 0.175.

The results in Fig. 13 confirm that the temperature for the

thermistor has distinct impact on the firing patterns and dis-

tinct phase transition is induced with the increase of parameter

va. Indeed, when the intrinsic parameter va is kept at lower

value, the current source can be blocked due to higher value of

the membrane potential (output voltage of the capacitor). The

current source releases its function when va is kept at higher

value because the membrane potential is below this threshold
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and the neuron can be excited continuously. It is interesting

to analyze the mode transition when the temperature of the

thermistor is changed with time, and the results are shown in

Fig. 14.

The membrane potential of neuron is regulated by chang-

ing the temperature of the thermistor, which can adjust the

branch current and the energy propagation in the neural cir-

cuit. When the resistance of the thermistor is increased, the

channel current across the thermistor is decreased and then the

oscillation mode in the neural circuit is suppressed to trigger

quiescent state. It is interesting to investigate whether simi-

lar bursting patterns can be induced when the temperature of

the thermistor is adjusted with periodical fluctuation, and the

results are shown in Fig. 15.
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T ′ = 10.2+10cos0.1001τ . The parameters are selected as a = 0.7, c = 0.1, ξ = 0.175, IS = 0.0, b0 = 0.01.

It is confirmed that bursting pattern can be induced in the

neural activities and continuous switch between periodical or-

bit and chaotic orbits can be triggered even the photocurrent

is blocked completely. Furthermore, the firing pattern is con-

trolled when the photocurrent from the phototube is released.

Indeed, when the photocurrent in Eq. (4) is mapped into di-

mensionless photocurrent in Eq. (8) by applying V →V/V0 =

x, the scale factor is selected as V0 = 1 to get a simple form for

the current source. In fact, it can be replaced by a generic form

as V/V0 = kx. In Fig. 16, the output variable x is calculated by

supplying certain value for the scale factor k.
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Fig. 16. (c) Sampled time series for the variable x and (b) resistance

of thermistor are calculated when the temperature for thermistor is ad-

justed as (a) T ′ = 10.2+ 10cos0.01τ . The parameters are selected as

a = 0.7, c = 0.1, ξ = 0.175, IS = 10arctan(25x−10), b0 = 0.01.

That is, slight fluctuation in the thermistor temperature

is effective to regulate the firing pattern of neuron driven by

photocurrent. In practical way, when the temperature of the

thermistor and photocurrent are perturbed with stochastic dis-

turbance, the firing modes could be more complex.

As is well known, neuron can present the main property

of excitable media. In generic way, artificial neurons and in-

telligent circuits can be tamed to present quiescent, spiking,

bursting, and chaotic states, which are the main dynamical

properties of biological neuron by adjusting the signal source

and intrinsic parameters. In absence of external periodic stim-

ulus, coherence resonance[68–70] can be induced by changing

the excitability and noise. When noise is imposed on the net-

work, spatial coherence resonance[71–73] can be induced by

taming the local kinetics and noise intensity. For simplicity,

Gaussian white noise is imposed on this functional neuron.

The coefficient variability (CV ) of ISI series is calculated to

estimate the coherence degree as follows:

CV =

√

〈T̄ 2〉−〈T̄ 〉2

〈T̄ 〉
; (12)

where T̄ denotes the average ISI and it indicates higher coher-

ence degree when CV is kept with smaller value. Noise is a

kind of stochastic signal and can be imposed on the neuron for

detecting possible occurrence of stochastic resonance and co-

herence. The statistical properties of Gaussian white noise are

defined by

〈ζ (t)〉= 0, 〈ζ (t)ζ (t ′)〉= 2Dδ (t − t ′), (13)

where D is the noise intensity and it can be adjusted to induce

coherence resonance and enhance the regularity of the firing

patterns of neuron. For further confirming the excitable prop-

erty in this functional neuron, Gaussian white noise in additive

type is imposed on the neural circuit, and coherence resonance

is detected when the neural circuit is driven by voltage source
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and current source, respectively. It is confirmed that similar

coherence resonance can be induced by applying appropriate

noise intensity no matter whether the phototube is considered

as voltage source or current source. The results are plotted in

Figs. 17 and 18.
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Fig. 17. Coefficient variability of ISI series is calculated by changing

the noise intensity when the phototube is used as voltage source. The

parameters are fixed at a = 0.7, c = 0.1, ξ = 0.175, u0 = 0.2, A = 0.76,

ω = 1.004, b0 = 0.8, T ′ = 1. During getting the average ISI, the thresh-

old for peaks is selected as 0.3.
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Fig. 18. Coefficient variability of ISI series is calculated by changing

the noise intensity when the phototube is used as current source. The

parameters are fixed at a = 0.7, c = 0.1, ξ = 0.175, I0 = 0.19, va = 1,

b0 = 0.3, T ′ = 10. During getting the average ISI, the threshold for

peaks is selected as 0.3.

As shown in Figs. 17 and 18, the involvement of noise

can regulate the coherence of the time series of membrane po-

tentials. When other parameters are fixed, appropriate noise

intensity can be detected for enhance the coherence degree

when smaller CV value is stabilized. Extensive numerical re-

sults can be applied to confirm that noise can active quiescent

neuron for generating spiking, bursting, and chaotic firing pat-

terns. For simplicity, Gaussian white noise is considered in

this functional neuron, while Lévy noise, colored noise, and

others[74–78] can also be imposed to find new attractive phe-

nomena similar to the stochastic and coherence resonance in

other excitable media. For example, Valenti et al.[79] discussed

the dynamics of the Fitz–Hugh–Nagumo (FHN) model in the

presence of colored noise and a periodic signal, and they ex-

plored the meaningful modifications of the resonant activation

(RA) and noise enhanced stability (NES) phenomena due to

the correlation time of the noise.

In a summary, functional electronic components can be

included into generic nonlinear circuits for reproducing sim-

ilar firing patterns and neural activities in biological neurons

by regulating the intrinsic parameters of these physical com-

ponents carefully. A nonlinear circuit can be tamed to present

quiescent, spiking, bursting, and chaotic firing patterns and

then the main dynamical properties of biological neurons can

be reproduced. The involvement of thermistor can estimate

the temperature effect on ion channels while the involvement

of phototube can detect the effect of external illumination and

electromagnetic radiation. As a result, more phototubes can be

used as signal source when they are activated to trigger con-

tinuous photocurrents for the circuits. For extensive discus-

sion, readers can investigate the synchronization stability be-

tween neurons coupled with electronic synapse and/or chemi-

cal synapse.[80,81]

As is well known, fever can cause coma and the nervous

system shows disorder. It is interesting to clarify the poten-

tial biophysical mechanism by exploring the dynamics of the

thermosensitive neuron, which can be mapped from a func-

tional neural circuit. It also can be treated as smart sensor and

auxiliary component in the application of fault diagnosis and

fuzzy control[82–84] in complex systems. As suggested in the

review,[85,86] more physical components can be included into

the neural circuits and field coupling is triggered to balance

the energy pumping in the networks.

4. Open problems

Biological neurons have complex anatomies and specific

functions are developed to encode different kinds of external

stimuli. External light and optical signals can be encoded by

eyes and equivalent currents are generated to stimulus the vi-

sual nervous system, and right gaits can be kept. It is a chal-

lenge to discover the biophysical process how light stimulus

is converted into current stimulus across the visual cells. In-

spired by the physical properties of phototube, in which illu-

mination can be converted into photocurrent, phototube can

be used to drive the neural circuit by generating continu-

ous currents. The activation of cells depends on the ambient

temperature[62] because the conductance of channels of cells

and gate variables can be changed to regulate the channel cur-

rent. In the Hodgkin-Huxley neuron,[87,88] a scale factor is

introduced as follows:

Φ(T ) = 3(T−6.3 ◦C)/10 ◦C. (14)

The voltage-dependent opening and closing rate functions are

multiplied by the scale factor, and the gate variables are ad-

justed to regulate the membrane potential of neurons. How-

ever, it becomes difficult and useless when the neuron mod-

els contain no channel variables. Therefore, we suggest that
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thermistor can be used to estimate the heat effect and temper-

ature because then the channel current across the thermistor

and branch circuit can be regulated by the temperature effec-

tively. Our suggestion and proposal for this functional neuron

model can shed light on obtaining more functional neural cir-

cuits by utilizing the physical properties of more electronic

components, and it also give possible insights to understand

the biophysical mechanism for encoding external physical sig-

nals in neurons. The physical components such as phototube

and thermistor are involved, while the authors seldom consider

the realistic parameters values in these commercial devices. In

fact, the same analog circuits and their realization in hardware

can be tried in the forthcoming experiments.

To enhance the dependence and sensitivity of tempera-

ture, more thermistor can be included into the circuit, e.g.,

thermistor can be connected to the phototube, and more pho-

totubes can be paralleled to increase the intensity of photocur-

rent as well. In addition, more physical components can be

included to enhance its biophysical function. For researchers

in the field of computational neuroscience, they can use this

functional neuron model for further bifurcation analysis, es-

timating the network stability under more stimuli and spatial

coherence resonance if possible.

As suggested in Ref. [31], memristor can be involved to

describe the memristive synapse and induction current in the

neuron due to electromagnetic induction. That is, magnetic

flux can be involved into the neuron models for estimating the

mode transition and dynamics in neural activities, for example,

Ref. [89] investigated the effect of electromagnetic radiation

and external forcing current on the pre-Bötzinger complexity

in mammalian brainstem and the transition in the generation of

respiratory rhythms was discussed. Qu et al.[90] discussed the

effect of stochastic electromagnetic disturbances on neurons

driven by autapse. Yuan et al.[91] studied a simple neuron-

astrocyte coupled system under electromagnetic induction in

response to different types of external stimulation, and it was

confirmed that the duration and intensity of the external stim-

ulus can induce different modes of electrical activity in this

system, and thus the neuronal firing patterns can be subtly

controlled. The biological neurons can be tamed to obtain

main functions after continuous self-learning and training. In

practical way, more functional electronic components can be

combined to build functional neurons, which can capture and

percept the external light, heat, mechanical pressure, voice,

and even magnetic field. When these artificial neurons are ob-

tained, they can be connected to build multi-layer networks

and cooperation between different functional regions of brain

can be estimated in a possible way. Also, some researchers

can confirm these suggestions by implementing analog, digi-

tal circuits and even realization in hardware if possible.

5. Conclusions

In this paper, two physical electronic components are

used to enhance the intelligent function of the neural circuit

and a feasible neuron model is proposed to estimate the effect

of temperature and illumination. The photocurrent across pho-

totube can excite the neural circuit as signal source (voltage

source and/or current source). The thermistor in this neural

circuit is sensitive to the temperature and heat effect because

the channel current across the thermistor can be adjusted by

temperature.

Standard bifurcation analysis is applied to find the dy-

namics dependence on the temperature and photocurrent. The

external illumination energy can be encoded by generating

photocurrent, and fluctuation in the temperature can be de-

tected by changing the channel current. In addition, Gaus-

sian white noise is imposed on this neuron, and the occurrence

of coherence resonance is confirmed by applying appropriate

noise intensity. This functional neural circuit can be further

used for artificial neural network and sensors. It also explains

the biophysical mechanism how temperature (heat) and light

can encoded in the nervous system.
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