DYNAMICS AND CONTROL OF LARGE ELECTRIC POWER SYSTEMS

Marija Ilić & John Zaborszky

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

CONTENTS

P	Preface			xvii		
1	Int	introduction				
	1.1		e of the contents of the book lowledgments	2 6		
I	Mo	deling	the Structure and Components	7		
2	Quasistationary Phasor Concepts					
	2.1	curre	-domain representation for AC voltage, nt, power, and energy	10		
		2.1.1 2.1.2	Basic power-flow concepts on single-phase transmission lines Basic power-flow concepts on three-phase transmission lines	13 17		
	2.2	Defin	ition of the phasor for AC quantities	17		
		2.2.1	Phasor interpretation of power	22		
	2.3	Class	ical stationary phasor calculus	23		
	2.4	The c	lassical quasistationary phasor calculus	23		
		2.4.1	Some general comments	24		
	2.5	2.5 Summary of the characteristics of active- and reactive-power flow		24		
		2.5.1 2.5.2	Characteristics of active power $P(t)$ in the quasistationary region Characteristics of the reactive power $Q(t)$	24		
		2.5.3	in the quasistationary region Optimum performance of devices	25		
	2.6	Quasi	characterized by AC signals stationary phasor concepts for periodic signals	26		
	2.0	2.6.1	Time-domain representation for periodic voltage,	28		
		2.6.2	current, power, and energy Generalizing phasors to multiharmonic,	28		
		2.6.3	that is, periodic, signals Definition of vector phasors for periodic signals	33 35 vii		

3

4

	2.6.4	Phasor interpretation of power	40		
	2.6.5	Conservation of reactive-power components	43		
	2.6.6	Circuit example	45		
	2.6.7 Reactive power in linear RLC circuits with power				
	electronic switches				
	2.6.8	Optimum performance of devices characterized by	. –		
		periodic signals	47		
	2.6.9		49		
	2.6.10	Example of optimal performance for signals	51		
	2611	with harmonics Summary of the characteristics of real- and	31		
	2.0,11	reactive-power flow	53		
	2.6.12	Comparison with other reactive-power definitions	55		
2.7	Vector	representation for multiphase circuits	57		
2.8	Chapte	er Summary	58		
2.0	omp				
Ana	lytical	Dynamic Model of the Power System	61		
3.1	Fundamental static and dynamic structures of the				
	power	-transmission system	65		
	3.1.1	Structure of the overall power-system model	65		
	3.1.2	Discussion of Figures 3.2 and 3.3	67		
3.2	Particu	alars of the models of power-system components	68		
	3.2.1	Buses	69		
	3.2.2	HV-AC power-transmission lines	72		
	3.2.3				
		models of uniform type	78		
	3.2.4	Bus-connected equipment with models consisting			
		of many individual types, mostly primary controllers	135		
			1,0,0		
Арр	endix 3	1 Conceptual derivation of algebraic coupling	140		
		equations for generator and bus	162		
Арр	endix 3	.2 Model derivation (Eqs. 3.207) to (3.209)	162		
Мос	lels for	Computer-Aided Analysis and Control	169		
4.1	Utiliza	tion of circuit theory methods	170		
	4.1.1	Classification of component types	170		
	4.1.2	Constituent relations for single-port components	171		
	4.1.3	Constituent relations for transmission lines	176		
	4.1.4	Computer formulation of the Kirchoff laws	179		
	4.1.5	Transmission network admittance matrix			
		and its properties	183		
	4.1.6	Summary of a general DAE model	186		

		4.1.7	J	
			power systems	190
	4.2		linear power system models in ordinary differential	
		-	ion form	191
		4.2.1		
		4.2.2	large-power systems (machine frame of reference) Nonlinear power-system model in an ODE form (phasor frame of reference)	192
			-	196
	4.3		entary overview of stability problems	
			e power system	198
		4.3.1	Static stability and static equilibria	201
		4.3.2	1 J	201
		4.3.3	1	202
		4.3.4		203
		4.3.5	Small-signal-stability. Classification of equilibrium	
		4.3.6	points Transient stability	204
		4.3.7	2	205
		4.3.8	7	206 208
		4.3.9	Medium-range instability	208 208
			Long-range instability in real power	208
			Long-range instability in reactive power	200
Π	Ana	dysis of	Stationary and Dynamic Processes	211
5	Stat	ionary	Analysis	213
	5.1	Power	-system equilibrium definition	213
	5.2	Load-	flow problem	215
		5.2.1	Analytic properties of the load-flow equations	218
		5.2.2	Real-power-reactive-power decoupling conditions	210
	5.3	Decou	pled real-power-angle load-flow problem	222
		5.3.1	Linear resistive network interpretation of the DC	
		0.011	load-flow problem	223
		5.3.2	Nonlinear resistor network interpretation of the $P-\delta$	440
			load-flow problem	225
			Localized management Cut D S	
		5.3.3	Localized response property of the $P-\delta$	
			power network	235
		5.3.3 5.3.4		235 245
	5.4	5.3.4 Decou	power network $P-\delta$ load-flow problem in deregulated industry pled reactive-power-voltage $Q-V$	
	5.4	5.3.4 Decou	power network $P-\delta$ load-flow problem in deregulated industry	
	5.4	5.3.4 Decou	power network $P-\delta$ load-flow problem in deregulated industry pled reactive-power-voltage $Q-V$	245

x CONTENTS

	5.4.2 5.4.3	Q-V problem with constant-power load models Q-V load flow problem as a problem of a nonlinear resistive network with	261
	5.4.4	independent sources	261
	J.4.4	resistive network with dependent sources	266
5.5	Low-v	oltage problems under heavy real-power transfers	274
	5.5.1	Radial circuit fed by a constant-voltage source	276
5.6	Means	s of increasing real-power transfer	277
	5.6.1 5.6.2	Load compensation and high-voltage problems Line compensation as a means of increasing	278
		real-power transfer	283
5.7	Steady	y-state stability problem as a coupled $P-Q$ problem	285
	5.7.1	Two-bus system concepts	286
	5.7.2	Methods for multibus systems	288
5.8		rical tools used in the solution of power-flow	• • • •
	equati	ons	290
5.9	Contir	nuation methods	291
	5.9.1	Introduction to the continuation paradigm	292
	5.9.2	Problems with the embedding algorithm	296
	5.9.3	Homotopy methods versus classical embedding	207
	5.9.4	algorithms	297 301
	5.9.4 5.9.5	Tracking the paths Choosing a homotopy method	303
	5.9.6	Homotopy variations	303
	5.9.7	Free-running versus forced homotopies	303
	5.9.8	Globally convergent probability-1 homotopy	000
	5.7.0	algorithms	304
	5.9.9	Applications of forced and free-running	
		homotopy methods	305
		Circuit applications	305
	5.9.11	Applications of continuation methods to power	
		systems	306
		Homotopy software hompack	307 307
		Power-flow problem and hompack	307
		Simulation results	313
		Homotopy applications to the $Q-V$ problem Coupled load-flow problem: bergen's example	316
		Simulation conclusions	316
5.10	Chapte	er summary	320
Арр	endix 5	.1 The Newton-Raphson method	321

6 A1	nalysis o	of Linearized (Small-Signal) Dynamics	333		
6.1		Objectives of small-signal analysis studies in			
	-	er systems	335		
	6.1.1	······································			
	(1)	and its results	335		
	0.1.2	A multiparameter singularly perturbed model of an electric power system	207		
		- •	337		
6.2	Separ	Separation of fast angle and midrange voltage dynamics			
	-		340		
	6.2.1		343		
	0.2.2	Relevant model for fast angle dynamics	347		
		Relevant model of midrange voltage dynamics	348		
6.3	Slow	voltage dynamics	349		
	6.3.1	Interactions of the OLTC control and midrange			
		voltage dynamics	349		
	6.3.2	Approximate continuous model for midrange			
		voltage dynamics	351		
6.4	Slow	frequency dynamics	352		
	6.4.1		353		
	6.4.2	Real-power network constraints	355		
	6.4.3	E			
		interconnected system	358		
6.5	Midra	nge voltage dynamics	359		
	6.5.1	Exciter control of reactive-power voltage			
		dynamics	359		
	6.5.2	Reactive-power network constraints	361		
6.6	Interarea dynamics				
	6.6.1	Definition of the interarea variables	364		
	6.6.2		504		
		the interarea dynamics	365		
	6.6.3	-	366		
	6.6.4	gg aginalites	367		
	6.6.5	Dynamics of interarea variables on an			
		interconnected power system	368		
6.7	Model	reduction at the interconnected system level	371		
	6.7.1	Time-scale separation in aggregate and			
		coherent models	372		
Арр	endix 6.	1 Machine parameters and network data	374		
Арр	endix 6.	2 Singular perturbation method for model reduction	376		

	Арр	endix 6	.3 Eigenmode-based model reduction: selective modal analysis	381
	Арр	endix 6	4 Some relations between SP-and SMA-based model reduction techniques	384
7			n to the Concepts and Structure of sive Power-System Dynamics	391
	7.1	Nonlir	ear dynamic analysis of a minimal power system	393
		7.1.1 7.1.2 7.1.3	A minimal power system model with (loss-less) generator and matched load Parameter space State space	393 396 396
		7.1.4	Time histories of individual state variables	400
		7.1.5 7.1.6	A guided tour through the parameter and state spaces and the time histories Some observations	401 403
	7.2	Voltag	e stability analysis of the rudimentary power system	405
		7.2.1 7.2.2	Power-system model with generator, voltage control, transmission and matched load Basic features of the structure of the state-space —	406
		1.2.2	parameter spaces	409
		7.2.3 7.2.4	Exploration of changes caused by variations in the load model and the type of control used Bifurcation analysis for the rudimentary	427
		7.2.1	power system	429
	Арр	endix 7	1.1 Some aspects of the phase portrait (the flow of the vector field)	440
	App	endix 7	2.2 Some aspects of bifurcations	442
8	Smo	ooth No	onlinear Dynamics of the Large Power System	451
	8.1	Histor for la	ical sketch of the development of analytic tools get comprehensive power-system dynamics	455
	8.2	Dynar	nics of the DAE System	459
		8.2.1 8.2.2 8.2.3	State-space structure of the DAE dynamics, Σ Analysis of the stability regions Structure of the parameter space	462 473 482
9	Dyr (Th	amic (ousand	Computation Analysis on Realistic Size s of Buses) Systems with Real-Life Examples	499
	9.1	Comp	outational aspects of the Hopf-bifurcation-related ent of the feasibility boundary	500
		9.1.1 9.1.2	System description Some aspects of the hopf bifurcation and its vicinity	500 501

		9.1.3 9.1.4	0	502
		9.1.4	Iterative technique for finding a Hopf-bifurcation point	504
		9.1.5	Method for computing a hopf-bifurcation-	504
		9.1.6	telated feasibility boundary	505
		9.1.0		507
			related segment	511
9	9.2	Use c	of large-scale computation results for studying the	
		nature	e and interactions near the feasibility boundary	518
		9.2.1	Effect of using lower-degree approximations	518
10 L	ar	ge Smo	ooth Systems with Embedded Discontinuous	
			Constraints	523
1	0.1		natic-tap-changer-based control embedded	
			ferential-algebraic equation systems	523
			Physical features	524
		10.1,2	Effect of the automatic tap changer on the feasibility boundary in parameter space	525
		10.1.3	Transient phenomena connected with the tap	525
			changer in the state space	527
10	0.2		nics of the large DAE power system	
			mbedded hard limits	528
		10.2.1	Modeling the large power system with hard limits	529
		10.2.2	Conceptual introduction on small systems	529
		10.2.3	Hard limits in the power-system model	540
		10.2.4	State-space structure: region of attraction	
		10.2.5	and stability boundary Parameter-space structure: the boundary of	541
			small-signal stability	547
10	0.3	Summ	агу	551
11 Be	eyo	nd Qu	asistationarity and the Lumped-Parameter Model	555
			lized time-varying phasor transformation	556
			Low-pass phasor signals	550
			Three-phase balanced phasor signals	560
11	.2	Time-v	arying phasor and its properties	562
		11.2.1	Parts of the power system for which phasors apply	568
		11.2.2	Phasors in the G set the transmission system	570
11			is of the transmission-line dynamics including	
		distribu	ited constants and line losses	571

xiv CONTENTS

	11.4	Transmission-system equations (power balance) $$ models for the G set using time delays to represent partial differential equations	576
		11.4.1 Transients in the G set	577
	11.5	Power-system dynamic models	577
		 11.5.1 Some details and the precision of the model; available approximations 11.5.2 RLC-circuit approximation 11.5.3 Limitations imposed by the time-varying phasors 	578 579 583
	11.6	Chapter summary	586
ш	Cont	trol and Stabilization	589
12	Prin	nary Control of Electric Power Systems	591
	12.1	Available types of primary-control devices	592
		12.1.1 Time-scale-separation-based classification	593
	12.2	Generation-based primary control under normal operation	594
		12.2.1 Fast continuous primary controllers12.2.2 Generator-based control as a full-state optimal control-design problem	594 601
	122	Generation control of power systems under stress	604
	14.3	12.3.1 Remaining challenges in designing	004
		primary control of generators 12.3.2 Nonlinear control design for generators	605 610
	12.4	Facts-based transmission system control	618
		12.4.1 Static var compensator as a control means	619
	12.5	Load-based control	631
	12.6	Mechanically switched control	631
		12.6.1 Modeling of switched-control-driven voltage changes	632
	12.7	Chapter summary	634
13	Stati	onary Generation Control (Ignoring Congestion)	641
	13.1	Principles of operation of the large interconnected	
		system by decision and control	642
		13.1.1 Some details of the decision and control phases	643
	13.2	Basic structure of the generation-dispatch control	647
		13.2.1 Basis for hierarchies in regulated generation control	655

13.2.2 Basis for hierarchies in deregulated generation control	657
13.3 Generation-dispatch economy	659
13.3.1 Generation dispatch in the regulated industry 13.3.2 Generation dispatch in the deregulated industry	661 668
13.4 Generation-based frequency control	676
13.4.1 Frequency control in the regulated industry 13.4.2 Frequency control in the deregulated industry	677 697
13.5 Reactive-power dispatch economy	715
13.5.1 Reactive-power dispatch in regulated industry 13.5.2 Reactive-power dispatch in the deregulated industry	716 720
13.6 Generation-based voltage control	727
13.6.1 Voltage control in the regulated industry 13.6.2 $P-\delta$ and $Q-V$ control: similarities and differences	728 742
13.7 Chapter summary	743
Appendix 13.1 Structure-based modeling for hierarchical control design	749
Appendix 13.2 Structure-based hierarchical control design	752
14 Stationary Generation Control (with Congestion)	757
14.1 Methods for transmission congestion flow control	759
14.1.1 Transmission line flow (congestion) control in regulated industry14.1.2 Transmission line flow (congestion) management in deregulated industry	760 764
14.2 Re-examination of voltage control	778
14.3 Methods for efficient congestion control in very large power systems	778
 14.3.1 Monitoring tests for determining the localized nature of voltage problems 14.3.2 <u>D</u> Vector-based algorithm 14.3.3 Clusterwide approach with full information and flexible clustering 	779 784 797
14.4 Efficient methods for controlling systemwide congestion	811
14.4.1 Textured-model algorithm	811
14.5 Chapter summary Guide to using this book	819 824
Inday	

Index

ł

827