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Abstract World Health Organization (WHO) has
declared COVID-19 a pandemic on March 11, 2020.
As of May 23, 2020, according to WHO, there are 213
countries, areas or territories with COVID-19 positive
cases. To effectively address this situation, it is imper-
ative to have a clear understanding of the COVID-19
transmission dynamics and to concoct efficient con-
trol measures to mitigate/contain the spread. In this
work, the COVID-19 dynamics is modelled using
susceptible–exposed–infectious–removed model with
a nonlinear incidence rate. In order to control the trans-
mission, the coefficient of nonlinear incidence func-
tion is adopted as the Governmental control input. To
adequately understand the COVID-19 dynamics, bifur-
cation analysis is performed and the effect of varying
reproduction number on the COVID-19 transmission is
studied. The inadequacy of an open-loop approach in
controlling thedisease spread is validatedvia numerical
simulations and a robust closed-loop control method-
ology using slidingmode control is also presented. The
proposed SMC strategy could bring the basic reproduc-
tion number closer to 1 from an initial value of 2.5, thus
limiting the exposed and infected individuals to a con-
trollable threshold value. The model and the proposed
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control strategy are then compared with real-time data
in order to verify its efficacy.
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1 Introduction

COVID-19, a novel coronavirus, caused an outbreak
of atypical pneumonia first in Wuhan, Hubei province,
China, in December 2019 and then rapidly spread out
to the whole world. As per World Health Organiza-
tion (WHO), as of May 23, 2020, globally, there are
5,105,881 confirmed cases and 333,446 deaths [1].
The whole world is in a lockdown scenario, having
widespread socio-economic-political impacts. In this
context, a study on the dynamics and possible control
strategies could be of great interest to the research com-
munity and society as a whole.

Compared with statistics methods, mathematical
modelling based on dynamical equations has received
relatively less attention, though they can provide more
detailed mechanism for the epidemic dynamics. The
study of dynamics of epidemics started from 1760 by
modelling smallpox dynamics, and since then, it has
become an important tool in understanding the trans-
mission and control of infectious diseases [2]. A water-
shed moment in the mathematical modelling and anal-
ysis of epidemic dynamics was the introduction of
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susceptible–infectious–removed (SIR) compartmental
modelling approach to study the plague dynamics in
India [3]. Since then, various compartmentalmodelling
approaches have been used to study and understand the
dynamics of infectious diseases.

The classical SIR compartmental model divides
total host population into three compartments/classes:
S(t), I (t), and R(t), indicating fraction of popu-
lation susceptible to infection, infected individuals,
and removed individuals (either recovered or dead),
respectively [4]. However, for most of the infec-
tious diseases, a latent state exists before the indi-
viduals to pass from the infected to the infective
state. This called for the introduction of an addi-
tional compartment, E(t), called exposed stage, mak-
ing the system a four-dimensional ordinary differential
equation (ODE) structure, called susceptible–exposed–
infectious–removed (SEIR) model [5]. SEIR has been
effectively used to understand the early dynamics of
COVID-19 outbreak and to study the effectiveness of
various measures since the outbreak [6–10]. In [8,9],
the COVID-19 dynamics was further generalised by
introducing further sub-compartments, viz. quaran-
tined and unquarantined, and the effect of the same
on transmission dynamics was presented. In [11], the
classical SEIRmodelwas further extended to introduce
delays to incorporate the incubation period in COVID-
19 dynamics.

The mechanics of transmission of an epidemic is
governed by the factor called incidence rate or force of
infection. The incidence rate is generally represented
as a linear function of infectious class, by principle of
mass action, β(I ) = β0 I , where β(I ) represents the
incidence rate and β0 represents the per capita contact
rate [12]. But, like most of the real-life processes, it is
more fitting to represent the incident rate using a non-
linear function. In a first, Capasso and Serio [13] used
saturated incidence rate to model cholera transmission.
Since then, nonlinear incidence rate functions of multi-
ple forms have been used in the literature for modelling
the disease spread rate [14]. In order to represent the
nonlinear incident rate of the COVID-19 outbreak, the
following function is used in this work [14].

β(I ) = β0 I

1 + α I 2
. (1)

In Eq. (1), the term β0 I represents the bilinear force
of infection and the term 1 + α I 2 represents the inhi-

bition effect, usually interpreted as the ‘psychological’
effect. This psychological effect is usually forced via
aggressive Governmental measures, represented by α,
like isolation, quarantine, restriction of public move-
ment, aggressive sanitation, etc. [15]. For lower val-
ues of infection, the public perception of the situa-
tion could be trivial, and this could increase the rate
of infection rapidly. As more and more people around
get infected, the public would start acknowledging the
seriousness of the issue and could start responding pos-
itively to protection measures. The term ‘psychologi-
cal’ effect is emphasised here due to the behavioural
change of the susceptible public when the number of
infective individuals is on the rise. This behavioural
change could be via protective measures followed by
susceptible individuals, viz. social distancing, sanita-
tion, self-isolation, masks, etc. This public psychology
is represented as a non-monotonous function, β(I ), as
presented inEq. (1). In thiswork,α is represented as the
percentage of total effort required to contain/mitigate
the epidemic spread.

Figure 1 presents the variation of incidence rate
function for different values of the (Government) con-
trol variable, α. For α > 0, in the presence of certain
level of Governmental control to curb the spread, the
incidence rate tends to fall after reaching a peak value.
The absence of any Governmental control (α = 0)
could cause infections to rise till the whole population
is infected. It is interesting to note that for α = 0,
β(I ) = β0 I , representing a bilinear incidence rate.

This work attempts to analyse the dynamics of
COVID-19 outbreak using the SEIR model, with non-
linear incident rate, with the help of bifurcation theory.
In order to characterise the COVID-19 pandemic, the
model parameters are adapted from the related litera-
ture [16–21]. Conditions are derived in terms of param-
eters for the existence of disease-free and endemic equi-
librium points, and existence of a forward bifurcation
point is presented. For different values of the Govern-
ment control parameter α, the intensity of outbreak is
analysed. It was found that rather than having a ran-
dom open-loop α selection, a closed-loop approach in
controlling the COVID-19 spread would be more pre-
ferred. Motivated from this, this paper also presents a
model-based closed-loop solution to control COVID-
19 pandemic by the synthesis of appropriate threshold
on Government control variable α, using the technique
of sliding mode control (SMC).
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Fig. 1 Variation of
COVID-19 incidence rate
function for different values
of control variable, α
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SMC has been widely used in the literature for
the control of infectious diseases [22–25]. In [24], an
influenza prevention method has been presented via
robust vaccination and antiviral treatment using robust
SMC , which could reduce the number of people sus-
ceptible to the virus. Again, in [22], using vaccination
as a control input, an adaptive SMC was designed for
controlling SEIR epidemic models . In [25], by forcing
a threshold on the infection levels, a piecewise inci-
dence rate, achieved using SMC, was used to control
epidemic outbreaks. A similar approach was presented
in [23], but the threshold value was forced on the num-
ber of exposed individuals. In the current context of
COVID-19 pandemic, the authors attempt to utilise
SMC to find an efficacious closed-loop control solu-
tion to prevent disease spread by synthesising appro-
priate control via Government action. A reaching law-
based robust SMC design is adopted for control law
synthesis, which could effectively control the trans-
mission dynamics of COVID-19 epidemic even in the
presence of external unanticipated disturbances and/or
modelling uncertainties. The controller is designed in
such a way that the exposed population dynamics has
been controlled to a lower threshold, thereby actively
controlling the mass spread of COVID-19.

Hence, themain objectives of this paper can be listed
as follows:

– To analyse theCOVID-19 dynamics via bifurcation
theory for an in-depth understanding of the trans-
mission dynamics and to study various factors that
could aggravate/mitigate COVID-19 spread.

– To design a model-based closed-loop control solu-
tion for curtailing the disease spread to a manage-
able level using SMC.

The paper is organised as follows. The SEIR model
and the dynamic analysis of the same are presented in
Sect. 2. Section 3 describes the COVID-19 dynamics
in detail using bifurcation analysis and establishes the
significance ofGovernmental control action parameter,
α. SMC design for controlling the COVID-19 outbreak
and associated results and discussions are presented in
Sect. 4. Section 5 concludes the paper.

2 SEIR model and dynamic analysis

The basic SEIR model is given as,

Ṡ = μ − β0SI

1 + α I 2
− μS,

Ė = β0SI

1 + α I 2
− (σ + μ)E,

İ = σ E − (γ + μ)I,

Ṙ = γ I − μR,

(2)

where the state variables [S, E, I, R] are the fractions
of total population representing susceptible, exposed,
infected, and removed, respectively. Birth/death rate is
represented by μ, and γ represents the recovery rate.
Parameter σ is themeasure of rate at which the exposed
individuals become infected; in other words, 1/σ rep-
resents the mean latent period. The nonlinear incidence
rate, presented in Eq. (1), is used in the model.

For the set of equations presented in Eq. (2), it is
possible to write,

Σ = {(S, E, I, R) ∈ �4+ : S + E + I + R = 1}. (3)

123



2016 G. Rohith, K. B. Devika

SinceΣ is positively invariant and R = 1−(S+E+ I ),
one could reduce the order of Eq. (2) by neglecting Ṙ
dynamics, and the newset of equations canbepresented
as,

Ṡ = μ − β0SI

1 + α I 2
− μS,

Ė = β0SI

1 + α I 2
− (σ + μ)E,

İ = σ E − (γ + μ)I.

(4)

Also, by comparing Eqs. (2) and (4), one could notice
that

Ṡ + Ė + İ = μ − μS − μE − (γ + μ)I

≤ μ − μ(S + E + I ), (5)

indicating the fact that limt→∞(S + E + I ) ≤ 1 and
the feasible region for Eq. (4) can be represented as,

Γ = {(S, E, I ) ∈ �3+ : 0 ≤ S + E + I ≤ 1}. (6)

The most important threshold that determines the dis-
ease spread is the basic reproduction number, R0. This
value points to the number of secondary infections an
infected individual would produce in a susceptible pop-
ulation. In order to find R0, one needs to find the Jaco-
bian of Eq. (4) about its disease-free equilibrium point,
E∗
DFE , which can be calculated by equating Eq. (4) to

zero and solving for I ∗ = 0. The disease-free equilib-
rium for Eq. (4) is given by E∗

DFE = (1, 0, 0). Now
the Jacobian matrix for Eq. (4) is given by,

J (S, E, I )

=

⎡
⎢⎢⎣

−μ 0 −(1+α I 2)β0S−β0S(2α I )
(1+α I 2)2

β0 I
1+α I 2

−(μ + σ)
(1+α I 2)β0S−β0S(2α I )

(1+α I 2)2

0 σ −(μ + γ )

⎤
⎥⎥⎦ . (7)

Now, to find R0, the characteristic equation |λI − J | =
0 at E∗

DFE is derived and is given as,

(λ + μ)
[
λ2 + (2μ + γ + σ)λ

+(μ + σ)(μ + γ ) − σβ0
] = 0. (8)

Since E∗
DFE is stable, all the coefficients of Eq. (8)

should be positive and all roots should have negative
real parts. This implies

(μ + σ)(μ + γ ) − σβ0 > 0, (9)

and the basic reproduction number R0 is given by,

R0 = σβ0

(μ + σ)(μ + γ )
. (10)

Theorem 1 For the system represented by Eq. (4)with
positive parameters, E∗

DFE = (1, 0, 0) is locally stable
if R0< 1 and unstable in R0> 1.

Proof From Eq. (8), the characteristic equation can be
written as,

s(λ + μ)
[
λ2 + (2μ + γ + σ)λ

+(μ + σ)(μ + γ )(1 − R0)
] = 0. (11)

If R0 < 1, all the coefficients of the characteristic equa-
tion are positive and all three eigenvalues are negative,
indicating a stable equilibrium. For R0> 1, there exist
a positive eigenvalue for Eq. (11) and the equilibrium
solution in unstable. �	
Theorem 2 For the system represented by Eq. (4)with
positive parameters, there exist an endemic equilibrium
(S∗, E∗, I ∗) for R0> 1 and no unique endemic equi-
librium for R0< 1.

Proof To find the endemic equilibrium (S∗, E∗, I ∗),
system presented in Eq. (4) is equated to zero,

μ − β0S∗ I ∗

1 + α I ∗2 − μS∗ = 0, (12a)

β0S∗ I ∗

1 + α I ∗2 − (σ + μ)E∗ = 0, (12b)

σ E∗ − (γ + μ)I ∗ = 0. (12c)

Now, from Eq. (12c),

E∗ = (γ + μ)I ∗

σ
. (13)

Substituting E∗ in Eq. (12b), we obtain

β0S∗ I ∗

1 + α I ∗2 − (σ + μ)

(
(γ + μ)I ∗

σ

)
= 0.

β0S∗ I ∗

1 + α I ∗2 = (σ + μ)(γ + μ)I ∗

σ
.

S∗ = (σ + μ)(γ + μ)

β0σ
(1 + α I ∗2).

Now, S∗ can be represented in terms of basic reproduc-
tion number as,

S∗ = 1 + α I ∗2

R0
. (14)
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Substituting Eqs. (13) and (14) in Eq. (12a), one could
find I ∗ as the positive solution of

Θ = A I ∗2 + B I ∗ + C = 0,

where

A = μα

R0
,B = β0

R0
,C =

(
1

R0
− 1

)
μ.

It is clear thatA > 0 andB > 0. For R0 > 1, C < 0,
and there exist a positive solution for Θ and hence a
unique endemic equilibrium. For R0 < 1, C > 0 and
there exist no endemic equilibrium for this condition.
Theorems 1 and 2 have been formulated following a
similar trend as in the literature [12,13].

Next, the equilibria analysis presented above is cor-
roborated by performing the bifurcation analysis of the
SEIR model presented in Eq. (2). For the sake of com-
pleteness, the coming section presents a short introduc-
tion to the bifurcation and procedure adopted.

3 Bifurcation and continuation analysis

To study the dynamics of parameterised nonlinear
dynamical systems, bifurcation analysis and continu-
ation theory methodology has emerged as one of the
most efficient tools. It is possible to compute all pos-
sible steady states of the nonlinear model as function
of a bifurcation parameter along with local stability
information of the steady states. The qualitative global
dynamics are usually represented using bifurcation dia-
grams.Bifurcation diagrams are usually generatedwith
the help of numerical continuation algorithms, such as
AUTO [26]. In order to perform the bifurcation analy-
sis, the nonlinear systems are usually described by set
of nonlinear ordinary differential equations of the form
[27]:

Ẋ = F (X ,U ), (15)

whereX andU are the state vector (X ∈ �n) and the
control vector (U ∈ �m), respectively, and function
F (X ,U ) defines the mapping such that�n ×�m →
�n .

In a first, one parameter is chosen to be varying step-
wise, called bifurcation parameter, fixing other parame-
ters to their constant values. Fixed points are computed
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0.1

I

Fig. 2 Bifurcation diagram of E∗ and I ∗ versus R0—for μ =
0.1, σ = 1/7, γ = 1/5 (solid lines—stable trims; dashed lines—
unstable trims)

at each step by solving

Ẋ
∗ = F (X ∗, u∗,P∗) = 0, (16)

where u ∈ U and P ∈ U represent the bifurcation
parameter and the set of fixed parameters, respectively.
Once a fixed point ((X ∗, u∗)) is known, in a continu-
ation, the next point (X 1, u1) is predicted by solving:

∂F

∂X
|(X ∗, u∗)ΔX + ∂F

∂u
|(X ∗, u∗)Δu = 0. (17)

These predicted values are then corrected to satisfy
Eq. (16) to get the next fixed point (X ∗

1, u1). Along
with computation of new fixed points, in a continua-
tion, it is possible to determine their stability based on
the eigenvalues of the Jacobian matrix. While plotting
the bifurcation curve, this stability information is also
included.

For the problemat hand, the basic reproductionnum-
ber R0 is chosen as the bifurcation parameter to per-
form the analysis. From the above analysis, it is clear
that the bifurcation point for the model considered is at
R0 = 1. The bifurcation plots presented in Fig. 2 also
corroborate this point. In order to conduct the analysis,
the parameter values corresponding to COVID-19 are
adapted from the literature [16,18–21]. There is a sig-
nificant change in the system behaviour at this point.
The disease-free and endemic equilibrium behaves dif-
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Table 1 Summary table of
the COVID-19 parameters

β0 range is derived from R0
by using relation,
R0 = σβ0

(μ+σ)(μ+γ )

Parameter Notation Value/range

Initial population size N0 5 million

Initial susceptible population S0 0.9N0

Birth/death rate μ 0.1

Mean infectious period γ −1 7 days

Mean latent period σ−1 5 days

Governmental action strength α > 0

Basic reproduction number R0 1.5−3.5

Transmission rate β0 0.5464−1.2750 days−1

ferently before and after R0 = 1. For R0 < 1, the
disease-free equilibrium point is stable and endemic
equilibrium point is unstable for all values of R0. As
R0 increases and crosses 1, the disease-free equilib-
rium losses its stability and a stable equilibrium solu-
tion branch emerges, indicating endemic equilibrium
solutions.

Bifurcation results are used to anticipate the qual-
itative behaviour associated with a nonlinear dynam-
ical system. Supplementing the bifurcation plots with
numerical simulation results are often recommended/
demanded. In this regard, in this paper, sets of numeri-
cal simulation results are presented for different condi-
tions. The dynamics associated with R0 < 1 is of less
interest due to the existence of the disease-free equi-
librium point. Higher R0 values indicate larger force
of infection and spread, and the curves could reach its
equilibrium values in shorter time. For COVID-19 pan-
demic, the actual R0 estimate lies between 1.5 and 3.5
[17], and to show the dynamics of stable steady-state

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Infected
Removed

( )

Fig. 3 Numerical simulation results showing endemic equilib-
rium at R0 = 1.7

endemic equilibrium solution branch, a basic reproduc-
tion number value of R0 = 1.7 (near the lower estimate
value) is selected. Assuming the outbreak is occurring
in a city with 5 million population, with 90% of the
people susceptible to COVID-19 disease and 500 peo-
ple having exposed to the virus, the initial condition
can be written asX (0) = (S(0), E(0), I (0), R(0)) =
(0.9, 0.0001, 0, 0). A set of parameters used for the
analysis is presented in Table 1.

Figure 3 shows the evolution of number of people
getting exposed, infected andfinally recovered/removed
due to COVID-19 for R0 = 1.7. From 500 exposed
individuals, with in a span of 60 days, 0.63million
people got infected and approximately double the num-
ber, and 1.22million people got newly exposed to the
COVID-19 virus. This can be verified from the bifur-
cation diagram presented in Fig. (2) by multiplying the
(E∗, I ∗) equilibrium values with total population.
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I*(R 0  = 1.5)

I*(R 0  = 2)
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I*(R 0  = 3.5)

Fig. 4 Numerical simulation results showing evolution of
infected population as a fraction of total population for differ-
ent values of R0
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Figure 4 presents the time evolution of infected pop-
ulation fraction for different values of R0. From [17],
the range of R0 for COVID-19was found to be between
1.5 and 3.5 and same range is chosen here. There is a
significant variation in the number of days taken for the
infection to peak to its equilibrium value. The line con-
necting the markers represents the locus of the equi-
librium points for different values of R0 and appears
almost linear. For R0 = 1.5, 2, 2.5, and 3.5, the num-
ber of days for the infection curve to peak is 70, 49, 35
and 22, respectively. So, by using bifurcation data, it
is possible to have a rough estimate of what to expect
during an outbreak.

One should note that the plots presented above are
for α = 0, indicating no Government intervention.
But this would not be the actual case. Governments all
around the world are working hard to control and mit-
igate COVID-19 with different success rates. For the
nonlinear incidence rate considered in this paper, as
mentioned above, parameter α > 0 is modelled as the
control parameter indicating Government action. The
magnitude of α is modelled as an indication of how
aggressive the intervention is. Physically, this could
be viewed as the measures to reduce the COVID-19
transmission, by trying to arrest R0 to a lower value.
The more Government restrict the public interaction
by forcing isolation, quarantine,masks, lockdown, etc.,
the faster the COVID-19 transmission slows down.

Figure 5 presents the effect of different values of α

(introduced as a step change), indicating the aggres-
siveness of Government restriction/control in arrest-
ing the COVID-19 spread. The effectiveness/severity
of Governmental control strategies is represented in
percentages, with 100% being measures like com-
plete lockdown with travel restrictions. There is a clear
reduction in the number of exposed and infected cases
as α increases. The total number of exposed cases and
infected cases reduces drastically from 0.85 million
and 0.44 million (for low Government control, such
as advertisements, quarantining exposed people) to 0.3
million and 0.17 million (for much stringent control
like lockdown), respectively. While studying the con-
trol scenarios, one should keep a keen eye on the value
of R0 to know the efficacy of the control steps. The
plots presented in Fig. 5 are generated for R0 = 2.5 for
nonzero α values, selected at random. As α increases,
due to the control measures, naturally R0 should come
down to a lower value, thus reducing the spread and
making the epidemic controllable.

The plot of R0 with varying α is presented in Fig. 6.
When control is introduced, there is a faster drop in
R0 even for smaller values of α. As α becomes high,
the restrictions become more and more stringent. One
might consider to impose much higher restrictions
thinking only about the initial pattern to control the
COVID-19 spread and bring R0 to a disease-free equi-

Fig. 5 Numerical
simulation results with
Government control action
(α 
= 0) for R0 = 2.5
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Fig. 6 Variation of R0 with α

librium point. But, from the studies, it was clear that
the magnitude of drop in R0 tends to saturate at higher
α values, making the additional imposed restrictions
useless.

Another important point to note is the arbitrariness
in the selection of α value to have certain level of
‘open-loop control to arrest/mitigate the disease trans-
mission by bringing down the R0 value. Even though
this method can reduce the COVID-19 transmission,
the effectiveness of this method in bringing the trans-
mission down tomuch smaller rates seemed unfeasible.
Selection of α as a step input has its own limitations.
Sudden introduction of control measures and sustain-
ing the same for longer time periods might have a nega-
tive psychological impact on the public and could limit
the success rate. If one can adopt a methodology to
gradually introduce some relaxations to the public (as
incentives) in theGovernment action (α) with a specific
target (like limiting the number of exposed/infected
people to a smaller threshold value), that could serve
as a better alternative to control a global pandemic
like COVID-19. In this regard, a closed-loop control
approach, using sliding mode technique, that would
be capable of introducing control measures gradually
depending up on instantaneous infection rates is being
presented next.

4 Sliding mode control for COVID-19

Sliding mode control (SMC) is a model-based control
solution, which has been found suitable for many phys-
ical systems. It is a form of variable structure con-
trol, in which the control law takes different struc-
tures for ensuring desired system dynamics [28]. In

SMC design, the first step is to define a sliding sur-
face that would characterise the desired dynamics to be
achieved. The second step is the design of control laws
that would essentially drive the system to reach and
stay on the desired dynamics (sliding surface). Once
the system reaches the sliding surface, it is said to be in
sliding mode, in which the system would have robust-
ness property.

Here, the attempt is to define a sliding surface in
terms of the desired dynamics of the fraction of the
exposed population (E) so as to control COVID-19
pandemic in a systematic manner. The sliding surface
would be defined such that the exposed population
asymptotically converges to a desired value. Making
the Governmental action (α) as the control input, the
attempt here is to bring the exposed population dynam-
ics to the desired dynamics (sliding surface) andmake it
to slide along the desired dynamics towards the desired
value. The reasons to chose E as the controlled variable
are the following:

– To avoid zero dynamics in the closed-loop system,
choosing E as the controlled variable would result
in a relative degree of 1, when α is the control input.
This would eliminate zero dynamics and makes
controller design straightforward.

– Variable E has a direct impact in the dynamics of
infection and in turn the whole system.

Since the goal is to contain the COVID-19 transmission
by bringing the R0 value close or less than 1, the afore-
mentioned desired exposed population value is directly
selected from bifurcation diagram presented in Fig. 2
for a desired R0 range.

4.1 Controller design

For controlling the state variable E to the desired value
Ed , the sliding surface, ς is defined as:

ς = Λ(E − Ed) = 0, (18)

where Λ > 0 is the slope of the sliding surface, which
determines the speed at which the system reaches the
sliding surface. For designing the control law for reach-
ing the sliding surface, the well-established constant
rate reaching law (CRRL) technique has been used in
this paper [29,30]. CRRL is given by

ς̇ = −κsign(ς), (19)
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where κ represents the controller gain in CRRL struc-
ture. To obtain the control law, we recall the following
dynamic equation for exposed population:

Ė = β0SI

1 + α I 2
− (σ + μ)E . (20)

Now using Eq. (18), the CRRL structure [Eq. (19)] can
be realised as

Λ(Ė − Ėd) = −κsign(ς), (21)

Since Ed is a constant value, which is the desired
exposedpopulation value from thebifurcation diagram,
Ėd → 0. Now using Eq. (20), we obtain

Λ
( β0SI

1 + α I 2
− (σ + μ)E

)
= −κsign(ς), (22)

which gives the Governmental control action, α as,

α = 1

I 2

[
Λβ0SI

−κsign(ς) + Λ(σ + μ)E
− 1

]
. (23)

Depending upon the instantaneous deviation of E
(based on Government test results) from the desired
value, Eq. (23) provides the appropriate control action.

Physically, the interpretation of control action as
presented by Eq. (23) can be explained in the following
manner.

Rather thankeeping the aggressive actionplan/control
same throughout the disease period (a constant α),
in the presented method, Government would have the
flexibility to give certain level of relaxations like, allow-
ing essential services/ restricted freedom ofmovement,
etc., to the people. This in turn could create positive
psychological impact among the people to comply to
Government-imposed restrictions.

4.2 Stability analysis

In order to analyse the finite-time asymptotic con-
vergence of E to the desired value using the CRRL-
based SMC design, stability analysis using Lyapunov’s
method is presented here [28]. For this, the Lyapunov
function is chosen as

V = 1

2
ς2. (24)

The condition for asymptotic stability with respect to
the equilibrium point ς = 0 is that V̇ < 0 ∀ς 
= 0.
Differentiating Eq. (24),

V̇ = ςς̇. (25)

For stability analysis, consider the presence of a
bounded disturbance, ε in the dynamics of E , such that
Eq. (20) is rewritten as

Ė = β0SI

1 + α I 2
− (σ + μ)E + ε. (26)

Using Eq. (18) and assuming Λ = 1 for simplicity,
Eq. (25) can be written as

V̇ = ς(Ė − Ėd), (27)

which gives [using Eq. (26)],

V̇ = ς

(
β0SI

1 + α I 2
− (σ + μ)E + ε − Ėd

)
. (28)

Since Ėd → 0 and on substituting the CRRL control
structure, Eq. (23), in the above equation, we obtain

V̇ = ςε − ςκsign(ς). (29)

whereκ > 0.Assuming that the disturbance ε is limited
by an upper bound φ, then

V̇ < |ς |φ − ςκsign(ς) (30)

which gives

V̇ < −|ς |(κ − φ). (31)

To ensure that V̇ < 0 ∀ ς 
= 0 (for Lyapunov stability),

|ς |(κ − φ) > 0 ∀ς 
= 0, (32)

�⇒ κ > φ. (33)

This implies that, if the CRRL gain, κ is selected
based on the deterministic disturbance bound φ, as per
above inequality, then the closed-loop system can be
asymptotically stable, driving E to Ed in finite time.
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4.3 Results and discussion

In order to control the transmission of COVID-19 pan-
demic, the Governmental action is modelled by using
Eq. (23) and the fraction of exposed population (E)
is controlled to a lower value. To address the inherent
chattering issue (high-frequency control signal switch-
ing in slidingmode) in SMC, saturation function is used
instead of the signum function [28]. An initial R0 value
of 2.5 is chosen, resembling COVID-19 basic repro-
duction number. At this rate, if there is no Government
control, as presented in Fig. 7a, b, then the total number
of exposed and infect individuals could rise to 1.8 mil-
lion (36% of total population) and 0.93 million (18.6%
of total population), respectively in 30 days. The goal is
to limit this outburst to a lesser controllable value with
the help of Governmental control. To achieve this, the
value of Ed (limit on the number of exposed individ-
uals) is chosen to be 1% of the total population. Other
system parameters (μ = 0.1, σ = 1/7, γ = 1/5) are
selected to replicate COVID-19 dynamics. Values of
design parameters are selected as κ = 1 andΛ = 1. To
check the robustness, it is assumed that, up on further
Government inspection and testing, a cluster of individ-
uals amounting to 0.1% of the total exposed population

is found to be newly exposed to the disease, and this
fraction is added as the external disturbance.

Figure 7c, d presents the controlled dynamics of
exposed and infected population. Using the appropriate
Governmental control, it was possible to limit the total
number of exposed and infected cases to 0.05 million
and 0.026 million (1% and 0.52%), respectively. This
is in sharp contrast with the scenario, where there is no
actual control, as shown in Fig. 7a, b, highlighting the
significance of the proposed method. With the afore-
mentioned controller parameter values, this improve-
ment is achieved in 40 days. This is accomplished using
the Governmental action plan, as suggested in Fig. 8a.

In this work, the magnitude of α, represented in
percentages, could be considered as the Governmental
effort to control the spread. Values ranging from 0%
to 100% emphasise the intensity of the Governmental
action in mitigating the COVID-19 spread. This could
be via approaches like lockdown, nationwide testing,
rampant awareness campaigns, travel restrictions, ban-
ning social and public gatherings, etc. The degree of
restrictions limiting the spread is classified under dif-
ferent α brackets. For instance, a nationwide lockdown
with blanket ban on all activitieswas given anα value of
100%. A much more relaxed approach allowing basic

Fig. 7 Numerical
simulation results
presenting uncontrolled and
controlled dynamics of
exposed and infected
population
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Fig. 8 Plots of time
histories of Governmental
control effort and variation
in R0 in order to limit the
COVID-19 spread limit to
that in Fig. 7c
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economic activities was assigned a value α ≈ 75%,
private travel along with basic economic activities and
essential shops allotted an approximateα value of 50%,
introduction of limited public transport classified into
α ≈ 25%, and much smaller values were designated
for further relaxations.

To arrest a major outbreak, one should expect a cer-
tain level of aggressiveGovernment action from the ini-
tial phase itself. This value could corresponds to steps
like complete lockdown of the city, by banning all pub-
lic gatherings, transportation services, public interac-
tions, aggressive testing and mass forced home quar-
antines for all the exposed/infected individuals. But,
keeping the Government control at this higher value
through out the whole period could not work as well.
A numerical simulation with α = 100% (much like
open-loop analysis presented in Fig. 5) for the same set
of initial conditions resulted in much higher number of
exposed and infected cases, 0.18million and 0.092mil-
lion, respectively. For the proposed closed-loop control
strategy, this is not the case. Here, the Governmental
control effort is adjusted according to the control objec-
tive, i.e. limiting the number of exposed cases to 1% of
total population. So, as the goal is to keep the COVID-
19 spread in check and to prevent a massive outbreak,
this methodology serves its purpose. It is interesting to
note that the proposed Governmental action plan curve
resembles the real world COVID-19 control strategies
adopted by countries like India and SouthKorea, where
a massive outbreak was prevented. India, with a colos-
sal 1.33 billion population, on the verge of a huge out-
break underwent a nationwide lockdown (with restric-
tions of varying degree similar to Fig. 8a) limiting the
number of infected cases to approximately 0.011 mil-
lion, which would have been around 0.82 million with-

out this step [31]; meanwhile, South Korea did aggres-
sive testing from the initial day itself and imposed quar-
antines for exposed/infected people (much like the ini-
tial phase of Fig. 8a), flattening the infection curve with
in 30 days.Once the desired threshold is reached, then it
is possible to phase out the spread in a much controlled
manner. This is achieved by bringing the R0 value down
to a much controllable number. Starting from a value
of 2.5, using the α profile presented in Fig. 8a, the basic
reproduction number is brought down to a value of
R0 = 1.01 as presented in Fig. 8b. From this point, the
spread is certainly under control and could be phased
out carefully without the risk of further outbreak.

5 Comparison with real-time data

In order to validate the model and control strategy pre-
sented, the proposed dynamics is compared with real-
time data. Data corresponding to India, a country who
imposed strict Governmental measures to contain the
COVID-19 pandemic, are compared here. Indian poli-
cieswere similar to that of the proposed control strategy
as presented in this paper. OnMarch 25, India imposed
a nationwide strict lockdown [32]. India had divided
the lockdown, which is still continuing in the coun-
try (as on 23/05/2020) into four phases with varying
degree of relaxations [33,34]. The idea during phase I
was to have a complete country lockdown [33], but the
public perception was not up to the mark. The socio-
economic-cultural factors of a huge country like India
also reduced the effectiveness of a compete lockdown.
Nonetheless, the country was saved from a massive
outbreak due to the early and timely Government inter-
vention in line with WHO guidelines [35]. The best
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Fig. 9 Infected population evolution for India

fit R0 estimate for India was found to be 2.083 before
the lockdown initiation and currently (23/05/2020), the
value hovers around R0 ≈ 1.226 [36].

Figure 9 presents the comparison between the
COVID-19 transmission trend as suggested by the
SEIR model with a nonlinear incidence rate function
and real-time data for India [37]. Day 0 represents
25/03/2020, the day on which Government of India
initiated nationwide lockdown with 657 infected cases
[37]. The plan was to have a total ban on all activi-
ties across the country for 21 days. After 21 days, on
15/04/2020, second phase started for 19 dayswith vary-
ing relaxations like controlled interstate movement of
people, depending on the number of active cases at
different states. Third phase began on 04/05/2020 and
ended on 17/05/2020 with increasing degree of relax-
ations including limited public transport, still maintain-
ing social distancing. India is currently on the fourth
phase, with most of the activities open all around the
country, including air and train travel.

The infected population evolution as predicted by
SEIR model [presented by Eq. (2)] closely resembles
the real-time infection data as presented in Fig. 9.
This is of great significance considering the complex
dynamics (owing to diverse socio-economic-religious-
political spheres with huge population unlike any other
country) associatedwith IndianCOVID-19 spread. The
total number of infected people, in case of no Govern-
mental control, as projected by SEIRmodel is also pre-
sented. The curves are presented in logarithmic scale
for better presentation and comparison. SEIR model
used in this work hypothesised a dreadful projection
of 21.54 million infected persons on 23/04/2020 in
absence of any Government intervention. The model
is simulated to closely resemble the actual scenario.
The reproductive number R0 is brought down from an
initial value of 2.083–1.226 (to resemble Indian sce-
nario) using sliding mode controller. The control effort
needed to do so is presented in Fig. 10a, and corre-
sponding R0 profile is shown in Fig. 10b.

Interestingly, if one were to compare the α plot with
Indian Governmental control effort (assuming a distri-
bution presented above), one could observe a similar
trend. A representative class of Indian Governmental
action plot is also presented in Fig. 10a. Even though
the plot represents a rough estimation of Governmen-
tal effort, it is interesting to note a similar trend as
suggested by the model-based control approach. The
real-time Governmental action is based on data-based
approaches, and this work shows a systematic model-
based approach that can be used as a good alterna-
tive/supplement to aid in successfully mitigating the
pandemic. One has to consider model-based predic-
tions seriously for better control of the pandemic out-

Fig. 10 Plots of time
histories of Governmental
control effort and variation
in R0 in order to limit the
COVID-19 spread limit to
that in Fig. 9
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break. These predictions are based on the dynamics
and varies from time to time. It is imperative to update
the predictions frequently based on the then model
parameters and controlling measures have to be for-
mulated differently. The control profiles from the slid-
ing mode controller can act as a benchmark while
devising COVID-19 control strategies. The proposed
SEIRmodel with nonlinear incidence rate function can
describe the COVID-19 dynamics with a certain degree
of uncertainty.

6 Conclusions

Governments all over the world currently try to tackle
COVID-19 pandemic in their own unique ways, with
varying success rates.A systematicmethod for the anal-
ysis and control of COVID-19 dynamics is a need of the
hour. In this context, a bifurcation theory-based analy-
sis approach to comprehend the COVID-19 transmis-
sion dynamics has been presented. The Governmental
control parameter α is introduced via a nonlinear inci-
dence function, and both open-loop and closed-loop
control strategies are attempted. Unlike the open-loop
method, the closed-loop control solution via sliding
mode control (SMC) allows to have an effective Gov-
ernmental control over the situation depending upon
the intensity of the infection. The proposed action
plan is to have an aggressive containment plan dur-
ing the initial phase of outbreak, bringing the basic
reproduction number down to keep a tight rein on the
COVID-19 transmission, then allowing some relax-
ations to increase the public confidence and phasing
out the COVID-19 pandemic in a timely manner. Com-
parison of the SEIR model with Governmental control
with real-time data revealed similar trend, indicating
the adequacy of proposed methodology in represent-
ing the COVID-19 dynamics.
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