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Dynamics and Control of 
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Adaptive structures with controllable geometries and shapes are rather useful in many 
engineering applications, such as adaptive wings, variable focus mirrors, adaptive 
machines, micro-electromechanical systems, etc. Dynamics and feedback control 
effectiveness of adaptive shells whose curvatures are actively controlled and continu­
ously changed are evaluated. An adaptive piezoelectric laminated cylindrical shell 
composite with continuous curvature changes is studied, and its natural frequencies 
and controlled damping ratios are evaluated. The curvature change of the adaptive 
shell starts from an open shallow shell (300) and ends with a deep cylindrical shell 
(360°). Dynamic characteristics and control effectiveness (via the proportional veloc­
ity feedback) of this series of shells are investigated and compared at every 30° 
curvature change. Analytical solutions suggest that the lower modes are sensitive to 
curvature changes and the higher modes are relatively insensitive. © 1995 John Wiley 
& Sons, Inc. 

INTRODUCTION 

The concept of adaptive geometry dates back to 
the early years of robotics and adaptive truss 
structures (Paul, 1981; Natori, Iwasaki, and Ku­
wao, 1987; Miura and Furuya, 1988; Wada, Fan­
son, and Crawley, 1989). Adaptive structural 
systems with inherent active adaptation and ge­
ometry transformation are very attractive in 
many applications, for example robotics, air­
planes, vehicles, marine (surface or underwater) 
ships, micromechanical systems, etc. With the 
development of active electromechanical mate­

rials and actuators, this geometry adaptation is a 
step closer to reality. This article is concerned 
with an evaluation of control effects of a piezo­
electric laminated cylindrical shell composite 
with a total of 330° curvature change. Possible 

applications of the configuration are compressors 
and fan shrouds for active blade tip clearance 
control, and reflectors with active dynamics and 
radius control, etc. Dynamics and active control 
effects of these transforming shells with different 
curvatures are studied and compared. Mathe­
matical modeling of the piezoelectric laminated 
cylindrical shell is presented first, followed by 
analytical solution procedures and case studies. 
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PIEZOELECTRIC CYLINDRICAL SHELL 

COMPOSITE SYSTEMS 

A cylindrical shell is defined in a cylindrical coor­
dinate system: x, (), and LX3, in which x defines the 
length (longitudinal) direction, () the circumferen­
tial direction, and LX3 the transverse direction. It 
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is assumed that the curvature change is induced 

by strong external actuation forces, and a series 

of cylindrical shells with different curvatures are 

then created. Dynamics and control of these 

shells with different curvatures are assumed lin­

ear and evaluated at small vibration amplitudes 

with respect to their static equilibrium position. 

Accordingly, the externally applied actuation 

forces causing the curvature changes are not 

considered in the analysis. Electromechanical 

equations at each deformed state of static equi­

librium can be defined by its curvature angle and 

accordingly its dynamics and control can be eval­

uated. Control effect is introduced by the piezo­

electric actuator, layers, via the converse piezo­

electric effect, at its deformed equilibrium 
position (Tzou, 1993). Figure 1 illustrates the 

shell transformation process from an open cylin­

drical shell panel to a deep cylindrical shell. 

The original cylindrical shell laminate has di­

mensions of length L, thickness h, radius R, and 

curvature angle {3 that changes from 300 to 3600 

in the curvature transformation process. The arc 
length or "equivalent width" of the cylindrical 
shell is defined by {3R, i.e., (angle) x (radius), 

which remains constant during the curvature 

transformation process. Thus, these shells re­
main about the same overall size. Figure 2 illus­

trates a piezoelectric laminated cylindrical shell 

composite. 

The four parameters for the cylindrical shell 

are: Lame parameters Al = 1, A2 = R and radii: 
RI = 00 and R2 = R. Accordingly the electrome­

chanical equations of the cylindrical shell can be 

derived from those of a generic thick piezoelec­

tric shell laminated composite (Tzou and Bao, 

1993). 

a (Nm N e ) 1 a (Nm) - h" ax xx - xx + Ii ae xe - P UI, (1) 

:x (N':o) + ~ :e (N71e - N oe) 

+ ~ [:x (M;'e) + ~ :e (M7le - Moe)] 

= phii2' (2) 

:x [:x (M~ - M~x) + ~ aae (M;'e) ] 

1 a [a (m) 1 a (m e )] 
+ R ae ax Mxe + Ii ae M ee - M 88 (3) 

OQIJ· .. ··(J 
FIGURE 1 Shell transformations, 

where Nij are membrane forces; Mij are mechani­
cal bending moments; p is the mass density; his 

the shell thickness; and UI, U2, and U3 are the 

displacements in the x, e, and ex3 directions, re­
spectively. The superscript m denotes the me­

chanical component and e the electric compo­

nent. Mechanical forces and moments are related 

to deflections UI, U2, and U3: 

N~ = All (~:l) + Al2 ~ (aa~2 + U3), (4a) 

N7le = AJ2 (aa~) + A22 ~ e~2 + U3), (4b) 

Nm = A (! aUI aU2) 
xe 66 \R ae + ax ' (4c) 

(4f) 

where Aij and Dij are, respectively, the exten­

sional and bending stiffness (Tzou and Bao, 

FIGURE 2 A piezoelectric laminated cylindrical 

shell composite. 



1993). For illustration, it is assumed that the cy­

lindrical shell laminated composite is made of 

five layers: two piezoelectric layers on the top 

and bottom surfaces and three laminae between 

these two piezoelectric layers. (A subscript or 

sub-subscript is used to denote the ith layer in 

later derivations.) Electric forces and moments 

are contributed by two components: the con­

verse effect (with a superscript c) and the direct 

effect (with a superscript d). In practice, the 

former is related to control voltages and the lat­

ter is related to elastic and electric couplings. 

2e3' au, 1 aU2 h 2 [ ( ) ] (5a) -- -+- -+U3 , 
833 ax R ae ' 

Noo = N~x, N~o = 0, (5b,c) 

M;x = M~x + M1x = - e~, (C/>js - C/>j,)(h, + 3h2) 

_ 2d, [_ a2U3 + ~ (au2 _ a2u3) ] (5d) 
3833 ax 2 R2 ae ae2 

Moo = M;x, M;o = 0, (5e,f) 

where e3' is the piezoelectric constant; C/>~i is the 
transverse electric field applied to the ith layer, 

833 is the electric permittivity; hi is the ith layer 

thickness. Note that it is assumed that the two 

piezoelectric layers have the same thickness, 

i.e., h, = hs , and they are, respectively, the first 

and fifth layer in the laminated composite. The 

other three layers have the same thickness sim­

ply represented by an h2 in the expressions. Sub­

stituting these relations into the composite elec­

tromechanical equations yields: 

(6) 
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(7) 

- ~' (C/>j, + C/>js) 

_ 1. (A'2 + 2d, h, ) (aux) (8) 
R 833 ax 

Simplifying these equations gives 

aU3 .. + K 4 - - phu = 0 ax x, 
(9) 

K (PUO + K a2uo + K a2ux 

s ax2 6 a()2 7 axa() 

(10) 

aU3 .. 
+ KIO ao - phuo = 0, 
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a4U3 a4U3 a4U3 
Kll ax4 + KI2 a(J2ax2 + KI3 a04 

a3uo a3uo 
+ K14 aoax 2 + K 15 a03 

(11) 

where the coefficients Kij are defined in the Ap­

pendix. Again, the electromechanical equations 

are valid for the transforming cylindrical shell 

laminated composite as long as the curvature an­

gles are defined. Natural frequencies and damp­

ing ratios of the shells with control voltages ap­

plied to the piezoelectric actuators are evaluated 

next. 

FREE VIBRATION ANALYSIS 

For a simply supported cylindrical shell lami­

nated composite, boundary conditions (S2 

boundary conditions) are defined as 

uAx, 0) = ux(x, (3) = 0, uo(O, 0) = uo(L, 0) = 0, 

(12a,b) 

U3(0, 0) = u3(L, 0) = U3(X, 0) = U3(X, f3) = 0. 

(12c) 

Oscillations of the shell at its natural frequency 

Wmn can be assumed in a harmonic form (Soedel, 

1993; Tzou, 1993): 

(13a,b,c) 

where Vi denotes the mode shape function; W is 

the oscillation frequency and W = W mn • Solutions 

of the cylindrical shell with simply supported 

(S2) boundary conditions can be assumed as 

( 0 ) - A m1T x . n1T 0 jwt 
ux x, ,t - mnCOS L sm f3 e , 

( 0 ) - B . m1TX n1TO jwt 
Uo x, ,t - mnsm L cos f3 e , 

( 0 ) - C . m1T x . n1T 0 jwt 
U3 x, ,t - mnsm L sm f3 e . 

(14a) 

(14b) 

(14c) 

These assumed solutions need to satisfy all 

boundary conditions. Substituting these assumed 

solutions into the electromechanical equations 

and solving for natural frequencies Wimn and 

mode shapes, one can find 

(15) 

- K9(n;y + K lO(n;)] Cmn = 0,(16) 

- K 16 (mz) Amn + [K14 (~1Tf(n;) 

+ K 15 (n;Y - K17 (n;)] Bmn 

Note that K2 = K7 , K4 = -K16 , K8 = -K14 , K9 = 

- K 15 , KIO = - K 17 • Thus, the eigen equation be­

comes 

where 

kll = Kl (:1Tf + K3 (n;t 

kl2 = k21 = -K2 (:1T)(n;), 

kl3 = k31 = K4 (~1T), 

(19a,b) 

(19c,d) 



(1ge) 

Taking the determinant of the coefficient 

matrix zero gives a characteristic equation: 

where coefficients ai are defined by 

al = -(kll + k22 + k33)/ph, 

a2 = (k22k33 + k33kll + kllk22 - k~3 

- kT3 - ki2)/(Ph)2, 

(2Ia) 

(2Ib) 

a3 = (kllk~3 + k22kT3 + k33ki2 + 2k23k13k12 

- kllk22k33)/(ph)3. 
(2Ic) 

Solving the characteristic equations gives the 

natural frequencies Wlmn, W2mn, W3mn: 

WTmn = -~ Va2 - 3a2 cos ~ _ al 
3 1 3 3 ' 

w~mn = - ~ Vai - 3a2 cos [a ~ 27T ] 

W~mn = - ~ VaT - 3a2 cos [ a ~ 47T ] 

and 

al 

3 ' 

(22a) 

(22b) 

(22c) 

(22d) 

Note that for the mnth mode, i.e., every (m, n) 

combination, there are three component natural 
frequencies. Usually, the lowest frequency is as­

sociated with the transverse mode, and the other 

two frequencies are usually higher by an order of 

magnitude and they are associated with the in­

plane modes, i.e., longitudinal modes and cir­

cumferential modes (Tzou, 1993). Accordingly 

there are three definitions of the modal ampli-

Dynamics and Control of Adaptive Shells 147 

tudes A imn , Bimn , and Cimn for the mnth mode, 

each (m, n) combination. Their relative modal 

amplitude ratios can be obtained from 

(23) 

and their normalized modal amplitudes are 

(
Aimn/Cimn) = _ ([k13(PhW~mn - k22) - kI2k231!Di), 

Bimn/Cimn [k23(p hwimn - k ll ) - k13 k2111Di 
(24) 

where Di = (phwTmn - kll)(phwTmn - k22) - ki2. 

All three Uximn, U8imn, and U3imn functions together 
constitute the natural modes (mode shape func­
tions or modal functions) 

(
Uximn) 
U8imn = Cimn 

U3imn 

Aimn m7TX n7T(} 
-- cos -- cos --
C imn L {3 

Bimn . mTrX nTr(} 
-- sm -- cos --
C imn L {3 

. m7TX nTr(} 
(1) sm -y:- cos T 

, (25) 

where the C imn are arbitrary constants. Thus, 

natural frequencies and mode shapes of the cy­

lindrical shells with different curvatures can be 
evaluated and compared. 

PIEZOELECTRIC CONTROL EFFECTS 

The two piezoelectric layers are input with high 

control voltages, i.e., q,jl = q,j5 = q,3. It is as­

sumed that the control voltage can be input to 

infinitesimal "discrete" electrodes, i.e., the volt­
age is "fully" distributed, and control effective­

ness of these cylindrical shells can be evaluated 

accordingly. In this section, generic displace­

ment, velocity, and acceleration feedback algo­
rithms are formulated, however, the emphasis is 

placed on the velocity feedback. Because the 

same voltage is applied to the top and bottom 

piezoelectric layers: q,jl = q,j5 = q,3, the last term 
on the left side of Eq. (11) becomes 

e31 (A,C + A,C) = 2 e31 A, (26) 
R 0/31 0/35 R 0/3· 
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Displacement Feedback 

In this case, the control voltage is assumed pro­

portional to the transverse displacement, i.e., 

<P3 = ctid U3 where ctid is the displacement control 

gain. The eigen equation, Eqs. (18), is still the 

same for the displacement feedback: 

(

PhW2 - kll k12 

k2J phw2 - k22 

k31 k32 

(
Amn) 
Bmn = 0, 

Cmn 

(27) 

where the coefficient k33 is modified to include 

the feedback effect: 

Thus, the characteristic equation can be derived, 

and frequency and mode shapes with the dis­

placement feedback can be studied. 

Velocity Feedback 

It is assumed that the control voltage is propor­

tional to the instant transverse velocity, i.e., 

<P3 = ctivU3. The oscillations in three axial direc­

tions can be written as 

( ) _ m1TX . n1TO st 
Ux X, 0, t - Amncos L sm {3 e, (29a) 

( ) _ . m1TX n1TO st 
Uo X, 0, t - Bmnsm L cos {3 e , (29b) 

( ) _ C . m1TX . n1TO st 
U3 X, 0, t - mnsm L sm {3 e , (29c) 

where s is a complex frequency. Substituting 

these assumed solutions into the shell equations 

gives 

(-phs 2 - kll)Amn + k12Bmn + k13Cmn = 0, (30a) 

k21Amn + (-phs 2 - k22)Bmn + k23Cmn = 0, (30b) 

( ~l ) + -phs 2 - k33 - 2 R ctivs Cmn = 0, 

that is 

(

-PhS 2 - kll 

k2J 

k31 

k12 

-phs 2 - k22 

The characteristic equation becomes 

-(phs 2 + k ll )(phs 2 + k22) 

(phs 2 + k33 + 2 ~l ctivs) + 2k12 k13 k23 

+ kT3(phs2 + k22) + 1<12 (phs 2 + k33 

e31 ) ,-2 + 2 R ctivs + 10.3(phs2 + k ll ) = O. 

Simply, 

(30c) 

(31) 

(32) 

als 6 + a2sS + a3s4 + a4s3 + ass 2 + a6S + a7 = 0, 

where 

a4 = (kll + k22) (2 ~l ctivPh) , 

as = (kllk22 + kllk33 + k22k33 

- 1<12 - kT3 - tq3)(ph), 

a6 = (kllk22 - 1<12) (2 ~l ctiv), 

a7 = (kllk22k33 - 2k12k13k23 

- k ll tq3 - k221<13 - k33 1<12). 

(33) 

(34c) 

(34d) 

(34e) 

(340 

(34g) 



The complex frequencies can be calculated as 

Simn = Re(Simn) ±jlm(simn), i = 1,2,3. (35) 

Knowing that the complex frequency has the 

form Simn = - ~imnWimn ± jWimn Y 1 - ~imn 2 , one can 
derive 

Wimn = !Simn! = YRe(Simnf + Im(simn)2, (36a) 

~imn = -Re(Simn)/!Simn!. (36b) 

Thus, control effects on the frequency and damp­

ing variations can be evaluated. 

Acceleration Feedback 

It is assumed that the control voltage is propor­

tional to the transverse acceleration signal, i.e., 

cf>3 = Cfjail3. The eigen equation can be derived as 

(

PhW 2 - kll kl2 

k21 phw 2 - k22 

k31 k32 

k13 ) 
k23 (37) 

(ph + 2 e3~Cfja) w 2 - k33 

(

Amn) 
. Bmn = 0, 

Cmn 

and the characteristic equation becomes 

where 

/( e31Cfja) 
al = -(kll + k22)/ph - k33 ph + 2 ~ , 

(39a) 

a2 = (k22k33 + k33 k ll - 103 - k13)/(Ph) 

( e31Cfja) ,-2 
. ph + 2 ~ + (kllk22 - K(2)/(ph)2, 

(39b) 
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Although, three generic feedback control algo­

rithms were derived, the emphasis is placed on 

the velocity feedback because it is usually more 

effective than the other two control algorithms in 

distributed vibration controls (Tzou, 1993). 

CASE STUDIES: TRANSFORMATION OF 

CYLINDRICAL SHELLS 

It is assumed that a cylindrical composite shell is 

transforming from an open shallow shell at f3 = 

30°, to a deep cylindrical shell at f3 = 360°. Note 

that external forces causing the curvature 

changes are not considered in the analyses and 

these shells are evaluated at their static equilib­

rium positions. It is assumed that a finite separa­

tion still exists even when f3 = 360°. Recall that 

the cylindrical shell is (S2) simply supported and 

the dimensions are: length L = 10 cm, f3R = 10 

cm, h = 0.05 cm x 5 (layers) = 0.25 cm. The 

initial damping is assumed zero. Figure 2 illus­

trates the piezoelectric laminated cylindrical 

shell composite. The transverse mode shapes are 

determined by U3(x, 0) = sin (m7Tx/ L) sin (n7TO/ (3) 

in which m denotes the longitudinal half-wave 

numbers and n the circumferential half-wave 

numbers. Variations of natural frequencies and 

controlled damping ratios (via the velocity feed­

back) are evaluated at every 30° interval (f3 = i7T/ 

6, i = 1, 2, ... , 12) of curvature changes. 

Natural Frequencies 

Natural frequencies of the uncontrolled cylindri­

cal shells with different curvatures are calculated 

and plotted in Fig. 3-5. The vertical axis denotes 

the natural frequency (Hz) and the horizontal 

axis denotes the curvature angles f3. Figure 3 

shows the frequency variations of the (m = 1, 

n = 1-5) natural modes, Fig., 4 the (m = 2, n = 
1-5) modes, and Fig. 5 the (m = 3, n = 1-5) 

modes. It is observed that for shallow shells the 

natural frequency increases as the mode number 

increases. However, the natural frequency de­

creases for the first few natural modes and in­

creases as the mode number increases when the 

curvature becomes significant. This is due to the 
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FIGURE 3 Frequency variations of the (m 
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FIGURE 4 Frequency variations of the (m = 2, n 

1-5) modes. 
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FIGURE 5 Frequency variations of the (m = 3, n = 

1-5) modes. 
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FIGURE 6 Damping ratio variations of the (m 
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FIGURE 7 Damping ratio variations of the (m 

n = 1-5) modes. 
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FIGURE 8 Damping ratio variations of the (m 

n = 1-5) modes. 

1, 

2, 

3, 



» 
u 

" OJ 

" .,. 
OJ ... 

Fd(Hz) 
TransVlb wah changed curvature (gvo 500 mo t) 

15xl0' r-~~~----~~---------, 

-. _ ... - --.. - --.. - --.. - --- .- --.... --- ... ,------, 
.-- ---. n", 5 

.-----. n = 4 
v----v n = 3 
o----{] n 0 2 ~ -- __ 

.... 05xlO' 

100 200 300 (degree) 

Curvature (degree) 

FIGURE 9 Variations of damped natural frequen­

cies, the (m = 1, n = 1-5) modes. 

coupling of circumferential and transverse mo­

tions in the electromechanical equations. As the 
curvature increases, this coupling effect in­

creases. 

Controlled Damping Ratios 

Recall that the initial modal damping ratios are 

assumed zero, and the damping ratios are intro­

duced by the velocity feedback only. Figures 6-8 
illustrate the controlled damping variations of the 

shells with different curvatures for the (m = 1, 

n = 1-5), (m = 2, n = 1-5), and (m = 3, n = 1-5) 

modes when the gain is set at 500. The controlled 
damping ratio increases as the curvature in­

creases for higher natural modes during the cur-

Fd(Hz) 
TransVIl with changed cLrvall .. e (gvo500 m02) 

1.8x1O' .-~------~~--- ____ --, 

0.3x1O' "----~--~--~----~----' 
100 200 300 (degree) 

FIGURE 10 Variations of damped natural frequen­

cies, the (m = 2, n = 1-5) modes. 
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Fd(Hz) 
TransVib. With changed cIXvature (gvo500 m03) 

25xl0' r-~~~-----~-------, 

20xlO' 

1.5xlO' 

1.0xl0' 

05xl0' ~--~-----~----~--~ 
100 200 300 (degree) 

FIGURE 11 Variations of damped natural frequen­

cies, the (m = 3, n = 1-5) modes. 

vature transformation process. However, the 

damping ratio decreases as the natural frequency 

increases because there is a natural frequency in 

the denominator in the damping ratio calcula­

tions. These behaviors can be observed in the 

(m = 1, n = 1,2) modes, (m = 2, n = 1-3), etc. 

modes. Damping variations of the transformation 

shells for the (m = 1, n = 1-5), (m = 2, n = 1-5), 
and (m = 3, n = 1-5) modes when the gain is set 

at 1,000 are also studied and their results basi­

cally lead to similar conclusions. 

Damped Natural Frequencies 

Based on the controlled damping ratios, one can 

further calculate damped natural frequencies for 

the cylindrical shell with different curvatures. 

Figures 9-11 give the variations of damped natu­
ral frequencies for the the (m = 1, n = 1-5), (m = 

2, n = 1-5), and (m = 3, n = 1-5) modes over the 
range of curvature transformation when the gain 

is set at 500. It can be observed that the control 

effects to the lower modes are more significant 

than the higher modes. 

CONCLUSIONS 

Adaptive structures with controllable geometries 

and shapes offer many advantages over conven­

tional fixed-geometry structures. In this study 

dynamics and control effectiveness of an adap­

tive cylindrical shell laminated composite, which 

transforms from an open shallow shell (30°) to a 
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deep cylindrical shell (360°), were investigated. 

A mathematical model for the piezoelectric lami­

nated cylindrical shell composite was formulated 

and natural frequencies and mode shapes were 

analyzed. These generic equations and solutions 
included a curvature angle that can be easily 

changed to accommodate the curvature transfor­

mations. Three generic feedback controls were 

proposed and the velocity feedback was used in a 

case study. Control force level was determined 

by actuator material properties and also control 

voltages. Numerical analyses ofthe transforming 

cylindrical shell suggested the following. 

1. Controlled damping ratio of the cylindrical 

shell decreases as the shell curvature in­

creases for lower natural modes. However, 

controlled damping ratio keeps increasing 

for higher natural modes. 

2. Natural frequencies oflower natural modes 

increase and those of higher modes de­

crease in the process of curvature transfor­
mation from 30° to 360°. When the shell 

curvature increases, dynamic coupling be­

tween the circumferential and transverse 

modes becomes significant. Accordingly, 

the lowest mode is usually not the first 

mode for high-curvature shells. 

Note that the shell dynamics and control were 

evaluated at (deformed) static equilibrium posi­

tions after the curvature transformation such that 

external actuation forces imposing the curvature 

change are not considered. The external actua­

tion force retained in the transformed shell can 

significantly affect the stability of the trans­

formed shell if considered. In addition, dynamics 

and control were evaluated in the linear range 

(small oscillation); large deformation and geo­

metrical nonlinearity were not considered. These 

stability and nonlinear effects will be considered 

in future studies. 

APPENDIX 

Coefficients in the electromechanical equations 

of the 5-layer laminated composite cylindrical 

shell are defined as follows. 

(A. 1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 



where Yx is Young's modulus of material x; /Lx is 

Poisson's ratio of material x; Gij is the shear mod­
ulus; the sUbscript p denotes the piezoelectric 

material; and the subscript c denotes that elastic 

composite lamina. 
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(A.8) 

(A.9) 

(A. 10) 

(A.Il) 

(A. 12) 

(A. 13) 

(A. 14) 

(A. IS) 

(A. 16) 

(A. 17) 
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