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Abstract

This thesis discusses the dynamics of quantum-optical systems located in complex, non-

markovian photonic environments, using numerical simulations as well as analytical

derivations. The main focus lies on time-delayed quantum-coherent feedback effects

of the Pyragas type, in analogy to effects well-known in classical physics. Time-delayed

feedback is treated as a specific kind of a non-markovian environment. Additionally, the

control of qubit entanglement in optical cavities is studied.

The thesis consists of three main parts: After an overview of the important concepts

of quantum optics, advanced methods for the description and numerical treatment of

time-delayed quantum-coherent feedback are presented. The main focus lies on the

development of a pseudomode-based approach, which describes time-delayed feedback

as the coupling to a complex network of lossy harmonic oscillators. Additionally, further

methods for numerical simplification are presented, in particular nonlinear expectation

value dynamics for the treatment of arbitrary non-markovian reservoirs, as well as the

use of input-output theory for time-delayed feedback. In the second part, applications

of time-delayed feedback to control quantum statistics are discussed. First it is demon-

strated that time-delayed feedback can be used to create and sustain entanglement

between coupled qubits. This approach will then be extended to larger networks of

qubits. Afterwards, feedback control is applied to nonlinear quantum-optical systems:

It is shown how to use it for the stabilization of Fock states in a cavity containing a Kerr

medium, and this analysis is expanded to a cavity containing a two-level system. Further-

more, it is shown how time-delayed feedback can be used to control and enhance the

entanglement of photons emitted in a biexciton cascade. In the third and last part, the

non-equilibrium dynamics of qubits coupled to a photonic environment consisting of

high-Q cavities subject to periodic driving are discussed. First, the connection between

bistability and entanglement in a cavity containing two qubits is analyzed. Next a setup

of two coupled cavities, containing a qubit each, is examined. The influence of a third

cavity in between the two other cavities, simulating a delay line, is analyzed. Furthermore,

a protocol is developed on how to overcome dephasing between the two qubits, using a

resonant Raman scattering process. It is shown that this protocol can create and sustain

high values of entanglement, and is ready to be extended to systems of more than two

qubits.
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Zusammenfassung

Diese Arbeit behandelt die Dynamik quantenoptischer Systeme in komplexen, nicht-

markovschen photonischen Umgebungen mit Hilfe numerischer Simulationen und ana-

lytischer Rechnungen. Der Schwerpunkt liegt auf Effekten von zeitverzögerter quanten-

koheränter Rückkopplung vom Pyragas-Typ, in Analogie zur Pyragas-Kontrolle in klassis-

chen nichtlinearen Systemen. Zeitverzögerte Rückkopplung wird in dieser Arbeit als eine

spezielle Art einer nicht-markovschen Umgebung behandelt. Am Ende der Arbeit wird

außerdem die Kontrolle von Qubit-Verschränkung in optischen Kavitäten behandelt.

Diese Arbeit ist in drei Teile gegliedert: Nach einer Übersicht über die wichtigsten

Konzepte der Quantenoptik werden neue fortgeschrittene Methoden zur Beschreibung

und numerischen Simulation von zeitverzögerter Rückkopplung präsentiert. Ein Pseudo-

moden-basierter Ansatz wird entwickelt, der Rückkopplung als Kopplung zu einem Netz-

werk von harmonischen Oszillatoren beschreibt. Zudem wird eine Methode präsentiert,

mit der durch nichtlineare Terme die numerische Simulation nicht-markovscher Umge-

bungen vereinfacht werden kann. Auch die Verwendung der Input-Output-Theorie für

zeitverzögerte Rückkopplung wird behandelt. Im zweiten Teil werden Anwendungen von

zeitverzögerter Rückkopplung diskutiert. Zuerst wird die Erzeugung von Verschränkung

in zwei gekoppelten Qubits analysiert. Diese Methode wird auf Qubit-Netzwerke verall-

gemeinert. Zeitverzögerte Rückkopplung wird daraufhin auf nichtlineare quantenop-

tische Systeme angewendet und die Stabilisierung von Fock-Zuständen in einer Kavität

mit Kerr-Medium gezeigt. Die Resultate werden auf eine Kavität mit angekoppeltem

Zweiniveausystem übertragen. Schließlich wird der Einfluss von zeitverzögerter Rück-

kopplung auf die Verschränkung von Photonen aus einer Biexzitonkaskade diskutiert.

Im dritten Teil der Arbeit werden Qubits, die an eine oder mehrere Kavitäten gekoppelt

sind, behandelt. Der Zusammenhang von Verschränkung und Bistabilität im Falle zweier

Qubits in einer Kavität wird analysiert. Daraufhin wird ein System aus zwei gekoppelten

Kavitäten, die je ein Qubit beinhalten und kohärent gepumpt werden, analysiert. Der

Einfluss einer dritten Kavität, die eine verzögerte Kopplung modelliert, wird diskutiert.

Schließlich wird ein Protokoll präsentiert, mit dem, basierend auf resonanter Raman-

Streuung, die Dephasierung zwischen Qubits verringert werden kann. Es wird gezeigt,

dass dieses Protokoll zu hohen Qubit-Verschränkungen führt und auch auf mehr als zwei

Qubits erweitert werden kann.
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1Introduction

„There is nothing new to be discovered in physics

now. All that remains is more and more precise

measurement.

— William Thomson, 1st Baron Kelvin

Irish physicist (1900)

1.1 Taming Schrödinger’s Cat

Every once in a while, even the most renowned scientists have gotten the feeling that

everything important has been discovered. At the end of the 19th century, the world

seemed to be perfectly describable using Isaac Newton’s mechanics, James C. Maxwell’s

electrodynamics, Ludwig Boltzmann’s thermodynamics, and all the other works based

upon these theories. In 1900, William Thomson, better known as Lord Kelvin, is said to

have produced above quote at a meeting of the British Association of the Advancement

of Science [1].

He could not have been more wrong.

Only shortly afterwards, the works of Max Planck and Albert Einstein lead to maybe

the largest paradigm shift in the history of physics: The formulation of quantum physics.

It was first introduced by Planck in 1900, in what he later called an “act of despair” (“Akt

der Verzweiflung”) [2], in order to describe the radiation of so-called black bodies over

the whole spectral range [3]. Five years later, in 1905, Einstein used the idea that light is

quantized to explain the photoelectric effect [4]. In the decades afterwards, quantum

mechanics made people re-think the very fundamentals of science: The concept of de-

terminism had to be abandoned, instead it was only possible to calculate probabilities

of certain outcomes of a measurement. It was also possible to prepare objects in su-

perpositions of states, leading to Erwin Schrödinger’s famous gedankenexperiment of a

cat being dead and alive at the same time – as long as there is no measurement of the

actual state of the cat [5]. The concept of entanglement [6] provided the possibility of

instantaneous long-range statistical correlations, which cannot be explained by classical

correlations [7–11].
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Today, this world of quantum physics is not only interesting from a purely scientific

point of view, but offers a completely new “toolbox” for applications – from secure

communication [12, 13] to new ways of calculation using quantum computers [14, 15],

or even a future “quantum internet” [16]. For all of this, it is important not only to

understand, but also to control quantum-mechanical properties of nano-scale systems.

This will be the topic of this thesis. In particular, quantum-coherent time-delayed feedback

control [17] will be discussed, and the possibility to use this method to control quantum-

statistical properties of light on the nano-scale will be studied. Additionally, in the last

chapter, methods to create and control quantum-correlated states using cavity-based

photonic bath engineering instead of time-delayed feedback, will be presented.

Feedback (or “closed loop” [17]) control has been a successful concept in classical me-

chanics and nonlinear dynamics for a long time and is still an area of active research [18].

There has been extensive work on feedback control of fundamental dynamical structures

such as periodic orbits [19–21] and fixed points [22, 23] and also on applications such as

lasers [24–30]. An important aspect in these control schemes is the active use of the time

delay of the feedback, which renders the system infinite-dimensional [31]. One motiva-

tion for the research presented in this thesis is the question how this can be transferred

to the quantum regime when the devices to be controlled are getting smaller.

Feedback control in the quantum regime can be divided into two different approaches:

measurement based and quantum-coherent feedback control [17, 32–34]. In measurement

based feedback control, a property of the quantum system is measured and afterwards

a parameter of the system is changed according to the measurement. The controller,

which decides on how to modify the parameters of the system after receiving the mea-

surement results, can be fully classical. This provides the opportunity for large and

complex controllers. Measurement based feedback control has been proposed and/or

was experimentally implemented, e.g., to diminish decoherence [35, 36], control atomic

motion [37], establish entanglement [38, 39] or Rabi oscillations [40], or to create Fock

states [41]. The latter lead to a Nobel Prize for Serge Haroche in 2012.

A big disadvantage of the measurement based approach is the collapse of the wave

function due to the measurement. The usual approach is to use “weak” measurements

that disturb quantum coherence only slightly, however also lead to less information on

the quantum state, and therefore less efficient control [34]. Thus, it is desirable to get

rid of the measurement process and work with a quantum-coherent control mechanism.

In that case, the information the controller works with, is quantum information [34].

Quantum-coherent feedback is usually implemented by partial outcoupling of the sys-

tem’s quantum state, a subsequent unitary transformation of this out-coupled signal,

and finally transferring it back into the system coherently. This approach is especially

suited for quantum optics, since photons can be controlled very easily. There exist pro-

posals to use quantum-coherent feedback for the control of different quantum-statistical

2 Chapter 1 Introduction



properties, such as entanglement [42] or photon statistics [43]. These approaches usually

treat the feedback as instantaneous, i.e. much shorter than the time-scale given by the

system to be controlled. Vanishing feedback delay times can be advantageous since for

short timescales dephasing can be neglected, which would reduce quantum coherence

between system and controller. However this neglects the possibility to use the delay

time as a control parameter. Only a few studies [44, 45] have been made on the effects

of time-delayed quantum-coherent feedback in the quantum regime. In this thesis, it

will be demonstrated that time-delayed quantum-coherent feedback is actually a very

versatile approach to control quantum systems.

Finally, it will be shown that not only time-delayed feedback can provide the frequency-

dependent photonic environment needed for the control of quantum statistics. Based on

works of Aron et al. [46, 47], a protocol to diminish dephasing in entangled qubits will be

developed.

1.2 Structure of this thesis

This thesis is structured as follows: First, an introduction to the important theoretical

concepts used in the calculations will be given. In Chapter 2, core formulas of quantum

statistics and quantum optics on the nanoscale will be presented, and time-delayed

feedback will be introduced.

Chapter 3 covers methods developed to tackle the numerical complexity of time-

delayed feedback and other non-Markovian reservoirs. A method to include complex

reservoirs as nonlinear expectation value equations will be presented. Furthermore,

it will be shown how pseudomodes can be used to model time-delayed feedback very

efficiently, and also the use of input-output theory for time-delayed feedback will be

discussed.

In Chapter 4, theoretical results on feedback control of coupled qubits are presented:

The creation and stabilization of entanglement between nodes of a photonic quantum

network will be presented.

Chapter 5 discusses nonlinear quantum-optical systems subject to time-delayed feed-

back. It will be shown that in a cavity containing a Kerr medium Fock states can be

stabilized. In a direct analogy, oscillations within the n-excitation subspace can be

stabilized in a Jaynes-Cummings system with feedback.

Photons emitted by a biexciton cascade can be polarization-entangled. In Chapter 6

it will be demonstrated that time-delayed feedback can enhance this entanglement by

counteracting the detrimental effects of exciton fine-structure splitting.

1.2 Structure of this thesis 3



In Chapter 7 the dynamics of qubits in coherently driven cavities is discussed. First,

it will be analyzed if there is a connection between entanglement of two qubits in one

cavity and bistability of the system. Then the system studied in Ref. [46], consisting of two

coupled cavities containing a qubit each, will be examined in detail. The effect of long-

distance coupling will be discussed. Then, a protocol on how to effectively counteract

dephasing between these qubits by using a second drive and a resonant Raman transition

will be developed.

This thesis will end with a conclusion and an outlook on interesting questions for

further research which came up during the creation of this thesis.
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2
Theoretical background

2.1 Quantum statistics

In this chapter, the concepts of quantum mechanics used in this thesis are introduced.

After an overview on the different ways of calculating quantum dynamics and the intro-

duction of statistical operators (density matrix theory), the concept of entanglement and

measures to quantify it will be discussed. Afterwards, correlation functions g (n), which

are important in photon statistics and give the possibility to identify non-classical light,

will be introduced. For an extensive coverage of these topics, the reader is referred to

standard textbooks on quantum mechanics and quantum optics, e.g. [48, 49], which this

section is also strongly based upon.

2.1.1 Pure state dynamics

In quantum mechanics, classical variables become operators. The most important

variable, describing the system, is the energy operator, the Hamiltonian Ĥ . A system of

which one has full knowledge about its quantum state (a pure state) can be described by

a wave function |ψ〉, which is an object in an (extended) Hilbert space. Objects of the

corresponding dual space are written as 〈φ| and the inner product is written as 〈φ|ψ〉.
The dynamic evolution of |ψ〉 is governed by the Schrödinger equation,

iħ d

dt
|ψ〉 = Ĥ |ψ〉, (2.1)

ħ being Planck’s constant ħ= 6.626×10−34J s. The measurement of a quantity described

by the operator Â will always give one of the eigenvalues of Â and “collapse” the state

into the respective eigenstate. Since only real-valued measurement results are physically

sensible, Â must have a real-valued eigenvalue spectrum, which is guaranteed if Â is a

Hermitian operator. The Hermitian property also assures that the operator has a complete

set of orthogonal eigenvectors.

If |a〉 is a particular eigenstate of Â, Â|a〉 = a|a〉, the probability p(a,ψ) of measuring

a, given that the state of the system is |ψ〉, can be calculated as p(a) = |〈a|ψ〉|2. The
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average value which is expected if one measures Â is given by the expectation value 〈Â〉,
calculated as

〈Â〉 =
∑

i

p(ai ,ψ)ai =
∑

i

〈ψ|ai 〉ai 〈ai |ψ〉 = 〈ψ|Â|ψ〉. (2.2)

The summation is over all eigenvalues ai of Â.

The time evolution of expectation values is given by the Ehrenfest theorem,

d

dt
〈Â〉 = −i

ħ
⟨

[Â, Ĥ ]
⟩
+

⟨
∂Â

∂t

⟩
, (2.3)

which is also valid for explicitly time-dependent operators (hence the last term). The

commutator [Â, B̂ ] is defined as [Â, B̂ ] = ÂB̂ − B̂ Â.

Although wave functions are a very useful concept, quantum mechanics offers no way

to determine |ψ〉 unambiguously. It is also possible to apply all temporal dynamics to

the operators and keep the wave function fixed, i.e. |ψ(t )〉 = |ψ(0)〉. This is called the

Heisenberg picture (in contrast to the Schrödinger picture using time-dependent wave

functions). In this picture, the dynamics of operators obeys an equation very similar to

the Ehrenfest theorem (Eq. 2.3), called the Heisenberg equation of motion:

d

dt
Â = −i

ħ
[Â, Ĥ ]+ ∂Â

∂t
. (2.4)

Both formulations are equivalent, however it is sometimes easier to work in one picture

or the other. In this thesis,most of the time solve Eqs. 2.1 and 2.3 will be solved. However,

in section 2.3, time-delayed feedback in the Heisenberg picture will be discussed.

2.1.2 The density matrix formalism

Often, the quantum state of the system is not fully known. Thus, it is necessary to have

a theory that can incorporate imperfect knowledge and statistical ensembles. This theory

is provided by the density matrix formalism.

Take a system which has the probability pi to be in the quantum state |ψi 〉. Then the

“density matrix” ρ is given as

ρ =
∑

i

pi |ψi 〉〈ψi |. (2.5)

The probabilities have to add up to one,
∑

i pi = 1. However, the states |ψi 〉 do not need

to be orthogonal and do not need to form a basis of the full Hilbert space. The density

matrix contains all the information available to an observer, which is why it was proposed

recently [50] to view density matrices, and not quantum states, as the basic entities of

quantum mechanics. Different ensembles can lead to equal density matrices, however

there is no possibility to determine which ensemble is “correct” and therefore it makes
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sense to see them as different “representations” of the same system state. As an example,

take a “qubit”, i.e., a quantum state that is an object of a 2-dimensional Hilbert space

spanned by the two states |0〉 and |1〉. This qubit may now be prepared in a 1:1 “mixture”

of |0〉 and |1〉, leading to the density matrix

ρ = 1

2
|0〉〈0|+ 1

2
|1〉〈1| =

(
0.5 0

0 0.5

)
(2.6)

However, one could also prepare the system in a 1:1 mixture of the linear combinations

|+〉 = 1p
2

(|0〉+ |1〉) and |−〉 = 1p
2

(|0〉− |1〉). The states |+〉 and |−〉 are clearly distinct from

the states |0〉 and |1〉, however, the density matrix of the mixture is still

ρ = 1

2
|+〉〈+|+ 1

2
|−〉〈−| =

(
0.5 0

0 0.5

)
(2.7)

Therefore there exists no physical way to differentiate between the two mixtures and they

have to be considered to represent the same object.

Expectation values in the density matrix formalism can be calculated using the trace,

〈Â〉 = tr
(
ρ Â

)
. (2.8)

Setting Â = ρ gives information whether the system is in a pure state or in a mixture of

states: Only for pure states,

tr
(
ρ2)= 1. (2.9)

The dynamics of a system given as a density matrix is governed by the von Neumann

equation:
d

dt
ρ = i

ħ
[ρ, Ĥ ]. (2.10)

This equation is equal to the Heisenberg equation (Eq. 2.4) except for a different sign.

However, ρ is an object in the Schrödinger picture, in which the implicit time dependence

is contained in the states that build up ρ, and not in the operators.

The density matrix formalism also allows to analyze subsystems of more complex

systems. Take a system that consists of a subsystem, described by ρS , and “everything

else”, described by ρB (in this thesis, ρB will usually be a “bath” to which the subsystem is

connected, therefore the index B). If the density matrix of the full system ρ is known, the

density matrix of the subsystem can be calculated using the partial trace

ρS = trBρ, (2.11)

which is defined as

trBρ =
∑

i

〈bi |ρ|bi 〉. (2.12)
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Here, |bi 〉 form a complete set of orthonormal states of the Hilbert space of the “bath” B .

Any measurement result of properties of only the subsystem can be calculated using the

reduced density matrix ρS .

2.1.3 Entanglement

For pure states, entanglement is defined as follows: Two systems A, B are called

entangled if their wavefunction |Ψ〉 cannot be written as the direct product of the wave

functions of the single systems, |Ψ〉 ̸= |ψA〉⊗ |ψB 〉. Otherwise, they are called separable.

As an example, take two qubits, described by the wave functions |ψA〉 and |ψB 〉: The

state

|Ψ〉 = |0A〉⊗
1
p

2

(
|0B 〉+ |1B 〉

)
(2.13)

is separable, while the state

|Ψ′〉 = 1
p

2

(
|0A〉⊗ |1B 〉+ |1A〉⊗ |0B 〉

)
(2.14)

is entangled. If two states are entangled, a measurement of the first state collapses the

wave function of the second state as well, without any noticeable time delay. Historically,

this made people think of quantum theory as incomplete [7], and that the correlation

between entangled states were described by some “hidden variables”. However, it was

demonstrated subsequently that entanglement introduces statistical correlations which

are not describable by classical (“local-realistic”) ensembles, which was shown by the

breakdown of the famous Bell inequalities [8–11]. In particular, the state |Ψ′〉 given in

Eq. 2.14 is distinct from a 1:1 mixture of |0A〉⊗ |1B 〉 and |1A〉⊗ |0B 〉, or any other mixture.

This can already be seen by the fact that the square of the density matrix given by |Ψ′〉〈Ψ′|
will have a trace of 1, while any incoherent mixture would not (cf. Eq. 2.9)

For ensembles, there exists an equivalent definition of entanglement: An ensemble of

bipartite systems described by the density matrix ρ is called separable, if ρ can be written

as an ensemble of separable states. All other systems are (at least partly) entangled.

Although this definition of entanglement looks straightforward, there is actually not

a “simple” way to define the amount of entanglement in an arbitrary mixed state [51,

52]. After all, entanglement is not a quantity that can be written as the eigenvalue of

some (fictional) “entanglement operator Ê ”. It is rather a property of systems that can be

“clearly” (which usually means “macroscopically”) divided into two distinct subsystems.

Handwavingly, the subsystems are entangled if their quantum state cannot be divided in

this way. This idea leads to the definition of entanglement of pure states via the entropy

of one subsystem while tracing out the other subsystem [53, 54]:

E(ρ) =−Tr
(
ρA log2 ρA

)
=−Tr

(
ρB log2 ρB

)
. (2.15)
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Fig. 2.1.: Entanglement of formation (E ) vs concurrence (C ). As it is a bijective relationship, that
makes it possible to convert concurrence to entanglement and vice versa unambigu-
ously. Since E(C = 0) = 0 and E(C = 1) = 1, concurrence itself can be seen as a valid
entanglement measure and is widely used due to its easy computability.

Here, ρ = |ψ〉〈ψ| is the density matrix of a pure state |ψ〉, and ρA(B) is the density ma-

trix of subsystem A (B), acquired from ρ by tracing out subsystem B(A). E(ρ) is the

entanglement of |ψ〉. Since a mixed state ρ can be seen as a collection of pure states,

ρ =∑
i pi |ψi 〉〈ψi |, this definition can be generalized: The entanglement of a mixed state

is the sum of the entanglements of the pure states that make up the mixed state, weighted

by their probability pi . There exists a complication since this decomposition into pure

states is not unique. One therefore uses the decomposition which leads to the smallest

entanglement:

E(ρ) = minD

∑

i∈D

pi E
(
|ψi 〉〈ψi |

)
. (2.16)

Here, D symbolizes the different decompositions of ρ into pure states. This entanglement

measure is called entanglement of formation. While its definition is intuitive, it is hard to

compute directly due to the necessary minimalization. However, it is possible to compute

it from another entanglement measure, the concurrence C [6, 54], which will be defined

below. Given the concurrence C (ρ), the entanglement of formation can be calculated

as [54]

E(ρ) = h

(
1+

√
1−C (ρ)2

2

)
, (2.17)

using the function

h(x) =−x log2 x − (1−x) log2(1−x). (2.18)

In Fig. 2.1, the relationship between concurrence and entanglement (of formation) is

plotted. The bijective relationship between the two quantities makes it possible to convert

concurrence to entanglement and vice versa. In particular, for a separable state (E = 0) as
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well as for a perfectly entangled state (E = 1), it is found that the concurrence is also 0 and

1, respectively. This makes the concurrence itself a valid measure of entanglement.

To calculate the concurrence for the case of two qubits, one needs the “spin flip” [54]

operator

Σ :=σy ⊗σy , (2.19)

using the Pauli spin matrix σy . The matrix Σ can be expressed in the basis of two-qubit

states (|00〉, |10〉, |01〉, |11〉):

Σ=

⎛
⎜⎜⎜⎜⎝

0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎠

. (2.20)

Using Σ, one can calculate the eigenvalues λ1,λ2,λ3 and λ4 of the matrix ρΣρ∗
Σ, in

which ρ is the density matrix of the bipartite system and ρ∗ its complex conjugate. For a

better understanding, it is interesting to note that the matrix Σρ∗
Σ gives the state directly

opposite of ρ on the extended Bloch sphere [54] which is a Bloch sphere for two qubits.

Therefore the term “spin flip” matrix for Σ [54]. The concurrence is then defined as [55]

C (ρ) := max
(
0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
(2.21)

in which the eigenvalues are sorted in decreasing order. For pure states, the formula

simplifies: Given the state

|Ψ〉 = a|00〉+b|01〉+ c|10〉+d |11〉, (2.22)

the concurrence can be calculated as

C (|Ψ〉〈Ψ|) = 2|ad −bc|. (2.23)

While Eq. 2.21 is not very intuitive, this simpler formula demonstrates that entanglement

is dependent on certain off -diagonal elements of the density matrix ρ.

There are ways to generalize the concept of concurrence to states more complex than

qubits, in particular qutrits [56, 57].

One must bear in mind that concurrence is just one way to measure “entanglement”

and always higher or equal to, e.g., the entanglement of formation. Which entanglement

measure is the most suitable will usually depend on the task for which entangled states

are needed. In the following usually the concurrence is taken directly as the entanglement

measure, mainly due to its easy computability.
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Fig. 2.2.: The setup of a Hanbury Brown and Twiss experiment to measure the second-order
correlation function. A light beam is divided by a beam splitter and projected onto
two detectors. Afterwards, the correlation between the two signals is computed.

Due to the “nonlinearity” of the definition of the concurrence, one cannot “simply”

derive the concurrence of a mixture by only looking at the probability of the entangled

constituent(s), even if there is only one. This shall be demonstrated by a simple example.

For this, let us define the entangled state |E〉 =
(
|10〉+ |01〉

)
/
p

2 . Now take a mixture, in

which this entangled state has the (classical) probability of 1/2, while the other 1/2 is

made up of the states |11〉 and |00〉:

ρ = 1

2
|E〉〈E |+p00|00〉〈00|+p11|11〉〈11| (2.24)

with p00 +p11 +1/2 = 1. Intuition would say since all constituents but |E〉 are separable,

the concurrence of this density matrix should be 1/2. However, this is not correct – the

concurrence crucially depends on p00 and p11 via C = 0.5−2
p

p00p11 , which can take

any value between 0.5 (for p00 = 0 or p11 = 0) and 0 (for p00 = p11 = 0.25). This is the

reason behind “sudden death of entanglement” [58]: While all excitation in a system may

decay exponentially, the entanglement in a system may actually become 0 after a finite

amount of time due to the redistribution of probabilities.

2.1.4 Photon correlations: bunching and antibunching

Light of equal intensity and frequency can still have very different properties – compare,

for example, the light emitted by a light bulb to that emitted by a laser. These differences

become visible in the statistical properties of the light and its fluctuations. The most

important experiment to examine light statistics is the Hanbury Brown and Twiss ex-

periment [59], in which a beam of light is projected onto two photodetectors using a

beam splitter, and the correlation between the two signals is examined (see Fig. 2.2).

This measurement reveals the second-order correlation function, or g (2)(t , t ′) function,
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using photodetection events at times t and t ′. In terms of photon annihilation (creation)

operators c(†), the g (2)(t , t ′)-function of a single photonic mode can be written as [48]

g (2)(t , t ′) =
〈c†(t )c†(t ′)c(t ′)c(t )〉
〈c†(t )c(t )〉〈c†(t ′)c(t ′)〉

. (2.25)

Especially for t ′ = t , we get the one-time second-order correlation function

g (2)(t ) =
〈c†c†cc〉
〈c†c〉2

(t ). (2.26)

An interpretation of this quantity is, that it measures the probability of having two photons

at the same “place” in the light beam, normalized to the probability this happens for a

completely random photon distribution. Different “types” of light show different values

for the g (2)-function. For coherent fields, such as laser light or Glauber states, one

can factorize 〈c†c†cc〉 = 〈c†c〉2, which leads to g (2) = 1. This is the value that one gets

for a perfectly random distribution of photons within the light beam. For thermally

emitted, incoherent light, one gets g (2) = 2, i.e., the photons appear in “bunches” – this

phenomenon is called “photon bunching”. Light with g (2) > 2 is called “super-bunched”.

For classical light fields, the g (2) function is bound, g (2) ≥ 1. The reason for this is the

Cauchy-Schwartz inequality: In a classical theory, the field is not described by operators,

but by complex numbers, which commute. Classically, one can therefore rewrite the

second-order autocorrelation function in terms of the light intensity I as

g (2)
class.(t ) = 〈I 2〉

〈I 〉2
(t ). (2.27)

The brackets “〈〉” denote statistical averages, since the intensity might as well be noisy.

One can now express the classical intensity as a sum of its statistical average and a noise

term, I = 〈I 〉+η, with 〈η〉 = 0 and 〈η2〉 ≥ 0. With this, we find g (2)
class. = (〈I 〉2 +〈η2〉)/〈I 〉2 =

1+〈η2〉/〈I 〉2. Since neither 〈η2〉 nor 〈I 〉 can be negative, we have g (2)
class. ≥ 1. This derivation

however relies on the classical notion of g (2) (eq. 2.27) . Within quantum mechanics, all

non-negative values are allowed. Light with g (2) < 1 is called “anti-bunched”, since the

photons appear more separated than in a random distribution. In the special case of

single-photon emission, 〈c†c†cc〉 = 0, which leads to g (2) = 0. For a Fock state with n

photons, we get g (2) = (n −1)/n, which is < 1 for all finite n.

One has to be careful, though, since different photon statistics can lead to the same g (2).

It is often assumed that g (2) = 1 means that the light is coherent; however one can create

an infinite number of other photon statistics that lead to g (2) = 1, and further measures,

like higher order correlations, are necessary to determine the correct photon statistics. In

fact, what “g (2) = 1” says in terms of photon number distributions, is that the variance

V ≡ 〈(c†c)2〉− 〈c†c〉2 is equal to the intensity I ≡ 〈c†c〉. This is the case for the Poisson

distribution which one finds for coherent light, but this is not the only distribution with
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this property. As an example on how to produce arbitrary large g (2) functions with highly

non-classical states, take a photon state consisting of a 0-photon and a 2-photon part:

|ψ〉 = c0|0〉+ c2|2〉 (2.28)

For this state, we have 〈c†c†cc〉 = 〈c†c〉 = 2|c2|2. From this, we get g (2) = 1/(2|c2|2). Since

|c2|2 can take any value between 0 and 1, the g (2) function can take any value between

0.5 and ∞. In particular, g (2) = 1 can be reached without the state being a coherent state,

for c0 = c2 = 1/
p

2 . In order to test whether a photon field can be called “coherent”1,

one would need to check g (N ) = 1 for all higher correlations N > 1, with the higher-order

autocorrelation defined as

g (N ) =
〈(c†)N (c)N 〉

〈c†c〉N
. (2.29)

2.2 Open systems and dissipation

An “open” system is a system which is connected to another (mostly a lot larger) system.

In such cases, the energy of the original system is not conserved, and its time evolution

may be non-unitary. The second system is usually referred to as the “bath”, and may be

as small as a cavity mode (as it will be seen in Chapter 7) or as big as the “whole universe”.

Usually the bath dynamics are of no interest, and one only cares about system quantities

which are acquired by tracing over the bath degrees of freedom.

2.2.1 Markovian dissipation and the Lindblad formalism

A lot of approximations can make the calculation of system properties much easier,

most prominently the Born-Markov approximations. Here it will be shortly summarized,

based upon Ref. [60], how to get to the well-known Lindblad equations which describe

system-reservoir interaction in the second order Born-Markov approximation.The full

formulas of the derivation are not given here since they can be found in Ref. [60] as well

as in many other textbooks of quantum optics. A more detailed derivation is also given

in Appendix A for sake of completeness. At this point, the basic concepts behind the

approximations made are outlined, so that it becomes clear when the approximations

are applicable.

The Hamiltonian H shall be written as the sum of a system Hamiltonian, HS , a bath

Hamiltonian HB , and the system-bath interaction Hamiltonian HSB : H = HS +HB +HSB .

We are interested in the dynamics of the density matrix of the system, ρS , which can

1Although this does not mean the system has to be in a Glauber state. The system could as well be in a
mixed state with 〈c〉 = 0. Such a mixed state would be ρ = 1

2

(
|+α〉〈+α|+ |−α〉〈−α|

)
, with |±α〉 a Glauber

state with c|±α〉 =±α|±α〉.
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be acquired from the full density matrix ρ by tracing out the bath degrees of freedom:

ρS = trBρ.

At the beginning, let us assume system and bath to be independent, and therefore

factorizable: ρ0 = ρ0
Sρ

0
B . This will no longer be the case for later times, though. This

initial condition allows to write an integro-differential equation for ∂tρS(t) depending

on the full ρ(t ). As a first approximation, one writes ρ(t ) = ρS(t )ρ0
B +O

(
HSB

)
, plugs this

into the formula for ∂tρS(t ), and neglects terms of higher than second order in HSB . This

is the Born approximation. It states that the system-reservoir interaction is weak, and

that the reservoir is virtually unchanged by the actions of the system. After the Born

approximation, the integro-differential equation for ∂tρS(t ) only depends on ρS(t ′ < t )

and the initial reservoir state ρ0
B .

The dependence on earlier states of the system, i.e., memory, still makes the equation

hard to solve. Let us therefore assume that the reservoir introduces no memory effects

into the system dynamics over the time scale studied. This coarse-graining is called the

Markov approximation. With this approximation, we arrive at a differential equation for

the system density matrix ρS of the form

∂tρS = κ

2

(
2SρSS† −S†SρS −ρSS†S

)
. (2.30)

The operator S is the system operator with which the system couples to the reservoir

in the form HSB = SΓB , with ΓB a reservoir operator. Note that if S is an annihilation

operator, Eq. 2.30 leads to a decay of the system property 〈S†S〉. However, S can also be

a creation operator, which then models incoherent driving of the system. This type of

equation is called a Lindblad equation.

To summarize, the two important requirements to use the Lindblad approach are weak

system-reservoir coupling and no reservoir memory.

The easiest type of reservoir that can exhibit these properties is a large collection of

harmonic oscillators. It can be described by the Hamiltonian

HB =ħ
∫ ∞

0
ωd †

ωdωdω (2.31)

and interact with the system via

HSB =ħ
∫ ∞

0
G(ω)

(
d †
ωS +S†dω

)
dω. (2.32)

This coupling to an infinite set of harmonic oscillators can also be described in k-space

as

HSB =ħ
∫ ∞

−∞
G̃(k)

(
d †

k
S +S†d

k

)
dk. (2.33)
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This is the form for a 1D reservoir – for three-dimensional reservoirs, the integration has

to be done over the whole set of k⃗-vectors.

Any memory of the reservoir will be reflected in a frequency-dependence of the system-

reservoir coupling G(ω). In frequency space, the Markovian approximation is equivalent

to choosing G(ω) = const. over the relevant frequency range of the system dynamics. We

retrieve the exponential decay associated with Markovian dynamics if G(ω) = const. and

the integral boundaries are expanded to −∞. This is however not a “physical” situation (ω

has to be positive), but it is a very useful approximation for large frequencies (i.e., when

the frequency is much larger than any decay constant present in the system). Here we also

see that the Markovian approximation breaks down at very short time scales, i.a. when

calculating initial time dynamics. This breakdown of Markovianity is the mechanism

behind the counter-intuitive “quantum Zeno effect” [61, 62], which says that a quantum

state can be stabilized just by repeated measurements (“a watched pot never boils”).

At this point it is appropriate to mention a very easy example of the breakdown of the

Lindblad approach: The damped harmonic oscillator. If c(†) is the annihilation (creation)

operator of one excitation of the harmonic oscillator, the Hamiltonian takes the well-

known form H =ħωc†c (omitting the +ħ/2 overall frequency shift). One can damp this

system using the Lindblad equation (Eq. 2.30) with S = c . Now remember that the location

expectation value 〈x〉 is proportional to 〈c〉+〈c†〉, while the momentum expectation value

〈p〉 is proportional to 〈c〉−〈c†〉. Within the Lindblad approach, both expectation values get

damped with the damping constant κ/2. This is a clear contradiction to the classical case,

in which the momentum is damped, but the position is not. This classical asymmetry in

the damping leads to well-known phenomena like a damping-dependent frequency shift

scaling with O((κ/ω)2), as well as the complete disappearance of all oscillations for large

enough damping. This “over-damped case” is not present in the quantum-mechanical

model with Lindblad damping, and also the oscillation frequency is not shifted. These

two discrepancies on the order of O((κ/ω)2) alone show that Lindblad-type damping is

invalid for strong damping (κ≫ω).

2.2.2 Non-Markovian dissipation

As soon as the coupling to the reservoir is frequency-dependent, the reservoir retains

information of the system dynamics, at least for a finite amount of time. Such a reservoir

is called non-Markovian. The simplest non-Markovian reservoir may be one photonic

mode: If a two-level system is coupled to such a mode, the excitation oscillates between

the two-level system and the mode in Rabi oscillations. This is obviously totally different

to an exponential decay of the two level system excitation in a Markovian reservoir.

Besides the aforementioned quantum Zeno effect, non-Markovian reservoirs were

shown to tremendously influence quantum statistics and dynamics, e.g., sudden “death”
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and “re-birth” of entanglement [63, 64]. It was proposed that non-Markovian dynamics

can be modeled by time-dependent Lindblad operators [65, 66], however such a de-

scription is only valid for linear systems, otherwise it is an approximation, as it will be

discussed below.

One important non-Markovian reservoir which will be discussed in this thesis is a

reservoir leading to time-delayed quantum-coherent feedback.

2.3 Time-delayed feedback

Parts of this section are submitted for publication as a conference paper for the SPIE

Photonics West 2016 conference.

The main focus of this thesis is on control of quantum systems through time-delayed

feedback, which shall be introduced in this section. Further elaboration on the different

numerical implementations will be given in the subsequent chapter. On time-delayed

feedback, a lot of research has already been done in classical and semi-classical physics,

especially with respect to the control of chaotic dynamics (for an overview, see e.g. the

book chapter of Schöll et al. [31] on “Time-Delayed Feedback Control: From Simple Models

to Lasers and Neural Systems”). A notable application is the Lang-Kobayashi dynamics

of lasers [24], which describe a laser with a time-delayed feedback of the laser radiation

into the laser cavity. This feedback, i.a., modifies the light statistics by increasing the

g (2)-factor. We recently showed [45] theoretically that this behavior extends into the

quantum regime for quantum dot lasers.

One can often think of time-delayed control as a very efficient frequency “filter”: The

time delay translates into a certain frequency in Fourier space. Generally, any dynamics

that happens at this frequency (or multiples of it) will be influenced by the time-delayed

feedback, while the influence of time-delayed feedback on other dynamics usually gets

averaged out. This allows one to see time delay not just as something that needs to be

avoided for “fast” control, but that can be actively used to steer the dynamics.

To derive the dynamics of systems with time delay, it is not only necessary to define

initial conditions, but a whole initial dynamics spanning the delay time τ in the interval

−τ< t < 0. In this thesis, the system is usually treated to be in the ground state for t < 0

or to not interact with the environment until the “feedback is turned on” at t = 0.
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Fig. 2.3.: Simplified experimental implementations of Pyragas control in optical systems. (a)
The system emits radiation towards a mirror at distance L, which is reflected back
and interacts with the system again after the delay time τ= 2L/c (c being the speed
of light). (b) The system is coupled to a waveguide with one closed end that acts as
a mirror. The radiation emitted in this direction also interacts with the system again
after the delay time τ= 2L/c.

2.3.1 Pyragas control

A special kind of control was developed by Pyragas [19], which depends on the differ-

ence between the current system state and the system state at an earlier point of time:

Say, the system dynamics can be described by the following differential equation:

ẋ(t ) = f
(
x(t )

)
. (2.34)

With “Pyragas control”, a control term of the form −K ·
(
x(t )−x(t −τ)

)
is introduced:

ẋ(t ) = f
(
x(t )

)
−K ·

(
x(t )−x(t −τ)

)
. (2.35)

K is the control strength, and τ the delay time. If now the dynamics given by Eq. 2.34

contain a limit cycle with periodicity τ, this limit cycle will also appear as a solution of the

controlled equation 2.35. The reason is that the two terms in the control term perfectly

cancel. Other dynamics which do not have the periodicity τ will however be strongly

affected by the control term. This gives the possibility to change the stability properties of

the limit cycle, without actually changing the limit cycle itself. Therefore, Pyragas control

is called “non-invasive”. The exact condition for a limit cycle with frequency ω0 to be not

affected by Pyragas control is

ω0τ=N ·2π, (2.36)

with N any natural number.

Besides this peculiar property, Pyragas-type dynamics appear naturally in experimental

setups where parts of the signal get re-emitted into the experimental setup, e.g. back-

reflection of laser light into the laser through mirroring surfaces. Due to the single delay

time, Pyragas control has the strongest influence on dynamics with frequencies around

1/τ. Note that Pyragas control does not include terms such as x(t −2τ), x(t −3τ)... . This

means that the system only interacts with itself after one delay time, and information is

not stored in the feedback loop longer than τ.
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In this thesis Pyragas control shall be used in the quantum limit, therefore a way to

model it using the equations of quantum mechanics is needed. One way is to come from

a direct experimental implementation and to demonstrate that the dynamics indeed

show Pyragas-like terms. Two possible schemes for systems emitting light are presented

in Fig. 2.3. In Fig. 2.3(a) we see a system in front of a mirror. Light which is reflected

onto the mirror is transferred back into the system after the delay time τ= 2L/c, with L

the distance of the mirror and c the speed of light. What is not shown in the image, is

that radiation can also be emitted to the other side, and can also pass the system after

reflection without interaction. These loss channels make the whole setup open and allow

for equilibration. This setup, sometimes equipped with a lens to collect the emitted

radiation to project it onto the mirror, is discussed in literature [67, 68] mainly in the

area of quantum optics of atoms. It is also discussed in Ref. [69] and compared to a

hemispherical mirror geometry in Ref. [70]. This setup is however not suitable for all

systems: It must be ensured that the radiation reflected back from the mirror will not be

reflected from the system without any interaction with the system. Otherwise it will be

stored in the area between system and mirror for longer than 1τ, which will lead to terms

such as x(t −2τ) in the dynamics. “Interacting with the system” means that it excites

the system and gets re-emitted, which is totally fine within Pyragas control. Of course

this depends on how the system is modeled and simplified, and what is defined as “the

system”. In the end the interesting issue to be examined is Pyragas control on the system

parameters that are interesting. It would not make sense to model, e.g., a mirror as a

collection of atoms and include it into the “system”, if we want to study the dynamics of a

single mode contained between two of such mirrors. The Pyragas-like terms for the cavity

mode would be hidden in the highly complex mode-mirror interaction. This problem is

connected to the reason why the “mirror setup” is most suitable for atom-based quantum

optics: The signal coming back from the mirror can either interact with the atom again, or

pass right through it. In contrast, if the system is a cavity in itself (or something connected

to a cavity mode), the setup is not suitable any more: The radiation may be reflected

from the (system) cavity mirror without interacting with the cavity mode. To treat such

systems, a setup as in Fig. 2.3(b) is necessary. Here, the system is coupled evanescently

to a waveguide that is closed at one end and is supposed to be “infinite” (perfectly

absorbing) at the other end. The closed end at distance L acts as a mirror. This setup is

discussed in several publications [71–73] on semi-infinite waveguides. To model these

quasi one-dimensional feedback environments, one needs the local photonic density

of states (LDOS) at the position of the emitter. Since these environments are open, the

LDOS will be a a continuous function depending on the wave vector k. Say, the different

modes of the feedback environment are described by the ladder operators d (†)
k

, and the

system couples to this environment with the ladder operator c(†) (which can be a bosonic
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or fermionic operator). As it was shown in the last section on dissipation, the coupling to

the environment can then be described by the interaction Hamiltonian HI ,

HI =
∫ ∞

−∞
dk G(k)c†d

k
+H.c.. (2.37)

Due to the assumed 1D geometry (induced by the waveguide or by collecting the emitted

radiation by a lens to project it onto a mirror), the integral over k is just an integral from

−∞ to ∞. The density of states is included in the factor G(k), which is the k-vector-

dependent coupling between system and feedback loop. A k-independent coupling

means that each mode has the same (relative) strength at the position of the system,

which leads to exponential decay. In our case, the mirror (or the end of the waveguide)

introduces a boundary for the electric fields: Every mode has to vanish at the position of

the mirror (to be more precise, it’s its field component parallel to the mirror). Any field

distribution in the “feedback reservoir” that vanishes at the mirror can be expanded into

sine functions with the origin set at the mirror surface. These sine functions describe

the modes to which the system is coupled. The k-vector dependent coupling therefore

reads [67]

G(k) =ħγsin(kL). (2.38)

with a k-independent coupling strength γ. This is the case for perfect reflection at

the feedback-inducing mirror. As described in Ref. [67], imperfect feedback can be

incorporated by including another set of modes with a constant coupling factor G ′(k) =
G ′.

This leads to Pyragas-like terms. To demonstrate this, let us investigate a system with

the Hamiltonian

H = HS +HI +HR (2.39)

with an arbitrary system Hamiltonian HS , the interaction Hamiltonian HI (Eq. 2.37), and

the “reservoir” Hamiltonian

HR =
∫ ∞

−∞
dk ħω(k)d †

k
d

k
. (2.40)

A linear dispersion relation ω(k) = c0|k| is used. Let us now derive the equations of motion

for the expectation value 〈c〉. If the operator c describes a photonic mode, the real part

of this expectation value is proportional to the electric field. However, one has to keep

in mind that in a fully quantum-mechanical simulation this value is usually identically

zero, since the operator c is not bi-linear2. This issue has been covered in great detail by

H. Wiseman [74], who demonstrates that the fundamental reason is that the phase of the

(electric) field is not defined a priori in a full quantum-mechanical simulation without

semiclassical terms. Averaging over all possible phase values creates a zero expectation

2This has nothing to do with c being non-hermitian – the electric field is proportional to the hermitian

operator c + c†, which is also not bi-linear in the single operators.
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value for the field operators 3. One can therefore regard the dynamics of 〈c〉 as a look

at the semiclassical properties of the system, since semi-classically it is no problem to

introduce a phase through, e.g., an external ac drive. The derivation here is based on the

derivation by Dorner and Zoller [67], and was also presented in Ref. [75].

Using the Ehrenfest theorem, we arrive at

∂t 〈c〉 =
i

ħ
〈[HS ,c]〉− i

∫ ∞

−∞
dk G(k)〈d

k
〉e−iω(k)t (2.41)

∂t 〈dk
〉 =−iG∗(k)〈c〉eiω(k)t (2.42)

Here, the free oscillation of the external modes is already transformed away, which leads

to the e±iω(k)t terms. One can formally integrate the differential equation for 〈d
k
〉:

〈d
k
〉 =−iG∗(k)

∫ t

0
〈c〉(t ′)eiω(k)t ′ dt ′. (2.43)

Here it is assumed that initially there is no excitation in the external reservoir: 〈d
k
〉(t =

0) = 0. One can now put this into the equation for 〈c〉 to get

∂t 〈c〉 =
i

ħ
〈[HS ,c]〉−

∫ ∞

−∞
dk

∫ t

0
dt ′|G(k)|2〈c〉(t ′)e−iω(k)(t−t ′) (2.44)

Let us now transform the integral to an integral over ω, which now only goes from 0

to ∞ – for symmetry reasons, this just leads to a factor of 2. Let us also put in G(k) =
ħγsin(kL) =ħγsin(2ωτ) with the delay time τ= 2L/c0, and rewrite the sine function in

terms of exponential functions to get

∂t 〈c〉 =
i

ħ
〈[HS ,c]〉− |γ|2

2c0

∫ ∞

0
dω

∫ t

0
dt ′〈c〉(t ′)

(
e−iω(t−t ′+τ) +e−iω(t−t ′−τ) −2e−iω(t−t ′)

)
.

(2.45)

Using the well-known formula

∫ ∞

0
dωeiωT =πδ(T )+ iP

1

T
, (2.46)

in which P symbolizes the Cauchy principal value, the integral can be simplified. In

analogy to Wigner-Weisskopf decay [48], one can neglect the imaginary terms which

lead to a (usually small) frequency renormalization which is part of the Lamb shift. Note

that for positive τ, the integral over the part with e−iω(t−t ′+τ) is zero since the integration

boundaries are 0 and t . Also, in the term with e−iω(t−t ′) the delta function is located

directly at the integral boundary and therefore only contributes with a factor 1/2. One

finally ends up with

∂t 〈c〉(t ) = i

ħ
〈[HS ,c]〉 (t )−K

(
〈c〉(t )−〈c〉(t −τ)

)
. (2.47)

3In some cases, such as electric fields, the phase can actually be measured, e.g. by magnetic fields [74], and
is therefore a sensible quantity. This does not apply to all fields [74], in particular not to particle fields.
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Fig. 2.4.: The large cavity interpretation of Pyragas control: The system (S) is located in a cavity
of length L′ at a distance L from one of the mirrors. The close mirror leads to Pyragas
terms, while the reflection of the far mirror creates “un-wanted” feedback. This is the
actual system simulated when the density of states sin(kL) is evenly discretized in
frequency space for numerical simulations. “Pure” Pyragas control is achieved in the
limit L′ →∞.

For clarity, the t-dependence is included explicitly in this equation. The abbreviation

K = π|γ|2
2c0

is used. One clearly recovers the Pyragas control terms. This shows that in the

semiclassical limit, this description with modes leads to the Pyragas-type time-delayed

differential equations. With only one excitation in the whole system-reservoir complex,

one can derive an analogous equation for the probability amplitude of the system vari-

able [67]. However, one has to note that for more complex quantities, like the bi-linear

〈c†c〉, one cannot derive such a simple expression [76]. The reason is that while 〈c†c〉 cou-

ples to
{
〈c†d

k
〉
}
,〈c†d

k
〉 itself couples to

{
〈d †

k ′dk
〉
}
. This dependence on k and k ′ makes

it impossible to integrate out all the dependencies on the outer modes in analogy to

the dynamics for 〈c〉 [76]. Simulating the whole external continuum (with a suitable dis-

cretization) is numerically very demanding. Recently however a proposal has been made

to derive a time-delayed differential equation for whole density matrix propagators [77]

which might be easier to solve for the first couple of delay times.

When simulating such a structured environment, usually the k-vector-dependent

coupling G(k) is discretized. This leads to a new interpretation, since closed systems

can be described by discrete energy levels. In particular, evenly spaced energy levels are

found for cavities with perfectly reflecting mirrors. One could therefore interpret Pyragas

control as a system in a large cavity of length L′, however with the system located only

at distance L from one of the mirrors, and finally taking the limit L′ →∞ (cf. Fig. 2.4).

The electric field modes of such a cavity are evenly spaced in energy with an energy

difference depending on L′, while the intensity of each mode at the position L away from

one mirror is sin2(kL). Therefore, for finite discretization in numerical simulations, a

“revival” of system quantities after approximately t = 2L′/c0 is found, when the signal

reflected from the far mirror returns back to the system. This defines a strict boundary

for system dynamics after which any simulation breaks down. This already shows a big

problem of simulating Pyragas control in the frequency space: In order to put this revival

as late as possible, a very good frequency resolution of the feedback reservoir is needed,
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in particular orders of magnitudes finer than the oscillation period of sin(kL). Later on it

will be discussed how one can circumvent this problem by using “pseudomodes”.

2.4 Matter–light interaction: The Jaynes-Cummings

Hamiltonian

The simplest system to study fully quantum mechanical light-matter interaction is a

two-level system coupled to one photon mode. Since this is one of the most important

models of quantum optics, it shall be introduced here. The two-level system may rep-

resent, e.g., two distinct energy levels |g 〉 and |e〉 (ground state and excited state) of an

atom. Let us define the lowering- and raising operators σ+ = |e〉〈g | and σ− = |g 〉〈e|. The

polarization of the two-level system can then be described by the operator P ∝ (σ++σ−).

The electric field of the photon mode will be described by the photon creation and anni-

hilation operators c(†). The electric field E will then be proportional to (c + c†). One can

write the simplest bi-linear atom-field interaction with the Hamiltonian

Hatom-field =ħ(ωe −ωg )
σz

2
+ħω0c†c +ħg

2
(E ·p). (2.48)

Here, the energy of the ground (excited) state of the two-level system is defined as ħωg

(ħωe ). The angular frequency of the photon mode is ω0, and the atom-field coupling is g .

The operator σz is defined as σz = |e〉〈e|− |g 〉〈g |.

At this point, let us approximate the Hamiltonian by removing all operators that do

not conserve excitation number, namely c†σ+ and cσ−. For small coupling g (compared

to the intrinsic frequencies), these terms will only lead to fast oscillations of the order of

ωe +ω0 −ωg , which can be averaged out. This is called the rotating wave approximation.

One then gets the famous Jaynes-Cummings Hamiltonian:

HJC =ħωq
σz

2
+ħω0c†c +ħg

2

(
σ+c +σ−c†

)
. (2.49)

The abbreviation ωe −ωg =ωq is used. In the following, let us also abbreviate ∆=ωq −ωc .

The eigenenergies of this Hamiltonian are

E±(n) =ħωc

(
n + 1

2

)
±ħ1

2

√
∆2 + g 2(n +1) . (2.50)

Here, n is a natural number (including 0). It can be directly seen that this is a nonlinear

system by the square-root dependence of the energy on n. If the system is prepared in the

|e〉 state with n photons in the cavity mode, it will exhibit oscillations between this state

(let’s call it |e,n〉) and the state |g ,n +1〉 with frequency Ω(n) =
√

∆2 + g 2(n +1) . This

frequency is called the Rabi frequency and the oscillations Rabi oscillations.
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A typical system is also lossy: The two-level system may decay with the rate γ without

emitting a photon into the mode, and the cavity may experience losses with the rate

κ. Both rates not only lead to a decay of the excitation number of the system, but also

change the Rabi frequency. For very strong losses, no Rabi oscillations will be visible,

in a direct analogy of the over-damped classical harmonic oscillator. This parameter

region is called the “weak coupling” regime. If Rabi oscillations are present, the system is

in the “strong coupling” regime. Note, however, that the system only enters this “weak

coupling” state, if the difference between κ and γ, |κ−γ|, is much larger than the coupling

g . In contrast to intuition, the Jaynes-Cummings system can be in the region of “strong

coupling” for arbitrarily large cavity losses, as long as the direct two-level system losses γ

are equally large. Experimentally it might still be very hard to see the Rabi oscillations in

this region, though.
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3Advanced methods for the numerical

treatment of time-delayed feedback

While the calculation of Pyragas control (and other non-markovian reservoirs) using a full

calculation of the outer modes is straightforward, it is also numerically very demanding.

On a Schrödinger equation approach, O(K n) terms are needed, with K the number of

external modes and n the number of excitations. Including dissipation in a density matrix-

or expectation value approach even leads to a scaling of O(K 2n). This becomes unsolvable

already for very low n. Usually during the numerical simulations presented in this thesis

it is found that K is in the order of several hundred to thousands, in order to make sure

no unwanted revivals (see last chapter) occur until the system has equilibrated.

Very recently some progress has been made to tackle this problem: It was suggested

by Grimsmo [77] to create time-delayed propagator equations. It is still a matter of

current research how broadly this approach can be applied – especially since it becomes

exponentially more demanding the more delay times τ shall be covered – and if it may be

combined with other methods, such as non-markovian dynamical maps [78].

In this chapter advanced methods to tackle the issue will be presented. They are mainly

based on simplifying the full calculation of the external bath by introducing suitable

approximations.

3.1 Calculation of non-markovian reservoirs by nonlinear

equations of motion

Calculating non-markovian dynamics in an equation-of-motion (EOM) framework

for expectation values makes it easy to include other markovian dissipative effects via

the Lindblad formalism. In particular, this will be used later on when we introduce

the pseudomode approach to time-delayed feedback. However, due to the scaling with

O(K 2n), full calculations of a non-markovian reservoir become numerically unfeasible

very quickly. Calculations can be done, however, in a Schrödinger equation approach.

Dissipative effects may then be introduced by Monte Carlo methods [79] that simulate

quantum trajectories and average over them to receive expectation values.If one does

not want to make stochastic simulations, the presented method will be suitable.
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We start from a Hamiltonian of the form

H = Hsystem(c,c†)+ħ
∫ ∞

−∞

(
G(k)c†d

k
+H.c.

)
dk +ħ

∫ ∞

−∞
ωk d †

k
d

k
dk. (3.1)

The presented method will use the remaining coherence that often stays in lossy systems

to reduce the number of terms to calculate substantially – which, in a way, combines

the benefits of a (fully coherent) Schrödinger equation simulation with (some of the)

flexibility of expectation value EOMs. The basic idea is the following: It is much easier to

compute quantities such as 〈c†d
k
〉 than quantities such as 〈d †

k ′dk
〉 since the latter leads

to a double summation over the k-modes. The new method is to approximate in first

order of d (†)
k

quantities in the following nonlinear way:

〈Od †
k ′dk

〉 ≈
〈Od †

k ′c〉〈c†d
k
〉

〈c†c〉
. (3.2)

O is an arbitrary operator (which can as well be the unit matrix). This approximation saves

memory storage as well as computational power: First of all, one does not need to store

the K 2 values of 〈Od †
k ′dk

〉. Second, when calculating EOM for 〈Od †
k ′c〉, the equations

become much simpler. Without the approximation, the equations read

∂t 〈Od †
k ′c〉 = ...+

∫ ∞

−∞
dk G(k)〈Od †

k ′dk
〉 (3.3)

which creates a different sum over k for each of the K elements 〈Od †
k ′c〉. With above

approximation however, one can once evaluate

Ω≡
∫ ∞

−∞
dk G(k)

〈c†d
k
〉

〈c†c〉
(3.4)

and then approximate Eq. 3.3 by

∂t 〈Od †
k ′c〉 ≈ ...+Ω〈Od †

k ′c〉. (3.5)

This removes the sum and leaves us with a simple multiplication. The important issue

is that Ω is independent of k ′ as well as of O . It can be seen as a environment-induced

frequency shift and dissipation: While the imaginary part of Ω shifts the frequency, the

real part acts like a dissipative term. If Re(Ω) is negative, it is usual dissipation, while if it is

positive, it is “negative dissipation” – a common feature of non-markovian dynamics [80,

81]. While this approximation apparently decreases the numerical complexity of the

problem, how good is it as an approximation? In fact, it is exact in the case of one

excitation, with or without included markovian decay. It can also be extended to systems

with higher number of excitations. Let us treat this at the example of a Jaynes-Cummings

model (JCM) with time-delayed feedback, as it was presented by Carmele et al. [44].
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The Hamiltonian of this system is given as [44]

H =ħωc a†
c ac +ħωv a†

v av +ħω0c†c −ħM
(
a†

v ac c† +a†
c av c

)

−ħ
∑

k

(
G(k)c†d

k
+G∗(k)d †

k
c +ω(k)d †

k
d

k

)
. (3.6)

The first line of Eq. 3.6 is the Hamiltonian of a standard JCM with a two-level system

given by the valence band (ħωv ) and conduction band (ħωc ) energies and a cavity mode

of angular frequency ω0. The fermionic annihilation (creation) operators of the va-

lence/conduction band are a(†)
v/c

, the photonic annihilation (creation) operators are c(†).

Cavity and two-level system are coupled by the strength M . The second line gives the

coupling to the external feedback reservoir. Note that here the integral over k was already

replaced by a sum, since this is how it will be simulated numerically. The coupling is

G(k) = γsin(kL) as before. In the one-excitation limit, the corresponding Schrödinger

equation can be solved using the state [82]

|ψ〉 = ce |e,0, {0}〉+ cg |g ,1, {0}〉+
∑

k

cg ,k |g ,0, {k}〉. (3.7)

Here, g (e) denotes whether the two-level system is in its excited or ground state, the

first number denotes the number of photons in the cavity, and the second number {k}

denotes that there is a photon in mode k, or not (in which case it is written {0}). The only

quantity that has a double k-dependence is 〈d †
k ′dk

〉[44], which, expressed in this state, is

〈d †
k ′dk

〉 = c∗
g ,k ′cg ,k . Therefore Eq. 3.2 exactly holds:

〈d †
k ′dk

〉 = c∗g ,k ′cg ,k =
c∗

g ,k ′cg c∗g c
g ,k

c∗g cg

=
〈d †

k ′c〉〈c†d
k
〉

〈c†c〉
(3.8)

This argument can straightforwardly be extended to any 1-excitation dynamics that is

fully coherent. It is not surprising that dynamics that can be described by a Schrödinger

equation can be calculated in an expectation value EOM ansatz with comparable numer-

ical complexity. However the approximation is still exact if the cavity mode as well as the

two-level system is damped via the Lindblad formalism. The important ingredients will

be that

1. No pure dephasing is present, i.e. all decay lowers the number of excitations, and

2. the initial state is a pure state and can therefore be described by a single wave

function.

Let us now derive the dynamics of the error,
〈d †

k
c〉〈c†d

k′ 〉
〈c†c〉 −〈d †

k
d

k ′〉. The equations of motion

will be taken from Ref. [44], where also the names of the quantities are listed in detail. Let
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us introduce an additional damping of the photonic mode with γc and a damping of the

two level system excitation with γT LS .

∂t

(
〈d †

k
c〉〈c†d

k ′〉
〈c†c〉

−〈d †
k

d
k ′〉

)

= 1

〈c†c〉2

(
〈c†c〉

( ˙〈d †
k

c〉〈c†d
k ′〉+〈d †

k
c〉 ˙〈c†d

k ′〉
)
−〈d †

k
c〉〈c†d

k ′〉 ˙〈c†c〉
)
− ˙〈d †

k
d

k ′〉 (3.9)

It can already be seen here that γc will not have any influence on the error, since it will

affect the first three terms such that any contribution cancels. One can now plug in the

dynamics from Ref. [44]:

[Eq. (3.9)] = 1

〈c†c〉

(
i M〈T d †

k
〉〈c†d

k ′〉+ i
∑

k ′′
G(k ′′)〈d †

k
d

k ′′〉〈c†d
k ′〉− iG(k)〈c†c〉〈c†d

k ′〉

− i M〈T †d
k ′〉〈d †

k
c〉− i

∑

k ′′
G∗(k ′′)〈d †

k ′′dk ′〉〈d †
k

c〉− iG∗(k)〈c†c〉〈d †
k

c〉
)

−
〈d †

k
c〉〈c†d

k ′〉
〈c†c〉2

(
i M〈T c†〉− i M〈T †c〉+ i

∑

k ′′

(
G(k ′′)〈c†d

k ′′〉−G∗(k ′′)〈d †
k ′′c〉

))

− ˙〈d †
k

d
k ′〉 (3.10)

The abbreviation T = a†
v ac was used here. Upon closer look one discovers the time

derivative of 〈d †
k

d
k ′〉 contained in the first three lines, which cancels with the fourth line,

revealing

[Eq. (3.9)] = 1

〈c†c〉

(
∑

k ′′
iG(k ′′)〈c†d

k ′〉
(
〈d †

k
d

k ′′〉−
〈d †

k
c〉〈c†d

k ′′〉
〈c†c〉

))

− 1

〈c†c〉

(
∑

k ′′
iG∗(k ′′)〈d †

k
c〉

(
〈d †

k ′′dk ′〉−
〈d †

k ′′c〉〈c†d
k ′〉

〈c†c〉

))

+ i M
〈c†d

k ′〉
〈c†c〉

(
〈T d †

k
〉−

〈T c†〉〈d †
k

c〉
〈c†c〉

)

− i M
〈d †

k
c〉

〈c†c〉

(
〈T †d

k ′〉−
〈T †c〉〈c†d

k ′〉
〈c†c〉

)
. (3.11)

One finds that the error only couples to other error terms of the same (〈d †
k ′′dk ′〉−

〈d †
k′′c〉〈c

†d
k′ 〉

〈c†c〉 )

or similar (〈T †d
k ′〉−

〈T †c〉〈c†d
k′ 〉

〈c†c〉 ) structure. Following the same kind of analysis one finds

that this will also be the case for any new error-like terms. Therefore the dynamics of the

error stays in “error space” and does not couple to “bare” quantities. In particular, when

the error was 0 at t = 0, it stays zero.

Also, the error terms are not affected by decay, as long as it affects the “real” and

“approximate” part (i.e. the nonlinear part) of the error term in the same way. This
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Fig. 3.1.: Comparison of the dynamics of a JCM in a structured background: Nonlinear approxi-
mation vs. full numerical simulation. Plotted are the photon density 〈c†c〉 as well as
the second order correlation 〈c†c†cc〉. Good agreement is found for 〈c†c〉 but stronger
deviations are present for 〈c†c†cc〉.

is not the case for pure dephasing however, since it affects
〈T †c〉〈c†T 〉

〈c†c〉 while it does not

affect 〈a†
c ac 〉. The difference between these terms is however coupled to the dynamics of

〈T †d
k ′〉−

〈T †c〉〈c†d
k′ 〉

〈c†c〉 . As soon as pure dephasing plays a role, the “approximation” becomes

a real approximation and is not exact any more. Note that a decay of the two-level system

with γT LS does not affect these terms differently and therefore does not diminish the

quality of the approximation.

All above analysis is done for a system with only one excitation. For more than one

excitation, it may still be a sensible approximation to describe the non-markovian effects

of the external continuum by Ω. To check the approximation in the two-photon excitation

limit, a JCM coupled to a structured continuum was simulated. Instead of the sine-

modulated density of states from Pyragas control, a simpler structuring by two Lorentz

functions was chosen. The simulated density of states was

D(ω) = |G(ω)|2 = Θ

α(ω−ω0 −δ/2)2 +1
+ Θ

α(ω−ω0 +δ/2)2 +1
, (3.12)

with Θ= 0.0018fs−2, α= 1010fs2, δ= 50ns−1, and ω0 = 1fs−1. Furthermore, the coupling

strength M = 10ns−1 was used. G(k) was simply computed as
√

D(c0k) . No further

decay channels additional to the coupling to the structured continuum are introduced.

The initial state is an excited two-level system and one photon in the cavity. In Fig. 3.1,

the results for the photon density 〈c†c〉 as well as the second order correlation 〈c†c†cc〉
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are displayed. For the photon density, the results agree very well, while the second order

corellation is only reproduced qualitatively by the approximation. Another problem

is that the numerical implementation becomes unstable for 〈c†c〉 → 0, since then the

denominator of Ω becomes zero.

There is a straightforward way to extend the approximation to two excitations, making it

exact again while still keeping a large numerical advantage compared to a full simulation.

Instead of the substitution of Eq. 3.2, one has to approximate triple k-sums by

〈d †
k

d †
k ′Od

k ′′〉 ≈
〈d †

k
d †

k ′cc〉〈c†c†
Od

k ′′〉
〈c†c†cc〉

. (3.13)

Using a Schrödinger equation approach, one can straightforwardly derive that this equa-

tion is exact for fully coherent dynamics with maximally two excitations. Due to the

symmetry of the substitution, again decay can be included. This makes this approach

very versatile: It allows the study of non-linear effects since it is not bound by the one-

excitation limit, it also has the flexibility of expectation-value based EOMs, what is

needed e.g. for pseudomode approaches, but it only needs the computational power of

a Schrödinger approach. This idea can be extended to include even higher numbers of

excitations exactly, using the following substitution on the highest level of excitations:

⟨(
n∏

i=1
d †

i

)
Od

k

⟩
≈

⟨(∏n
i=1 d †

i

)
c
⟩⟨(∏n

i=1 c†
)
Od

k

⟩

⟨(∏n
i=1 c†

)(∏n
i=1 c

)⟩ (3.14)

Note that this can only be used exactly if n is the maximal number of excitations in the

system. This shows that for higher excitation numbers one does not gain much – it only

reduces the numerical complexity from n excitations to n−1 excitations. However it may

still make a big enough difference to actually calculate dynamics which would otherwise

be too complicated (e.g. go from a 2-excitation manifold to a 3-excitation manifold with

a large number of external modes).

3.2 Time-delayed operator equations

Input-output theory, as developed by Gardiner and Collett [83] has become a standard

way for the treatment of cascaded dissipative systems [79]. It tackles the issue of dissi-

pation in quantum-mechanical systems on the basis of time-dependent operators (i.e.,

in the “Heisenberg picture”). Since Pyragas-type feedback can be written as a (dissipa-

tive) system-bath interaction, input-output theory is suitable to address systems with

Pyragas-type feedback. To derive the appropriate Langevin equations, let us start at the
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Fig. 3.2.: The textbook case of a cascaded system: The output of system 1 drives system 2 with a
finite delay, while the output of system 2 does not drive system 1.

usual Hamiltonian of a system coupled to a reservoir of external modes via the system

operator c,

H = Hsys +ħ
∫ ∞

−∞

[
G(k)c†d

k
+H.c.

]
dk +ħ

∫ ∞

−∞
ω(k)d †

k
d

k
dk. (3.15)

Setting G(k) = γsin(kL), as usual for Pyragas-type feedback, leads to the Langevin equa-

tion for c [76]

∂t c =− i

ħ
[c, Hsys]−κc +e iω0τc(t −τ)+F (t ). (3.16)

Again, τ = 2L/c0. The derivation, which was presented, e.g., in Ref. [76], is similar to

the derivation for expectation values presented in the last chapter. However, one now

needs to include “noise” terms F (t ), since one cannot put d (†)
k

(t = 0) = 0 on an operator

level. These noise terms are crucial in keeping the commutation relation [c(t ),c†(t )] = 1.

Otherwise, the commutator of c† and c would decay in time. For Pyragas-type feedback,

one gets

F (t ) =
∫ ∞

−∞
G(k)d †

k
(t = 0)e−iωt dk, (3.17)

using ω= c0k. While this F (t ) has some similarities to the definition of an “input field”, it

does not look like the input field defined in Ref. [83] as

din ≡ 1
p

2π

∫ ∞

−∞
e−iωt d †

ω(t = 0)dω. (3.18)

Note that this definition does not have the k-vector-dependent coupling constant G(k)

under the integral. In the original derivation [83], it could be moved outside the integral

in a Markov approximation. To directly adapt input-output formalism to time-delayed

feedback and to find the exact input (and output) operators, let us go a different way:

Let us start from the textbook case [79] of a cascade of two systems, in which the output

of system 1 drives the input of system 2, however not the other way round (cf. Fig. 3.2).

The drive is mediated by a markovian reservoir, i.e., system 1 decays in a markovian

reservoir, and system 2 gets the excitation from a markovian reservoir. Let us describe

the interactions of these systems with the reservoir via the Hamiltonians

HI1 = iħ
∫ ∞

−∞
G1(ω)

(
d †
ωc1 −h.c.

)
dω (3.19)
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and

HI2 = iħ
∫ ∞

−∞
G2(ω)

(
d †
ωc2e iωτe iφ−h.c.

)
dω. (3.20)

c1,2 are the system operators of system 1 and 2 that couple to the reservoir. Note that

system 2 couples to the reservoir with a time delay τ. Let us also allow the signal to acquire

an additional phase φ on its way from system 1 to system 2. Note that the reservoir shall

be markovian, therefore one can set G1,2(ω) =
√

γ1,2

2π for ω≥ 0 with a time-independent

γ1,2. In order to allow only forward propagating signals, and no driving of system 1 by

system 2, one needs to set G1,2(ω) = 0 for ω< 0. Using this, one can derive the differential

equation for any operator X as [79]

∂t X =− i

ħ
[X , Hsys1 +Hsys2]

− [X ,c†
1]

(γ1

2
c1 +

p
γ1 din

)
+

(γ1

2
c†

1 +
p

γ1 d †
in+

)
[X ,c1]

− [X ,c†
2]

(γ2

2
c2 +

p
γ1γ2 c1(t −τ)e iφ+p

γ2 din(t −τ)e iφ
)

+
(γ2

2
c†

2 +
p

γ1γ2 c†
1(t −τ)e iφ+p

γ2 d †
in(t −τ)e iφ

)
[X ,c2] (3.21)

This equation is known as the quantum-mechanical Langevin equation for two cascaded

systems. Starting from the input operator din, one can also define the output operator

dout = din +
p

γ c(t ). (3.22)

This can be understood as a boundary condition [83], stating that “what goes out is what

comes in, plus a signal from the system scaled by the square root of the system-reservoir

coupling”.

Let us now modify this system to match Pyragas control: Instead of the signal of

system 1 driving system 2, it will now drive system 1 again. It will, at this second point

of interaction, however have the delay τ and the additional phase φ. From the point

of system 2, system 1 is not a different system, but “system 2 at time t −τ”. This has

important implications: For two different systems 1 and 2, the time delay and extra phase

may always be transformed away in a linear transformation of the system operators. This

will no longer be possible in case of the Pyragas setup.

One can formulate the Langevin equation for Pyragas-type feedback from Eq. 3.21

by putting c1 = c2 ≡ c. For simplicity, the interaction strength between the system and

the feedback reservoir for the signal going “out” (γ1) shall be the same as the interaction

strength with the delayed signal coming back γ2 = γ1 ≡ γ. Since only the dynamics of one

system are calculated, one has to change Hsys1 +Hsys2 = Hsys.

From this, one can derive the equation of motion for the system operator c as

∂t c(t ) =− i

ħ
[c(t ), Hsys]−γc(t )+e iφγc(t −τ)−p

γ
(
din(t )+e iφdin(t −τ)

)
. (3.23)
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With this, one can express the “noise term” F using input operators:

F (t ) =−pγ
(
din(t )+e iφdin(t −τ)

)
. (3.24)

It can be shown explicitly that these equations are equivalent to a description with a

sin-modulated reservoir density function. Let us therefore add Eqs. 3.19 and 3.20, and

also make the substitution that the system operators c1 and c2 are actually the same

system operator c. This leads to

HI = iħ
∫ ∞

0

√
γ

2π

(
d †
ωc +d †

ωce iωτe iφ−h.c.
)
dω (3.25)

Let us put φ= π, since the reflection at the mirror creates an additional π phase jump.

Let us then use 1−e iωτ = 2i e iωτ/2 sin(ωτ/2) to arrive at

HI =−ħ
∫ ∞

0

√
2γ

π

(
sin(ωτ/2)e iωτ/2d †

ωc +h.c.
)
dω. (3.26)

Defining d̃ †
ω ≡ e iωτ/2d †

ω, which is a unitary transformation, one arrives at

HI =−ħ
∫ ∞

0

√
2γ

π

(
sin(ωτ/2)d̃ †

ωc +h.c.
)
dω. (3.27)

This is the equation of motion of coupling c to a sin-structured bath.

In this approach, time-dependent operator equations are introduced. Time-dependent

operator equations lead to multi-time expectation values, when the expectation value

dynamics are calculated. Since c(t) couples to c(t −τ), the expectation value 〈c†c〉(t)

couples to quantities like 〈c†(t )c(t−τ)〉. For linear systems subject to Pyragas control, this

allows the formulation of expectation value dynamics without the need to calculate the

dynamics of the reservoir. The reason is that, whenever an operator equation of motion

for normally ordered quantities of the form 〈A(∂t c)B〉 is put up, the solution also contains

only operators in normal order. For such operators, the noise terms can be shown to

show no influence on the system dynamics, if the noise is white noise [79]. They can

therefore be excluded from the simulation.

A problem arises as soon as nonlinear system dynamics shall be considered. To derive

the respective equations of motion, one needs commutators such as [c†(t),c(t −τ)] to

bring the system into normal order. These commutators can generally not be calculated

without relying on the noise terms. Without noise, the same-time commutator [c†,c]

would decay in time, which is incorrect. Only the noise terms keep it at 1. This is usually

referred to as the “fluctuation-dissipation theorem”: If dissipation is present (here: a

decay with κ), fluctuations (noise) also have to be present. Whether there is a way to

include the noise terms in a multi-time expectation-value based approach without having

to calculate them explicitly via integrals in k-space is still a matter of current research.
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Fig. 3.3.: The idea behind pseudomode theory: Take a system (S) which is coupled to a struc-
tured reservoir (left, blue reservoir structure function). In case the structure function
can be approximated by a sum of Lorentz functions (red and orange peaks), the reser-
voir can be modeled as a set of lossy harmonic oscillators (HO1 and HO2).

3.3 Pseudomode approach to time-delayed feedback

If a density of states |G(k)|2 ≡ D(k) (which is proportional to the so-called reservoir

structure function or density function, which is why these terms will be used inter-

changably in this section) of a non-markovian reservoir can be written as the superpo-

sition of Lorentz functions, it is possible to substitute the reservoir by a collection of

harmonic oscillators, the so-called pseudomodes [84–87] (cf. Fig. 3.3). Such densities of

states are fully determined by their poles and the respective residues, which can then

be used to calculate the coupling strength and (markovian) decay rates of the pseudo-

modes. Such an approach leads to a tremendous decrease of numerical complexity:

While, when modeling a density of states as a sum over k-modes the resolution ∆k must

be very high to eliminate spurious revivals – they appear on the timescale t ∝ (c0 ·∆k)−1

–, with pseudomodes it may be sufficient to use approximately one pseudomode per

peak. The intrinsic “open-ness” of pseudomodes, in contrast to a simple discretization of

the reservoir, also removes the revivals completely. It is therefore especially suitable for

long-term dynamics.

In addition to this numerical advantage, pseudomodes offer an intuitive way to imple-

ment the discussed non-markovian reservoir in an actual quantum-optical setup, since

pseudomodes can easily be realized through coupled cavities. Pseudomodes provide a

“network realization” of the non-markovian reservoir – independent of how the reservoir

structure was derived in the first place. In case of time-delayed feedback, it may lead to

a realization of Pyragas control without the need of long delay lines. This will certainly

help to create integrated structures that use Pyragas control.

The pseudomode theory is closely related to the theory of quasimodes which are

derived from the Helmholtz equations of the actual reservoir [88, 89] – however for

pseudomodes the approach does not come from a direct modeling of the actual reservoir,

but from an analysis of the reservoir structure function. It is of no importance how the

structure function is created.
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Obviously, for certain reservoir structure functions, a lot of information can be gained

by looking solely at the poles of the function. This is the motivation for using the pseudo-

mode method to study the structure function of time-delayed feedback. Unfortunately,

the function sin2(kL) is not a simple superposition of Lorentz functions, and it also does

not show any poles one could analyze. Therefore, an extension of the pseudomode

method is needed. As we will see, it is possible to approximate sin2(kL) with Lorentz

functions as soon as one allows negative Lorentz peaks.

First the pseudomode method will be introduced for standard examples, as it is done

in literature [86, 87, 90], also discussing negative Lorentz peaks. Then, the applicability

on time-delayed quantum-coherent feedback will be demonstrated.

Let us start again with the usual Hamiltonian of a system (Hsys) coupled to a set of

external modes:

H = Hsys +ħ
∫ ∞

−∞

[
G(k)c†d

k
+H.c.

]
dk +ħ

∫ ∞

−∞
ω(k)d †

k
d

k
dk. (3.28)

It is easy to show that the dynamics do not depend on the full coupling constant G(k), but

only on the reservoir structure function D(k) = |G(k)|2. For this, let us substitute [87]

d
k
=G∗(k)b

k
. (3.29)

The new operators obey the commutation relation

[b
k

,b†
k ′ ] =

1

G∗(k)G(k ′)
[d

k
,d †

k ′ ] =
1

D(k)
δ(k −k ′). (3.30)

The Hamiltonian reads as

H = Hsys +ħ
∫ ∞

−∞

[
D(k)c†b

k
+H.c.

]
dk +ħ

∫ ∞

−∞
ω(k)D(k)b†

k
b

k
dk. (3.31)

It is apparent that the commutation relations as well as the Hamiltonian only depend on

D(k).

The pseudomode method was originally derived for the one-excitation subspace [86],

in which the substitution d → b was done not on the operator level, but on the level

of probability amplitudes of the wave function. There, b is called “reduced probability

amplitude” [87].

In the pseudomode method, the coupling to the reservoir described by D(k) will be

replaced by the coupling to a finite set of lossy bosonic modes (cf. Fig. 3.3), usually one

for each pole in D(k) [86]. Let us now derive the properties of these bosonic modes, given

a reservoir structure function D(k). We shall describe the j -th pseudomode with the

operators ζ(†)
j

, coupling to the system with the coupling strength
√

D j . The pseudomode

has angular frequency ω j and decay rate κ j .
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In a master equation, the pseudomodes can be described by the Hamiltonian

Hpm =ħ
∑

j

[√
D j

(
c†ζ

j
+ζ†

j
c
)
+ω j ζ

†
j
ζ

j

]
(3.32)

and Lindblad terms for the dissipation, coupled to ζ j with strength κ j , leading to the

master equation for the density matrix ρ

d

dt
ρ = i

ħ
[ρ, Hsys +Hpm]+

∑

j

L j ρ. (3.33)

Here, the Lindblad operators are defined as

L j ρ = κ j

(
2ζ

j
ρζ†

j
−ζ†

j
ζ

j
ρ−ρζ†

j
ζ

j

)
. (3.34)

Note that the pseudomodes are not coupled amongst themselves. This is a severe limita-

tion which needs to be lifted for the description of time-delayed Pyragas-type feedback –

however it is sufficient for modeling a spectrum consisting of Lorentz peaks.

On the one-excitation subspace, the equations of motion for probability amplitudes

usually look like

∂t c(t ) = f (c(t ))− i
∑

j

D j ξ j (t )

∂tξ j (t ) =−(κ j + iω j )ξ j (t )− i c(t ) (3.35)

Here, c(t) is the probability amplitude of finding the excitation in the system. The

coupling from the system to the j -th pseudomode is D j . ξ j (t ) is the reduced probability

amplitude of finding the excitation in the j -th pseudomode, coming from a substitution

of ζ j equivalent to Eq. 3.29, using
√

D j instead of G(k). Note that the equation is thus

written such that D j only appears in the equation of c and not of ξ j , by writing it in terms

of reduced probability amplitudes of the reservoir. This is just a notational issue that

will make it easier to include negative Lorentz peaks later on. The system dynamics are

abbreviated by the function f (c(t )), and can be arbitrarily complex – in fact, there might

even be more system variables than just c(t ). Due to the decay, the probability of having

one excitation is decreasing, Eqs. 3.35 are therefore not the full solution of a Schrödinger

equation. One could interpret Eqs. 3.35 as the solutions of a Schrödinger equation after

carrying out a Wigner-Weisskopf approximation for the Markovian reservoirs coupled to

the pseudomodes.
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To connect the pseudomode ansatz (Eq. 3.32) to the original problem (Eq. 3.28), the

parameters D j , ω j , and κ j can be directly read [85] from the structure function, if the

structure function is written as a sum of Lorentz peaks of the form

D(k) = ...+
A j κ

2
j

κ2
j
+

(
ω(k)−ω j

)2 . (3.36)

One finds D j = π
c0

A j κ j when a linear dispersion relation is assumed, ω(k) = c0|k|. Ad-

ditional constant terms in the structure function of the form D(k) = ...+K + ... shall be

included in the system+pseudomodes master equation as a Markovian decay of the

respective system variable with decay constant κ0 = π
c0

K , using the standard Lindblad

approach.

Eq. 3.36 also demonstrates a straightforward way to include negative Lorentz functions:

One just has to put a minus sign in front of any D j appearing in the equations. However

this leads to a non-Hermitian Hamiltonian (Eq. 3.32), which is unphysical. There has

to be a different explanation if negative Lorentz terms are in themselves physical. This

explanation can be provided by a coordinate transform. Let us discuss this on the example

of a simple reservoir structure function:

D(k) = K −
A1κ

2
1

κ2
1 +

(
ω(k)−ω1

)2 . (3.37)

This structure function describes a markovian decay (via K ), which at ω1 has a Lorentz-

type dip. In order to make the situation physical, it is necessary that D(k) > 0 for all k, in

particular for ω(k) =ω1, i.e., in the center of the dip. This condition leads to

K ≥ A1. (3.38)

For K = A1, the reservoir should not introduce any decay in the long-time limit to a system

oscillating with ω1. Translated into pseudomodes, this reservoir creates a markovian de-

cay with decay rate κ0 = π
c0

K and additionally a coupling to a pseudomode with frequency

ω1, decay rate κ1, and (unphysical) coupling constant to the system −D1 =− π
c0

A1κ1. Sup-

pose now a harmonic oscillator with angular frequency ω0 is coupled to this reservoir.

We restrict ourselves to the one-excitation limit and describe the probability amplitude

of the one-excitation state of this harmonic oscillator with c. This leads to the following

differential equations:

∂t c(t ) =−(κ0 + iω0)c(t )+ i
π

c0
A1κ1ξ1(t )

∂tξ1(t ) =−(κ1 + iω1)ξ1(t )− i c(t ) (3.39)
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Note the different signs in the coupling from c to ξ1 compared to the coupling from ξ1 to

c. To get physical dynamics, let us now substitute

ξ̃1 :=−i

√
π

c0
κ1 A1 ξ1 =−i

√
D1 ξ1. (3.40)

This gives

∂t c(t ) =−(κ0 + iω0)c(t )−
√

D1 ξ̃1(t )

∂t ξ̃1(t ) =−(κ1 + iω1)ξ̃1(t )−
√

D1 c(t ) (3.41)

Note that the pseudomode leads to a term that looks like a collective decay. This becomes

even clearer after re-writing Eq. 3.41 as

∂t c(t ) =−
(
(κ0 −

√
D1 )+ iω0

)
c(t )−

√
D1

(
c(t )+ ξ̃1(t )

)

∂t ξ̃1(t ) =−
(
(κ1 −

√
D1 )+ iω1

)
ξ̃1(t )−

√
D1

(
c(t )+ ξ̃1(t )

)
(3.42)

These equations describe a system as well as a pseudomode, which show individual

decays as well as a decay into a common reservoir. The individual decay rates are

κ0 −
p

D1 and κ1 −
p

D1 , respectively, while the decay rate into the collective reservoir is
p

D1 . This choice of substitutions leads to a physical scenario as long as κ0,1 ≥
p

D1 . For

other values, there also exist other physical scenarios derivable through substitutions.

Necessary condition is that the real part of the eigenvalues of the matrix relating ∂t (c, {ξ j })

to (c, {ξ j }) is zero or negative, which means that there is no mode that gains energy

through dissipation. In above case, using Eq. 3.41, this leads to the equation

D1 =
π

c0
κ1 A1 ≤ κ0κ1 =

π

c0
Kκ1. (3.43)

From this, we recover Eq. 3.38, K ≥ A1. All this demonstrates that a negative Lorentzian

peak in the reservoir density function D(k) can be interpreted in the pseudomode for-

malism as a pseudomode dissipatively coupled to the system via a common reservoir (cf.

Fig. 3.4).

One can also derive the pseudomode “network” of a density consisting of a sharp

Lorentzian centered within a broad Lorentzian peak [90]. The result is that the system

and a “low-loss” pseudomode are both connected to a common “high-loss” pseudomode.

Interestingly, the properties of these effective pseudomodes are not the same as the

properties of the sharp and broad peak, so one cannot straightforwardly derive the

effective network by reading their parameters. However, the structure is the same as

above: Peaks are coherently coupled harmonic oscillators, dips are dissipatively coupled

harmonic oscillators.

These examples show that negative Lorentz dips can be interpreted physically within

the pseudomode formalism if common reservoirs and coupling between pseudomodes
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Fig. 3.4.: Within the pseudomode formalism, a dip in the density function can be interpreted as
a harmonic oscillator coupled dissipatively to the system via a common Markovian
reservoir. The system as well as this pseudomode may also have further Markovian
decay channels.

are allowed. For a numerical treatment however, such an explanation is not needed. One

can simply add negative Lorentz peaks via a minus sign in front of D j and make sure the

final density of states stays positive.

Let us now transfer the method to time-delayed Pyragas-like feedback. For this, let us

model the density function D(k) = γ2 sin2(kL) (cf. chapter 2.3).

One can write sin2(x) as an infinite sum of infinitely wide Lorentz peaks:

sin2(x) = lim
a→∞

[

1

2
− 1

4
�

a csch
(

2
�

a
)

∞
∑

n=−∞

(−1)n

1+ 1
a

(

x − nπ

2

)2

]

(3.44)

We see that
�

a is proportional to the Lorentz peak width. Furthermore, as one could

expect, negative and positive Lorentz functions alternate. Finally, there is an offset of 1/2

to make the whole function positive – this is a first hint that a Markovian decay channel

directly connected to the system will be needed.

First, it looks like we did not gain anything. Even worse, one infinite sum (cf. chap-

ter 2.3) was replaced by two infinities. However this also offers a way to approximate: One

only needs to cover the sin2(kL) function over the frequency range in which the system

shows interesting dynamics. The markovian initial dynamics of Pyragas control (for times

t < τ) is even exactly included, and only one Lorentz peak is needed per “sinus bump”

or “dip”. As an approximation, one therefore will usually only need a few to a few dozen

Lorentz peaks to approximate Pyragas-type feedback sufficiently. In that case, the infinite

width also needs to be replaced by a finite width. In practice, widths of the order of π/2

will be used, because they lead to good approximations in the desired frequency range,

tested by numerical simulations (see below).
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Fig. 3.5.: Approximation of a sin2-modulated density of states by a set of Lorentzians centered
around ω0 = 1, as discussed in the text. Blue: sin2(ω), red (green): Approximation
using 33 (13) Lorentz functions around the central frequency ω0. Here, A = 0.908 was
used (cf. Eq. 3.45) which is slightly too low for the 13 mode case and therefore makes
the oscillation not reach 0. Such a deviation leads to an additional decay compared to
the “exact” case of a sin2 modulation.

As an example, let us calculate the mode structure for Pyragas-type time-delayed

feedback around ω0 = 1 (in units of 1/time, cf. Fig. 3.5). The approximate density of states

which shall approximate sin2(ωL/c) is written as

D(ω) = 1

2
+ A

N∑

n=0

(−1)n

[
(ω−ω0) L

c0
−

(
n − N

2

)
π
2

]2
+1

. (3.45)

Let us choose two different mirror distances, which lead to two opposite phases of

the feedback signal. For “positive feedback” the mirror distance L is chosen such that
ω0L
c0

= 10000 · 2π, leading to exp(2ω0L/c0) = +1. For “negative feedback”, let us set L

such that ω0L
c0

= 10000.25 · 2π, leading to exp(2ω0L/c0) = −1. The number of Lorentz

peaks, (N + 1) has to be odd with one more positive than negative peak in order to

keep D(ω) positive. For positive feedback, N has to be an integer multiple of 4. A is a

scaling factor, which is approximately 1. It has to be chosen appropriately for a given

number of Lorentz peaks such that the density function is never below zero. For feedback-

induced stabilization, it is crucial that A is chosen such that the dip in the sinus function

around the frequency that is to be stabilized is actually very close to zero – otherwise

an additional decay is visible. In Fig. 3.5, the density function for 33 and 13 modes is

plotted and compared to the sin2 function. “Overshoot” effects are present at the end of

the modulated region, where it transforms into a flat density of states. In the center, the

sin2 function is well approximated.
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Fig. 3.6.: Comparison of the photon density dynamics calculated by a k-sum and calculated
via 33 pseudomodes. The system consists of a cavity containing a χ(3) medium and
subject to time-delayed Pyragas-type feedback with delay time τ (see inset). There
is excellent agreement between the two results. For short times, the pseudomode
approach even better reproduces the expected exponential decay, while the k-sum
over-estimates the photon density.

From Eq. 3.45 we find that the decay rate of the individual pseudomodes is c0
L . This

is actually an approximate value: In the full formula to express sin2(x) (cf. Eq. 3.44)

this value is taken in its limit to infinity. However for a finite number of pseudomodes,

above value leads to a very good agreement, as it is visible in Fig. 3.5. However, there is

some flexibility in this value: Doubling it, and correcting the peak heights by choosing a

different A, does not change the mode structure much. The coupling of the pseudomodes

is found to be A π
L .

At this point it must be mentioned that a pseudomode approach contains actually

two steps: First, the modeling of the density function via Lorentz functions, and second

the representation of Lorentz functions by harmonic oscillators. The first step contains

– especially in the case of Pyragas-type feedback – large approximations, since one has

to deal with the infinities of Eq. 3.44. The second step demands that the pseudomode

method in itself is valid. There does not seem to be an explicit proof of the pseudomode

theory in literature for arbitrary systems. The method will break down as soon as the

frequency of the system is no longer much larger than any other rate of the system,

since at that point the infinite tails of Lorentz peaks will create unphysical results when

they reach into the “negative frequency realm”. However it is remarkable that in all

simulations performed for this thesis deviations from the “full external mode simulation”

ansatz could always be attributed to imperfect approximations of the density function

by Lorentz peaks or inaccuracies of the full simulation itself (especially for small times).

A breakdown of the pseudomode theory itself was never observed, even when multiple

excitations and nonlinearities were included.

It is necessary to test the validity of the pseudomode method for time-delayed feedback

numerically, in order to evaluate its usefulness for time-delayed feedback. Since it shall

be applied to more complex systems, it needs to be checked for a nonlinear system with

more than one excitation. The system chosen for this task will be discussed in detail
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later in Chapter 5: It is a single mode cavity including a Kerr nonlinearity coupled to

time-delayed feedback. The initial state of the cavity mode is a two-photon Fock state.

For a certain choice of the delay τ, a stabilization of the one-photon Fock state within the

cavity is expected, as presented in section 5.1.

In Fig. 3.6, the dynamics of the photon density of such a system are plotted, calculated

by including the “k-sum”, i.e., directly modeling the external feedback reservoir, and in

comparison by using the pseudomode method with 33 modes. The number of external

modes for the full calculation is 4000 with a mode distance of 10−7 fs−1. The coupling γ

to the reservoir (cf. Eq. 2.38) is 0.01
p

2 fs−1.

There is an excellent agreement for long times between the two methods, in particular

the pseudomode approach reproduces the stabilization. This is interesting in so far that

there are actually lossy modes coupled to the system in the pseudomode approach – in

particular, the system experiences markovian decay through the 1/2-term in Eq. 3.45.

The negative Lorentz peaks however counterbalance these processes. The stabilization

crucially depends on the choice of A. If A is chosen slightly smaller, so that the modulation

of the density function does not reach 0, a slow decay in the pseudomode-modeled

dynamics is present.

It is remarkable that for short time scales, the pseudomode approach even seems to

better recreate the expected exponential decay of the photon density. The k-sum ansatz

overestimates the photon density due to the finite bandwidth of the covered frequency

range. In the pseudomode approach, the built-in markovian decay circumvents this

problem, since the frequency range is in fact infinite.

The performance of the pseudomode method was also checked on a Jaynes-Cummings

system. For this, the χ(3)-medium was replaced by a two-level system which coupled to

the cavity mode with a coupling constant M = 5.0·10−5 fs−1. Further details of this system

will be discussed later on in section 5.2. The photon density dynamics is plotted in Fig. 3.7.

The initial state is again a 2-photon Fock state of the cavity mode. The pseudomode

calculations are done with 21 pseudomodes. Again there is excellent agreement, for the

overall dynamics as well as for the single Rabi oscillations.

Even when using pseudomodes, it is advisable to not use more modes than needed

to keep the numerical load low. To check the dependence of feedback dynamics on the

number of pseudomodes, the dynamics of above system without any nonlinearity was

calculated with different numbers of pseudomodes. In those simulations, the coupling to

the reservoir was increased by a factor of 4 in order to see stronger feedback effects. The

results are displayed in Fig. 3.8 for 11, 23, 31, and 43 pseudomodes. Only small deviations

are present even down to the 11 mode case. In the inset, a zoom into the region where

the feedback sets in is presented. In theory, this should be a infinitely sharp kink. For 11
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Fig. 3.7.: Dynamics of a Jaynes-Cummings model (i.e., a two-level system coupled to a cavity
mode, cf. inset) subject to time-delayed feedback. The plot demonstrates how well
the dynamics (blue curve) can be approximated with pseudomodes (red curve).

modes there is a quite strong deviation, but the more modes one takes the sharper it gets.

However there does not seem to be much gain by extending the system beyond 23 modes.

The reason for this is that the outer pseudomodes are already too off-resonant from the

cavity mode, so that they barely get excited.

Besides the numerical advantages, pseudomodes could also point towards a network

representation of Pyragas control: In simple systems, as it was presented above, on

can interpret positive and negative Lorentz peaks as a network of coupled harmonic

oscillators. In the delayed feedback case, such an interpretation is not straightforward,

since a large number of modes has to be treated and the necessary transformation

becomes very complex. This is clearly an interesting topic of future research. It should be

expected that such a representation exists as long as the mode structure is physical. If

such a network representation is found, it will pave the way for integration of Pyragas

control without the need of long delay lines, since it would only require the local coupling

of several harmonic oscillator modes (e.g., provided by photonic cavities) to the system.

In analogy to the discussed simple cases, here it shall be conjectured that the network

structure will consist of (N /2+1) harmonic oscillators coupled to the system, as well as a

markovian reservoir coupled to the system. Additionally, there should be N /2 harmonic

oscillators coupled to the system dissipatively by sharing this network as a common

dissipation channel.

To summarize the benefits and drawbacks of the pseudomode method when it is

applied to Pyragas-like time-delayed feedback, we found the following benefits:
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Fig. 3.8.: Comparison of results calculated with different numbers of pseudomodes (11, 23, 31,
and 43). Shown is the dynamics of a cavity mode subject to Pyragas-type feedback.
The initial state is a 2-photon Fock state. The simulations give almost identical results.
The inset shows a zoom to the region where the feedback first sets in. The higher
number of pseudomodes better recreates the sharp kink, however it does not make a
strong difference for mode numbers larger than 23.
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1. Pseudomodes drastically reduce the number of modes needed,

2. pseudomodes show a real equilibration of the system in the long term, without the

appearance of spurious revivals,

3. pseudomodes reproduce the initial markovian decay better than the direct k-sum

calculation,

4. pseudomodes do not increase the numerical load if the calculation runs for a longer

time span, in contrast to other approaches [77],

5. pseudomodes may point towards a “network-like” implementation of Pyragas

control without the need for long delay lines.

However, it also has its drawbacks:

1. The accuracy of the calculation is hard to estimate beforehand, and strongly de-

pends on parameters such as A and κ,

2. still a quite large number of modes is needed, which limits the number of excita-

tions that can be calculated,

3. dissipation is crucial, which rules out Schrödinger equation based calculations –

however stochastic Schrödinger equation solutions might be possible,

4. there is no formal proof of the validity of the approach.

3.4 Further methods

In this section methods will be discussed which were studied during the preparation

of this thesis, which however proved to be not very successful in improving the modeling

of time-delayed feedback.

3.4.1 Time-dependent Lindblad operators

It has been proposed by An et al. [66], that non-markovian effects can be included by a

time-dependent, and in some cases negative decay rate (modeled via Lindblad operators),

in tandem with a time-dependent phase shift. As it was shown in section 3.1, within the

one-excitation limit it is possible to construct this time-dependence by calculating Ω.

However, this approach only works for linear systems or in the one-excitation limit. For

non-linear systems, the non-markovian reservoir might, e.g., affect 〈c†c†cc〉 differently

than 〈c†c〉2, e.g. decreasing the photon intensity but increasing the 〈c†c†cc〉 term. This

is exactly what will be presented in the discussion of the behavior of a system with χ(3)-

nonlinearity under time-delayed feedback (section 5.1). Lindblad terms, however, will

affect both of these terms in the same manner. As we have seen in section 3.1, it might

however be a first approximation to analyze the dynamics.
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3.4.2 Equations of motion for the full k-sum

Instead of calculating the dynamics of each of the external modes, one could also

calculate the dynamics only of the coherent sum as it appears in the equations of motion

for the system parameters. This will lead to an infinite hierarchy of equations, which has

to be cut at a certain order. This shall now be discussed using the example of a cavity

with angular frequency ω0 coupled to a structured bath. It is described by the Interaction

Hamiltonian

H =ħc†
∑

k

G(k)d
k

ei (ω0−ωk )t +H.c.. (3.46)

Let us define

Kn ≡
∑

k

G(k)
(
i (ω0 −ωk )

)n
d

k
ei (ω0−ωk )t (3.47)

as well as

Γn ≡
∑

k

|G(k)|2
(
i (ω0 −ωk )

)n . (3.48)

One can then rewrite

H =ħc†K0 +ħK †
0 c. (3.49)

One finds that the newly defined Kn operators commute in the following way:

[Kn ,K †
m] = (−1)m

Γm+n . (3.50)

Using this, one can now calculate the infinite hierarchy of equations of motion for a single

bosonic mode coupled to a reservoir of modes:

∂t 〈c†c〉 = 2Im
(
〈c†K0 〉

)
(3.51)

∂t 〈c†Kn〉 =−iΓn〈c†c〉+ i 〈K †
0 Kn〉+〈c†Kn+1〉 (3.52)

∂t 〈K †
mKn〉 =−iΓn〈K †

mc〉+ i (−1)m
Γm〈c†Kn〉+〈K †

m+1Kn〉+〈K †
mKn+1〉. (3.53)

The equations of motions are now developed in (ω0−ωk ), which means that it is necessary

to restrict the bath to a finite frequency window in order to achieve convergence. The

whole information on the reservoir structure is now contained in the factors Γn . They

have to be calculated very precisely. A numerical implementation showed that the

whole approach is numerically very unstable. A switch from double to long double

precision in the C code almost doubled the time until the numerics gave “unphysical”

values. There was also a strong dependence of the stability on the exactness of the

integration when calculating Γn . Using a smaller frequency range led to greater stability,

however also highly unprecise results. This is expectable due to the factors of (ω0 −ωk )n

appearing in Kn and Γn . While it was not possible to make the method outperform a

direct integration of the k-sums, the fact that it is still bounded by numerical accuracy

rather than by a breakdown of a “physical” approximation gives hope that there might be
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a more sophisticated way to express Γn . This might lead to higher stability and make the

method useful.
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4Control of modes in a quantum

network by time-delayed feedback

Parts of the results discussed in this chapter have been published in Physical Review A [91].

Parts of this chapter are also submitted for publication as a conference paper for the SPIE

Photonics West 2016 conference.

In this chapter, it is proposed to use time-delayed feedback on nodes of a quantum

network is to selectively stabilize certain network states. Since these states can be highly

non-local and entangled, this gives the ability to create an entangled state in the network,

even starting from a fully separable initial state.

Quantum networks, as any network, consist of a number of nodes coupled together via

links. In contrast to classical networks, the nodes are objects which show highly quantum-

mechanical behavior and therefore allow for non-classical correlations between the

nodes. The interconnects also need to be able to carry quantum information. A very

suitable carrier is the photon [92]. A possible realization of a quantum network would be

photonic cavities, possibly containing single atoms [92], coupled via waveguides, optical

fibers [16, 93], or, for close nodes, directly via photon tunneling.

In the presented case, the coherent evolution of the quantum network is described

using a Hamiltonian of the form

Ĥ =
∑

i

[
Ĥi (ĉ(†)

i
)+

∑

j ̸=i

Mi j ĉ†
i

ĉ
j

]
. (4.1)

Ĥi is a (sub-)Hamiltonian which describes the dynamics at node i – examples would

be the Hamiltonian of a cavity or a Jaynes-Cummings model. The excitation of node

i is described by the ladder operators ĉ(†)
i

. The coupling is done directly via the cou-

pling matrix Mi j , which models photon tunneling, but can also be realized effectively

via fiber coupling [94]. For the Hamiltonian to be Hermitian, the coupling matrix M

must obey Mi j = M∗
j i

. M gives the network topology, of which there are many different

types [95]. Even for the most simple topology, next-neighbor coupling, complex dynamics

can be observed, e.g. a Mott-insulator – superfluid transition [96] in case of coupled

Jaynes-Cummings systems. Networks with only next-neighbor coupling are often called

“X -Hubbard models”, where X characterizes the node type, e.g. “Jaynes-Cummings”.
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A more complex network geometry, the Appolonian network, has also recently been

investigated [97].

Hamiltonians of the type described in Eq. 4.1 usually have complex eigenstates with

delocalized excitation distributions. The aim of the method proposed in this chapter

is to single out one of these eigenstates (or “eigenmodes”) by coupling one or several

nodes to structured reservoirs that provide time-delayed feedback. The idea is that the

different eigenmodes react differently to the additional feedback loop – in the best case

scenario, one of the modes is fully unaffected while all the others experience a strong

decay channel. This dynamics then automatically drives the network in a state mainly

consisting of this unaffected mode. The subspace spanned by the unaffected modes is

called a “decoherence-free subspace”. It is well-known that decoherence-free subspaces

arise when several nodes are coupled to the same reservoir [98–100], in which case decay

paths interfere destructively. Decoherence-free subspaces are used for the creation of

entanglement in bipartite systems [101, 102].

A problem with the creation of decoherence-free subspaces via common reservoirs

is that one has to make sure the two decay paths can actually interfere. This imposes

profound limitations on the quantum nodes: They must not be too far away from each

other, and they must decay in the same way into the reservoir. For example, the emission

of photons of orthogonal polarization would not create a decoherence-free subspace.

These limitations may be met by close, identical atoms in an optical lattice, for which

the terms “sub-radiant state” (a state with suppressed decay due to the coupling to

a common reservoir) and “super-radiant state” (a state with enhanced decay into a

common reservoir) are typically used. Even there, the problem arises that the sub-radiant

state is usually pre-defined by symmetry conditions.

It would therefore be desirable to have a mechanism to create decoherence-free sub-

spaces by only coupling network nodes to individual reservoirs. In order to address

the different modes, one cannot utilize their symmetry to differentiate between them:

symmetry is not defined on the single node level, but as a property of the whole mode.

Instead, one can use the different frequencies that arise due to the coupling with M . This

however means that the coupling to the reservoir has to be frequency-dependent: the

reservoir needs to be non-Markovian.

Non-Markovian reservoirs are well-known in literature for their effects on entangle-

ment. They can lead to faster-than-exponential entanglement decay (“sudden death”),

but also “revivals” [58, 63–65]. They can also be used to stabilize [62] or create [103, 104]

entanglement. As time-delayed feedback can be seen as the coupling to a highly control-

lable non-Markovian reservoir, strong effects on entanglement can be assumed. In the

following it will be shown that one can tune the reservoir, using the delay time τ, to single

out the “entangled network mode of our choice” and thereby create entanglement.
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Fig. 4.1.: The simplest realization of a network, discussed first, consisting of two coupled nodes
(coupling constant M) that are both subject to time-delayed feedback. (a): Schematic
drawing of the full system. For both nodes, the time-delayed feedback will have the
same delay time τ and strength K . (b): A possible realization, using coupled cavities.
Each cavity is coupled to a waveguide that that provides time-delayed feedback. One
end of the waveguide is at distance L which leads to a feedback delay time τ= 2L/c0.

4.1 Simple two-node network

For simplicity, the analysis will start by discussing the simplest of all possible networks,

consisting of two coupled nodes (see Fig. 4.1). The nodes will be modeled as harmonic os-

cillators, realizable e.g. via single-mode cavities. Let us stick to the subspace of maximally

one excitation quantum, which enables us later to discuss the system using time-delayed

differential equations for the probability amplitudes. Due to that constraint, there is no

difference between fermionic and bosonic nodes, so that one can also describe networks

consisting of quantum dots, atoms [68], or superconducting artificial atoms [73]. The

mechanism described here is therefore quite general.

For this System, the node Hamiltonians (cf. Eq. 4.1) simply read as

Ĥi =ħω
i
ĉ†

i
ĉ

i
, i = 1,2. (4.2)

Let us further simplify the system by putting ω1 = ω2 := ω0. The coupling between

the two nodes will be mediated by M12 = M21 := M . Both nodes couple separately to

reservoirs that provide time-delayed feedback. A possible experimental setup is depicted

in Fig. 4.1(b): The two coupled cavities could each be connected to a waveguide, that

has one end at a distance L which determines the feedback delay time. The coupling

strength K and the feedback delay time τ shall be equal for both nodes. Solving the

Schrödinger equation with a state |ψ〉, one can derive time-delayed differential equations

for the probability amplitudes c1 := 〈10|ψ〉 and c2 := 〈01|ψ〉. Here, the states |10〉 (|01〉)
describe the situation in which one photon is in the left (right) cavity and none is in the

right (left). The differential equations read as (cf. section 2.3):

d

dt
c1(t ) =−iω0c1(t )− i Mc2(t )−K c1(t )+K c1(t −τ)

d

dt
c2(t ) =−iω0c2(t )− i Mc1(t )−K c2(t )+K c2(t −τ). (4.3)
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This set of differential equations can easily be decoupled by switching to the states |±〉 :=
(|10〉± |01〉)/

p
2 . In contrast to the original states, these states |±〉 show entanglement

between the nodes. They also oscillate at different angular frequencies ω0 ±M :=ω±,

therefore time-delayed feedback will have a different effect on the two states. In the

following the abbreviation c± = 〈±|ψ〉 will be used.

In particular, one can use this frequency difference to give the two entangled states

different stability. If τ is chosen such that, e.g., ω+τ is an integer multiple of 2π, the

oscillation of c+ would not see any influence of the decay and feedback terms, since they

cancel each other due to the fulfillment of the Pyragas condition (cf. Eq. 2.36). After an

initial equilibration period, the probability to be in |+〉 would then no longer decrease. In

contrast, for c−, the oscillation does not fulfill the Pyragas condition, and the probability

to be in |−〉 will decay to zero in the long term. Depending on the value of ω−τ, this decay

can even be faster than without feedback. The exact decay rate will be derived below.

All of this provides the possibility to create entanglement from a disentangled state:

The two separable states |10〉 and |01〉 can be written as a linear combination of |+〉 and

|−〉. If only the |+〉-subspace is stabilized, this component will be singled out. The final

entanglement can then be calculated via the concurrence (see Eq. 2.21). In the presented

case, since we are restricted to the one- and zero-excitation space, the concurrence is

simply given by

C = 2|c∗1 c2 |. (4.4)

From this, an upper bound on the achievable entanglement can be derived: The best

one can do is separate one of the states |+〉 or |−〉 with negligible loss for that state. Since

the separable states consist of equal amounts of |+〉 and |−〉 one can maximally reach an

entanglement of only 50% when starting from a fully separable state.

One can calculate the exact value of the entanglement as well as the timescale needed

to reach this value using Laplace transforms. As an example, take the case that τ is chosen

such that the |+〉-state is stabilized, while the probability to be in the |−〉-state will decay

to 0 in the long-term limit. The derivation for the opposite case is analogous. Defining

c+ := 〈+|ψ〉 and c− := 〈−|ψ〉, let us rewrite Eq. 4.4 as

C = |c∗+c+− c∗−c−+ c∗−c+− c∗+c−|. (4.5)

Given that one will end up in a state with c− = 0, the concurrence in the long-term limit is

then simply C = c∗+c+. For further analysis, it is necessary to switch to Laplace space. Let

us therefore rewrite the differential equation for c±,

d

dt
c±(t ) =−iω0c±(t )∓ i Mc±(t )−K c±(t )+K c±(t −τ), (4.6)
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using

c̃±(s) =
∫ ∞

0
dt c±(t )e−st (4.7)

into

sc̃± = c±(t = 0)+
(
− i (ω0 ±M)−K +K e−sτ

)
c̃±. (4.8)

Substituting s′ = s − i (ω0 +M), one can solve Eq. 4.8 for c̃+ to get

c̃+ = c+(t = 0)

s′+K −K exp(−s′τ+ i (ω0 +M)τ)
. (4.9)

To fulfill the Pyragas condition for c+, it is necessary to choose (ω0 +M)τ to be an integer

multiple of 2π, which then simplifies the equation to

c̃+ = c+(t = 0)

s′+K −K exp(−s′τ)
. (4.10)

The dynamics of c+ in the long term limit are given by the residue of the pole of c̃+, which

lies at s′ = 0. The residue can be calculated as

lim
t→∞

c+(t ) = lim
s′→0

s′
c+(t = 0)

s′+K −K exp(−s′τ)
= c+(t = 0)

1+Kτ
(4.11)

which finally leads us to the equilibrium concurrence of

Ct→∞ =
c∗+c+(t = 0)

(1+Kτ)2
(4.12)

For a fully separable initial state, c∗+c+(t = 0) = 1/2, one will reach a concurrence of
1

2(1+Kτ)2 . We re-discover the previously discussed value of Ct→∞ ≤ 0.5 and it also seems

like the coupling to the feedback bath K as well as the delay time τ should be kept

as small as possible. This seems counter-intuitive, since that would mean that non-

Markovianity as well as the coupling to baths itself were rather detrimental to the creation

of entanglement. However, in the limit of K → 0, one would not have any equilibration of

the system, and would see infinite oscillations between the states |10〉 and |01〉. On the

other hand, in the limit τ→ 0, the terms −K c1,2(t ) and +K c1,2(t −τ) in Eq. 4.3 would fully

cancel, and one would also get a dissipation-less system which would never equilibrate.

This demonstrates that some non-Markovian dissipation must be present. To find the

optimal value, one needs to analyze the dynamics of the unstable component – in this

example, c−. The faster this component decays, the faster a stable (partly) entangled

steady state is reached. Let us use Eq. 4.8 to get the dynamics of c−, however this time

substitute s′ = s − i (ω0 −M) to get

c̃− = c−(t = 0)

s′+K −K exp(−s′τ+ i (ω0 −M)τ)
. (4.13)

4.1 Simple two-node network 53



Scaled delay time Kτ

S
ca

le
d
 L

y
ap

u
n
o
v
 e

x
p
o
n
en

t
λ/

K

0.0 0.2 0.4 0.6 0.8 1.0

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Fig. 4.2.: A plot of Eq. 4.17 for strong coupling M = 20K . A series of dips can be seen. At the
largest dip of λ/K , there is a fast separation between the two components described
by c− and c+, which is needed for efficient entanglement generation and stabilization.
When λ/K = 0, one will never see stable entanglement, since both components will be
finally stabilized. This will lead to oscillations of the excitation probability between
the two network nodes, analogous to two coupled undamped harmonic oscillators.
(This figure is already published in Ref.[91], Copyright 2015 American Physical Society, used with permission)

Let us eliminate ω0 using the Pyragas condition exp(i (ω0 +M)τ) = 1 to get

c̃− = c−(t = 0)

s′+K −K exp(−s′τ−2i Mτ)
. (4.14)

For the long-time dynamics, the poles of c̃− are needed. The decay rate of c− is then

simply given by the real part of the pole. The poles are calculated via

s′+K −K exp(−s′τ−2i Mτ) = 0. (4.15)

This equation can be solved using the Lambert-W function [22]

s′τ=W

(
KτeKτ−2i Mτ

)
−Kτ. (4.16)

One can therefore formulate a scaled decay constant λ/K of the unstable component,

using the real part of s′ at the pole,

λ

K
= 1

Kτ
Re

(
W

(
KτeKτ−2i Mτ

)
−Kτ

)
. (4.17)

Apparently, the achievable decay constant – which is also the Lyapunov exponent of the

entanglement stabilization – does not depend on τ itself, but rather on the dimensionless

values Kτ and Mτ. In Fig. 4.2, the scaled Lyapunov exponent for strong coupling M = 20K

is plotted. A series of oscillations can be found: For certain values, λ/K reaches 0. At

these values, both components, c+ and c−, will eventually be stabilized. When starting in

a superposition, such as |ψ〉 = |10〉, the system will then show oscillations between the

state where the excitation is in the first node, and the state where the excitation is in the
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Fig. 4.3.: Concurrence dynamics. Feedback delay is chosen such that the anti-symmetric com-
ponent fulfills the Pyragas condition. (a) Without feedback (orange), the concurrence
decreases in a set of oscillations, while with feedback (purple), it gets stabilized to a
finite value. In both simulations, the initial state was fully separable. The dotted black
line marks the feedback delay time. (b) Concurrence dynamics, depending on initial
state. Purple: Initial state is |10〉 (cf sub-figure a). Orange: Initially antisymmetric
state |−〉, which oscillates with a frequency that does not fulfill the Pyragas condition
and decays even faster after τ. Green: Initial state is the symmetric state |+〉, which is
stabilized shortly after τ since its frequency fulfills the Pyragas condition.
(A similar figure is already published in Ref.[91], Copyright 2015 American Physical Society, used with permission)

second node, in direct analogy to two coupled undamped oscillators. One will however

never reach a stable equilibrium. On the other hand, for large negative values of λ/K , one

can achieve a strong decay of the unstable component c−. This leads to a fast separation

between the c− and c+ components, and therefore a fast creation of entanglement. This

demonstrates that a finite value of τ is needed for such a separation, and in fact, it might

be advisable to chose the value of Kτ slightly above 0.2 to work at the second negative

peak. However, this has to be balanced with the achievable entanglement (cf. Eq. 4.12).

Let us will now continue to examine this system using numerical simulations, us-

ing ω0 = 1fs−1, M = 10ns−1, and K = 0.52ns−1. Since M ≫ K , these values are in the

region of strong coupling between the network nodes. Strong coupling remains an

experimental challenge, however it was achieved e.g. in coupled photonic crystal cav-

ities [105, 106] or microdisc resonators [107]. The time-delayed feedback is simulated

by including the full dynamics of 2000 external modes (a non-Markovian reservoir) for

each node with a sine-modulated coupling constant (cf. section 2.3). Let us choose

τ= 4π ·104/(ω0 +M) ≈ 126ps, which makes the angular frequency of the symmetric

mode |+〉 fulfill the Pyragas condition.

The concurrence dynamics are shown in Fig. 4.3. In Fig. 4.3(a), the decay dynamics

with and without feedback terms present are compared. For the simulations without

feedback, the sine modulation of the node-reservoir coupling was removed and the

coupling strength was adjusted by a factor of
p

2 such that the dynamics are identical up

to t = τ [76].
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Fig. 4.4.: Density matrix component dynamics with time-delayed feedback. The initial density
matrix ρ(0) is given by Eq. 4.18. The diagonal element ρ10,10 shows an exponential
decay that finally stabilizes at a finite value. In contrast, the off-diagonal element
ρ10,01 stays exactly 0 until the feedback sets in. Afterwards, it rises strongly and finally
equilibrates at about 0.2.
(This figure is already published in Ref.[91], Copyright 2015 American Physical Society, used with permission)

The initial state of the system is the fully separable state |10〉. Strong oscillations

in the concurrence are present in both plots. However, without feedback, the overall

concurrence decays to zero, while with feedback, it gets stabilized at a value slightly above

0.4. In the equilibrium, it does not show oscillations any more. This demonstrates a

creation and stabilization of entanglement by time-delayed feedback.

Fig. 4.3(b) compares the concurrence dynamics for different initial states. The purple

curve is the same as in Fig. 4.3(a) and displays the dynamics starting from |10〉. The green,

dashed line shows the dynamics starting from |+〉, which shows a quick stabilization after

the feedback delay time τ. Since the frequency of |+〉 fulfills the Pyragas condition, this

can be expected. On the other hand, starting from |−〉 will not lead to any non-zero stable

entanglement in the long run: The feedback even leads to a faster decay. The different

effects that time-delayed feedback has on the two states is clearly observable, which is

the reason why we can get entanglement creation.

A close look at the purple curves in Fig. 4.3 reveals that there is already a peak in the

concurrence for t < τ, which can not be attributed to time-delayed feedback. This peak

solely comes from the coupling of the two nodes, which leads to a coherent exchange of

the excitation. The full potential of time-delayed feedback is visible when the initial state

is not a pure state, but a mixture of |10〉 and |01〉. For a 1 : 1 mixture, the initial density

matrix of our system is given by

ρ(t = 0) = 1

2
|10〉〈10|+ 1

2
|01〉〈01|. (4.18)

The concurrence depends on the off-diagonal elements such as ρ10,01 = 〈10|ρ|01〉, and in

the highly symmetric case discussed here it is given by C = 2|ρ10,01|.
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Fig. 4.5.: Many-node network with oscillators of different frequency, some of them subject to
time-delayed feedback. In such a system, one can also use the feedback delay time to
single out a certain network mode.
(This figure is already published in Ref.[91], Copyright 2015 American Physical Society, used with permission)

The dynamics of the density matrix elements ρ10,10 and ρ10,01 are shown in Fig. 4.4.

The diagonal element shows an exponential decay to a finite value of slightly above 0.2,

and is not affected visibly by the onset of time-delayed feedback. The behavior of the

off-diagonal element is totally different: It stays exactly zero up to the feedback delay time,

and then abruptly rises up and finally equilibrates at the same level as ρ10,10. Since the

concurrence only depends on this value, we see that in this case time-delayed feedback

is the crucial ingredient for the creation of entanglement.

4.2 Extension to larger networks

The system discussed until now was very symmetric. The question to be answered

in the following section is: Can the concept be transferred to less symmetric situations?

Especially in large networks one can expect a plethora of network modes [100], which

show strong correlations between the single nodes.

For this the approach will be generalized to a whole network of nodes (see Fig. 4.5).

These nodes are connected with each other with different strengths, and some of them

are also subject to time-delayed feedback. The feedback delay time will be kept equal

for all of these nodes – at the end of the section, it will be derived that this is necessary

for the approach to work. Let us stick to the one excitation limit so that time-delayed

differential equations can be used for the description. Let us describe the probability

amplitude of the state with the excitation at node i , 〈0...1i ...0|ψ〉, by the quantity ci and

collect all of them in the vector�c. The coupling between the nodes is described using

the matrix M, which means that modes i and j are coupled with strength Mi j = M j i . The

nodes may have different angular frequencies ωi , which are described using the diagonal

matrix Ω with Ωi =ωi . These frequencies should however all be quite similar to allow for

efficient coupling. The coupling strength of the individual nodes to feedback reservoirs is
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given by the matrix K. If some nodes are coupled to the same reservoir, this matrix will

have off-diagonal elements [100]. One can then write the differential equation for c⃗ as

d

dt
c⃗ =−iΩc⃗(t )− i Mc⃗(t )−K

(
c⃗(t )− c⃗(t −τ)

)
. (4.19)

As a sidenote, if the kernel of K is not empty, there exist decoherence-free subspaces

independent of the feedback delay. This is however only the case if several nodes of the

network couple to the same reservoir. Let us simplify Eq. 4.19 by introducing the matrix T

that diagonalizes Ω+M into Ξ:

T
(
Ω+M

)
T−1 :=Ξ (4.20)

The differential equation of the transformed vector Tc⃗ = ξ⃗ is

d

dt
ξ⃗=−iΞξ⃗−TKT−1

(
ξ⃗(t )− ξ⃗(t −τ)

)
(4.21)

The frequencies of the network eigenmodes are given by the diagonal matrix elements

of Ξ, Ξi i . If one of these frequencies fulfills the Pyragas condition, the respective mode

will be stabilized, because the terms
(
ξ⃗(t )− ξ⃗(t −τ)

)
vanish for finite intensity. For all the

other modes, their eigenfrequency normally does not fulfill the Pyragas condition and

thus these modes decay to zero.This demonstrates that one can also single out certain

network nodes in more complex networks. The important insight is, that this does not

depend on the matrix TKT−1, i.e., how exactly the delayed feedback is brought into the

system. In particular, this means that one does not need to have feedback at each node –

one feedback reservoir is enough to filter out the desired mode. However, this only works

if the delay time is equal in all existing feedback reservoirs. Otherwise, one would not

be able to write Eq. 4.19 and Eq. 4.21. Different delay times impose different Pyragas

conditions – only a mode that happens to fulfill all of them would remain unaffected by

the feedback, and therefore stable.

4.3 Conclusion

It was shown, that in the one-excitation limit, time-delayed feedback can be used

in quantum networks to create and stabilize entanglement. There were however sev-

eral assumptions made during the derivation which need to be discussed to assess the

applicability of the approach.

First, the dynamics were always calculated with maximally one excitation, starting from

a Fock state. This also means, that the system is inherently “quantum-like”. For classical

systems, the stabilized states would not be highly entangled, but just (anti-)correlated.

It is possible to directly transfer our approach to the classical world – instead of (anti-)

symmetrically entangled states, one would stabilize (anti-)symmetrical oscillations of
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coupled harmonic oscillators. The “quantum” nature of our system can be achieved e.g.

by feeding one of the nodes with a single photon emitter such as a quantum dot.

Second, feedback was treated with the strength of 100%, i.e, all losses go into the

feedback bath and will be reflected into the system. This, of course, will not happen in a

real setup where there are always different decay channels, and where also the feedback

mirror will not reflect all the light. As a result, the entanglement will not be stable, but

also decay since the Pyragas condition will not be met perfectly. However, the feedback

control will still be able to differentiate between the two components, if the coupling

is strong enough, which will still lead to the creation of entanglement. One important

experimental goal would be to make the feedback as efficient as possible. Losses can also

be counteracted by pumping the system – however then one would need a nonlinearity

to bring the system in a one-excitation state and not in a semiclassical coherent state,

such as a Glauber state. The interplay of nonlinearities and feedback will be discussed in

the next chapter.
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5Feedback control of photon statistics

in nonlinear optical devices

The dynamics of linear systems subject to time-delayed feedback is rather simple, since

it can be described exactly by time-delayed equations [44, 67, 82, 91, 108]. As soon as

the system becomes nonlinear, one can expect a plethora of new phenomena due to the

interaction of feedback with the nonlinearity. In quantum optics, this demands more

than one excitation in the system. Due to feedback, these excitations may interact in

the system, then get separated, and interact with each other again after the delay time τ.

This leads to interference effects which can be used to stabilize non-classical states, as it

will be shown in this chapter. There is only few literature of nonlinear quantum systems

subject to feedback, discussing, e.g., Rabi oscillations [67, 77], lasers [45], optomechanical

systems [75] or a Dicke model [109]. Many of those [45, 75, 109] rely on semiclassical

approximations which might hide purely quantum-mechanical behavior.

In the following, two situations will be discussed in which a nonlinear medium is put

into a cavity subject to time-delayed feedback, an demonstrate that it can be used to

single out and stabilize non-classical states such as Fock states.

5.1 Kerr nonlinearity – control of photon number states

The creation of single- or multiple photon Fock states is a task currently approached

from different directions, using systems ranging from atoms and ions to semiconductor

nanostructures [110, 111]. For single photon emitters, quantum dots [112, 113] have

been proven to be a very effective source. There have also been feedback-based experi-

ments [41, 114] to stabilize single Fock states, using a complicated measurement-based

feedback system, which in the end led to a Nobel prize in 2012 for Serge Haroche. A

nonlinearity that changes optical properties of a material inside a cavity depending of

the number of photons in the cavity will be a suitable tool for the creation of a Fock state:

In this section it shall be presented that feedback will in that case enable to modify decay

dynamics depending on the Fock state. The decay dynamics can be tuned such that

the desired Fock state has a distinctively lower decay rate than any other state and can

therefore be separated. A Kerr medium can offer such a nonlinearity. A Kerr nonlinearity

(also called a χ(3) nonlinearity) describes an intensity-dependent refractive index of an
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Fig. 5.1.: A possible setup to combine Pyragas control with a Kerr medium: A cavity containing
the Kerr medium (light blue) is coupled to a waveguide which is closed at one end at
distance L to provide feedback.

optical material. Quantum-mechanically, a single mode cavity enclosing a Kerr medium

can be modeled with the following Hamiltonian [115]:

HKerr =ħω0c†c +ħχc†c†cc. (5.1)

Here, χ is the strength of the Kerr effect, ω0 the angular frequency of the mode, and c(†)

the annihilation (creation) operator of the mode. Usually, χ is much smaller than the

decay rate of a mode, which made Kerr effects not visible on the single photon level.

However, with the development of superconductor-based quantum optics [116], a single

photon Kerr effect is in the reach of current experiments. In that case, the Kerr medium is

implemented as a strongly detuned superconducting “artificial atom” [116] coupled to a

cavity. The nonlinearity introduced by the atom leads to an effective Hamiltonian for the

cavity mode containing terms as in Eq. 5.1.

Interestingly, the photon number operator c†c commutes with HKerr – the Kerr effect

therefore only influences the phase, but not the intensity of the electric field in the cavity.

This is however only the case as long as the cavity is not coupled to another system, in

which case interference effects can convert the phase change into an intensity change.

In the following, Pyragas control will be added to a system described by Eq. 5.1, and

the dynamics of different Fock states in the cavity will be examined. The idea is that

different Fock states acquire different phases due to the Kerr effect, which will then lead

to different interference effects with the timed-delayed signal. It will be shown that this

can be used to single out and stabilize a 1-photon Fock state, as well as to create other

non-classical states of light.

The dynamics will be modeled by including the calculations for the full feedback

reservoir (full k-sum calculations). They can however be solved much faster by using

the pseudomode method (cf. section 3.3). The equations of motion for the pseudomode

approach, combined with the nonlinear equations-of-motions approach of section 3.1

are presented in the appendix B.
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First, the stabilization of a 1-photon Fock state in the cavity is discussed. Let us choose

χ= 1.0 ·10−5 fs−1 and the coupling to the feedback reservoir as γ= 0.01
p

2 fs−1 (cf. the

definition of γ in Eq. 2.38). These values are just for demonstration of the general effect

and need to be adapted to different experimental conditions. These parameters assume

a strong single photon Kerr effect with the relation between χ and the decay rate into the

feedback reservoir on the order of 30, which is however in the same order of magnitude

as recent experiments [116]. The cavity angular frequency is set as ω0 = 1fs−1. A single

photon Fock state is not affected by the Kerr effect, since the Kerr effect works on the

level of two-photon operators, which give zero when working on the 1-photon state:

χc†c†cc|n = 1〉 = 0. One can therefore calculate the conditions for stabilization of a

single photon state by using the one photon limit and as a first stage forget about the

nonlinearity. This stabilization appears as soon as the Pyragas condition for the oscillation

with ω0 is fulfilled, i.e., if exp(iω0τ) = 1. The feedback mirror distance was chosen as

L = 10000.00fs ·2π · c0, with c0 the speed of light. Outside of the single-photon subspace,

e.g. for the two-photon state, the Pyragas condition will generally not be fulfilled, which

therefore leads to a decay of this state. In our numerical simulations, the initial state is a

2-photon Fock state. We simulate the system by solving the Schrödinger equation acting

on the Hamiltonian of Eq. 5.1 with added feedback (Eqs. 2.37 and 2.38). The dynamics of

the 2-, 1-, and 0-photon Fock state probabilities are displayed in Fig. 5.2. For comparison,

the dynamics without any feedback are also plotted. Before the feedback sets in, a strong

exponential decay of the 2-photon state is present, creating a non-vanishing probability

of the 1-photon state. Without feedback, this probability would build up but very soon it

would also decay, finally leading to zero photons in the cavity.

Including the feedback, the situation changes: After the delay time τ, the 2-photon

states decays even stronger, while a stabilization of the 1-photon state is found. The

buildup of the 0-photon state is blocked and the system equilibrates at about a 80% : 20%

distribution between the 1-photon state and the empty cavity. It is remarkable that the

single photon state ideally gets perfectly stabilized, although there are two photons in the

calculation.

In Fig. 5.3, the dynamics of the g (2)-function of the photon field is plotted, which

demonstrates the influence of time-delayed feedback on the photon statistics more

clearly. Up to the delay time τ, the g (2) function is 0.5 – the same value as for the initial

2-photon state, although there is no pure Fock state in the cavity any more, and the

probability of finding a 1-photon state at the time the feedback sets in is about the same

as finding a 2-photon state. After τ, a rapid decrease of the g (2)-function down to zero is

observed, which demonstrates that a single photon Fock state is created in the cavity.

One can change the feedback phase to try to stabilize other states. As an example, the

situation of L = 10000.25fs ·2π · c0 is simulated, which creates a maximal decay of the

1-photon state, since exp(iω0τ) =−1.
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Fig. 5.2.: Feedback control of the photon statistics inside a cavity containing a Kerr medium.
Dynamics of the stabilization of n = 1 Fock state by time-delayed feedback control.
Parameters see text. The dynamics without feedback are included as thin dashed lines.
Red: Probability n = 1, blue: probability n = 2, green: probability n = 0. Stabilization of
n = 1 is found and a even more rapid decrease of n = 2 after the delay time (the delay
time is visible as the time where the thick solid curves and the thin dashed curves
differ first).
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Fig. 5.3.: Feedback control of the photon statistics inside a cavity containing a Kerr medium.
Dynamics of the g (2)-function in the case of stabilization of the 1-photon Fock state.
g (2) = 0.5 is maintained until the feedback sets in. Afterwards a rapid decrease to
g (2) = 0 is visible, which demonstrates that indeed a 1-photon Fock state is stabilized.
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Fig. 5.4.: Feedback control of the photon statistics inside a cavity containing a Kerr medium.
Dynamics of the different Fock state probabilities if the feedback is chosen such that
the 1-photon probability decays the fastest. A feedback-induced slowing down of the
2-photon decay rate is observed, which makes the 2-photon probability always higher
than the 1-photon probability. The situation without feedback is again included for
comparison (thin dashed lines).

The results (cf. Fig. 5.4) show that while the 1-photon state decays rapidly after the

delay time, the 2-photon state decay rate is decreased. While there is no stabilization

of the 2-photon state, for the whole time the probability of finding 2 photons is higher

than the probability of finding 1. This choice of L was also the one that gave one of the

highest ratios of the 2-photon state to the 1-photon state in the region of L/(2πc0) ∈
[10000.00,10001.00] fs. Slower decay rates for the 2-photon state can be achieved in

the setting described by Fig. 5.2, if the cavity angular frequency is switched from ω0

to ω0 −2χ, however perfect stabilization is not observed. This leads to the conclusion

that unfortunately a perfect stabilization of the 2-photon state does not seem to be

achievable. The problem might be counteracted by a pumping mechanism or by starting

with a higher Fock state. One would not expect a perfect stabilization of the 2-photon

state in that case as well, but it can also not be totally ruled out. The larger amount

of photons might lead to a higher overall probability for the 2-photon state. This is

certainly a point worth further investigation. Including more photons will also allow to

investigate whether higher n-photon states can be selectively stabilized by Pyragas-type

time-delayed feedback. However such a calculation is numerically very demanding due

to the high number of external modes used to model the feedback.

5.2 Jaynes-Cummings model – control of excitation number

The Jaynes-Cummings system subject to time-delayed feedback was already studied

in the one-excitation limit [44], and a stabilization of vacuum Rabi oscillations was
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Fig. 5.5.: Dynamics of a Jaynes-Cummings system subject to time-delayed feedback. The initial
state is a two-photon Fock state of the cavity mode, while the two-level system is in
its ground state. Plotted are the photon density (red) and the probability of the two
level system to be in the excited state (green). It is found that the system equilibrates
and shows prolonged Rabi oscillations with the vacuum Rabi frequency. However, in
contrast to the single excitation dynamics described in Ref. [44], the Rabi oscillations
are only weak.

reported. In the following, what happens as soon as you have more than one excitation

will be investigated. The Jaynes-Cummings energy spectrum shows a distinct set of

lines, that can always be grouped in pairs depending on the “excitation number”, i.e., the

expectation value of c†c +|e〉〈e|, with |e〉 being the excited state of the involved two-level

system. What will be shown is that Pyragas-type feedback has different implications

for different excitation numbers, which can be used to separate one excitation-number

subspace. This analysis can not only be seen as an extension of Ref. [44], but also as a

different view on the Kerr effect dynamics described above. While a Kerr effect can be

created by a highly off-resonant two-level system in a cavity, here it will be investigated

what happens as soon as the two level system and the cavity are in resonance. The

Jaynes-Cummings model is modeled with the Hamiltonian in the frame rotating with the

cavity angular frequency, leading to

HJCM =−ħM
(
σ−c† +σ+c

)
(5.2)

with σ± the fermionic ladder operators of a two-level system. The coupling between

cavity and two-level system is set to M = 5.0 ·10−5fs−1 and all other parameters are left

identical to the first case discussed for the Kerr medium, for the cavity as well as for

the feedback. The initial state is again a 2-photon Fock state in the cavity. In Fig. 5.5,

the dynamics of the photon density 〈c†c〉 and the probability to be in the excited state,⟨
|e〉〈e|

⟩
, are displayed. The feedback is chosen such that in the 1-excitation case vacuum
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Fig. 5.6.: Jaynes-Cummings system subject to time-delayed feedback (delay time τ is marked
by the dashed line and set via L = 10000.00fs ·2π · c0). Plotted are the probabilities
to be in the 2- and 1-excitation subspace. The results show that the probability to
be in the 1-excitation subspace is stabilized, comparable to the stabilization of the
1-photon Fock state in case of the Kerr medium (see discussion above). In contrast,
the probability to be in the 2-excitation subspace is reduced to zero.

Rabi oscillations would be stabilized. In our case, strong oscillatory behavior is visible.

In the long term, the system starts to oscillate with the vacuum Rabi frequency as well.

However, the oscillations have a very small amplitude around a finite value. If the two

curves are added, which is a measure for the number of excitations in the system, the

oscillations cancel out – this shows that the excitation number is stabilized. This situation

is comparable to the stabilization of a Fock state by a Kerr medium: In both cases, the

probability of having 2 excitations in the system strongly decreases, while the probability

of having 1 excitation equilibrates at a finite level. This behavior is demonstrated in

Fig. 5.6. There, “1-excitation subspace” describes the states |excited, 0 photons〉 and

|ground, 1 photon〉, while “2-excitation subspace” describes the states |excited, 1 photon〉
and |ground, 2 photons〉. As a side note the “wiggles” visible in Fig. 5.6 are not numerical

errors due to a bad resolution, but actual features: In the presented model, the system

only experiences losses by losing a photon in the feedback reservoir, which makes the

decay rate of the plotted quantities dependent on the photon number. Since the photon

number oscillates, this decay rate oscillates as well.

As a second step, the feedback time was changed, in analogy to the Kerr case above,

such that the phase exp(iω0τ) of the feedback at ω0 is reversed, but the delay time τ is

almost kept constant. This is achieved for L = 10000.25fs ·2π ·c0. This small change in the

feedback drastically modifies the dynamics, as seen in Figs. 5.7 and 5.8. Now the results

show that the 2-excitation subspace dominates the dynamics: In Fig. 5.7, prolonged

oscillations of the photon number as well as of the excitation probability are visible. The

frequency of this oscillation is
p

2 times faster than in the previous case, which shows that
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Fig. 5.7.: Jaynes-Cummings system subject to time-delayed feedback with opposite phase com-
pared to Figs. 5.5 and 5.6. Prolonged oscillations in the dynamics of the photon
density 〈c†c〉 as well as in the dynamics of the excitation probability of the two level
system are present. The frequency of the oscillation matches the Rabi frequency of the
two-excitation subspace of the JCM.

the oscillations are Rabi oscillations within the 2-excitation subspace. This demonstrates

that the “second step of the Jaynes-Cummings ladder” is observed here.

The dominance of the 2-excitation manifold is again best seen when the probability of

being in that manifold is plotted directly. In Fig. 5.8, the probability to have 1 respectively

2 excitations in the JCM system id plotted. A finite, but slow decrease of the 2-excitation

probability is visible after the delayed feedback sets in – the onset of feedback is visible

through the abrupt change of the decay rates. The 1-excitation probability decreases with

a similar rate, but at a much lower level. This demonstrates that the power of Pyragas-type

feedback is indeed to selectively stabilize processes with a certain oscillation frequency.

Changing the delay time only a minuscule amount modifies the dynamics such that it

allows to switch form one subspace to another by selecting different Rabi frequencies.

5.3 Conclusion

What was found in the last two examples is that time-delayed feedback is suitable for

the control of non-classical states in quantum optics. The method can work as soon as

different states have different oscillatory behavior: The delayed signal then interferes

differently with the radiation emitted from these states, thereby creating different decay

dynamics. This was used to selectively stabilize non-classical states, since it is possible

to reduce the decay rate substantially for one specific state – be it a Fock state or an n-

excitation state. Due to numerical constraints, only states up to 2 excitations were studied.

It is certainly highly interesting to expand the model to higher excitation numbers. Similar
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Fig. 5.8.: Jaynes-Cummings system subject to time-delayed feedback, parameters as in Fig. 5.7.
Plotted are the probabilities to find 1 resp. 2 excitations in the JCM system. After
the delayed feedback sets in, one finds that both probabilities decay slowly, with the
2-excitation probability being substantially higher.

behavior can be expected – however it might be that higher-order states are not as easily

stabilized, since it can already be seen that 2-excitation states might not be perfectly

stabilized, in contrast to 1-excitation states. However, more initial excitations might also

help in the stabilization process, since they generally increase the number of excitations

in the system. The fundamental problem is, that as soon as a higher excited state decays,

and the excitation is lost, it might be lost “forever” – i.e., there is only one time, τ, after

which it might interact again with the system, which is only done with a small probability.

Once the system arrived in such a low-excitation state, feedback will not bring it back

to a high-excitation state, unless there are other photons “in the delay line” that can do

this.
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6Feedback control of photons emitted

in a biexciton cascade

Parts of the results discussed in this chapter have been published in Physical Review

Letters [117] as well as in two conference proceedings [118, 119].

The controlled creation of polarization-entangled photons is crucial for many protocols

of quantum information science [120]. The polarization degree of freedom is a natural

candidate for qubits – e.g., take a horizontally polarized photon as |0〉 and a vertically

polarized photon as |1〉 – and, additionally, photons are easy to manipulate with well-

established technology (mirrors, lenses, etc.). For applications in quantum information

such as quantum cryptography [12, 121, 122] or quantum computing [15] it is necessary

to prepare the photons in non-classically correlated, entangled, states.

The most prominent creation mechanism of polarization-entangled photons is cur-

rently parametric down-conversion of a laser beam [123]. This produces very bright

beams of entangled photons, however statistically distributed in time due to the Poisso-

nian photon distribution of laser light.

This problem can be circumvented by using the decay of biexcitons [124–127] in a

quantum dot (QD) as a source of polarization-entangled photons. Quantum dots can act

as efficient single- or few-photon emitters [112, 128] that can be triggered by pulsed laser

excitation, which will then produce photons on demand. This approach can also be used

for integrated photon pair emitters due to the small size of QDs.

Biexcitons consist of two bound electron-hole pairs, which decay in the so-called

“biexciton cascade” by the emission of two photons (cf. Fig. 6.1). Without any fine-

structure splitting present in the cascade, the two photons must have opposite circular

polarization in order to conserve angular momentum. However, it is not specified which

photon is emitted by the biexciton→exciton decay and which by the exciton→ground

state decay, so there exist two indistinguishable decay paths. This leads to a polarization-

entangled two-photon state of the type
(
|right〉|left〉+ |left〉|right〉

)
/
p

2 [124].

Unfortunately, usually the intermediate (exciton) levels are of slightly different energy

due to exciton fine structure splitting (FSS) [129, 130] (cf. Fig. 6.1). Due to this symmetry

breaking, the two photons are either both horizontally or both vertically polarized. More-

over, they become distinguishable by their frequency - at least partly, since the spectral
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Fig. 6.1.: Energy levels involved in a biexciton cascade. The upper state |B〉 is the biexciton
state with the energy ħωB , which is usually different to twice of the single exciton
energy ħωX . The biexciton can decay to the ground state |G〉 via two different paths,
either emitting two horizontally or two vertically polarized photons. The intermediate
states, after the emission of one photon, are the single exciton states, |XH 〉 and |XV 〉.
Due to the fine-structure splitting (FSS) of ħδ (greatly exaggerated in the scheme),
they usually are of different energy which leads to a blue- respectively red-shift of the
emitted photons.
(A similar figure was published in Ref.[117], Copyright 2014 American Physical Society, used with permission)

lines still overlap. This makes them polarization- and energy-entangled, which drastically

reduces the pure polarization entanglement. In a hand-waving way, one can say that the

decay path can be determined by the order in which the red- and blue-shifted photon

emission occurs. In the cascade depicted by Fig. 6.1, this means that if a blue-shifted

photon is detected first, it was emitted in the decay path that leads to horizontally polar-

ized photons. Due to the finite lifetime of all the involved states, the respective lines are

broadened, which leads to a finite spectral overlap. Therefore the entanglement is not

destroyed completely, but still it will be strongly reduced.

Over the last couple of years, several approaches have been developed to deal with

this problem. Quantum dots with small FSS can be grown by a sophisticated growth pro-

cess [127, 131, 132]. Also strain [133] and external fields [127, 134] can strongly diminish

the FSS, however might be hard to implement in an integrated setup. Entanglement can

also be enhanced by post-processing such as temporal [135] or spectral [136] filtering

or by reversing the time order of the emitted photons [137–139], all of which erases the

which-path information at the expense of losing a lot of photons. A promising approach

is to implement the biexciton in a high-q cavity and use the Purcell effect to increase

the linewidths of the involved transitions [140–147]. This raises the probability that both

decay paths lead to photons of the same frequency, which eliminates the distinguisha-

bility by frequency and therefore leads to entanglement. However, one problem is that

high-q cavities have only small losses by definition, which means that the photons are

“trapped” within the cavity and are not released directly after creation. This decreases the

“on-demand” property of the photons.
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What is proposed and studied in this chapter is an approach similar to the Purcell-

based mechanism, which however keeps the system open – time-delayed quantum-

coherent feedback. The possibility to strongly modify the photon emission probability

depending on the photon frequency provides a tool to shape the spectrum in a way to

enhance the emission of photons with equal frequency.

6.1 Model

In accordance to Fig. 6.1, the biexciton cascade is modeled using biexciton annihila-

tion (creation) operators b̂(†), two types of intermediate exciton annihilation (creation)

operators x̂(†)
H/V

, and a ground state annihilation (creation) operator ĝ (†). The horizontally

polarized photons with wave vector k are annihilated (created) using ĉ(†)
H ,k . Equivalently,

ĉ(†)
V ,k is introduced for vertically polarized photons. In the following all four transitions

(cf. Fig. 6.1) couple equally to the photon continuum with a wave-vector dependent

coupling constant γ(k). As before, this wave-vector dependence will be used to model

Pyragas-type time-delayed feedback. The Hamiltonian then reads in the interaction

picture

Ĥ =ħ
∫ ∞

−∞
dk γ(k)

(
e i (ωB−ωX −ωk+δ/2)t b̂†x̂

H
ĉ

H ,k +e i (ωB−ωX −ωk−δ/2)t b̂†x̂
V

ĉ
V ,k

+e i (ωX −ωk−δ/2)t x̂†
H

ĝ ĉ
H ,k +e i (ωX −ωk+δ/2)t x̂†

V
ĝ ĉ

V ,k

)
+h.c. . (6.1)

Here, the biexciton energy ħωB , the average exciton energy ħωX , and the fine-structure

splitting δ were introduced. Photons with wave vector k in our model have the angular

frequency ωk = c0k with the speed of light c0. The biexciton and the exciton angular

frequencies are related by the biexciton binding energy ħβ via ωB = 2ωX −β. Pyragas

control will be included by setting

γ(k) = γ0 sin(kL) (6.2)

with L being, in a very broad sense, the “distance of the mirror that induces the feedback”.

Therefore, the light emitted by the biexciton cascade will interact with the quantum dot

again after the feedback delay time τ= 2L/c0.

This idea of a “mirror at distance L” should however not predefine that one needs to use

a setup consisting of a lens and a mirror, as described in the theoretical work of Dorner

and Zoller [67] and implemented experimentally by the group of Rainer Blatt [68–70].

If the QD is put inside a hemispherical mirror [70], the lens might not be necessary. A

setup that uses a waveguide [148, 149] to store the light for the period τ might also be

an experimental implementation. Another challenge might be to extract the photons of

the host medium of the quantum dot, which usually is a semiconductor with very high
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refractive index. Apart from all these issues, the aim of these simulations is to find out

whether Pyragas-type feedback terms have an influence on the photon entanglement—

and it will be shown that they do. At this point, the aim is not to describe a certain

experimental realization.

An important quantity is the phase ϕ with which the electric field arrives back at the

QD. It can be calculated from the mirror distance via ϕ= (π+2ωk L/c0) mod 2π. Later

on, the dependence of the entanglement on the feedback phase at the bare exciton

angular frequency without FSS, ωX , which will be described by ϕX , will be discussed.

The Hamiltonian of Eq. 6.1 is used to solve the Schrödinger equation. This has the ben-

efit that a large number of external modes can be included numerically, however it makes

it impossible to include decoherence effects, except by using a stochastic Schrödinger

equation approach [79], which will not be used. The effects of, e.g., pure dephasing, will

later on be estimated. Inhomogeneous broadening will later be included by averaging

over a whole range of simulations at different exciton energies. Further Markovian decay

channels can be included by adding a second reservoir [67] or modifying the coupling

constant γ(k). For the solution of the Schrödinger equation the following state is used:

|Ψ〉 =b|B〉+
∑

k

(
xH ,k |XH 〉|kH 〉+xV ,k |XV 〉|kV 〉

)

+
∑

k,k ′

(
gH ,k,k ′ |G〉|kH ,k ′

H 〉+ gV ,k,k ′ |G〉|kV ,k ′
V 〉

)
. (6.3)

In analogy to the Hamiltonian, the states |B〉,|XH/V 〉, and |G〉 describe the QD in a biexci-

ton, in one of the two exciton, or in the ground state, respectively. The kets |kV 〉 (|kH 〉) de-

scribe single photon states with wave vector k and vertical (horizontal) polarization. The

respective two-photon states with wave vectors k and k ′ are given by |kV ,k ′
V 〉 (|kH ,k ′

H 〉).

The interesting quantity is the entanglement of the photons in the external field. For

this, a term will be analyzed which can be interpreted as the “normalized two-photon

wavefunction overlap ζ”:

ζ(t ) =
|
Î

g∗
H ,k,k ′gV ,k,k ′ dkdk ′|

1
2

Î
|g

H ,k,k ′ |2 +|g
V ,k,k ′ |2 dkdk ′ . (6.4)

In the limit of long times, t →∞, this quantity will be a measure for the photon entangle-

ment and is usually called the concurrence C :

C = ζ(t →∞). (6.5)

The explanation why this is the case was first given by Akopian et al. [136]: In the long

term, the quantum dot will have fully decayed into the ground state |G〉, and the photons

will be in the external field, described by the wave packets given through g
V ,k,k ′ and

g
H ,k,k ′ . The two photons are purely polarization-entangled if the two wave packets

74 Chapter 6 Feedback control of photons emitted in a biexciton cascade



are not distinguishable. On the other hand, if the two wave packets are orthogonal to

each other, they are perfectly distinguishable and the polarization entanglement is lost.

The overlap
Î

g∗
H ,k,k ′gV ,k,k ′ dkdk ′ between the two wave packets is therefore directly

related to the entanglement. In case that not all photons are emitted in the external

field described by g
H ,k,k ′ and g

V ,k,k ′ , the normalization by the absolute squares of the

probability amplitudes becomes important. In our case it is kept for consistency with

literature [136]. The factor 1
2 ensures that perfect entanglement leads to a value of C = 1.

Measuring the entanglement as a “long-term limit” means that the whole photon wave

packet is taken into account. This is equivalent to a time-integrated measurement of the

entanglement. One must not confuse the value ζ(t ) with a time-dependent entanglement

measure, it is simply a time-dependent measure of the wave packet distinguishability. It

only becomes a measure for the entanglement once the quantum dot is in a unique state,

i.e., the ground state.

6.2 Numerical results

In order to assess the influence of time-delayed feedback on the photon entanglement,

the Schrödinger equation is solved numerically. First, the biexciton binding energy is

set to 0, which makes ωB = 2ωX . It was shown experimentally [150] that positive as well

as negative values for the biexciton binding energy can be realized. In particular, it is

also possible to grow quantum dots with diminishing biexciton binding energy. This

assumption is useful to understand later on how the concurrence is influenced by the

feedback. Including a biexciton binding energy would introduce a further time-scale

(given by the inverse of the binding energy) that would be needed in the discussion

of the results. Later on, it will be examined how non-zero binding energies influence

the results. Let us set ωX = 2fs−1, which is equivalent to an exciton energy of about

1.3 eV and a photon wavelength of λ0 = 942nm. The chosen fine structure splitting is

δ = 10ns−1 ≈ 6.58ħ−1 µeV, unless mentioned otherwise. Let us set the coupling to the

external mode continuum γ0 such that it leads to an initial (i.e. before any feedback

effects set in) biexciton decay time of about 300 ps. In the presented simulations there

is one external mode continuum, which is modeled using 8000 modes with angular

frequencies distributed equally around ωX over a range of 0.4ps−1. For the simulations

without feedback, γ(k) = γ0/
p

2 is used instead of Eq. 6.2 to achieve the same initial

behavior up to t = τ. This means that effects of further decay channels are not included,

which in an experiment would unavoidably be present. However, this allows to analyze

the maximal amount of entanglement that this scheme could provide.
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Fig. 6.2.: Time dependence of the probability to be in the biexciton state, |b|2 ((a) and (c)), as
well as two-photon wavefunction overlap ζ(t) ((b) and (d)) for various parameters.
Red: no feedback, green: feedback with ϕX = 0, blue: feedback with ϕX = π. (a),(b):
Short feedback delay time τ f of approx. 63 ps. (c),(d): Longer delay time with τ f five
times larger than in the short delay case.
(This figure is already published in Ref.[117], Copyright 2014 American Physical Society, used with permission)

6.2.1 Small delay

First, the effects of feedback with a small delay time τ ≈ 63ps are discussed. Later

on, this value will be increased. This delay time can be achieved by setting L between

10000λ0 and 10000λ0 +λ0/4. In this range, the feedback phase ϕX takes on all possible

values. In particular, it is ϕX = 0 for L = 10000.00λ0 and ϕX = π for L = 10000.25λ0.

This corresponds to mirror distances in the micrometer range, which might be hard to

realize using current macroscopic optical instruments (lenses, mirrors), but should be

well in the reach of integrated devices. First the dynamics of the biexciton probability

|b(t )|2 (cf. Fig. 6.2(a)) are examined. Without feedback (red curve), there is, as expected,

an exponential decay. With feedback, the two extreme cases of ϕX = 0 (in green) and

ϕX = π (in blue) are shown. The vertical line marks the onset of feedback. The decay

dynamics strongly change after the delay time: For ϕX = 0, the decay is enhanced, while

for ϕX = π, the decay is inhibited. This can be explained as a Purcell effect due to the

mirror: There is either a larger or smaller density of states available for the emitted

photons. Since the QD can only experience these Purcell effects after τ, the delay is

directly visible. Already in case of QDs coupled to a high-Q cavity, the Purcell effect has

strong influence on the photon entanglement. Looking at the wavefunction overlap

ζ(t) (Fig. 6.2(b)), one finds that without feedback it decreases to a value of about 0.2

which clearly demonstrates the deteriorating effect of the fine structure splitting. With

feedback, however, the dynamics change: For ϕX =π, it decreases even more and then

shows a long trail of oscillations around 0.2. For very long times (not shown in the

plot), the simulations show that it equilibrates at about 0.1. The oscillation period is

approximately the time given through the FSS, which indicates that the oscillation is
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Fig. 6.3.: Frequency-dependent photon number spectrum for (a) short and (b) long feedback
delay times. In grey the results without feedback are shown, in green the results
with feedback for a feedback phase ϕX = 0. The curves are calculated for t → ∞.
Subfigure (a) clearly demonstrates the peak widening due to the increased decay rate,
while (b) shows a strong feedback-induced frequency dependence of the intensity.
(This figure is already published in Ref.[117], Copyright 2014 American Physical Society, used with permission)

an interference effect between the two decay paths. The more interesting results are

acquired for ϕ= 0: After the feedback, the decay of ζ(t ) is reduced and equilibrates at a

concurrence of about C = 0.4. This demonstrates that time-delayed feedback is capable

of increasing the achievable concurrence. To understand this behavior better, let us look

at the frequency-dependent photon number in the external continuum, presented in

Fig. 6.3(a). These spectra are calculated via n(ω) =
⟨

ĉ†
H ,k ĉ

H ,k

⟩
+

⟨
ĉ†

V ,k ĉ
V ,k

⟩
for t →∞.

In gray, the results without feedback are plotted. A double-peak structure due to the

FSS is clearly visible. With feedback (green curve) in the small delay case, the peaks are

broadened, as it would be expected in case of an increased decay rate. In analogy to other

Purcell-enhanced entanglement, the broader peaks overlap more, which leads to a higher

indistinguishability of the decay paths since it is “harder” to distinguish the decay path by

the photon frequency. In particular, there is a substantial increase at the center angular

frequency ω=ωX .

The similarity to other Purcell-based entanglement enhancement schemes is striking.

While these schemes usually work with even higher enhancements, they suffer by the

fact that the photons are trapped within the cavity. This strongly reduces the possibility

to produce them on demand. In contrast, with our scheme that reflects photons emitted

into one half-space back into the QD, while they can leave the system to the other side, the

whole system is open and the photons can be retrieved opposite of the mirror. One issue

might be where to place the substrate then. This might be resolved by manufacturing the

feedback as a integrated waveguide-based system on the substrate.

In Fig. 6.4 the dependence of the achievable concurrence is plotted for several values

of the FSS δ. Over a wide range, the feedback mechanism can increase the concurrence.

In terms of relative values, the effect is even stronger for larger FSS.
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Fig. 6.4.: Achievable concurrence in the short delay limit for different values of the FSS δ. The
simulations show that even for large δ one can get quite a substantial increase. In
terms of percentages, the increase is even higher for large δ.
(This figure is already published in Ref.[117], Copyright 2014 American Physical Society, used with permission)

6.2.2 Larger delay

In the small delay limit, the results were explainable by simple Purcell effects. One

would expect different behavior as soon as one leaves this realm and increases the delay

such that the phase of the feedback varies substantially over the whole width of the double

peak. Longer delay times allow to modify the spectrum much more precisely, however

make the whole system also more delicate (this will be covered later in section 6.3). In

order to examine this regime, a delay time 5 times larger than in the previous section is

simulated. This brings the delay time in the same order of magnitude as the time defined

by the FSS. All other values are left identical.

First, the biexciton probability, given in Fig. 6.2(c), is studied. The plots show that

the curves with and without feedback do not differ strongly. There seems to be a minor

decrease of the decay rate for the case with feedback (for both phases), however it is

barely visible compared to the results of the previous section. This demonstrates that

simple Purcell effects will not be enough to describe the behavior. In case of the exciton

probability (cf. Fig. 6.5), the numerical simulations still show a strong dependence on the

existence of delay and its phase.

The value of ζ is also strongly modified by the feedback: While for ϕX =π, it equilibrates

at a value comparable to the one without feedback, it reaches a much higher value for

ϕX = 0. This achievable concurrence is even larger than in the short delay time case. This

can be explained again by looking at the spectrum given in Fig. 6.3(b): Instead of just

broadening, one now finds a strongly modulated spectrum with steep flanks and a third

maximum at ω = ωX . The reason for this is the interference between the current and

the reflected parts of the photon wave function: At the flanks, these two waves interfere

destructively, strongly decreasing the available phase space for the photons (in the ideal

case, this even reduces the phase space to 0 at one frequency). This effectively hinders
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Fig. 6.5.: The probability to be in one of the exciton states in case of long feedback with ϕX = 0
(green) and ϕX =π (blue). Although the long feedback did not have a substantial effect
on the biexciton probability (cf. Fig. 6.2 (c)), the exciton states are modified. There
is an increased (decreased) decay after τ f for ϕX = 0 (ϕX = π). One can also see the
effects of multiple reflections at the mirror for the ϕX = 0 case, which reduce the decay
rate after 2τ f .

the QD to emit photons at these frequencies. However, at ω=ωX , the two waves interfere

constructively, enhancing the probability that the QD emits photons of this frequency.

This effectively “pushes” the emission to the center of the double-peaked spectrum. This

again makes the two decay paths less distinguishable by the photon frequencies and

therefore leads to a higher entanglement.

Since a larger time delay has a positive effect on the achievable entanglement, as a next

step it will be checked at what time delay one can reach the maximum entanglement. As

for the phase, maximum entanglement is reached when ϕX = 0, since then enhanced

emission at the angluar frequency between the two exciton states, ω=ωX , is happening.

In Fig. 6.6 the achievable concurrence is plotted depending on the delay time. There is

a maximum at about τ f = 0.3ns. At this point, the delay is equivalent to the time given

by the inverse fine structure splitting. As it is often found in time-delayed control, the

influence of time delay is the strongest when the time scales match. As this result is

acquired in an idealized setting, it has to be taken with a grain of salt: Long feedback

times make the system much more sensitive to decoherence [151] as well as to shifts of

the frequencies, e.g. due to charges in the vicinity of the (bi)exciton. All these effects will

move the peak to shorter delay times.

6.3 Deteriorating effects

The calculations above were ideal in a way that the effect of time-delayed feedback

was maximal: Neither other decay channels were considered, nor dephasing. Also, a
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Fig. 6.6.: Maximally achievable entanglement for ϕX = 0 at different delay times τ f . There
is a maximum at about 0.3 ns, which coincides with the time given by the inverse
of the FSS. This is not surprising, since delay effects usually are the strongest when
the timescale of the delay matches the timescale of the phenomenon that should be
controlled.
(This figure is already published in Ref.[117], Copyright 2014 American Physical Society, used with permission)

vanishing biexciton binding energy was chosen and inhomogeneous broadening was not

accounted for. All of these effects may diminish the achievable entanglement, and are

therefore worth looking at.

6.3.1 Dephasing

The literature [151] reports experimentally measured coherence times (T2 times) in

the range of 100 ps. This is longer than the delay time that was used used for “short delay”

feedback, however shorter than what was used for “longer delay”. A loss of coherence

minimizes interference effects, which the time-delayed feedback mechanism is based

upon. It is necessary to work at very low temperatures to minimize the influence of

phonons [144, 152, 153] to keep coherence as long as possible. Unfortunately, direct

numerical simulations of dephasing processes are not possible within the Schrödinger

equation approach without using stochastic wavefunctions in a monte carlo approach.

This, or other approaches based on expectation values rather than wavefunctions, are

however much more numerically demanding. Therefore it was not possible to perform a

numerical study on the effects of dephasing.

6.3.2 Biexciton binding energy

Having a non-vanishing biexciton binding energy β complicates the scheme since it

introduces a further timescale given by 1/β. A situation with β= 100ns−1 was simulated,

which makes it 10 times as large as the FSS. The results for short and longer feedback

delay are shown in Fig. 6.7. All other parameters, including the delay times, are kept as

before. One finds that in case of short feedback delay, one can still reach an entanglement

of about 0.4, comparable to the results with β= 0. However, in case of long delay times,
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Fig. 6.7.: Normalized two-photon wavefunction overlap ζ(t ) for a biexciton binding energy ħβ=
ħ·100ns−1. In case of short feedback, there is not a strong difference to the situation
without binding energy. For longer feedback, however, the achievable concurrence
equilibrates below the value for short feedback, in contrast to the results without
biexciton binding energy.

the achievable concurrence falls below 0.4 and is therefore worse than in the short delay

limit. For the given values, in the longer delay case, the feedback phase at ωX as well as at

ωX −β is 0, therefore one would expect similar behavior to the case with no binding energy.

However this seems to be not the case. Since the two double-peaked features are aligned

around two different center frequencies, feedback has a slightly different implication on

the spectral shapes. This difference becomes more important the longer the delay time is,

since for long delay times the modulation in the density of states becomes stronger. This

seems to deteriorate the positive effects of long feedback delay that appear for β= 0.

6.3.3 Inhomogeneous broadening

In a typical sample, several quantum dots with slightly different properties are present.

If they are excited electrically, one cannot predefine which quantum dot will emit light.

The incoherent overlap of these different lines creates an inhomogeneous broadening

of all features. One can counteract this by exciting one quantum dot coherently [113].

But even in case of a single QD, additional charges may appear that shift the QD energy

levels in time. This effect is called spectral diffusion and also leads to inhomogeneous

broadening. In the short delay limit, no strong detrimental effects of inhomogeneous

broadening should be expected, since the feedback phase is almost constant over the

range of frequencies covered by the inhomogeneous broadening. This situation is simu-

lated using 40 numerical simulations with varying ωX , that are weighted with a Gaussian.

The full width at half maximum (FWHM) of this Gaussian is given by the inhomogeneous

broadening. The simulations are run with β= 0. The results show (cf. Fig.6.8) that the

achievable concurrence is only decreased slightly due to inhomogeneous broadening,

and therefore the method should also work in this case. However, for longer delay times,
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Fig. 6.8.: Dependence of the achievable concurrence in the short delay limit on inhomogeneous
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broadening. The results demonstrate that substantial concurrence can be achieved
even with inhomogeneous broadening.
(This figure is already published in Ref.[119], Copyright 2015 Society of Photo-Optical Instrumentation Engineers, used with permission)

the feedback phase ϕX can vary between 0 and π if the exciton frequency is varied in

the same way. This eliminates all feedback effects. Therefore, in this case, one needs to

minimize inhomogeneous broadening. As discussed, this is possible through optical ex-

citation. Also, spectral diffusion usually happens on slower timescales that the biexciton

decay [113]. This may give the possibility to adapt the feedback delay time to the current

state of the QD.

6.4 Conclusion

The effects of time-delayed quantum coherent feedback on the photon emission of a

biexciton cascade with finite fine-structure splitting were presented. It was found that

due to the Purcell effect, enhanced entanglement between the photons could be cre-

ated. For longer delay times, the frequency-dependent decay dynamics of the biexciton

can lead to even higher entanglement, however this effect is much more sensitive to

frequency variations as well as to decoherence. These effects can reduce the achievable

entanglement. Without these detrimental effects, a maximum entanglement was found

as soon as the timescale given by the FSS matches the time of the feedback delay.
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7Controlling quantum statistics through

cavity-based photonic reservoirs

In this chapter, results acquired during a research visit in the group of Hakan Türeci,

Department of Electrical Engineering, Princeton University, will be presented.

One of the biggest problems in quantum computation is to maintain quantum correla-

tions despite the presence of noise sources. No system can be perfectly separated from its

environment, even when working at very low temperatures. System–environment interac-

tions can either make the system decay from a highly entangled state into a state of lower

intensity (e.g., a disentangled ground state), or reduce only the correlations between

entangled states (pure dephasing). Instead of minimizing the effect of the environment,

it is also very promising to actually utilize the environment to bring the system into the

desired state. Losses are counteracted by continuously pumping the system with a laser.

This will lead to a non-equilibrium steady state, in which losses are balanced by pumping.

Structured environments can be used to modify the non-equilibrium steady-state such

that it contains the desired entangled states with a high probability.

Time-delayed feedback is, of course, not the only way to structure an environment

coupled to a quantum-optical system – in fact, it is one of the more complex ways of

doing so, with its own benefits and drawbacks. The easiest way to produce a “structured

environment” is a photonic cavity, which in the previous chapters was usually part of the

“system”. However, this distinction is somewhat arbitrary – a cavity mode can also be seen

as a reservoir with a strongly peaked density of states. As it was shown in the chapter on

pseudomodes, this description is equivalent.

The main subject of this chapter is the creation and control of entanglement between

qubits coupled to one or several cavities. At the beginning, the case of two qubits coupled

to one cavity mode will be analyzed, and it will be investigated if entanglement and

bistability are as closely related as semiclassical analysis makes one believe [154, 155]. In

the proceeding sections a system described in Ref. [46] will be examined, consisting of

two coupled driven Jaynes-Cummings systems. It will be analyzed how a finite delay in

the coupling influences the system. Furthermore, a method to enhance the entanglement

between the two two-level systems by including a second driving field will be presented.
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Fig. 7.1.: Setup of two qubits in a single-mode cavity, driven by coherent laser light of the
strength ϵ. Losses of the cavity are described by the phenomenological decay rate κ.
The qubits also decay coherently into other modes which is included by a coherent
decay rate γ. The drive can initiate an excitation of the qubits, which leads to an
entangled qubit state for certain drive strengths.

7.1 Two qubits coupled to a driven cavity mode:

Entanglement and bistability

In the following, the setup presented by Mitra and Vyas [154] will be discussed, however

taking the full quantization of the photonic field into account. The setup consists of

a photonic cavity mode with angular frequency ωc and two qubits with identical level

splitting ħωq. The cavity is driven by an external laser with angular frequency ωd and

strength ϵ (cf. Fig. 7.1). The qubits couple to the cavity mode with coupling strength g

and also directly with each other via Förster coupling of strength F . The Hamiltonian

therefore reads

H =ħωcc†c+ħωq
σz

1 +σz
2

2
+i g

2∑

j=1

(
c†σ−

j − cσ+
j

)
+F

(
σ+

1 σ−
2 +σ+

2 σ−
1

)
+iϵ

(
c†e−iωdt + ceiωdt

)
.

(7.1)

σz
1,2 describes the standard Pauli matrix acting on the first resp. second two-level system.

The ladder operators are defined as σ±
j
= σx

j
± iσ

y

j
, also using standard Pauli matrices.

Cavity decay and the decay of the qubits is included using a Lindblad operator Lρ =
2κD[c]ρ+γD[σ−

1 +σ−
2 ]ρ, with the dissipators defined as D[x]ρ = (xρx†−x†xρ+H.c.). This

kind of qubit decay only acts on the symmetric state of the qubit, |T0〉 = (|↑↓〉+ |↓↑〉)/
p

2 ,

while the antisymmetric “singlet” state |S〉 = (|↑↓〉− |↓↑〉)/
p

2 remains unaffected. This,

together with the other symmetries of the Hamiltonian, fully separates the singlet state

|S〉 from all of the dynamics. It can therefore be excluded from the calculations. The other

states the two-qubit system may be in are the ground state |T−〉 = |↓↓〉 and the biexciton

state, |T+〉 = |↑↑〉, which form the “triplet states” together with |T0〉 (hence the naming).

Mitra and Vyas [154] give an extensive analysis of this system, using semiclassical

equations which do treat the photon field classically. They find that the system exhibits
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bistability in the variable of the cavity photon number for a certain range of parameters.

They continue to calculate the concurrence of the two-qubit system, using the formula of

Wootters (Eq. 2.21). They calculate numerically the dependence of the concurrence on

the pump rate and find that with stronger pump, the two qubits become more and more

entangled (starting from the qubit ground state and zero photons in the cavity). This is

understandable since pumping populates the entangled |T0〉 state, but not the |S〉 state.

If the parameters are chosen such that bistability in the photon intensity occurs, the

maximal entanglement appears in the semiclassical case [154] at the onset of bistability

on the low-pump end. As soon as the bistability region ends on the high-pump end, the

concurrence sharply drops to zero. The authors attribute that to the sudden increase

of intensity of the cavity mode, which also distributes the probability evenly between

|T−〉, |T0〉, and |T+〉 – which is a disentangled state. All this points towards a strong

interconnection between entanglement and bistability. The authors suggest to use the

photon properties to measure the entanglement between the qubits.

In the few-excitation limit of the cavity mode, the semiclassical analysis of Ref. [154] is

no longer applicable, and the quantization of the electromagnetic field has to be taken

into account. The occurrence of “quantum noise” makes the usual approach for bistability

impossible. In fact, due to the linearity of quantum mechanics, actual bistabilities will

not be part of the equations. As it was shown by Savage and Carmichael [156], a similar

bistability in a system with one qubit coupled to a cavity mode appears in the quantum

limit as a double peak in the photon number distribution. One can therefore expect

to see such a double peak in the photon distribution as well for the simulations of the

two-qubit system. The system dynamics was simulated starting with an empty cavity and

the qubits in the ground state. The used values are ωc = ωq = ωd = 1fs−1, g = 3.0ps−1,

γ= 1.35ps−1, and κ= 0.5ps−1. The Förster coupling is tuned to bring the system in and

out of the bistability region. The breakdown of bistability due to Förster interaction

occurs in the semiclassical case [154] and is therefore also used here as the parameter to

control the strength of the bistability. Different Förster coupling strengths were chosen:

F = 0.0, F = 3.0ps−1, and F = 6.0ps−1. The photonic Hilbert space was truncated at

200 cavity photons. First, the photon number distribution dependent on the drive

strength as well as on the Förster coupling was analyzed. Three results are plotted in

Fig. 7.2. For small F values, the photon distribution is sharply peaked at low (even zero)

photons. However, at a finite driving strength, a second “branch” emerges with a much

broader photon distribution at higher photon numbers. For a certain range of driving

strengths, both branches coexist and thereby show the typical behavior of quantum-

optical bistability: a double-peaked photon number distribution. Due to the finite widths

of the branches, it is not possible – in contrast to semiclassical models – to precisely

locate the onset of bistability. This is exactly the same as in the case of one qubit in a

cavity [156]. For larger F , this double-peak structure disappears and the photon number

distribution shifts smoothly to higher photon numbers for increasing pump strength.

At this point, the Förster interaction has eliminated the bistability. This behavior is in
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Fig. 7.2.: Photon number distribution, depending on drive strength ǫ and Förster coupling F . (a)
F = 0.0, (b) F = 3.0ps−1, (c) F = 6.0ps−1. For low Förster coupling, a large probability
at very low (down to 0) photon numbers is found, with a second “branch” of higher
probabilities at higher photon numbers emerging at finite drive strength. In (a) as
well as in (b) the bistability is clearly visible through a double-peaked photon number
distribution (in the right half of the panel). For F = 6.0ps−1, the bistability is not visible
any more. Instead, the probability peak smoothly moves to higher photon numbers
for higher pump strengths.

exact analogy to the semiclassical case of Ref. [154], plotted there in Fig. 1 (b). Let us

continue by analyzing the concurrence between the quantum dots for the same set of

parameters. The results are depicted in Fig. 7.3. An asymmetric drive dependence of

the concurrence is found, which becomes more symmetric for larger F . The maximal

concurrence increases with increasing F , at least for the depicted range of values. As

in the semiclassical calculations, the concurrence becomes exactly zero at one finite

pump strength. However, the connection to bistability is not as straightforward as the

semiclassical analysis suggests. For vanishing F , the disappearance of entanglement

happens at about the same drive strength as the appearance of bistability, while in the

semiclassical case bistability was connected to a maximal concurrence. This analysis

can of course be extended to study dependencies on other parameters, such as decay or

coupling rates. However, the semiclassical analysis predicts that no entanglement above

0.43 can be reached [154]. The coupling of both qubits to the same cavity also limits its

use for quantum-information applications, since usually entanglement between distant

qubits is the goal. It seems that the most interesting aspect of the system studied by

Mitra and Vyas [154] is the unintuitive connection between entanglement and bistability,

which unfortunately does not “survive” the transition to the highly quantum-mechanical

low-intensity limit.

A more promising approach will be studied next, describing two coupled cavities,

containing a qubit each.
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Fig. 7.3.: Entanglement between the two qubits, measured by the concurrence, dependent on
the drive strength ϵ and Förster interaction F . For small F , a steady increase of the
concurrence is visible when increasing the drive strength, followed by a rapid drop.
For higher F , the situation becomes more symmetric, and also leads to overall higher
entanglement. Side note: The small kinks on the right hand side end of the curve are
artifacts due to the finite ϵ resolution on the abscissa.

7.2 Two qubits coupled to two cavities: Entanglement

through resonant Raman processes

Aron et al. recently proposed a protocol to entangle two qubits in two separate, but

coupled cavities [46]. In this section, this system will be re-examined. In contrast to

the publication by Aron et al., transition rates will be derived via a time-dependent

perturbation theory approach, which offers further insights into the proposal.

The system consists of two qubits, modeled as two-level systems. Each is located

within a photonic cavity, and both cavities are coupled with each other (cf. Fig. 7.4).

Experimentally, such a coupling can be achieved either through a short waveguide or

through evanescent fields. The two-level energy splitting, cavity angular frequency, qubit-

cavity coupling and cavity-cavity coupling are ħωq, ωc, g , and J , respectively. Both

cavities are also driven in-phase with a laser1 of strength ϵd and angular frequency ωd.

The Hamiltonian therefore reads, using ħ= 1 [46]:

H(t ) =
2∑

i=1
ωca†

i
a

i
− J

(
a†

1a2 +a†
2a1

)

+
2∑

i=1
ωq

σz
i

2
+ g

2∑

i=1

(
a†

i
σ−

i +aiσ
+
i

)

+2
p

2 ϵd cos(ωdt )
2∑

i=1

(
a

i
+a†

i

)
(7.2)

1The term “laser” will be used exchangably with “drive” or “driving” in this chapter, and it describes a
coherent photonic driving. It does not need to be an actual optical laser though; it could as well be a
coherent microwave source.
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Fig. 7.4.: The setup of Ref. [46], which shall be analyzed and extended in the following sections:
Two single mode cavities (frequency ωc) are coupled (coupling constant J) and also
contain a two-level system each (energy difference ωq, coupling constant g ). They are
pumped by a laser with strength ϵd and frequency ωd. The cavities experience losses
by a rate κ. Additionally, the qubits experience losses by a rate γ and pure dephasing
by a rate γϕ.

To stay in the language of Ref. [46], a(†)
1,2 are the annihilation (creation) operators for

photons in the first and second cavity. σ
x,y,z
1,2 operators denote the standard Pauli spin

operators for the first and second two-level system. The corresponding raising and

lowering operators are σ±
i
≡ (σx

i
± iσ

y

i
)/2. The system is in the large detuning regime,

with

∆≡ωq −ωc ≫ g , (7.3)

which will later on allow a Schrieffer-Wolff transformation to acquire analytical results.

The coupling of the two cavities leads to the formation of two collective modes. There

exists a symmetric mode with angular frequency ω−
c :=ωc − J , described by the operators

A(†) =
(
a(†)

1 +a(†)
2

)
/
p

2 , as well as an antisymmetric mode with angular frequency ω+
c :=

ωc + J , described by the operators a(†) =
(
a(†)

1 −a(†)
2

)
/
p

2 .

The eigenstates of the fermionic system are the three triplet states, |T−〉 = |↓↓〉, |T0〉 =(
|↑↓〉+ |↓↑〉

)
/
p

2 , and |T+〉 = |↑↑〉 as well as the singlet state |S〉 =
(
|↑↓〉− |↓↑〉

)
/
p

2 . The

states |T0〉 and |S〉 are maximally entangled Bell states, and they are the states the two-

qubit system shall be brought into. Without any interaction between the qubits, these

two Bell states would be degenerate in energy. However, as it will be shown below, the

degeneracy is lifted by a photon-mediated interaction. Initially, the system is prepared in

the ground state |T−〉.

The system also experience losses, which are introduced via a master equation on the

system density matrix, which reads as

∂tρ =− i [H(t ),ρ]+
∑

i

κD[ai ]ρ+γD[σ−
i ]ρ+

γϕ

2
D[σz

i ]ρ. (7.4)
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Here, Lindblad-type dissipators are introduced: D[X ]ρ ≡
(
XρX † −X †Xρ+H.c.

)
/2. κ

denotes the loss of the single cavities, γ a decay of the two-level system (without emission

of a photon into a cavity mode), and γϕ models pure dephasing between the qubits.

The general idea brought forward by Aron et al. is the following: In order to pump the

system to one of the Bell states, the system is driven by a coherent AC drive (a laser or a

microwave tone) at such a frequency that in addition to exciting the system a photon will

be deposited in one of the photon modes. The effectiveness of this two-photon process

will be highly pump-frequency-dependent: If the cavity resonance is hit perfectly, the

high photonic density of states at this frequency will strongly enhance the process. For

other frequencies, though, there is no “space” for the photon to go to. This selectiveness

will make it possible to selectively drive the system into the desired state. The overall

process is slightly more complex, since there are other competing processes, and also

symmetry constraints. As it will turn out, symmetries actually make the selectiveness

higher.

To get a better insight into the system, the authors use a Schrieffer-Wolff transform

H 7→ H̃ ≡ eX HeX †
to eliminate terms linear in g /∆ in the undriven Hamiltonian. This is

achieved by

X ≡ g
p

2

[
A(σ+

1 +σ+
2 )

ωq −ω−
c

+
a(σ+

1 −σ+
2 )

ωq −ω+
c

−H.c.

]
. (7.5)

If all terms of order (g /∆)3 or higher are neglected, one arrives at a Hamiltonian which

can be partitioned as follows,

H̃ = H̃a + H̃σ+ H̃σa + H̃d (t ). (7.6)

The different parts of the Hamiltonian are defined as

H̃a =ω−
c A† A+ω+

c a†a (7.7)

H̃σ =
2∑

i=1
ωq

σz
i

2
− 1

2
J
( g

∆

)2 (
σx

1σ
x
2 +σ

y
1σ

y
2

)
(7.8)

H̃σa = g 2

2∆

[(
1+ A† A+a†a

)(
σz

1 +σz
2

)
+

(
A†a +a† A

)(
σz

1 −σz
2

)]
(7.9)

H̃d (t ) =2
p

2 ϵd cos(ωdt )
(

A+ A†
)
+2

g

∆
ϵd cos(ωdt )

(
σx

1 +σx
2

)

+ 1
p

2

( g

∆

)2
ϵd cos(ωdt )

[
A

(
σz

1 +σz
2

)
+a

(
σz

1 −σz
2

)
+H.c.

]
. (7.10)

The terms can be interpreted as follows: H̃a describes the cavity system, H̃σ the spin

system, H̃σa the interaction between spins and photons independently of the drive, and fi-

nally H̃d (t ) the time-dependent terms for the coherent drive. The term J
( g
∆

)2 (
σx

1σ
x
2 +σ

y
1σ

y
2

)

in H̃σ describes a photon-mediated transverse coupling between the two qubits, which
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leads to a breakup of the degeneracy within the Bell-state subspace. Let us split the cavity

photon operators up into a coherent part and a noise term:

A ≡ Ae−iωdt +D, using A = −
p

2 ϵ

ω−
c − iκ/2

(7.11)

a ≡ ae−iωdt +d , using a = 0 (7.12)

Let us also define N = |A|2. The reason for a = d is that the antisymmetric mode is not not

pumped, and therefore this mode is only populated by incoherent “noise” photons. From

Eq. 7.6, it is possible to derive the energies of the eigenstates of the undriven Hamiltonian:

E(T±) = ±ωq +O
(( g

∆

)2
)
, E(T0) = −J(g /∆)2, and E(S) = J(g /∆)2. Note that the energy

values of |T±〉 are given only up to O
(( g

∆

)2
)
, since they depend on ϵd at higher orders,

and for the full system then need to be evaluated with finite ϵd. More accurate values are

given in Ref. [46]. At this point it is sensible to perform a rotating wave approximation

and eliminate terms not rotating along with the undriven resonance. This is equivalent

to removing all terms which would be oscillating with 2ωd after a transformation in the

frame rotating with ωd. Note that up to this point the only difference in the analysis

between Ref. [46] and this section is that here the analysis stays in the lab frame. This

will make the subsequent derivation of transition rates via second order time-dependent

perturbation theory clearer. Note that Ref. [46] does not provide such a derivation, and

instead derives new eigenstates of the transformed Hamiltonian. In Ref. [46], these

eigenstates are then used to calculate transition rates within the framework of Fermi’s

Golden Rule, which in the way it is used is based on first-order perturbation theory.

Since the presented mechanism is however a two-photon process, the two photons are

not treated on equal footing in such an approach, and therefore a second-order time-

dependent perturbation theory approach is more elegant and insightful. It will also

make it straightforward to discuss the inclusion of further driving fields, as presented in

section 7.4. The terms which will contribute to the transitions discussed in Ref. [46] are

H̃σ,d = 1

2

( g

∆

)2
(

Ā∆+ ϵdp
2

)[
D†(σz

1 +σz
2)+d †(σz

1 −σz
2)

]
e−iωdt +H.c. , (7.13)

as well as

H̃σx = g

∆
ϵd(σ+

1 +σ+
2 )e−iωdt +H.c. . (7.14)

Note that Eq. 7.14 is derived from H̃d (t) by using σx = σ++σ− and then applying the

rotating wave approximation.

The transitions discussed in the paper are two photon transitions, therefore second

order perturbation theory is necessary. The equation of the transition rate from |i 〉 to | f 〉,
using the perturbation V ≡ H̃σ,d + H̃σx that oscillates with ωd is

Γi→ f = 2π

⏐⏐⏐⏐
∑

m

〈 f |V |m〉〈m|V |i 〉
ωm −ωi −ωd

⏐⏐⏐⏐
2

δ(ω f −ωi −2ωd) (7.15)
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Here, {|m〉} are intermediate states that do not need to fulfill energy conservation. The

delta function in the end makes sure energy is conserved in the whole process, and will

be replaced by a density of states in realistic situations, which will be discussed in a

moment. The denominator shows that a state |m〉 is weighted the highest, when it is

reached from |i 〉 by the energy of one driving photon, i.e., when it lies halfway between

|i 〉 and | f 〉. For the analysis of “our” two-photon process, it is important to know what

the intermediate state(s) is/are. In order to do this, let us have a closer look at the action

of the Hamiltonians H̃σ,d and H̃σx on the qubit subspace. The terms acting on the qubits

are actually of three types:

• (σz
1 +σz

2): Terms like these are proportional to the total (pseudo)“spin” in “z” di-

rection of the two-spin system. While 〈T±|(σz
1 +σz

2)|T±〉 = ±2, the Bell states |T0〉
and |S〉 have an expectation value of 0. Since the spin eigenstates of the unper-

turbed Hamiltonian are also eigenstates of terms like these, no transition between

spin states is initiated. Consequently, all parts of the Hamiltonian with such spin

dependence only act upon the photonic subspace.

• (σz
1 −σz

2): Terms like these evaluate to zero if acted upon by a state with two equal

spins, i.e., |T±〉. On the other hand, it transforms |T0〉 into |S〉 and vice versa:

〈S|(σz
1 −σz

2)|T0〉 = 2. It can therefore initiate transitions between the Bell states,

however it cannot change the number of excitations in the two-qubit system.

• (σ±
1 +σ±

2 ): Terms like these are responsible for transitions within the triplet state

subspace, as they initiate transitions between |T−〉 and |T0〉 as well as between |T0〉
and |T+〉. Acting with it upon the |S〉 state results in 0, it therefore does not initiate

any transitions to or from the |S〉 state.

Let us now discuss the δ-function in Eq. 7.15. As it will be shown below, any pumping

mechanism in the spin subspace will also deposit a (noise) photon in one of the modes

described by D or d . In a first approximation, these modes can be treated as a zero

temperature bath. In order for this approximation to work, a very low value of 〈D†D〉
as well as 〈d †d〉 is needed, which is achieved through the finite photon loss rate κ. This

approximation also allows to neglect terms in the Hamiltonian of the form ...X D†D and

...X d †d , which lead to finite frequency shifts [46]. Although cavities are certainly a non-

Markovian reservoir, for the calculation of steady state transition rates one can just use

the photonic density of states of the cavity at the respective frequency in Eq. 7.15 instead

of the delta function. This density of states is given as

ρ±(ω) =− 1

π
Im

1

ω−ω±
c + iκ/2

. (7.16)

The sharp peak of this density of states is what gives the selectivity of the protocol: Rates in

which the resonance is not matched will be strongly suppressed. Now all the ingredients

to calculate transition rates are present. Let us describe the states by their fermionic

degree of freedom, as well as by the number of noise photons in the symmetric and
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antisymmetric modes: |ψ〉 ≡ |{Spins},n(D),n(d)〉. Since the photon modes are described

as zero-temperature baths, the initial state will always have zero photons in both modes.

It will therefore be |i 〉 = |T−,0,0〉.

It is remarkable that the pumping to |T0〉 actually takes a very different route than

pumping to |S〉. The only way to arrive at |S〉 using Hσx +Hσ,d is via the following transi-

tion:

|T−,0,0〉 H̃σx→ |T0,0,0〉 H̃σ,d→ |S,0,1〉 (7.17)

This can be used to calculate

〈T0,0,0|H̃σx |T−,0,0〉 =ΩR /
p

2 (7.18)

〈S,0,1|H̃σ,d |T0,0,0〉 =λ. (7.19)

Here, ΩR ≡ 2ϵdg /∆ as well as λ= (g /∆)2(A∆+ϵd/
p

2 ) was introduced just as in Ref. [46].

The transition path of Eq. 7.17 nicely demonstrates that the transition to |S〉 coincides

with a deposition of a photon in the antisymmetric mode (d). There exists no term in H̃

which can initiate a transition from |T−〉 to |S〉 which at the same time deposits a photon

in the symmetric mode. Therefore one has to evaluate the photonic density of states

ρ+(ω) to arrive at the right transition rate.

The denominator in Eq. 7.15 will give (on resonance) (ωq−ω+
c )/2+O

(
(g /∆)2

)
, which is

equal to the quantity “∆q” in Ref. [46] up to terms O
(
(g /∆)2

)
. Checking terms O

(
(g /∆)2

)

gave almost equal results to Ref. [46], however slight differences in the denominator

appear coming from terms proportional to J (g /∆)2. These can be contributed to approxi-

mations during the transformations from |T±,0〉 to |T̃±,0〉 in Ref. [46]. In conclusion, the

rates calculated in Ref. [46] can be reproduced by a time-dependent perturbation theory

approach.

The transition to arrive at |T0〉 is actually very different. The transition path is:

|T−,0,0〉 H̃σ,d→ |T−,1,0〉 H̃σx→ |T0,1,0〉 (7.20)

First of all, the order in which the two parts of the Hamiltonian are applied, is switched.

Also this time, Hσ,d is used to only deposit a photon in the symmetric mode while keeping

the spins in the ground state |T−〉. Afterwards, the spin state is changed to |T0〉 using Hσx .

Interestingly, this different path leads to the same transition rates:

〈T−,1,0|H̃σ,d |T−,0,0〉 =λ (7.21)

〈T0,0,1|H̃σx |T−,1,0〉 =ΩR /
p

2 (7.22)
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The energy denominator will now give (ωq −ω−
c )/2+O

(
(g /∆)2

)
, which will finally also

lead to the same transition rate as in Ref. [46] up to O
(
(g /∆)2

)
. Note that this time a

photon is scattered into the symmetric mode, so one needs to evaluate ρ−.

Let us briefly summarize the results of Ref. [46] which are confirmed by the second-

order time-dependent perturbation theory presented above:

For two qubits coupled to two cavities, there exists a pumping mechanism to bring the

qubits into an entangled Bell state. It works as follows: One pumps the symmetric cavity

mode. To bring the system into the symmetric Bell state |T0〉, starting from the ground

state |T−〉, the pump frequency is chosen such that the energy of two pump photons

(2ωd) matches the energy of the symmetric cavity mode (ω−
c ) plus the energy needed to

bring the qubit system from |T−〉 to |T0〉. On the other hand, to bring the system into

the symmetric Bell state |S〉, starting from the ground state |T−〉, the pump frequency

is chosen such that the energy of two pump photons (2ωd) matches the energy of the

antisymmetric cavity mode (ω+
c ) plus the energy needed to bring the qubit system from

|T−〉 to |S〉. The crucial point for this transition is that the two modes have a frequency

difference of 2J , which is orders of magnitude larger than the frequency difference

between |S〉 and |T0〉 (which is 2J(g /∆)2). It is this high selectivity that allows one to

precisely populate one of the two states. However, as it is also mentioned in Ref. [46], one

problem persists: The same process that pumps from the ground state to the desired Bell

state also pumps from the Bell state to the biexciton state |T+〉. Although this process is

not at resonance of the cavity, its energy difference is still only of the order 2J (g /∆)2. Such

processes not only lead to a nonzero population of |T+〉, which reduces entanglement,

but also to an effective dephasing, since |T+〉 decays with decay rate γ into both Bell

state equally. It therefore couples the Bell states via |T0〉 ↔ |T+〉 ↔ |S〉. Suppressing

these processes demands for very low cavity losses, at least κ < 2J(g /∆)2. However, if

the cavity losses are too weak, the zero temperature bath approximation is no longer

valid. There will be non-negligible intensity within the cavity mode. If the cavities have a

non-negligible photon density, however, this can be used to drive backwards processes

that utilize a cavity photon to drive the system away from the Bell state back to the ground

state in a process similar to stimulated emission. Therefore the cavity must not be too

“perfect”. After all, if one only considers, e.g., the subsystem made from |T−〉 and |T0〉,
driving to |T0〉 creates a strong inversion within this subsystem. However it is well-known

that in a pure two-level system inversion is not possible. Including the photon degrees

of freedom, it is apparent that the system actually rather looks like a three-level system,

consisting of |T−,0,0〉, |T0,1,0〉, and |T0,0,0〉. There is no inversion between the states

|T−,0,0〉 and |T0,1,0〉, which are coupled via the drive. The finite photon decay κ however

translates |T0,1,0〉 to |T0,0,0〉, while there is no process at zero temperature in the other

direction. This creates the high occupation of the |T0,0,0〉 state. For very small κ, this

process should manifest itself through Rabi oscillations between |T−〉 and |T0〉. A similar

argument holds for the transition from |T−〉 to |S〉.
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Fig. 7.5.: A way to model cavities which are not directly coupled, but by a waveguide or sim-

ilar, is to describe the coupling as a cavity as well. On resonance, the cavity-cavity
interaction is maximal, which is why the coupling between right and left cavity is
modeled as a resonant single mode cavity in the middle. For a waveguide, this may be
an approximation which takes only one resonant waveguide mode into account.

7.3 Two qubits coupled to three cavities

One of the benefits of entangling two qubits in two separate cavities, as discussed above,

is that the two qubits are spatially distant. This makes the two qubits easily addressable.

Coupling between the cavities can either be achieved by tunnel coupling or through a

short waveguide. The waveguide option diminishes the coupling between the cavities

however, which makes the entanglement scheme work less well. What is to be studied in

this section is what happens if the cavities are coupled via a third resonant cavity. This

shall be a model for distantly coupled cavities, e.g. through longer waveguides. Such a

system can be described by the Hamiltonian [46]:

H3(t ) =
3∑

i=1
ωca†

i
a

i
− J

(
a†

1a2 +a†
2a1 +a†

2a3 +a†
3a2

)

+
∑

i={1,3}
ωq

σz
i

2
+ g

∑

i={1,3}

(
a†

i
σ−

i +aiσ
+
i

)

+2
p

2 ϵd cos(ωdt )
3∑

i=1

(
a

i
+a†

i

)
(7.23)

This setup is equivalent to the one discussed before, however now containing three

coupled cavities (without periodic boundary conditions). Only the first and third cavity

contain a qubit, which is why they are now described with σ1,3-operators. Again, all
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cavities are pumped equally and in phase. In order to diagonalize the photonic subspace,

let us introduce the three new modes

a(†)
s = 1

2

(
a(†)

1 +
p

2 a(†)
2 +a(†)

3

)
(referred to as “+++”)

a(†)
0 = 1

p
2

(
a(†)

1 −a(†)
3

)
(referred to as “+0−”)

a(†)
a = 1

2

(
a(†)

1 −
p

2 a(†)
2 +a(†)

3

)
(referred to as “+−+”) (7.24)

The eigenfrequencies of these modes are ωs
c = ωc −

p
2 J , ω0

c = ωc, and ωa
c = ωc +

p
2 J .

Compared to the two-cavity case, the mode frequency splitting is reduced from 2J to
p

2 J . This however should not be a big problem: To differentiate between pumping to

|S〉 and pumping to |T0〉, the splitting is still large enough, since it can still be much larger

than κ. For the values used in Ref. [46], the difference is three orders of magnitude.

A big problem is however the photon-mediated spin-spin coupling. Due to the third

cavity, this coupling is reduced from being in the order of J(g /∆)2) to J 2g 2/∆3. For the

values used in Ref. [46], this puts the Bell state energy splitting on the same order of

magnitude as the cavity decay rate κ. Therefore, the decrease about a factor J/∆ will

strongly enhance the transition rate away from the Bell states up to the |T+〉 biexciton

state, since the selectivity of the cavity mode is not sufficient. It will therefore be very

hard to create substantial entanglement between the qubits. In summary, it can be said

that distantly coupled qubits are harder to entangle using the discussed method – delay

does not help in this case. The system will have a substantial excitation probability

in the two-excitation subspace (which only exists of |T+〉 in our case). This system

must be differentiated from a system consisting of three coupled cavities containing a

qubit each, which is discussed by Aron et al. in another paper [47]. In such a system,

the qubit eigenstates within the one-excitation subspace actually differ in energy by

J(g /∆)2), just as in the case of two cavities. In particular, one of the qubit eigenstates

is
(
|↑↓↓〉− |↓↓↑〉

)
/
p

2 . The density matrix of this state, traced over the central qubit, is

equal to |S〉〈S|. Would such a setup be more favorable to create distant entanglement?

In other words: Would it help to put a qubit in the transmission channel to gain higher

energy splitting? The problem with only an empty cavity as a connection was that

the two-excitation subspace was also populated. In the case of three coupled qubit-

cavity systems, there actually exists a state in the two-excitation subspace with twice the

energy of
(
|↑↓↓〉−|↓↓↑〉

)
/
p

2 , namely the state
(
|↑↑↓〉−|↓↑↑〉

)
/
p

2 . The problem might exist

that pumping from the ground state to
(
|↑↓↓〉− |↓↓↑〉

)
/
p

2 simultaneously pumps from
(
|↑↓↓〉−|↓↓↑〉

)
/
p

2 to
(
|↑↑↓〉−|↓↑↑〉

)
/
p

2 . However a close look at the equations in Ref. [47]

reveal that for this transition a different photonic mode must be used. This was also

confirmed through personal communication with C. Aron, the lead author of Ref. [47].

One might therefore actually get a substantial fidelity of the state
(
|↑↓↓〉− |↓↓↑〉

)
/
p

2 and

therefore substantial entanglement between the first and the last qubit. So, the answer is

yes: Adding a qubit in the coupling cavity will help to increase the selectivity.
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Fig. 7.6.: (a) Setup that was calculated to demonstrate the anti-dephasing protocol: Two qubits
in a cavity each, in the same setup as in Ref. [46]. Cavity-cavity coupling is J . The
cavities experience losses with rate κ, and the qubits experience decay with rate γ

as well as pure dephasing with rate γϕ. The cavities are pumped by two lasers with
angular frequencies ωd and ω′

d and strengths ϵd respectively ϵ′d. The cavities are
pumped in phase. (b) Energy level scheme of the qubit subspace. Note that due
to photon-mediated qubit-qubit interactions, the states |T0〉 and |S〉 have an energy
difference δ.

7.4 Fighting dephasing through a second resonant Raman

process

A manuscript covering parts of this section is in preparation for submission

Although it is possible to achieve quite high fidelities of Bell states with the protocol dis-

cussed in Ref. [46], which is also confirmed by experiment [157], there is still much room

for improvement. Reported fidelities are in the area of 70% [157]. One obstacle to reach

higher values is dephasing: It is not possible to suppress the interaction of the qubits with

their environment, which creates entanglement also between the environment and the

system. For the system itself, this can lead to a smaller overall entanglement [158], since

information is lost to the environment. If the system also experiences a loss of energy,

this leads to decay; if the loss only affects phase information, this leads to dephasing.

The analysis of Ref. [46] was performed for values typical of superconductor-based

artificial atoms in microwave cavities [159–161]. In such a setup, noise in the applied

magnetic flux can make the artificial atoms decay, while noise in the voltage across the

Josephson junction creates pure dephasing [161, 162].

To reach really high entanglement, a protocol to fight dephasing must be developed.

This is the topic of the following analysis. The idea of Ref. [46] can be extended by adding

another drive to the cavities, which in a similar process reduces dephasing. The idea

in itself is simple: To fight dephasing, one needs to drive from |T0〉 to |S〉 or vice versa,

on demand – however for best results only in one direction. This is achieved by again
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utilizing the strongly structured photonic environment provided by the cavity modes.

The two cavities provide us with two modes of opposite parity. The idea behind the

proposed anti-dephasing scheme is to pump one mode almost at the frequency of the

other. The small mismatch to the mode frequency is chosen such that it is the same as the

energy difference between |T0〉 and |S〉. In a resonant Raman process, one pump photon

can now be used to drive the system from |T0〉 to |S〉 (or vice versa, depending on the sign

of the detuning) and at the same time excite the cavity mode. Since the cavity modes are

sharp, this is a highly frequency-selective process and only the desired transition will be

strong.

The main ingredients for this scheme are two coupled qubits and two bosonic modes

of opposite parity – two things that are already present in the scheme discussed by Aron

et al. [46]. It can therefore be easily applied to this system. The setup is pictured in

Fig. 7.6. However, there may be a lot of other systems that can profit from the proposed

mechanism - e.g., in a setup of quantum dots (which provide the qubits) coupled to a mi-

crocavity. The bosonic modes might in practice also be plasmonic modes (however here

the width of the mode might be a problem) or mechanical modes of an optomechanical

setup.

The Hamiltonian of Ref. [46] with an additional anti-dephasing drive is

H(t ) =
2∑

i=1
ωca†

i
a

i
− J

(
a†

1a2 +a†
2a1

)

+
2∑

i=1
ωq

σz
i

2
+ g

2∑

i=1

(
a†

i
σ−

i +aiσ
+
i

)

+2ϵd cos(ωdt )
2∑

i=1

(
a

i
+a†

i

)

+2ϵ′d cos(ω′
dt )

2∑

i=1

(
a

i
+a†

i

)
. (7.25)

Again there are two qubits (angular frequency ωq, operators σz
1,2,σ±

1,2) coupled to two

cavities (frequency ωc, operators a(†)
1,2) with coupling strength g . The two cavities are

coupled with strength J . This leads, again, to the buildup of the two modes A(†) ≡
(
a(†)

1 +
a(†)

2

)
/
p

2 and a(†) ≡
(
a(†)

1 −a(†)
2

)
/
p

2 . Due to the coupling, A oscillates with ω−
c =ωc − J

and a oscillates with ω+
c =ωc + J .

The system is driven by two lasers, both coupling to the symmetric mode. The laser

angular frequencies are ωd and ω′
d, and their respective strengths are ϵd and ϵ′d. Let us
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transform the Hamiltonian into a rotating frame with ωd through the unitary transforma-

tion H 7→Urot (H − i∂t )U †
rot with

Urot = exp

[
iωdt

(
σz

1 +σz
2

2
+ A† A+a†a

)]
. (7.26)

After the transformation, all the terms rotating with 2ωd as well as with ωd +ω′
d will be

neglected. This is a kind of rotating wave approximation. However, terms rotating with

ωd −ω′
d are kept. For the scheme to work, ωd and ω′

d are of the same order of magnitude.

They will differ by about ∆/2, with ∆≡ωq −ωc. Therefore ∆≪ωd holds.

In contrast to Ref. [46], the combination of a transformation to the rotating frame

and a rotating wave approximation does not eliminate the full time-dependence of the

Hamiltonian (Eq. 7.25). This makes it much harder to distinguish (and even define) a

steady state. Without a time dependence, steady states can be found by solving the

equation ∂tρ = 0, using the master equation for the density matrix ρ. This equation

can be found by a simple matrix inversion. As it will be demonstrated later on, it is in

many cases possible to create an approximate time-independent Hamiltonian even in

the two-laser setup.

Again, losses are included through a Lindblad approach, cf. Eq. 7.4 with the decay

rates κ for the cavity, γ for the qubit decay, and γϕ for the qubit pure dephasing. Note

that due to the Purcell effect, qubits placed in cavities experience lower losses than in

free space. This will be already considered by choosing a γ which is appropriate for

qubits in cavities. Additionally, the finite energy difference between |T0〉 and |S〉 already

substantially reduces pure dephasing between the qubits, since the environment is

probed at the finite frequency ∆. This will also be directly included in the choice of γϕ.

The Hamiltonian in the rotating frame, after the rotating wave approximation, reads

H(t ) =
2∑

i=1

(
ωc −ωd

)
a†

i
a

i
− J

(
a†

1a2 +a†
2a1

)

+
2∑

i=1

(
ωq −ωd

)σz
i

2
+ g

2∑

i=1

(
a†

i
σ−

i +aiσ
+
i

)

+
p

2 ϵd

2∑

i=1

(
a

i
+a†

i

)

+
p

2 ϵ′d
2∑

i=1

(
ei(ω′

d−ωd)t a
i
+e−i(ω′

d−ωd)t a†
i

)
. (7.27)

7.4.1 Analytical derivation of transition rates

Before direct numerical simulations of the Hamiltonian of Eq. 7.27 are discussed, it

will be analyzed analytically. Therefore the Schrieffer-Wolff transform H 7→ H̃ ≡ eX HeX †
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is applied, with X as discussed above (cf. Eq. 7.5). Discarding all terms of order higher

than (g /∆)2 leads to the approximate Hamiltonian

H̃(t ) = H̃a + H̃σ+ H̃σa + H̃d + H̃ ′
d(t ), (7.28)

using

H̃a =
(
ω−

c −ωd
)

A† A+
(
ω+

c −ωd
)

a†a (7.29)

H̃σ =
2∑

i=1

(
ωq −ωd

) σz
i

2
− 1

2
J
( g

∆

)2 (
σx

1σ
x
2 +σ

y
1σ

y
2

)
(7.30)

H̃σa = g 2

2∆

[(
1+ A† A+a†a

)(
σz

1 +σz
2

)
+

(
A†a +a† A

)(
σz

1 −σz
2

)]
(7.31)

H̃d =
p

2 ϵd

(
A+ A†

)
+ g

∆
ϵd

(
σx

1 +σx
2

)
+ 1

2
p

2

( g

∆

)2
ϵd

[
A

(
σz

1 +σz
2

)
+a

(
σz

1 −σz
2

)
+H.c.

]

(7.32)

H̃ ′
d(t ) =

p
2 ϵ′d

[
Aei(ω′

d−ωd)t + A†e−i(ω′
d−ωd)t

]

+ g

∆
ϵ′d

[
cos((ω′

d −ωd)t )
(
σx

1 +σx
2

)
+ sin((ω′

d −ωd)t )
(
σ

y
1 +σ

y
2

)]

+ 1

2
p

2

( g

∆

)2
ϵ′d

[
Aei(ω′

d−ωd)t
(
σz

1 +σz
2

)
+aei(ω′

d−ωd)t
(
σz

1 −σz
2

)
+H.c.

]
. (7.33)

Here the Hamiltonian is divided in the same way as above in the one-drive scheme.

However due to the second drive, H̃ ′
d(t ) appears additionally. Since the description is not

in the rotating frame of ω′
d, this Hamiltonian looks very complex.

Again, a qubit-qubit interaction is present through the term −1
2 J

( g
∆

)2 (
σx

1σ
x
2 +σ

y
1σ

y
2

)
,

which leads to an energy splitting between |T0〉 and |S〉 of 2J g 2/∆2 ≡ δ.

Let us again separate the photonic parts into “coherent” and “noise” parts. The modes

only have “coherent” parts if they are actually driven by the laser. Since the antisymmetric

mode (a(†)) is not pumped, it will only be populated by noise:

a ≡ d . (7.34)

This is different for the symmetric mode. The symmetric mode is driven with two different

frequencies, leading to

A ≡ Ad +e−i(ω′
d−ωd)t A′

d +D, (7.35)

where

Ad ≈
p

2 ϵd

ωd −ω−
c + iκ/2

, A′
d ≈

p
2 ϵ′d

ω′
d −ω−

c + iκ/2
. (7.36)
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The approximation lies in the fact that no interaction between the coherent parts is

included; their intensities are calculated as if the respective laser were the only laser

driving the system. For simplicity, let us also abbreviate N d ≡ |Ad|2 as well as N ′
d ≡

|A′
d|2.

At this point, the eigenenergies of the system must be discussed. This is difficult, since

parts of the Hamiltonian introduce transitions between the eigenenergies, so they are not

in fact the energies of the eigenstates of the full Hamiltonian. A good way to distinguish

between “system Hamiltonian”, “bath Hamiltonian”, and “system-bath coupling” is to

include in the system Hamiltonian all parts of the Hamiltonian, which do not contain the

operators D (†) or d (†). This is also consistent with Ref. [46].

There is one time-dependent term in H̃ ′
d(t) which also fulfills this criterion – it is

+ g
∆
ϵ′d

[
cos((ω′

d −ωd)t )
(
σx

1 +σx
2

)
+ sin((ω′

d −ωd)t )
(
σ

y
1 +σ

y
2

)]
. This term can be neglected,

since it creates oscillations of the order of ϵ′d on top of terms scaling with ϵd. In all

applications of the scheme, ϵ′d ≪ ϵd. Those terms might therefore only play a role if they

can resonantly excite some transitions. As it will be discussed below, this will not be the

case. With this, the eigenenergies and eigenstates of the system are (cf. Fig. 7.6(b))

E(T̃+) =∆q +
Ω

2
R

2∆q
for |T̃+〉 = |T+〉+

ΩRp
2∆q

|T0〉 (7.37)

E(S̃) = J (g /∆)2 for |S̃〉 = |S〉 (7.38)

E(T̃0) =−J (g /∆)2 for |T̃0〉 = |T0〉+
ΩRp
2∆q

(
|T−〉− |T+〉

)
(7.39)

E(T̃−) =−∆q −
Ω

2
R

2∆q
for |T̃+〉 = |T−〉−

ΩRp
2∆q

|T0〉 (7.40)

using the abbreviations ΩR ≡ 2ϵd(g /∆) and

∆q ≡ωq −ωd + (g /∆)2
[

(N d +N
′
d +1)∆+

p
2 Re(ϵd Ad +ϵ′d A

′
d)

]
. (7.41)

Note that the states exactly look like in Ref. [46], however the value ∆q now also has

components depending on ϵ′d. The corrections on the eigenstates are actually very small,

they are however crucial for the derivation of the transition rates from |T−〉 to the one-

excitation subspace as discussed in Ref. [46]. For the anti-dephasing scheme discussed

here, they are however of no importance. With Ref. [46], there exists a method to get into

the one-excitation subspace.

Let us now concentrate on the action of the second drive. As mentioned, terms in the

Hamiltonian of the form g
∆
ϵ′d

[
cos((ω′

d −ωd)t)
(
σx

1 +σx
2

)
+ sin((ω′

d −ωd)t)
(
σ

y
1 +σ

y
2

)]
are

neglected. In a first order time-dependent perturbation theory approach, these terms

drive transitions between states with different quantum number m = 〈σz
1 +σz

2〉, however
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the frequency of our second drive will be tuned far off these resonances (by an amount

on the order of ∆).

The term in ϵ′dDei(ω′
d−ωd)t

(
σz

1 +σz
2

)
+H.c. is also neglected since it only couples to |T±〉

and does not change the qubit state. The important parts of the Hamiltonian are

1

2
p

2

( g

∆

)2
ϵ′dei(ω′

d−ωd)t
(
σz

1 −σz
2

)
d +H.c., (7.42)

coming from H̃ ′
d(t ), as well as

g 2

2∆
A′

dei(ω′
d−ωd)t

(
σz

1 −σz
2

)
d +H.c., (7.43)

coming from the right hand side of H̃σa and getting a time-dependence through the

substitution of Eq. 7.35. These terms contain the d (†) operator, so they couple to the anti-

symmetric mode. One can use Fermi’s Golden Rule to calculate transition rates between

|T0〉 and |S〉 with the simultaneous deposition of one noise photon in the antisymmetric

mode to be

Γ
′
T0→S = 2π |Λ|2 ρ+(ET0 −ES +ω′

d) , (7.44)

Γ
′
S→T0 = 2π |Λ|2 ρ+(ES −ET0 +ω′

d) , (7.45)

with

Λ≡
(
g /∆

)2 (A′
d∆+ϵ′d/

p
2 ). (7.46)

These are the rates for the anti-dephasing protocol. For an effective anti-dephasing,

ω′
d must be chosen such that ρ+ is evaluated at its maximum. When optimized for a

stabilization of |T0〉, one can estimate the transition rate of the anti-dephasing scheme

as

Γ
′
S→T0

≃ 2
g 4ϵ′d

2

∆2 J 2κ
. (7.47)

A stabilization of |S〉 leads to the same rate.

However, all of these rates are calculated by treating the photon modes as zero-

temperature baths, i.e., in the approximation that 〈D†D〉 = 〈d †d〉 = 0. This is however a

very crude approximation. First, “zero temperature” is not possible in experiment, so

there will always be some thermal excitation of the modes. Furthermore, scattering into

the modes populates the modes. This is only counteracted by the decay rate κ, which

may be in the same order of magnitude as the pumping rates calculated above. This leads

to a buildup of a nonzero equilibrium photon number in the cavity modes.

The problem with nonzero excitation in the cavity modes is that they allow a backwards

process: A cavity photon may be used to drive the system away from the desired state.
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When the forward process is in resonance, the backwards process is so as well – therefore

a significant decrease of the effectiveness might be induced by nonzero cavity excitation.

Numerical studies (see below) show that the photon cavity number might be around

0.1.

This nonzero excitation may be included in the rate description. As a good approxima-

tion, it is safe to say that there is at most one photon in the mode. Let us work with the

antisymmetric mode d (†). The probability to be in the one-photon subspace is therefore

〈d †d〉, while the probability to be in the zero-photon subspace is 1−〈d †d〉. With one

excitation in the mode, the forward process is also increased by a factor of two. This leads

to a ratio between forward and backwards process of

Γbackw.

Γforw.
≃ 〈d †d〉

(1−〈d †d〉)+2〈d †d〉
= 〈d †d〉

1+〈d †d〉
. (7.48)

The best way to reduce this is to minimize the number of photons in the mode. This

means that a larger κ might actually also be beneficial – one therefore needs to choose

κ such that the optimal compromise between selectivity and backwards process sup-

pression is reached. It is also advisable to make the two processes, i.e., the driving to

the one-excitation subspace and the anti-dephasing scheme by the second drive, use

different modes. For driving to the |T0〉 state, this is naturally the case, since the transition

from |T−〉 to |T0〉 is achieved by scattering in the symmetric mode, while the driving from

|S〉 to |T0〉 is achieved by scattering in the antisymmetric mode. The similar process for

|S〉 however would use the antisymmetric mode for both processes. This can be counter-

acted in several ways by choosing different phases for the drives of cavity 1 and cavity 2.

If, e.g., the second drive drives both cavities with a phase difference of π, the symmetric

mode can be used for the anti-dephasing scheme. It is therefore always possible to use

different modes for the different processes.

7.4.2 Approximate Hamiltonian for steady-state analysis

Although the rates based on Fermi’s Golden Rule already give a good tool to estimate the

steady state values, a method that does not use the quite crude first-order perturbation

theory would be very useful. For a system with only one drive, as in Ref. [46], this is

quite easy to achieve: Due to the transformation into the rotating frame, the Hamiltonian

becomes time-independent. This also makes the right-hand side of the master equation

(cf. Eq. 7.4) time-independent. For steady state analysis, this reduces the numerical

complexity to a matrix inversion by simply solving ∂tρ = 0 (with ρ being the density

matrix).

For two drives, there is no rotating frame that renders the whole Hamiltonian time-

independent. Remarkably, it is still possible to define an approximate time-independent

Hamiltonian. Let us start from the Hamiltonian after the Schrieffer-Wolff transform,
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Eq. 7.28 (hence it’s an approximate Hamiltonian). Again let us also split the photon

modes into a coherent and a noise part, using Eqs. 7.34 and 7.35. Note that as long as

the two processes, driven by the two drives, scatter into different modes, there exists a

“dominant” process for D (†) and another “dominant” process for d (†). Let us assume that

D (†) is used to bring the system into the one-excitation subspace (the process connected

to the first drive), while d (†) is used for the anti-dephasing mechanism (the process

connected to the second drive). The idea is to rotate all the terms connected with d (†)

with the angular frequency ω′
d, while all the other terms are kept rotating with ωd. Let

us now rotate all the terms connected with d (†) into a rotating frame rotating with ω′
d by

applying H̃ 7→U [H̃ − i∂t ]U † with U = exp(i (ω′
d −ωd)t d †d).

Note that now all terms used for the derivation of the anti-dephasing transition rates

become time-independent. As it was discussed in the last subsection, all other terms

oscillating with (ω′
d −ωd) in Eq. 7.28. are highly off-resonant of any transition and may

safely be neglected. The additional rotating frame transformation created some further

time-dependent terms, though. It however did not affect any of the terms used for the

calculation of the transition rates induced by the first drive. Therefore all time-dependent

terms are discarded. The approximate Hamiltonian can be written as the sum of a “system”

part governing the qubits, a “reservoir” part describing the cavity modes, and a “system-

reservoir coupling” term. This leads to

H̃ t.indp. = H̃
t.indp.
sys + H̃

t.indp.
res + H̃

t.indp.
sys-res, (7.49)

with

H̃
t.indp.
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2∑

i=1
h⃗t.indp. σ⃗i

2
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2
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( g

∆

)2 (
σx
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2 +σ
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)
(7.50)

H̃
t.indp.
res =

(
ω−

c −ωd
)

D†D +
(
ω+

c −ω′
d
)

d †d (7.51)

H̃
t.indp.
sys-res =

1

2

g 2

∆

(
D†D +d †d

)(
σz

1 +σz
2

)

+ 1

2

( g

∆

)2
[(
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2

)
D

(
σz

1 +σz
2

)
+H.c.

]

+ 1

2

( g

∆

)2
[(

A′
d∆+ ϵ′dp

2

)
d

(
σz

1 −σz
2

)
+H.c.

]
, (7.52)

using h⃗t.indp. ≡ (ht.indp.,x ,0,ht.indp.,z ) defined as

ht.indp.,x = 2g

∆
ϵd

ht.indp.,z =ωq −ωd +
( g

∆

)2 (
∆

(
1+N d +N ′

d
)

+
p

2 Re(ϵd Ad +ϵ′d A′
d)

)
. (7.53)

The spin parts are written using a vector multiplication. This means that the interac-

tion of the qubits with the cavity modes are actually analogous to a spin in a magnetic
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(a) (b)

Fig. 7.7.: Two different ways to drive to |S〉 using two drives. (a) “Regular” scheme: One drives
with the first laser (big solid arrow) to |S〉. Unfortunately, one also drives from |S〉 to
|T+〉 off-resonantly, which lowers the fidelity of |S〉 (smaller solid arrow). The second
drive (open arrows) increases the fidelity by counteracting dephasing (dashed arrows).
(b) “Switching” scheme: One drives with the first laser to |T0〉 and use the second
laser to reach |S〉. Although the transition |T0〉 → |T+〉 is also off-resonantly driven
by the first laser, the state |T+〉 will still be only slightly populated due to the lack of
population of |T0〉. a transition from |S〉 to |T0〉 is however not driven by any laser. This
allows for higher laser strengths without the problem of populating |T+〉.

field. In contrast to the derivation of transition rates above, this time terms of the form

D†Dσz and d †dσz are included. This allows the more accurate treatment of finite cavity

excitations.

Solving this Hamiltonian for the steady state provides much more accurate results than

simple decay rate calculations: It allows to include finite reservoir excitations, since it

can be used to calculate the full density matrix, containing the qubit- and the photonic

subspace. It is still orders of magnitude faster than full numerical solutions of the time

dynamics, though. A comparison to full numerics will be provided below, when numerical

results are discussed. It will be shown that the fidelities are reproduced very well by the

approximate Hamiltonian, however the exact optimal drive frequencies are shifted.

7.4.3 Switching between Bell states

The second drive can not only be used to purify the state already reached via the first

drive – it can also be used to switch between the two Bell states. This leads to two different

ways to reach a desired Bell state. Take, for example, the |S〉 state: One way to arrive there

is to use the first drive to get to the |S〉 state (by scattering into the antisymmetric mode),

and then to use the second drive to further purify the |S〉 state (either by also scattering

into the antisymmetric mode, or by driving the antisymmetric mode and scattering into

the symmetric one). This is the standard procedure discussed above. Another way to drive

to |S〉 however would be to drive to |T0〉 using the first drive, and then drive from there to

|S〉 using the second drive (cf. Fig. 7.7). This will be called the “switching” protocol.

Let us briefly discuss the benefits and drawbacks of this second option: One problem

of the usual driving scheme discussed above is that when driving from |T−〉 to |S〉, the
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transition from |S〉 to |T+〉 is also driven off-resonantly. When the drive is chosen strong

enough to depopulate |T−〉, this creates a non-negligible population at |T+〉. This not

only reduces the fidelity of |S〉, but also increases dephasing since |T+〉 decays to |T0〉 via

γ.

On the other hand, if |S〉 is populated via the switching protocol, the first laser is tuned

such that it drives from |T−〉 to |T0〉. This also drives off-resonantly the transition from

|T0〉 to |T+〉 – however, the state |T0〉 is almost not populated, since the excitation is

transferred away to |S〉 via the second drive. There is however no drive in the system that

drives from |S〉 to |T+〉 in this protocol. As a result, |T+〉 is almost not populated even for

higher pump strengths. This allows to effectively deplete |T−〉.

Despite this, the switching protocol is not always favorable: The higher drive strengths

also lead to higher populations in the reservoir. One needs higher drive strengths, since it

is much harder to transfer the excitation from |T0〉, which is constantly pumped, to |S〉,
than to just fight the comparatively low dephasing in the system. As discussed above,

higher reservoir populations lead to a “backwards” process in which a cavity photon is

destroyed rather than excited, and which reduce fidelity. At this point, a larger cavity loss

rate κ is actually favorable: It decreases the number of cavity excitations. This leads to a

balance: A high frequency selectivity is needed, which is provided by low κ, but also a low

mode excitation, which is helped by higher κ.

Depending on the setup, and especially on the cavity decay rate, either the normal

or the switching protocol lead to higher fidelities. For more lossy cavities, the switching

protocol may be better, since more lossy cavities lead to higher off-resonant transition

rates (which are suppressed by the switching protocol), while they also help reduce the

detrimental “backwards” process which is more dominant in the switching protocol.

For the values given in Ref. [46], the “usual” protocol leads to higher fidelities (when

simulated using the time-independent Hamiltonian discussed above), while for (more

realistic) cavity decay rates a factor of 5 higher than in Ref. [46], “switching” is highly

preferable. Our simulations predict fidelities above 90% in that case.

This is demonstrated in Fig. 7.8. The time-independent Hamiltonian was used to

simulate the steady state for driving to |S〉, using two different decay rates, κ= 1.0×10−4

and κ= 5.0×10−4. All other system properties were identical to Ref. [46]. The first drive

had the strength ϵd = 0.25, the second drive ϵ′d = 0.005 and frequency ω′
d = 6.102 (all

values in units of 2π GHz). The photonic subspace was truncated at three photons in

each mode. The results show that with the lower decay rate, we reach fidelities above

80%, while the higher decay rate even leads to 93% fidelity.
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Fig. 7.8.: Fidelities of |S〉 reachable by the “switching” protocol, depending on ωd. Two sim-
ulations are performed with different cavity decay rates, showing that more lossy
(“worse”) cavities lead to higher occupaton probabilities of |S〉.

7.4.4 Numerical simulations

To test all these approximations, numerical simulations were performed, using the

Hamiltonian of Eq. 7.25. The Master equation is integrated,

∂tρ =− i [H(t ),ρ]+
∑

i

κD[ai ]ρ+γD[σ−
i ]ρ+

γϕ

2
D[σz

i ]ρ, (7.54)

with the dissipators defined in the same way as for Eq. 7.4. The simulations are performed

in a rotating frame of frequency ωd. All terms oscillating with 2ωd and ωd +ω′
d are

neglected. Throughout the following discussion, unless specified otherwise, ωc = 6,

ωq = 7, g = J = 10−1, κ = 10−4, and γ = 10−5 is used (in units of 2π GHz). These values

are in the range of current experiments using superconducting artificial atoms [157],

and coincide with the values used by Ref. [46]. The photonic subspace is truncated at 5

photons in each mode. The aim is to pump the system to |T0〉. With only one laser, the

maximal fidelity for |T0〉 is found for ωd = 6.45484×2π GHz.

First, the full time dynamics are simulated for the system with (in units of 2π GHz)

ωd = 6.4548, ω′
d = 6.098, ϵd = 0.1, and ϵ′d = 0.01. Pure dephasing is set to γϕ = 8.0×10−6.

For comparison, the exact same setup is also simulated with only ϵd present. The results

are shown in fig. 7.9. Just as predicted by the analytical results, the steady state value for

the fidelity of |T0〉 is increased by the introduction of the second pump. It is apparent that

this increased fidelity comes from |S〉, whose occupation probability is strongly reduced.

This is especially good for high entanglement, since entanglement also needs a high

difference in the occupation probabilities of |T0〉 and |S〉 (for example, a 50 : 50 mixture of
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Fig. 7.9.: Time dynamics of the fidelities of |T0〉 and |S〉 with and without the anti-dephasing
laser. The results show that using the second laser the fidelity of |T0〉 is increased, while
the fidelity of |S〉 is reduced – just as expected by the analytical results.

the two would not be entangled at all). Although there are two drive frequencies present

in the setup, the equilibrium is nevertheless reached - only very minuscule oscillations

can be seen on top of the main behavior. This demonstrates that the time-independent

formulas derived analytically are sensible, since for sustaining large oscillations, a “steady

state” (and a transition rate to that state) cannot be defined. The situation is different for

the photon probabilities, depicted in Fig. 7.10. In both cases, there are strong intensity

fluctuations in the symmetric mode – the one which is pumped. They however die out

in case of only one laser. This can be explained as follows: The initial oscillations with

only one laser are due to the detuning between cavity and pump frequency, but they die

out as soon as the drive has forced its frequency upon the system. With two lasers, there

are always two frequencies present driving the mode, so there are strong oscillations

in the steady state. These oscillations mainly stem from the coherent part of the mode

excitation (A). The antisymmetric mode is almost not occupied in case of only one laser,

since there is no resonant process scattering into this mode. With two lasers, however,

the antisymmetric mode is used for the dephasing scheme. This populates the mode by

“noise” photons.

In Fig. 7.11, the fidelity (also called the occupation probability) of |T0〉, |S〉, and |T+〉
depending on ωd is displayed. In contrast to above, the pure dephasing rate was reduced

slightly to 5.0× 10−6 × 2π GHz. As expected, a large peak is present in the fidelity of

|T0〉. However, there are also side peaks on the right hand side of the main peak. They

are not visible in case of only one drive. For very low ϵ′d, the peaks move together at

ω̃≡ (ω−
c +E(S)−E(T−))/2 (frequencies and energies given in the lab frame). This points

to a process that drives to |S〉 using the deposition of two photons in the symmetric mode

(which has frequency ω−
c ). Such a process is not possible in case of only one laser for
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Fig. 7.10.: Time dynamics of the intensity of the photon modes in the setup with and without the
second laser. There are strong oscillations and higher occupations with the second
laser, which is not surprising since the two lasers interfere, creating an oscillatory
intensity in the cavity modes. The antisymmetric cavity mode is not used if only one
laser is on, therefore it is only slightly opulated by strongly off-resonant processes.
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Fig. 7.11.: Steady state fidelity of |T0〉, |S〉, and |T+〉 with two lasers, depending on the frequency
ωd of the first laser (in units of 2π GHz). A large peak is present in the fidelity of |T0〉,
but also two extra peaks at the right hand side of it. |T+〉 is almost not populated.
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Fig. 7.12.: Comparison of full numerics (thick line) with steady-state results using the time-
independent Hamiltonian from above. here is a very good agreement in terms of
maximal fidelity, however the exact peak frequency is slightly off.

symmetry reasons. The second laser, however, breaks this symmetry slightly by mixing

|S〉 and |T0〉. Such a process is therefore in principle allowed. The second laser also then

takes the occupation probability away from |S〉 and drives to |T0〉. This in the end leads to

the buildup of a peak in the fidelity of |T0〉 around ω̃. This peak is now split into different

peaks by even higher order photon processes, which can be demonstrated by truncating

the cavity photon number at 1 photon, which makes the two peaks merge into one. The

exact process that splits the peak might be a topic of future research.

At this point it is also possible to compare the numerical results with the ones ac-

quired by the time-independent approximate Hamiltonian. A comparison of the results

of Fig. 7.11 with simulations of the exact same parameters using the time-independent

Hamiltonian can be found in Fig. 7.12. The results show that although the exact fre-

quencies are shifted, the time-independent Hamiltonian can reproduce the fidelities

remarkably well. It also reproduces the side peaks.

To actually check the power of the anti-dephasing protocol, the dynamics are simulated

for different values of γϕ. The value ϵd = 0.1 is kept and ϵ′d is set to ϵ′d = 0.005 (again in

units of 2π GHz). The results with and without a second laser are depicted in Fig. 7.13.

The frequency without the second laser is now chosen to be such that the fidelity is

maximized. This is achieved by setting ωd = 6.45484× 2π GHz in that case. For the

two-drive case, ωd is set to ωd = 6.45480×2π GHz. The strength of the second laser is

ϵ′d = 0.005×2π GHz.
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Fig. 7.13.: Fidelity of |T0〉 depending on different pure dephasing rates, with and without the
second laser. While pure dephasing strongly affects the fidelity, the second laser
reduces its effect considerably. This demonstrates that especially for large dephas-
ing the second laser is useful. For very low dephasing, the second laser is actually
counterproductive.

The simulations show that pure dehasing strongly reduces the fidelity. The second

laser however helps to create and maintain higher fidelity, especially in case of larger

dephasing. This demonstates that adding a second laser is actually a very powerful way

to reduce dephasing. Interestingly, for very low dephasing, the second laser deteriorates

fidelity. The reason is the “backwards” process discussed above that is present at finite

mode populations. If this backwards process is larger than the intrinsic dephasing, the

second laser acts as a source of dephasing. This is also the reason why a very low power

for the second laser was chosen. Higher powers extend the region of γϕ in which the

second laser makes the fidelity worse.

7.4.5 Extension to multiple qubits

It is possible to extend the proposal by Aron et al.[46] to more than two qubits [47]. In

such a setup, there are n cavities coupled in a network, each containing a two-level system

acting as the qubit. In the following it will be discussed to what extent the proposed

anti-dephasing scheme can be applied to such extended qubit networks.

The eigenmodes of coupled qubits in a quantum network can become very com-

plex [100]. In a first step, let us restrict ourselves to the setup of n qubits coupled in a

circle (i.e., a chain with periodic boundary conditions). In such a system, one eigenstate

is a (generalized) W state [163], which can be written as

|W (n)〉 = 1
p

n

n∑

i=1
|0...1i ...0〉. (7.55)
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Here, |0...1i ...0〉 denotes a n-qubit state in which all qubits are 0 exept the one at position i ,

which is 1. W states are a “natural” extension of Bell states to n qubits with the remarkable

property that also a subset of the bits of a Bell state is also entangled (which, e.g., is not

the case for another extension of Bell states, the GHZ state [163, 164]).

Let us first discuss the situation of three cavities: the cavity modes as well as the

eigenstates of the coupled qubits can be described by the quasi-momentum k, which

can take the three values 0,±2π/3. The qubit eigenstates are

|k〉 =
(
|↑↓↓〉+e i k |↓↑↓〉+e2i k |↓↓↑〉

)
/
p

3 . (7.56)

The state |k = 0〉 is a W state.For symmetry reasons, the states |k =±2π/3〉 are degenerate,

while the |k = 0〉 state is energetically offset. This offset shall be called δ in analogy to

above. In the same way as the qubits, the photonic subspace also has three modes, of

which two are degenerate. One may now use the first laser to drive to the |k = 0〉 state [46].

Dephasing will however also populate the other states in the one-excitation manifold

(the two-excitation manifold will not be considered here). One can now use a second

laser tuned at ω′
d =ω2π/3

d −δ to increase the fidelity of the |k = 0〉 state by scattering into

the k = ±2π/3 modes. Due to the degeneracy, only one additional drive is necessary,

since it targets both states. This degeneracy also is a problem when one wants to stabilize

any other state |±2π/3〉 of the one-excitation manifold. One cannot use a second laser to

drive between the two degenerate states. This demonstrates that for more than 2 qubits,

some states actually cannot be stabilized by the procedure.

It might also be necessary to use more than two lasers. For more than three qubits,

the states which are not W states are not all degenerate, so one needs an extra frequency

to drive from each of the existing energy levels of the 1-excitation manifold to the k = 0

state. For example, for 5 qubits, two lasers are needed to fight dephasing.

7.5 Conclusion

Cavities are the most prominent way to shape photonic environments due to their

sharp and pronounced frequency modulation of the photonic density of states. It was

demonstrated that this fact can be utilized to generate and sustain entanglement between

two-level systems. In case of two two-level systems in one cavity, only mediocre values

for the entanglement were found, and unfortunately the strong connection between

bistability and entanglement, as suggested by semiclassical calculations [154], could not

be confirmed.

Another setup is more promising, consisting of two coupled cavities with a qubit

located in each one. The results of Aron et al. were derived using a time-dependent

perturbation theory approach, which gave deeper insights into the present processes.
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Starting from this, it was possible generalize the system to cavities coupled through a

third cavity in between – however, this setup was shown to be less performant since the

qubit-qubit coupling is strongly reduced. In the third, and main part of the presented

analysis, it was studied whether pumping with two lasers could further enhance entangle-

ment by using a resonant Raman transition to fight dephasing. This approach produced

very high entanglement in the numerical simulations, and a good stability against deco-

herence. Also, approximate analytic formulas and a time-independent Hamiltonian were

presented to calculate steady-state entanglement quickly. Their results are consistent

with the full numerical simulations.

There are already experiments [157] implementing the design of Ref. [46]. It is apparent

that they can benefit strongly from implementing the second drive as discussed in the

last chapter. The system was also shown to be extendable to a chain or even network of

qubit-cavity units, which can be used for the creation of highly interesting W states.
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8Conclusion and outlook

Since the pioneering work of Purcell [165], it is known that the environment strongly

influences the behavior of quantum systems. The power of non-Markovian environments

is that this influence is highly frequency-dependent, which thereby influences different

states of the system in totally different ways. This strong frequency dependence is how-

ever also what makes such systems hard to compute, since standard approximations

often break down as soon as the dynamics become “interesting”.

In this thesis, special kinds of non-Markovian environments were studied, in particular

such that lead to time-delayed feedback of the Pyragas type. Time-delayed feedback is a

challenge for numerical simulations, since the delay time introduces a time scale which

might be much larger than any time scale of the system, demanding a high resolution in

frequency space. This demands for new approaches to solve time-delayed dynamics in

quantum optics.

One promising approach, based upon pseudomode theory was developed and pre-

sented. It uses the dissipative aspects of Pyragas control by modeling time-delayed

feedback as a complex network of lossy harmonic oscillators. It was shown that results ac-

quired with this technique agree extraordinarily well with full numerical simulations, and

at the same time reduce the numerical complexity from a system with several hundreds

of photonic modes to about 20.

Furthermore, the influence of time-delayed feedback on quantum-optical systems was

studied. First, it was demonstrated that a network of qubits can be stabilized at complex

entangled states if time-delayed feedback is introduced. The mechanism behind this

approach is to create large decay rates for all un-wanted states, while reducing the decay

rate for the target state. This can create entangled final states from totally separable inital

states.

To cover more complex dynamics, time-delayed feedback as added to nonlinear sys-

tems. It was found that in a cavity containing a Kerr medium time-delayed feedback

could lead to a stabilization of 1-photon Fock states. Also the decay rate of the 2-photon

Fock state could be selectively reduced. In case of a Jaynes-Cummings system subject to

feedback, very similar dynamics could be found, however not stabilizing Fock states, but

dressed states in the 1- or 2-excitation subspace.

113



A biexciton cascade subject to time-delayed feedback was also studied. The numerical

simulations showed that feedback can increase the photon entanglement by increas-

ing the biexciton decay rate, which reduced the detrimental influence of exciton fine-

structure splitting. It was also shown that increasing the delay time can even further

enhance the entanglement by steering the emission into a narrower frequency region.

Finally, systems without time-delayed feedback were discussed. The structured envi-

ronment was instead given by one or several high-Q cavities. The results demonstrated

the power of structured environments to create stable non-equilibrium entangled states.

Especially in case of two coupled cavities containing a qubit each, a technique was de-

veloped to counteract dephasing between the qubits, using resonant raman scattering.

Fidelities of entangled Bell states above 90% are predicted using numerical simulations.

This technique is easily extended to more qubits, e.g. for the stabilization of entangled W

states.

What topics of future research are there in these fields? First, it is still a challenge

to calculate Pyragas-type dynamics for complex systems or long times. If the issue on

how to include the noise terms in time-delayed operator equations was solved, it would

make it possible to study much more complex systems subject to time-delayed feedback,

and maybe even study the transition from the quantum regime to classical nonlinear

dynamics. Interesting systems for such dynamics could be multilevel systems, lasers [45],

or even just the discussed systems with a higher number of excitations.

Concerning the qubits located in cavities, an interesting way to extend this is to use

many lasers on a setup of a complex qubit network, and see which higher-excited states

can be reached.
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AAppendix: Derivation of the Lindblad

equation

In this appendix, the standard derivation of Lindblad-type dissipation is presented. It is

mainly based upon Ref. [60].

Let us describe the system with density matrix ρS and the bath with density matrix

ρB . The complete system-bath density operator shall be ρ. The derivation will be in the

interaction picture, such that the whole dynamics of the density matrix can be expressed

as

∂tρ =− i

ħ
[HSB (t ),ρ]. (A.1)

Due to the description in the interaction picture, the system-bath interaction Hamilto-

nian is time-dependent:

HSB (t ) =U †(t )HSBU (t ), (A.2)

using U = exp
(
− i

ħ (HS+HB )t
)
. Here, HS is the system operator, HB the bath operator, and

HSB the system-bath interaction. Integrating Eq. A.1 formally gives the time-dependence

of ρ, depending on ρ at earlier times:

ρ(t ) = ρ(0)− i

ħ

∫ t

0
dt ′[HSB (t ),ρ(t ′)]. (A.3)

One can use this solution to again derive a differential equation for ρ to arrive at

∂tρ =− i

ħ
[HSB (t ),ρ(0)]− 1

ħ2

∫ t

0
dt ′[HSB (t ), [HSB (t ′),ρ(t ′)]]. (A.4)

This is just a very “complicated” way to write Eq. A.1, and no approximations were

made until now. However, an ansatz like this is the first step in a development of ∂tρ in

powers of HSB . Let us now assume that initially system and reservoir are non-correlated:

ρ(0) = ρS(0)ρB (0). Let us also assume that initially the bath operators coupling to the

system have zero mean: trB

(
HSB (t )ρB (0)

)
= 0. With these assumptions, one can create a

differential equation for ρS alone by tracing over the bath degrees of freedom:

∂tρB =− 1

ħ2

∫ t

0
dt ′trB

(
[HSB (t ), [HSB (t ′),ρ(t ′)]]

)
. (A.5)

Let us now apply the Born approximation by only including terms up to second order in

HSB . For this, let us write ρ(t ) = ρS(t )ρB (0)+O(HSB ), which says that the coupling to the

bath is very weak, and ρ(t ) only deviates in order HSB from an uncorrelated state. Weak
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coupling also leaves the reservoir virtually unchanged, which is why one may use ρB (0)

in the first term. This brings us to

∂tρB =− 1

ħ2

∫ t

0
dt ′trB

(
[HSB (t ), [HSB (t ′),ρS(t ′)ρB (0)]]

)
. (A.6)

The Markov approximation further simplifies this equation by replacing ρS(t ′) by ρS(t ).

For a system in equilibrium, this is trivially true; in all other cases, it is an approximation.

It can be motivated physically by stating that the reservoir does not store any memory of

earlier states of ρS if the reservoir correlation time is shorter than the time scales of the

system. We end up with

∂tρB =− 1

ħ2

∫ t

0
dt ′trB

(
[HSB (t ), [HSB (t ′),ρS(t )ρB (0)]]

)
. (A.7)

If a bilinear system–reservoir coupling is present, HSB =ħ∑
i Si (t )Γi (t ), with Si a system

operator and Γi a bath operator, after a lengthy calculation [115], one arrives at the

Lindblad equation without further approximations. For a harmonic oscillator mode of

angular frequency ω0, the coupling looks like

HSB =ħc†
∑

j

g j b j e−i (ω j−ω0)t +H.c., (A.8)

with bath operator b(†)
j

, bath mode angular frequency ω j , system operator c(†), and

system-bath coupling g j . During the derivation [115] it becomes clear that the Markov

approximation is only valid if g j is slowly varying in frequency and can be pulled out of

the sum.
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BAppendix: Equations of motion of a

cavity with Kerr-nonlinearity subject to

time-delayed feedback in the

pseudomode approach

Here the equations of motion for a Kerr medium in a cavity subject to time-delayed feed-

back are presented, as discussed in section 5.1. To model the feedback with a sin2(kL)

density function, the pseudomode approach is applied (cf. section 3.3). Also, the nonlin-

ear modeling of the feedback reservoir (in the case here, the pseudomodes) is used, as

discussed in section 3.1. The nonlinear approximation method employed is exact up to 2

excitations. Since the initial state contains 2 excitations in the system, and no pumping is

present, the method does not introduce any further approximations.

Note that this section differentiates between the strength of the coupling to the feed-

back reservoir, γ, as introduced in Eq. 2.38, which is a parameter of the experimental

setup, and the strength of the coupling to the k-th pseudomode d (†)
k

, Dk , which is a pa-

rameter of the pseudomode approximation. γ also appears in the full Hamiltonian as the

prefactor of the sine-modulation, while Dk is chosen such that the pseudomodes model

a sin2 function the best. In particular, it can become negative to take care of negative

Lorentz peaks.

The other parameters to describe the different pseudomodes are their decay rate, κk ,

and frequency, ωk . The symmetries of the sine function allow us to choose the same

κ for all pseudomodes: κk = κ. Additionally, the decay rate for the initial markovian

decay before τ is needed, which will be called κ0. The switch form ζk to dk to name

the pseudomodes (compared to section 3.3) is just done for better legibility. For the

calculation of the pseudomode parameters, see section 3.3.

The results are presented in the rotating frame, using the transition H →U [H − i∂t ]U †

with the unitary transformation

U = exp

[
i
(
ħω0c†c +ħ

∑

k

ωk d †
k

d
k

)
t

]
. (B.1)
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The coupling to the external reservoir therefore becomes time-dependent,

Gk = γei (ω0−ωk )t . (B.2)

For the nonlinear reservoir modeling, let us introduce the following nonlinear func-

tions:

Ω≡
∑

k

Gk Dk

〈c†d †
k

cc〉∗

〈c†c†cc〉
(B.3)

Θk ≡
∑

k ′
G∗

k ′Dk ′
〈d †

k
d †

k ′cc〉
〈c†c†cc〉

(B.4)

Then the following equations of motion can be derived:

∂t 〈c†c〉 =−2κ0〈c†c〉+
∑

k

Dk

(
−iG∗

k 〈d
†
k

c〉+ iGk〈d †
k

c〉∗
)

(B.5)

∂t 〈c†c†cc〉 =−4κ0〈c†c†cc〉+
∑

k

Dk

(
−2iG∗

k 〈c
†d †

k
cc〉+2iGk〈c†d †

k
cc〉∗

)
(B.6)

∂t 〈d †
k

c〉 =− (κ0 +κ)〈d †
k

c〉− iGk〈c†c〉−2iχ〈c†d †
k

cc〉+
∑

k ′
i Dk ′Gk ′〈d †

k
d

k ′〉 (B.7)

∂t 〈c†d †
k

cc〉 =− (3κ0 +κ)〈c†d †
k

cc〉− iGk〈c†c†cc〉−2iχ〈c†d †
k

cc〉

−
∑

k ′
Dk ′

(
iG∗

k ′〈d †
k

d †
k ′cc〉+2iGk ′〈c†d †

k
cd

k ′〉
)

(B.8)

∂t 〈d †
k

d
k ′〉 =−2κ〈d †

k
d

k ′〉− iGk〈d †
k ′c〉∗+ iG∗

k ′〈d †
k

c〉 (B.9)

∂t 〈c†d †
k

cd
k ′〉 =− (2κ0 +2κ)〈c†d †

k
cd

k ′〉− iGk〈c†d †
k ′cc〉∗+ iG∗

k ′〈c†d †
k

cc〉

− iΘk〈c†d †
k ′cc〉∗+ iΘ∗

k ′〈c†d †
k

cc〉 (B.10)

∂t 〈d †
k

d †
k ′cc〉 =− (2κ0 +2κ)〈d †

k
d †

k ′cc〉− iGk〈c†d †
k ′cc〉− iGk ′〈c†d †

k
cc〉

−2iχ〈d †
k

d †
k ′cc〉+2iΩ〈d †

k
d †

k ′cc〉 (B.11)

This can also serve as a hands-on example on how to interpret the nonlinear method

(section 3.1). One finds that Ω serves as an effective oscillation frequency, which only

affects terms that have two annihilation (or two creation) operators of the d type. Θk ,

in contrast, looks like an additional coupling to the external modes. The numerical

advantage of this approach is straightforward: Only terms with k and k ′ appear, so

the number of terms scales quadratically with the number of external (pseudo-)modes.

Without the nonlinear approach, it would scale with an exponent of 4. The approach

however becomes numerically unstable as soon as 〈c†c†cc〉 becomes very small.
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69.Hétet, G., Slodička, L., Hennrich, M. & Blatt, R. Single Atom as a Mirror of an Optical Cavity.

Phys. Rev. Lett. 107, 133002 (13 Sept. 2011).
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