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(ABSTRACT)

\. This dissertation is concerned with the dynamics and control of spacecraft consisting

i of a rigid platform and a given number of retargeting flexible antennas. The mission consists
1*

of maneuvering the antennas so as to coincide with preselected lines of sight while stabilizing

the platform in an inertial space and suppressing the elastic vibration of the antennas. The

\
dissertation contains the derivation of the equations of motion by a Lagrangian approach

using quasi-coordinates, as well as a procedure for designing the feedback controls.

Assuming that antennas are flexible, distributed·parameter members, the state equations of

motion are hybrid. Moreover, they are nonlinear. Following spatial discretization and

truncation, these equations yield a system of nonlinear discretized state equations, which are

more practical for numerical calculations and controller design. Linearization is carried out

based on the assumption that the inertia of the rigid body is large relative to that of flexible

body. The equations of motion for a two-dimensional model are also given. The feedback

controls are designed in several ways. Disturbance-minimization control plus regulation is

considered by using constant gains obtained on the basis of the premaneuver configuration

of the otherwise time-varying system. ln the case of unknown constant disturbance,

proportional-plus·integral (PI) control has proven very effective. Pl control is used to control

the perturbed motions of the platform with multi-targeted flexible appendages. A new control

law is obtained for the system with small time—varying configuration during a specified time

period by applying a perturbation method to the Riccati equation obtained for Pl control.

According to the the proposed perturbation method, the control gains consist of zero-order

time-invarlant gains obtained from the solution of the matrix algebraic Riccati equation



(MARE) for the post-maneuver state and first·order time-varying gains obtained from the

solution of the matrix differential Lyapunov equation (MDLE). The solution of the MDLE has

an integral form, which can be approximated by a matrix difference equation. The adiabatic

approximation, which freezes the matrix differential Riccati equation or Lyapunov equation is

also discussed. Comparisons are made based on system stability by Lyapunov’s second

method. A spacecraft consisting of a rigid platform and a single flexible antenna is used to

illustrate disturbance-minimization control, and a spacecraft consisting of a rigid platform and

two tlexible antennas reorienting into different directions is used to demonstrate the

effectiveness of the disturbance-accommodating control. A time-varying spring-mass-damper

and a two-dimensional model, representing a reduced version of the original spacecraft

model, are considered to demonstrate the perturbation and adiabatic approximatlon methods.

To illustrate the effect of nonlinearity on the dynamic response during reorlentation, a

numerical example of the spacecraft having a membrane-type antenna ls presented.
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1.0 Introduction

1.1 Preliminary Remarks

In many space applications, it becomes necessary to reorient a certain line of sight In

a _spacecraft. Examples of this are the reorientation of a space telescope or of an antenna in

a spacecraft. ln some cases, such as in the space telescope, the line of sight can be regarded

as being fixed relative to the undeformed structure, in which cases reorientation of the line

of sight implies maneuvering of the whole spacecraft (Refs. 3-5,16,28—30,38,40-43,46 and 47).

However, many spacecraft can be represented by mathematical models consisting of a rigid

platform with one or more flexible appendages, such as flexible antennas, so that the mission

involves the maneuvering of a hybrid (Iumped and distributed fiexible) system. Quite often,

the line of sight coincides with an axis fixed in a small component of the spacecraft, such as

an antenna, in which case it may be more advisable to retarget only the antenna and not the

entire spacecraft. This is particularly true when the inertla ofthe antenna is much smaller than

the inertia of the spacecraft. The argument becomes even stronger when several antennas

must be retargeted independently in space. In such cases, it appears more sensible to

conceive of a spacecraft consisting of a platform stabilized in an inertial space with several
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appendages, rigid or flexible, hinged to the platform and capable of pivoting about two

orthogonal axes relative to the platform (Refs. 31,33-36). ln this case, reorientation relative to

the stabilized platform is equivalent to retargeting in an inertial space. Note that such a

maneuvering spacecraft is characterized by the fact that its configuration varies with time.

This dissertation is concerned with the mission of independent retargeting of the line of sight

of each antenna relative to the inertial space.

Figure 1 shows a spacecraft comprising a rigid platform with a given number of flexible

appendages. Assuming that the flexible appendages represent antennas, the mission

consists of maneuvering the antennas so as to coincide with preselected lines of sight. For

given target directions of the antennas, the maneuvers can be designed as if the antennas

were rigid. Of course, the antennas are flexible in actuality, so that the maneuvers are likely

to cause elastic vibration of the antennas, which in turn also induce perturbations in the

platform. Hence, the mission design can be regarded as involving several interdependent

tasks. The first task is to select and implement policies for the maneuvering of the antennas

relative to the inertial space. The second consists of stabilizing the attitude and position ofthe

platform relative to the inertial space. The third task is simply to suppress any vibration of the

flexible antennas caused by the maneuver. Of course, maneuvering of the antennas,

stabilization of the platform and vibration suppression are to take place simultaneously.

The mathematical formulation consists of a hybrid set of equations of motion, in the

sense that there are six ordinary differential equations for the rigid-body translations and

rotations of the platform and partial differential equations for the elastic motion of each

antenna. The equations of motion are not only hybrid, but the maneuvering of the antennas

relative to the platform according to some prescribed function of time introduces

time-dependent coefticients into the equations. Moreover, the equations contain terms

reflecting persistent disturbances caused by inertial forces. If the mass of the antennas is

small relative to the mass of the platform, then the equations of motion can be regarded as

linear. Because control of the systems governed by sets of hybrid differential equations

cannot be readily designed, even when the equations are linear, it is necessary to discretize
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the partial differential equations in space, which can be carried out by the classical

Rayleigh—Ritz_ method or the finite element method (Ref. 24).

Under certain circumstances, the time-varying terms are sufficiently small that they can

be ignored in the control design. · Even then, however, the full time-varying system must be

considered in Implementing the feedback controls designed on the basis of the time-invariant

system.

This dissertation contains the derivation of the equation of motion for the spacecraft

described above, as well as the procedure for designing the feedback controls. Hybrid state

equation of motion for a spacecraft with retargeting flexible antennas are derived by a

Lagrangian approach using quasi-coordinates (Refs. 23, 32 and 34). Upon discretization and

Iinearization, a more manageable set of state equations is obtained. For future reference,

state equations for the case of two-dimensional elastic members are also derived. ln general,

a time-varying gain matrix for the system is obtained by solving the matrix differential Riccati

equation (MDRE), where the backward integration process must be carried out before the

maneuver.

For a given maneuver, the control problem reduces to the minimization of the effect of

the persistent disturbances caused by the maneuver and the annihilation of the elastic

vibration and of the perturbations in the rigid-body maneuvers. To design the control

minimizing the effect of the disturbances, the disturbances must be known a priori. This is,

of course, a trivial matter If we can predict the disturbances accurately. However, the

disturbances can be different for each maneuver, so that designer may not be always

successful in accommodating the disturbances.

lf the maneuver Is to be carried out in minimum time, then the control law must be

bang-bang (Ref. 25). Bang-bang control implies that the maneuver angular acceleration is

constant over the first half of the maneuver, reverses sign at one half of the maneuver period

and continues at the same level over the second half of the maneuver.

Proportional-plus-integral (Pl) control of the perturbations proves to be effective in the case

of constant disturbances (Ref. 1 and 11). This approach is used in Chapter 3 to control the
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vibration and rigid body perturbations in a spacecraft. Under the same assumption that the

time-varying part in the coefficients is small, the control design is based on the constant part,

which permits the use of constant control gains.

The PI control can be extended by considering control gains consisting of a large

constant part and a small time-varying part. To this end, this dissertation presents a genuine

perturbation approach to the optimal control problem for systems with time-varying

coefficients, where the time-varying part is of one order magnitude smaller than the constant

part. As in Ref. 33, we solve a steady-state matrix Riccati equation for the constant part. This

represents the zero-order portion of the solution. On the other hand, for the first-order portion

of the solution, we solve a differential (instead of an algebraic) matrix Lyapunov equation, thus

permitting fast time variation in the time-varying part of the Riccati matrix.

1.2 Literature Survey

Beginning in the late 1950's, the dynamics of flexible spacecraft became a concern

(Modi, Ref. 37). The maneuvering of flexible spacecraft has received considerable attention

since flexibility makes the control design more complex, because the control objective is now

to maneuver the spacecraft and suppress vibrations simultaneously.

Turner and Junkins (Ref. 45) addressed the problem of single-axis rotational maneuver

of flexible spacecraft. They formulated the necessary conditions from Pontryagin’s minimum

principle and proposed a relaxation procedure for solving the associated nonlinear two-point

boundary-value problem. The model considered in Ref. 45 consists of a rigid hub with four

identical elastic appendages, in which a control torquer is located on the hub and is used for
U

both rotational maneuver and vibration suppression. This places severe requirements on the

controller, since the large-angle rotational maneuver and vibration suppression are performed

simultaneously. In fact, numerical difflculties are encountered when solving the associated
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two·point boundary problem with terminal constraints. Turner and Chun (Ref. 46) extended

the results by adding extra torquers to the elastic appendages. Breal<weII (Ref. 5) addressed

the same problem in a similar manner and used standard fixed—tlme

linear-quadratic-Gaussian regulator control theory and veritied the proposed method

experimentally. A common approach is to represent the elastic motion as a finite series of

space-dependent admissible functions multiplied by generalized coordinates. This implies

simultaneous discretization and truncation. Baruh and Silverberg (Ref. 3 and 4) suggested

removing the terminal constraints, thereby permitting separation of the control problem into

two problems, maneuver control and vibration suppression, where vibration suppression was

carried out without considering rigid—body motions. Mostafa and Oz (Ref. 38) applied the

variable structure control (VSC) technique to the model considered by Turner and Junkins

(Ref. 45). They proposed ways of eliminating the chatter phenomenon, which occurs when

implementing VSC.

Some projected NASA missions involve experiments consisting of the control of

flexible bodies carried by a shuttle in Earth orbit. Wang, Lin and lh (Ref. 48) presented a paper

concerning the feasibility study of dynamics and control of shuttle-attached antenna

experiments. They proposed a hardware design for lsolation and decoupling between the

shuttle and the antenna. A program initiated by NASA is referred to as the Spacecraft Control

Laboratory Experiment (SCOLE) (Taylor and Balakrishnan, Ref. 44). The control objective of

SCOLE is to reorient the line of sight in minimum time with limited control authority. Kakad

(Ref. 16) presented a paper concerning the dynamics and control of the SCOLE model. He

considered Euler parameters to define the rigid-body slewing. ln this case, vibration

suppression was performed at the end of the maneuver, where the feedback control law was

derived from an inflnite-time regulator problem. Juang, Horta and Robertshaw (Ref. 15)

conducted hardware experiments involving the slewing control of a structure consisting of a

steel beam and a solar panel. Although these experiments Iacked some rigid-body motions,

it was sufficient to demonstrate the hardware design concepts necessary for slewing flexible

r
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structures. ln their experiments, the linear optimal terminal control law was implemented by

means of an analog computer.

Meirovitch and Quinn (Refs. 28 and 29), Quinn (Ref. 40) and Quinn and Meirovitch

(Refs. 41 and 42) applied a perturbation method to control the motion of a SCOLE model

undergoing large rigid·body motions and small elastic deformations. The perturbation method

permits a maneuver strategy independent ofthe vibration control. Of course, there are small

perturbed rigid-body motions resulting from the elastic vibrations. A minimum-time open-loop

control was used for the large-angle slewing, and optimal control and pole placement

techniques were used to suppress the vibration. First-order actuator dynamics, leading to a

smoothed bang—bang, were considered to reduce the excitation. Meirovitch and Sharony (Ref.

30), Sharony and Meirovitch (Ref. 43) extended the previous studies (Ref. 42) by introducing

integral control to accommodate the piecewise-constant disturbances caused by the internal

forces resulting fromthe maneuver, and suggested a method of alleviating the effect of control

spillover on the residual modes by introducing a Luenberger observer. Finite·time stability

was achieved by means of an exponential convergence term included in the finite·time

performance index.

The above papers were concerned with the reorientation of the entire spacecraft. Quite

often, the line of sight coincides with an axis fixed in an antenna, in which case it may be more

advisable to retarget only the antenna and not the entire spacecraft. Meirovitch and Kwak

(Ref. 31) first addressed this situation. ln Ref. 31, the elastic appendages are hinged to the

platform and capable of pivoting about two-orthogonal axes relative to the platform and the

maneuvering angles are assumed to be the known functions of time. A

disturbance-minimization technique was used in Ref. 31, a proportional-plus-integral (Pl)

control was used in Ref. 33 and a perturbation method was applied to the time-varying system

in Ref. 36. This dissertation contains the summary of these papers. Recently, Meirovitch and

France (Ref. 35) introduced a discrete-time approach to the system considered in Ref. 31, and

developed the substructure decentralized control method in which each substructure was

controlled independently by either linear or bang-off-bang controllers.
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The main difüculty encountered in addressing the dynamics of a system is how to

derive the equations of motion easily. ln general, the equations of motion for the spacecraft

have very complicated expressions (Refs. 8, 18-20, 47), so that new methods of deriving

equations of motion have been proposed (Refs. 9, 17 and 21). Kane and Levinson (Ref. 17)

compared seven methods in their paper. Lagrange’s equations of motion in terms of

quasi-coordinates for a hybrid system were used first by Meirovitch (Ref. 26) and then by

Williams (Ref. 49) and Brown (Ref. 6). Recently, Meirovitch (Ref. 32) and Meirovitch and Kwak

(Ref. 34) showed that Lagrange’s equations of motion in terms of quasi-coordinates are quite

useful for deriving the equations of motion for the maneuvering and control of flexible

spacecraft. Because the derived equations of motion are based on body·fixed coordinates,

control design based on body·fixed coordinates is very convenient.

1.3 Outline

This dissertation is concerned with the dynamics and control of spacecraft with

retargeting flexible antennas. The object of Chapter 2 is to produce equations capable of

describing the motion of such a spacecraft. To this end, Lagrange’s equations of motion using

quasi-coordinates are first derived. ln the derivation, the spacecraft is treated as a rigid body

and the antennas as flexible appendages.

The equations describing the rigid-body motions of the spacecraft are nonlinear

ordinary differential equations. On the other hand, the equations describing the small elastic

displacements of a flexible appendage relative to a frame embedded in the undeformed

appendage are partial differential equations. Hence, the complete equations describing a

spacecraft during reorientation represent a set of nonlinear hybrid differential equations.

In general, hybrid systems of equations do not permit closed-form solution, so that one

must consider an approximate solution, which implies spatial discretization and truncatlon.
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Spatial discretization and truncation can be carried out by representing the motion as a ünite

set of admissible functions multiplied by time·dependent generalized coordinates; this is done

in Section 2.4. The resulting discretized equations are nonlinear and can be cast in state form.

lf the inertia of the platform is much larger than that of the flexible appendages, the

equations can be linearized, so that the control design can be carried out as if the system

were linear; this is done in Section 2.5. At times, especially when there is only one appendage

and the motion takes place in a given plane, the equations of motion for the three-dimensional

case are not really necessary. The equations are considerably simpler than those for the

three-dimensional motion, as can be concluded from Section 2.6.

Chapter 3 deals with the implementation of control for the suppression of the

perturbations caused by the maneuver and other disturbances. The maneuver strategy and

the nature of the disturbances are discussed in Section 3.1. Disturbance·minimization control

method is discussed in Section 3.2. Disturbance-accommodating control is discussed in

Section 3.3, in which a proportional-plus·integral (PI) controller is introduced. A perturbation

method is introduced in Section 3.4. and a new control law is obtained for systems with

time-varying configuration.

Chapter 4 contains numerical examples illustrating the control strategies developed

in Chapter 3.

Finally, Chapter 5 presents a summary of the solution techniques and of the numerical

results, as well as conclusions. Recommendations for the future work are also included.
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2.0 Derivation of the Equations of Motion

2.1 Introduction

In this chapter, the equations of motion for a spacecraft with retargeting flexible

antennas are derived. The spacecraft is assumed to consist of a rigid body and flexible

antennas, where the flexible appendages are regarded as distributed parameter members.

The equations describing the rigid-body motions of the spacecraft are nonlinear

ordinary differential equations. On the other hand, the equations describing the small elastic

displacements of a flexible appendage relative to a frame embedded in the undeformed

appendage are partial differential equations. Hence, the complete equations describing a

spacecraft during reorientation represent a set of nonlinear hybrid differential equations.

ln general, hybrid systems of equations do not permit closed-form solution, so that one

must consider an approximate solution, which implies spatial discretization and truncation.

Spatial discretization and truncation can be carried out by representing the motion as a finite

set of admissible functions multiplied by time-dependent generalized coordinates. Moreover,

the equations are flrst linearized and then recast in compact state equations. However, the

state equations still contain time~varying coefficients and persistent disturbances.

Derivation of the Equatlons of Motion 9



2.2 Equations of Motion of the Spacecraft

Let us consider a system consisting of a main rigid body, acting as a platform, and a

certain number of flexible appendages hinged to the main rigid body. The interest lies in

reorienting the flexible appendages independently so as to point in different preselected

directions in the inertial space. The object is to derlve the equations of motion capable of

describing this task.

To describe the motion of the platform, we introduce a set of inertial axes XYZ and a

set of body axes xyz attached to the rigid platform. Then, the motion of the platform can be

defined in terms of three translations and three rotations of body axes xyz relative to the

inertial axes XYZ. To describe the motion of the flexible appendages, we consider a typical

appendage hinged at point e and regard e as the origin ofa set of body axes x,y,z, embedded

in the appendage in its undeformed state. Then, the motion of a nominal point of the

appendage consists of the motion of xyz, the motion of x,y,z, relative to xyz and the elastic

motion relative to x,y,z, . The system and the various reference frames are shown in Fig.

1.

From Fig. 1., the position vector of a point in the rigid body and in the appendage can

be written as

Br=B¤+L (2-13)

8e=8,,+;,,a+_[8+_ge ,e=1,2,.....,N (2-1b)

where 8,, is the radius vector from O to o, [ is the position vector of a nominal point in the

rigid body relative to xyz, r_„ is the radius vector from 0 to e, g, is the position vector of a

nominal point in undeformed appendage relative to x,y,z, and g, is the elastic displacement

of that point. Vector 8,, is given in terms of components along XYZ, g and ;,„ in terms of

components along xyz, and g, and g, in terms of components along x,y,z, .

Derlvatlon of the Equatlons of Motlon 10



The velocity vector ofo can be written in terms of components along xyz in the form

Yo = CBo· (2 ' 2a)

where C is the matrix of direction cosines between xyz and XYZ and B, is the velocity vector

of o in terms of components along XYZ. Matrix C depends on the angular displacements 9,

(i=1,2,3) defining the orientation of axes xyz relative to axes XYZ. Furthermore, the angular

velocity vector of axes xyz in terms of components along xyz is given by

Q = DQ <2—2.¤>

where is a vector of angular velocities 9, and D ls a matrix depending on angular

displacements 9, (i=1,2,3). Figure 2 shows a set of such angular displacements. For this

choice of angles, the matrices C and D are as followsz

c92c93 c9,s93 + $9,$92c93 s9,$93 — c9,$92c93

C = * CGZSH3 C01C03 * $91592503 3a)

$92 * $H1C92 C01CH2

C02C63 $83 0

D =
‘° (:02503 c93 0"$92

0 1

where c9, = cos 9, and s9, = sin 9, . Note that this choice of angles helps us avoid

singularities at the initial stage of the motion, 9, = 0.

Derlvation of the Equatlons of Motion 11



ln view of the above, the velocity vector of a point in the rigid body in terms of

components along xyz is simply

!r=!o+€£’XL (2"4a)

and that of a point in the typical appendage e in terms of components along x,y,z, ls

N (2—4b)

where gg, is the angular velocity vector of axes x,y,z, , E, is a matrix of direction cosines

between the x,y,z, and xyz and Q, is the elastic velocity of the point in the appendage

relative to x,y,z, , Q, = Q, . ln the maneuver proposed, the angular velocity vectors cg, of

x,y,z, relative to xyz are given, so that the rotational motions of the appendages relative to

the platform do not add degrees of freedom. The only degrees of freedom arises from the

rigid-body translations and rotations of the platform and the elastic displacements of the

V appendages.

The equations of motion can be obtained by means of Lagrange’s equations in terms

of quasi—coordinates (Ref. 32 and 34).

Ö ÖL ~ ÖL ÖL _ _
ät ( ÖL/O

)+w
ÖL/O

C ÖBO
—-E (2 Sa)

Ö ÖL
”ÖL

~ÖL_T—1Ql;_ _
(D) ÖQ-l)_/I (2 5b)

ÖL aiÖ e e ^— —
-
-—

= 2 — 5
ät öga

QB ( C)

where

L = T — V (2 — 6)
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A
is the Lagrangian and T, is the kinetic energy density, in which T is the kinetic energy and V

A
is the potential energy, L, is the Lagrangian density, both for appendage e, and if, is a

matrix of homogenous differential operators. Equations (2-5) are hybrid in the sense that Eqs.

(2-5a) and (2-5b) are ordinary differential equations and Eqs. (2-5c) are partial differential

equations. lt should be noted that the tilde over a symbol indicates a skew symmetric matrix

with entries corresponding to the components of the associated vector (Ref. 31; see also

Appendix A for vector and matrix operations). For the system of Fig. 1, we write the kinetic

energy

1
N

1rÜ',
g=1 Ü.

N

= émix, + MZEZQ + ä «.»*¤,«£ + 21%«£l¤„«£,, + ä [ p.zlz.¤¤„
B=1 Do

+<x„DI

+ (Eefi? +
9£.’e)Tf

Pe(Fe + üe)¥edDe] (2 " 7)
DI

where

N
m«= m«+ pedße (2- 8¤,¤-C)

B=1 Dr De

Derlvatlon of the Equatlons of Motion
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N

St = ST +
E (me‘Foe +

� ST =‘[ pf,FdDl’ v S3 :1 [,36:3 + [ü3)dD3 ' adienf)
€=1

Dr D�

N
~ ~T T ~

TN T"‘
~'t = lr + (meroeroe + EeIeEe " [oeEeSeEe ' EeSeEe[oe) (2 ‘ 89)

e=1

¤„ ls = f px?. + ¤.><?„ +¤..>*¤¤„ (2 — am
0, 0, _

in which p, and p, are mass densities and D, and D, are the domain ofthe rigid platform and

of a typical appendage, respectively, m, is the total mass ofthe system, Ö, is a skew symmetric

matrix of first moments of inertia for the system and I, is the inertia matrix. For simplicity, we

assume that the potential energy is due entirely to elastic effects, in which case it can be

written in the form

N N

gle=1
e=1

D�

where [ , ] denotes an energy inner product (Ref. 24). The terms E and M on the right side

of Eqs. (2-5a) and (2-Sb), respectively, are the force and torque vectors on the platform, both

A
in terms of components along axes xyz, and the term Q, on the right side of Eq. (2-5c) is a

distributed force vector on appendage e in terms of components along x,y,z, .

Derivatlon of the Equatlons of Motlon 14



2.3 Hybrid Nonlinear State Equations of Motion

Inserting Eqs. (2-7) and (2-9) into Eqs. (2-5) and considering Eqs. (2-2) and (2-3), we

obtain the hybrid nonlinear Lagrange’s equations

N N rv
mi/6 + Slg + ZElf mldwl = - m„«?»x„ + äsg + Z El<2<iJ»l§l1 + Sl„>E.„«6

e=1 D, e=1

- 263,f
p,y,d0, + ö,§,g, + §,g,} + 5 (2 — 1Üa)

D!

N „ „
$6.6., + ¤„«2 + Zf

plEF„„El + El<?„ + ül>l26¤¤„ = S„v„«6 — «3¤„«6
$:1 Dj

N f\J L
{[ — E;(2ES,|, — tr|,Z>,) + 2ro,E;([ZS,§,] + 5,,,) + 2Egf p,(r,u,)v,dD,]E,¢_gy_,dD,

e=1 D�

DO

— E;(<7>6'6Qe + '6<i>6 + '6v<26)} + M (2 ‘ wb)

»„{El!„ + IE6?66 + G6 + ¤„>*E„1«2 + 2.,}

f\J L
___ ___

L L L
__ __

= Pe{ ' [Edi?] Ee(Mo
‘
Voefä) + 2[VeEe ' (re + Ue)“’eEe +

‘”e(re
+ Ue)Ee]‘.9

L rv2 L L2 A“
2‘”eYe
’ ([Ee€£.’] + we +

"’e)(-[e
+ „'le)}
“
$89.8 + Me (2 ' wc)

where
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<2DI
DO

The hybrid set of equations consist of Eqs. (2-10) and the kinematical relations

3„=c’y„ , Q=o"Q , g„=y,, , e=1,2,....,N (2—12a,b,c)

2.4 The Discretized Nonlinear State Equations of Motion

The equations of motion are hybrid, in the sense that the equations for the rigid-body

translations and rotations of the platform are ordinary differential equations and those for the

elastic motions of the appendages are partial differential equations. Moreover, because of the

maneuver angular velocity vector <9� „ which is a given function of time, they possess

time-dependent coefficients. Control design of systems described by hybrid equations is not

feasible, so that we wish to discretize the partial differential equations in space, leaving us

with only ordinary differential equations. To this end, we express the elastic displacements

as linear combinations of space-dependent admissible functions multiplied by time-dependent

generalized coordinates, or

ge(_[„,t) = <I>°(_rB)ge(t), e=1,2,....,N (2-13)

where <D, is a matrix of admissible functions and g, is a vector of generalized coordinates.

The Lagrangian equations in terms of quasi-coordinates for the rigid body motions of

the platform remain in the form of Eqs. (2—5a) and (2-5b). On the other hand, inserting Eq. (2-13)

into Eqs. (2-5c), we obtain the ordinary differential equations for the discretized elastic motions

Derivatlon of the Equations of Motion 16



A A. - A. - -
_

dt
( ÖBB)

age -
ge , e 1,2,...,N (2 14)

where

Re = ge (2 — 15)

N (2 -16)
DO

are corresponding vectors of generalized forces.

The Lagrangian remains in the form (2-6) but the Kinetic energy and potential energy

change. lndeed, introducing Eq. (2-13) into Eqs. (2-7), we obtain the discretized Kinetic energy

N
1 = ;mix., + L/Isle +; «.J¤„«2» + Z ( J- «t»l¤„Q„ + J;gl) p„<r>l<¤>B¤¤.„g„

B=1 Do .

_/ De

T
f\/

+
(Ee‘£

+ Qe) (2 ‘ J7)
DO

Many of the quantities in Eq. (2-17) are deüned by Eqs. (2-8), with the exception of

__ r‘\J rx.! f\J
S., = I

p.„(r„ + E<¤>„„g„J>¤¤. . ¤„ (2 - (8-·.¤>
DO DO

Moreover, inserting Eq. (2-13) into Eq. (2-9), the discretized potential energy has the form

1
N

1
N

e=1 e=1
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where

i<a=[<1>a,<1>a]
h

(2-20)

Following the same procedure as used earlier, the discretized nonlinear state

equations can be written as fo||ows:

N r‘\J N N

mi/0 + SIQ + 2 Sev) 2 Eläeöepe
e=1 e=1 e=1

N „

+ m«<7>L/O — $$2 = E + ZEÄ(S„<.é„ +<7>e§e<2e) (2 — 21¤)
e=1

N f\J”
- . T ~ ~ ~ T

{EB(2wBlB
_
trIBwB) + 2rOBEB([SBQB]

_

SBV)
e=1

T
r\/ f\J N

T~ T- T
f\J

D. g=1 D.

N __ /‘\J __

Eaäaoa + Elézaf pa[<1>aga]<x>a¤0a)Ea + stvag + 5i,Q€=1 D9

N

= M öeieweil (2 — 21b)
c=1

_ __ f\/

DI

~
f\/ f\J

'"Ol
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= ge ' (ägfée +
1*

(2' 21C)
DI

where

DI DI DI

DI DI

2.5 The Discretized Linear State Equations of Motion

The object is to maintain the position and attitude of the platform fixed in a inertial

space. Hence, we assumed that the rlgid-body motlons are small. Moreover, elastic

displacements tend to be small. Expanding Eq. (2-17) and neglecting higher·order terms, the

kinetic energy becomes

N

Xie=1

~ ~ 1 . . 1 — — .

+ Yo-EgZ’e6e9,e + ‘„9TFoeE;$ege + ‘£T'FoeE;$e9_e +
g;(D;Ee‘£
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·T~T
-T”

T T ~ ~+ §e(DeQe + S_eHe(Qe)9_e + Q EeJe(Qe)Ee + Qgf PeVeQe(DedDeS_e I (2"23)
DI

ln addition to the various quantities defined by Eqs. (2—22), we have

/‘\J

J„(2)=_|. Pe("ea+[Veä])‘I’edDe (2-24)
DI

in which g is a vector representing rg, or ¢g,, and §, and l, are redetined for the Iinearized

equation as followsc

§e =
jl

Peire dDe· le doe (2‘25a·b)
DI DI

Also note that a tilde over a symbol denotes a skew symmetric matrix obtained from the

associated vector (Ref. 31).

Before deriving the Iinearized equations of motion, it is advisable to express the

generalized forces appearing on the right side of Eqs. (2-21) in terms of actual forces. To this

end, we denote by E, the actuator force and by M, the actuator torque acting on the platform.

^

.

In addition, every appendage e is subjected to a distributed actuator force vector Q,. The

A
vector E, and M, are in terms of components along xyz and the vectors Q, are in terms of

components along x,y,z, . In writing the virtual work, we propose to express all vectors in

terms of components along xyz. Consistent with this, we write the distributed force in the form

T Aj,,=E,Q, , e=1,2,....,N (2-26)

where E, is the matrix of direction cosines introduced earlier. Moreover, the virtual

displacement associated with a point on appendage e can be written in terms of components

along xyz as
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/\/

668 = 668 — T?88 + [E;-,I£])6Q + E;-ögc (2-27)

Hence, considering Eqs. (2-26) and (2-27), the virtual work in terms of actual forces has the

form

N
6W = 6l668 + MÄ62 + Z[ 1l668¤¤8

e=1
D�

N A /\J
= 6l668 + MÄ62 + Z fo MlE8i668 — (288 + iEl681 )62 + Egöngßldoe

e=1
�

T T
N

^T= E 6B¤ + M 62 + E
jl

28862880*% (2-28)
e=1

D�

where

N A N fx.! A§=§„+
I
E;-Q„dD,,, lL1=M°+ Ef

(?„ + [E;L,])E;gBdD„ (2-29a,b)
e=1

D�
e=1

D�

In practice, we use point actuators instead of distributed ones. But, discrete forces can be

regarded as distributed by writing

nl

A
ge = E lei 6(L8-180 (2-80)

i=1

where L, time-dependent force amplitudes and ö(L—;,,) are spatial Dirac delta functions.

lnserting Eqs. (2-30) into Eqs. (2-29) and (2-16), we obtain

N n�
N n�

6 = 68 + ZZ E;Iel· M = M8 + ZZ<?88Ele=1l=1
e=1l=1
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nl nl

geN (2—31¤)
i=1

D�
i=1

Linearized state equation can be obtained either by inserting Eq. (2-23) and (2-19) into

Eqs. (2-5a), (2-5b) and (2-14) or neglecting nonlinear terms in Eqs. (2-21). Recalling Eqs. (2-31),

we obtain the following equations of motion

N f\J N N
MYS ZEÄQSQSe=1

e=1 e=1

N N n� N

+ Z¤l<«Y»„+«¥»ä><¤SgS = Eo + Z {Ela + §]El<S„S„+«3S§„SS> <2—¤2¤>
e=1 e=1l=1 e=1

N /‘\J
~ - . T ~ ~ ~ Tmewe)Ee + 2VoeEe[Se%’e]Ee) $2

e=1

N
I

Ne=1

e=1

N .

e=1

N no N

= Mo EQFEIHBI ÖBSBQB)

e=1

EESL/S + <ö§E„?’§S + <?>lES>S» + iöläl — J;(<2S)lES<£ +MSQSnl

(2-32c)
i=1 D,
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In addition to the above equations, if we assume small motions, Eqs. (2-12) become

M; = B; Q = Q- Re = ge (2-333-b„¢)

If we express Eq. (2-32) and (2-33) in matrix form, then we obtain the linearized state

equation

g(t) = A(t);(t) + B(t[(t) + D(t)g(t) (2-34)

where

Qlt) = EB; QT gl gl gl M; QT gl gl gl JT (2-35)

is the state vector, in which Q is a vector of angular displacements of the platform, \_[„ is the

translational velocity vector of the platform and Q, (e = 1,2,...,N) are elastic velocity vectors,

0 I
Am = 1 1 (2 - 36)— NV (Y) K(Y) — NV (Y) G(Y)

0
B(Y) = _, . (2 — 37)

M (t)B (t)

0
D(t) = 1 (2 — 38)

M' (t)

are the matrices of coeftlcients,
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N

ZJOSSQG)
V

e=1

N

2 Ü¤eE;(Se<i>¤ + *T’eSe€£’e) — E;('¤<2¤ + <7>11'¤<211)]
e=1

(2' 39)
D1

*¢LQN + P~‘DIi‘?*~?N‘£NdD~
Du

is the disturbance vector and

T T T T
1<r> = E sl Mo I21 121 1l„, 1l1 1l„„ JT <2 - 4¤>

is the vector of control forces. Moreover, the mass matrix is given by
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ml EZ 6161 . . 611611

s1 i, 6I0>1 +?„16I$1 . . 6I1¤>11 +?1,116I1$11

Mm
E61 E61 + E61?} M1 . . 0

E1611 <x>L611 + E6,1?'1§11 0 . . M11

(2 — 41)

and.

N f\J

0 2 26L31$1 . . 26I1Z„11$11
e=1

0 622 622 . . 622

0 0
@(1) = (2 — 42)

0 0 1

1playsthe role of a gyroscopic matrix, where
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N
r‘\/

@22 (2 — 422)
e=1

In addition,

0 0 EM), + Z2$)ö, . . E{,(£3„ + «72§,)$„

0 0 (Q3 . .
i<§‘3

0 0 K1 0
Kü) = (2 - 44)

0 0 0 · ·KNis

effectively the stiffness matrix, where

KE2 = ?oe El(«7»ä + «?»2)$„ + El ( 52 JB (422) + J8 (22)) (2 — 45)

1 b' bz . . b"

0 c' 0 . . 0
_

0 0 cz . . 0
B (t) = (2 — 46)

0 0 0 . . cN
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relates the discrete force vectors to the modal force vectors, in which

F; E; ..... E;

¤° = (2 - 47)

r6656 r665l + 556.,

°
— [ <1>T <t>T <bT J 2 48

C2.6 Two-Dimensional Equations of Motion

Let us consider the planar motion of a system consisting of a main rigid body and a
‘

fiexible appendage hinged to the main rigid body (Fig. 18). The equations of motion for the

two-dimensional motion of the system shown in Fig. 18 can be obtained from Eqs. (2-34) as

follows:

[M0+M1(t) JE + G1U)§ + [KO+K1(t) J2 = LU) + QU) (2-49)

where

Q=[Ry RZ 0 g§]T (2-50)

is the configuration vector, in which Ryand RZ represent the translations in the y- and

z-directions, 9 represents the angular motion and g, are generalized coordinates. Moreover,

[(t) and g(t) represent resultant control forces and disturbances, respectively, and they are

given by

;=[Fy FZ MZ, g;]T (2-51)
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and

Seißzcß + Bam

S„<ß2sß — iS*¤ß>
Q = (2 — 52)

— 145* + S,„¤„„<ß2sß — item

— öl}?

In addition,

m, 0 0 0

0 mt St öe

Mo = (2 — ss)

0 s, 1, 5,, + 1,,,,6,,

0 6; Ö; + :,,,,6; Ma

0 0 0 0

0 0 0 0

Ko = (2 — 54)

0 0 0 0

0 0 0 KB

are the constant part of the coefticient matrices and
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M1 = sßMs + (1 — cß) Mc (2 — 55)

K1 = <1%*sß — 1%¤1%> Km — (1%*¤1% +1%s1%> 1<„2 — 1%* +<„3 12 - ¤6>

G1 = —2ß(SßG$ +¤/YGC) (2-57)

are the time-varying parts, in which

0 0 - se - $1,

0 0 0 0

Ms = (2 — 588)

- se 0 0 0

— 6; 0 0 0

0 0 0 0

0 0 6, $,1

Mc = (2 — 58b)

0 6,, 2s„r„ 11,661,

0 6; 11,,,6; 0
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0 0 se 6,

0 0 O 0

Km = (2 — 58c)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 sa öa

0 0 0 r„ö„

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 M6
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0 0 0 0

0 0 s, -6,

Gs = (2 ‘ 58f)

0 0 r,,s, - r,,6,

0 0 0 0

0 0 s, -6,

0 O 0 0

Gc = (2 ‘ 589)

O 0 0 0

0 0 0 0

where ß represents the angle between the flexible body and the rigid body, in which

sß and cß denote sin ß and cos ß , respectively. Finally,

mt = m, + m, , S, = S, + S, + m,r,, , I, = I, + I, + m,rä, + 2r,,S, (2 — 59a,b,c)

S, =
I
p,rdD, , S, = pa r, dD, (2—59d,e)

D, D,

2 2I, dD, , I, pa I', dD, (2—59f,Q)
D, D,
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Ö, =
I
p, <D, dD, , Ö, =

'I.
p, r, (D, dD, (2 — 59h,i)

DI DI

M,
='|.

p,d>;<I>,dD,, K, = [<1>,, <i>,] (2-691,K)
DO

in which p,and p, represent the mass density for the rigid body and flexible body, m,and m,

represent the mass of the rigid and flexible bodies, respectively, S,and S, represent the first

mass moments about the point o for the rigid body, about the point e for the flexible body,

I, and I, are the mass moments of inertia of the rigid body and flexible body, respectively, and

[ , ] represents the energy inner product (Ref. 24). lt can be seen that time-varying matrices

depend on the maneuver angle, angular veloclty and acceleration of the flexible body. Let

us consider a pseudo-modal approach whereby the eigenvectors of the premaneuver

spacecraft are used to simplify the equations. The eigenvalue problem for the premaneuver

spacecraft has the form

KOQ = AMOQ (2 — 60)

Solving Eq. (2-60), we obtain the matrix U, of eigenvectors. Then, introducing the linear

transformation

Q = Um (2 — 61)

into Eq. (2-49) and using the orthnormality relations

UÄMOUO = I , Ug-KOUO =

A0Eq.(2-49) can be rewritten as followsz

(l+M1)Ü + E12? + (^o+R1)'l = E + Q (2'63)
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where

M, = u§M,u„ = sßMs+(1—cß)Mc (2-64a)

6, = u§e„u„ = — 2ß(sßÖ$ + cßäc) (2 — 84b)

R1 = U2)-K1U0 = (ßzsß ‘ ßcß)Rb1 ‘ (/äzcß + BSß)Rb2 ‘
BZRDS (2 * 64C)

Ms = ugmsuo , Mc g ugmcuo (2—64¤,e)

Es = ugesuo , EC = uäscuo (2-64r,g)

E61 = ¤ä+<„„¤„ . R16 = ¤ä¤<„2¤„ .
(
Re = ¤äK„3¤„ <2—64¤.u>

5 = Ugf , Q = Ugd (2—64k,l)

Equation (2-63) is said to be in pseudo-modal form. The equation can be used for the

simulation and testing of new control laws, because it has the same dynamic characteristics

as Eq. (2-34) and it is easier to work with.
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3.0 Control Design

3.1 Maneuvering and Disturbances

The maneuver considered consists of retargeting antennas so as to point in given

directions in the inertial space. By stabilizing the platform in an inertial space, the task

reduces to reorienting the antennas relative to the platform. For a minimum-time maneuver,

the control law is bang·bang, which implies that the angular acceleration of an antenna

relative to the platform is constant, with the sign changing at half the maneuver period.

ldeally, the maneuver should not cause elastic deformations in the flexible appendages. This

is not possible in theory. Even, infinitesimally small deformations are Iikely to require a long

maneuver time, which is in conflict with the minimum-time requirement. Hence, elastic

deformations are Iikely to occur, which in turn implies perturbation of the platform from a fixed

position in the inertial space.

The motion of the system is governed by Eq. (2-34). The system is characterized by

two factors that distinguish it from most commonly encountered systems: it is time-varying

and it is subjected to persistent disturbances. Both factors arise from the retargeting
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maneuver angular velocities Q, , angular accelerations Q, and the matrices E, of direction

cosines (e=1,2,...,N), all quantities being known functions oftime.

Disturbances acting persistently on the system during reorientation arise from known

sources. Indeed, these disturbances arise from the inertial loading due to the motion of the

flexible appendages. This information depends on the policy of reorienting flexible

appendages and should be regarded as qualitative in nature. In practical applications,

disturbances appear as given functions of time, so that conventional design methods for

time-varying systems can be used. Disturbances tend to have undesirable effects on the

pointing accuracy of spacecraft. As a result, it is necessary to design counteracting controls

to mitigate any adverse effects. Moreover, discretization and truncation of the

distributed—parameter system results in reduced-order realization for the disturbances.

Hence, the a priori information concerning g(t) is usually not complete enough to permit

accurate description of the nature of the disturbance, so that we are faced with the problem

of designing disturbance-accommodating control with only an incomplete knowledge of this

disturbance,

ln this chapter, we consider first a disturbance—minimization control. To cope with

unknown disturbances, proportional plus integral (Pl) control will be explored. PI control will

be extended by applying a perturbation method to the optimal control problem for systems

with time·varying coefücients, where the time·varying part is of one order magnitude smaller

than the constant part.

3.2 Disturbance-Minimization Control

The action of disturbances on the system tends to produce undesirable effects on the

pointing accuracy. In view of this, it is customary to view the ideal control situation as one in
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which the effects ofthe disturbances on the system performance can be completely eliminated

by proper choice of counteracting controls.

Consistent with the nature of the system, we consider a control consisting of two parts:

one part counteracting the persistent disturbances and a second part driving the state to zero.

The control counteracting the persistent disturbances is open loop and the regulator is

closed-loop. Hence, we assume a control vector in the form

Lit) = ION) + Ic(t) (3 -1)

where f„(t) is responsible for the disturbance-minimization and f„(t) is responsible for

regulating the perturbed motions in the system. Substitution of Eq. (3-1) into Eq. (2-34) yields

3 = A(t)x(t) + B(t)(f¤(t) +jc(t)) + D(t)g_(t) (3 — 2)

The strategy of disturbance-accommodation consists of designing the control _f„ to

cancel out the effects of the disturbances on the system completely. Hence, the open·loop

control is assumed to satisfy

B(t)I„ + ¤(t)Q(t) = 0 l
(3-3)

or, recalling Eqs. (2-37) and (2-38),

B*(1H¤(t) + Q(t) = 0 (3-4)

In general, there are fewer actuators than the number of degrees of freedom of the discretized

model, so that B‘(t) is a rectangular matrix, which does not possess an exact inverse. Hence,

when the number of actuators is smaller than the number of degrees of freedom, lt is

impossible to eliminate completely the effect of disturbances. ln such a case, one can

minimize the effect of the disturbance in a least-squares sense by choosing j„(t) so as to

satisfy

I¤(t) = — [B°lt)]T Q0) (3 - 5)
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where
[B“]*

= (B’T B’)·‘ B'T is the pseudo-inverse of B'.

A On the assumption that the effect of the disturbances is virtually eliminated by the

control f„(t) , the remaining control problem can be regarded as an ordinary regulator problem.

ln view of Eqs. (3-2) and (3-3), the regulator is governed by

3 = A(t)3(t) + B(tß„(t) (3 — 6)

so that one can now proceed to design fc(t) by conventional methods. lt should be noted that

the technique of dividing the control design into two parts, as shown in Eq. (3-1), is a simple

but effective idea, which appears to be unique to disturbance-accommodating control (DAC)

theory (Refs. 12-14).
l

The closed-loop control is assumed to be optimal, in the sense that it minimizes the

performance index

1 T 1 Tl
T TJ = gx (t«)Hx(t«) + g (5 ¤z +1.R1.)dt (3-7)

tß

where t, and t, are the initial and final time, respectively, and H, Q and R are penalty coeflicient

matrices to be selected by the analyst (Ref. 2). Minimization ofJ yields the optimal control law

1. = — R‘T(l)BT(l)P(l)ä (3-6)

where P is an optimal control gain matrix satisfying the matrix Riccati equation

P = - PA -
ATP — 0 + PBR'1BTP (6-96)

subject to the boundary condition

P(t,) = H (3 - 9b)

The closed-loop state equation is obtained by inserting Eqs. (3-4) and (3-8) into Eq.

(3-2), with the result
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j<_(t) = Ac(t)g<_(t) + Dc(t)g(t) (3- 10)

where

Ac = A — BRJBTP

0 l

= (3 - 11a)

- M"u<wiein

which P2, and P2, are submatrices of P, as given by

P11 P12
P = (3 — 11b)

P21 P22

and

0

Dc = D—B(B·)T = (3-110)

M"<¤ — B'l<B'>*B'1"<B°>*}

Clearly, how well the controller is able to reduce the elastic vibration and deviations

of the platform from equilibrium relative to the inertial space depends to a large extent on how

close Dc is to the null matrix, which in turn depends on how close the matrix
B‘
is to a square

matrix. The latter depends on the number of actuators.
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3.3 Disturbance-Accommodating Control

In the previous section, we designed counteracting controls and optimal controls

based on the assumption that the disturbances are known functions of time. Clearly, the

disturbance term D(t)g(t) in Eq. (2-34) depends on the maneuver policy. ln the case of

minimum-time maneuver, the policy is bang-bang, which implies that the maneuver angular

acceleration is constant over both halves ofthe maneuver period. If the maneuver is relatively

slow, so that M4 is virtually constant, then the disturbance is constant over both halves of the

maneuver period. In this case, we can use proportionaI-plus-integral (PI) feedback control.

Introducing the notation

B(t)u(1) = B(1)L(l) + ¤(l)Q(1) (3- 12)

Eq. (2-34) can be rewritten as

g(t) = A(t)g(t) + B(t)g(t) (3- 13)

Assumlng that D(t) and g(t) vary slowly, so that D(t)g(t) is almost constant during the control

interval, we can write

,ll(1) = fü) = M1) (3 -14)

Introducing a new state vector defined by

;=L„>§§Jl (3-15)

Eqs. (3-13) and (3-14) can be combined into the expanded state equation

_ A A
glll = A(1I;(1I + Bltlldlt) (3- 16)
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where

A A(t) BU) A 0
A(t) = , B(t) = (3 -17a,b)

0 0 l

are coefficient matrices. Note that if A(t) and B(t) are a controllable pair, then A(t) and B(t)

are also a controllable pair (Ref. 1).

We consider an optimal control policy in the sense that f,,(t) minimizes the

performance measure

.i—lTt¢lt l
t'
Tt^1t Frätrr dt— 2£(1·)Z,(r)+

2 ().„¤()) (3*18)

The optimal control law is

,,10) — —R (UB (l) P(*)£(l) — G(l)£<l) (3-19)

A A
'

where G(t) =
— R·‘(t) B'(t) P(t) represents a control gain matrix, in which P(t) satisties the

matrix Riccati equation

. A AT A AA_TAT
P=-PA—AP—Q+PBR BK (3-20)

Solving Eq. (3-20), we essentially obtain the optimal control law. Using Eqs. (3-13) - (3-15) and

(3-19), it can be shown

di t r·

where G, and G, represent the submatrices of G corresponding x and g, correspondingly, and

Bl = (Bl B)·‘ BT is the pseudo-inverse of B. lntegrating Eq. (3-21), we obtain the optimal

control law
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z z
[(t) = [(0) +

f(G1— G2BTA)xd1- + II-G2BTgd1 (3-22)
0 0

lf t, is sufticiently large and A and B can be assumed to be constant, then the gain matrix is

constant. Moreover, if x(0) and [(0) are zero, then Eq. (3-22) yields

U
z

[(t)=Gpx+G,fxd1 (3-23)
o

where

ep = G2BT, 6, = 61- GQBTA (s—24a,b)

Equation (3-23) represents the optimal control law for the time-invariant system subjected to

unknown constant disturbances, and is known as proportional-plus-integral (PI) control.

In general, the above control law cannot be used for the type of problem considered

here. When the maneuver is relatively slow, however, so that the matrices A and B are nearly

constant, the control law (3-23) can be used with satisfactory results. In this case, the control

must be regarded suboptimal.

3.4 Perturbation Method

We are concerned here with the case in which the time-varying part ofthe coefticients

is of one order of magnitude smaller than the constant part. ln this case, we can use a

perturbation approach to compute the control gains. To this end, we rewrite Eq. (2-63) in the

form
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Qt) 2 [Ao + A,(t)]Q(t) + [Bo + B,(t)](E_(t) + Q(t)) (3 - 25)

where

g=[_{gT]T (3-26)

0 I 0

Ao = , B0 = (3 — 27a,b)

- Ao 0 I

0 0 0

A, = , B, = (3 - 27c,d)

in which quantities with the subscript 1 are of one order of magnitude smaller than quantities

with the subscript 0.

Introducing the notation

9 = E + Q (3-28)

and assuming that the disturbance vector Q is constant during each half interval of the

maneuver, we can write

g = E (2 - 29)

Inserting Eq. (3-28) into Eq. (3-25) and combining with Eq. (3-29), we obtain the new state

equation

_ A A. 1
w=Aw+B§ (3-30)
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where

A A A
ig = [QT QTJT , A = Ao + A10) (2 - 31a,b)

Ao B0 A10) B10) 0
A A A
A0 = , A1(t) = , B = (3-31c,d,e)

0 0 0 0 I

Ne><t, we consider the performance index

_ 1 T T -T ·J- (w Q)_;_v+§_ Rf_)dt (3-32)
0

so that the optimal control law is given by

· —1^T
F= -R BPw (3-33)

where P is the solution of matrix differential Riccati equation (MDRE)

. A AT A _TAT
—P=PA+AP+O—PBR BP (3-34a)

and is subject to the boundary condition

P(T) = 0 (3 — 34b)

note that T represent the terminal time of control action.

Consistent with the perturbation approach, we divide P into a zero-order term and a

small perturbing term, or

P=PO+P1 (3-35)
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lnserting Eq. (3-35) into Eqs. (3-34), we obtain a zero-order matrix differential Riccati equation

(MDRE)

. A AT A _TAT
- PO = POAO + AOPO + Q — POBR B Po (3-36)

and a tirst-order matrix differential Lyapunov equation (MDLE)

- PT = PTAOC + AOCPT + POAT + ATPO (3-37)

where

A A A _TAT
A0c=A0-BR BP0 (3-38)

denotes a closed-loop matrix. From Eq. (3-34b), the boundary conditions are

PO(T) = 0 , PT(T) = O (3 — 39a,b)

If the tinal time T approaches intinity and the maneuver ends at time t,, t,< T, we can

use the steady-state solution of the zero-order MDRE for the post maneuver period because

time-varying coefticients no longer exist alter the termination of the maneuver. Then, the

zero·order MDRE, Eq. (3-36), becomes the MARE

A AT A _1AT
P0Ao+AoPo+Q-POBR B Po=0 (3-40)

The MDLE, Eq. (3-37), is effective only during the maneuver, so that the boundary condition

(3-39b) should be rewritten as

F’1(1«)= 0 (3 — 41)

where t, indicates the tinal time of the maneuver. The solution of Eq. (3-37) subject to the

boundary condition (3-41) can be expressed as
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tl Ü (2-:) ^T ^ 2 (2-:)P1(t) =

jl
e
°° [A1(r)Po + P0A1(·r)] e

°°
dr (3 -42)

t

as shown in Appendix B.

To obtain a discrete-time solution, we discretize Eq. (3-42) in time. To this end, we let

tk+1=tk + At, so that Eq. (3-42) yields

AT
A

At QT A A

6 ¤¤*1‘(:„+«:)6^¤¤‘¤:]
6‘^�>¤^‘

(2-42)
0

A A
where I"(t,, + 6) = [AI(t,, + 6)P„ + P„A,(t,, + 6)] . Derivation of Eq. (3-43) is given in Appendix

C. Equation (3-43) represents a matrix difference equation for the first-order solution. The

initial condition is given as

‘·
-2* -2je
6 ¤¤* r(2) 6 ¤¤' dz (2 - 44)0

lt is common to assume that the time-varying terms are constant over the small time interval

0 < t < At , so that Eq. (3-43) gives

AT AT A A6‘
2 2 Ai]6‘ ^¤¤^‘ (2 -45)

The control law given by Eq. (3-33) is not ready for implementation. The next task is

to use the equation to generate the tinal control law. To this end, we consider the following

partitioning of the matrix P(t)
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P11 P12 P12

P(t) = P21 P22 P23 (3 *46)

P21 P32 P33

Then, recalling Eq. (3-31e) and the nature of the state vector w , Eq. (3-33) can be rewritten

as

(2 - 47)

so that, using Eqs. (3-28) and (2-63), Q can be expressed as

Q = (¤+M',)g + Ed + (A,,+R,)Q (3-48)

Inserting Eq. (3-48) into Eq. (3-47), we obtain

5 g
— [cs? + G:(t)]Q(t) — [eg + 6;(t)]Q(z) — [GS, + G;(t)]_ii(t) (2 - 49)

where

cs? = R°1[Pg1+ P§3A,,] , of PQSAO + PQSR,] (2 - 606,8)

GQ = R-1Pg2 , GQ,
- R"[PQ2 + P§2ä,]

(2 - s0¤,¤)

62
-
R"P§3 , 6},

-
R'1[P§3+

i=§3M,] (2- 606,7)

Superscripts 0 and 1 denote zero- and tirst-order, respectively. Integrating Eq. (3-47), we

obtain
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t ( t
g(t) = g(0) [G2 [G2 + G2(1)]ii(1)d1 (3 - 51)

0
”

0
”

0
“

Assuming that the time-varying first-order gain matrices change slowly, lj(t) can be

approximated by taking the gain matrices outside the Integral sign. Moreover, although initial

conditions appear in Eq. (3-51), arbitrary values can be assigned to the Initial control force

l E(0) ; we choose this value as zero. In addition, the maneuver starts from the rest, so that

g(0) and 11(0) are zero as well. Hence, Eq. (3-51) can be rewritten as

I
ga) g — [62 [62 [62+ (0 - 52)

0

lnserting Eq. (3-52) into Eq. (2-63), we obtain the following closed-loop equation:

(I +M,)g+ (62+ G2+Ö1)j'+(A0+ 62+ 62+R„)E

0 1 t
+(G« +Gi)j· »1(¢)d¢=Q (3-53)

Equation (3-53) can be written in the state form

X =
A'! + 5'g (3-54)

where

° .g(Y) = [ .Lg(=)¤< g(T) gü) ] (3-553)
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0 I 0 0

A': 0 0 I , B': 0 (6-ss¤,c)

AQ AQ AQ I

A·
_

I
— -1 0 1

1- "(+M1) (G1+G1) (3-55d)

A; : -(¤+'i7,)"(A„+of,+o§,+R1) (3-55e)

Equation (3-54) is in a standard form and its solution can be obtained by the transition matrix

approach.

The procedure for designing the control can be summarized as follows:

�
Obtain the steady-state zero-order solution by solving the MARE, Eq. (3-40).

�
Calculate the zero-order gains by means of Eqs. (3-50a,c,e).

�
Obtain the time—varying first-order Rlccatl solution by evaluating the integral in Eq. (3-42).

�
Calculate the first-order gains by means of Eq. (3-50b,d,l).

�
Compute the closed-loop response by solving the state equation (3-54).

If the rate of time-variation of the parameters is slow relative to the closed-loop

response, one approach is to design the control gains under the assumption that the process

is time-invariant, and then schedule the gains as a function of parameters that varies with time

(Ref. 7). The idea of an adiabatic approxlmation used in Ref. 7 is to use the solution of the
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matrix algebraic Riccati equation (MARE) at each instant of time instead of solving the matrix

differential Riccati equation (MDRE). If we use the concept of adiabatic approximation to the

perturbed Riccati equation, the adiabatic solution for the time-varying part can be obtained

by solving the MDLE, Eq. (3-13) by letting P, = 0 for each instant of time. The resuiting matrix

algebraic Lyapunov equation (MALE) is

A AT A AT
P,(t)A0c + A0CP,(t) + POA,(t) + A,(t)PO=0 (3-56)

The solution of the MALE should satisfy the stability criteria by the second method of

Lyapunov. Its feasibility is decided by the asymptotic stability of the system, not by optimality.

The advantage of this solution is that the time-varying gain matrix can be calculated at each

instant time without solving the differential equation. However, stability must be checked a

priori. All of this can also be precalculated prior to any maneuver, thus saving real-time

computations.

The closed loop equation can be written as

A A A A
w=[A-eR"eTP]w=Acw (3-57)

The second stability theorem of Lyapunov is concerned with the asymptotic stability

of a system in the neighborhood of the origin and it reads as followsz

Theorem: If there exists for the system (3-57) a positive definite function V(w) whose total time

derivative V(w) is negative detinite along every trajectory of (3-57), then the trivial solution is

asymptotically stable.

V By assumption, the matrix P(t) that satisties Eq.(3-34) is positive detinite. Thus,

V= wTPw >0 for all w #0 and t (3 — 58)
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The scalar function V defined by Eq. (3-58) is a candidate Lyapunov function. Now consider

dV/dt, or

. T . A AT _ TV=w(P+PAc+AcP)w-wFyg _ (3-59)

where

. AT A
F=P+AcP+PAF (3-60)

For the control law developed by applying a perturbation method in this section,

F
_

Q F, F, ^ —1^T 200,, -
— -( 0+ ,(t))BR B (P0+ P,(t)) + O(6) (3-61)

For the adiabatic approximation case,

· ^
—1^T 2

Fadia = P1(t) ' Q ‘ (Po B (Po + P1(t)) + O(*¤ ) (3 — 62)

The stability of the system depends on negative definiteness of F. lf the eigenvalues of F are

all negative, the system is guaranteed to be stable. As can be seen from Eq. (3-61), the

negative definiteness of Fw, can be easily justified. On the other hand, the negative

definlteness of F„„, depends on the contribution of P, to F„,,,. Although P, ls O(a), the

time-derivative can be larger if the time-varying system parameters change abruptly. This can

happen during maneuvering because there ls a rapid change from the acceleration to

deceleration at half the maneuver period due to the bang-bang control. Therefore, the use

of the adiabatic approximation for the control of the maneuvering spacecraft is not indicated,

even though the first-order solution can be obtained with relative ease when compared to the

evaluation of the integral in Eq. (3-42).
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4.0 Numerical Results

4.1 Numerical Example 1

The preceding developments for disturbance-minimization control have been applied

to a spacecraft consisting of a rigid platform with a single flexible appendage in the form of a·

beam (Fig. 3). The maneuver consists of slewing the beam relative to the platform through a

45° angle about the x-axis, so that cg, = [B, 0 0
]’

The time history of the angular

acceleration B, is a smoothed bang-bang, where the smoothing was used to reduce the

excitation of the elastic appendage. Plots of the angular acceleration B, , angular velocity B,

and angular displacement B, as functions of time are shown in Fig. 4. The elastic motion

consists of bending vibration in the x· and y-directions, with the vibration in the z-direction

being identically equal to zero. The vibration was represented by tive admissible functions in

each direction, so that the matrix <I>, in Eq. (2-13) is 3 x 10 and the vector q, is a

ten—dimensionaI vector. The admissible functions have the expressions

(ßxj = — (cos Biz — cosh Bjz) + Cj( sin B12
— sinh B12), j = 1,2,...,5 (4 -1)
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which are recognized as cantilever modes (Ref. 24). The admissible functions ¢y, (j=6,7,...,10)

have exactly the same expressions. The coefticients in Eq. (4-1) have the values C, = 0.7341,

1.0185, 0.9992, 1, 1 and the arguments of the trigonometric and hyperbolic functions can be

obtained from ß,l, = 1.8751, 4.6941, 7.8548, 10.9955, 14.1732, where I, is the length ofthe beam.

The mass matrix, Eq. (2-22a), and the stiffness matrix, Eq. (2-20), are 10x 10 and have the

block diagonal form

Men 0 Ken 0
Me = , Ka = (4- 28,b)

0 Me22 0 Ke22

Mau = M822 =· [ l'TleÖ,, J ,l,j=1,2,...,5Ela

2 2 - -Km, = Ke22 = T(ß,l,) (ß,l,) 6,, , i,)=1,2,...,5 (4-3b)

B

Moreover, the matrices Ö, and Ö, given by Eqs. (2-22b) and (2-22c), respectively, are 3 x 10

and have the form

E, 0 0 — 4>,

$,= 0 E, , <Y>,= E, 0 (4-4a,¤)

0 0 0 0

where and JS, are given in Appendix D. Other numerical values used are as followsz

m, = 15.6 slugs, me = 0.30 slugs

§, = (0., 0., 0.)T sIugs�ft, §„ = (0., 0., 1.65)T sIugs�l1

13.0 0.0 0.0 1.25 0.0 0.0

I, = 0.0 48.0 0.0 sIugs�ft2, I, = 0.0 1.25 0.0 slugs�ft2

0.0 0.0 59.0 0.0 0.0 0.0
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I, = s n, El = 600 Ib�ft2, ID, = (0., 0., 0.4)T n

Figure 5 shows the time history ofthe tip elastic dlsplacement of the appendage in the

absence of control. Although üve admissible functions were used to represent the elastic

displacements, sufficient accuracy can be obtained with a single admissible function alone.

Indeed, there is no discernible difference in the open-loop response using one or five

admissible functions, as can be verified by examining Fig. 5.

Figures 6 and 7 show time histories of the rigid-body translations and rotation of the

platform during the maneuver, respectively, without and with control. Finally, Figure 8 shows

the tip elastic dlsplacement of the appendage during the maneuver, without and with control.

The controls were implemented by six actuators mounted on the rigid platform and two

actuators each for the x- and y-directions and located on the appendage at z,=l,/2 and

z, = I,.

For the values of the parameters chosen, the time-varying terms in the coefticient

matrices turned out to be small compared to the constant terms. ln view of this, the control

gains were computed as if the system were time-invariant. They were obtained by solving the

steady-state Riccati equation in conjunction with Potter’s method (Ref. 39). The coefficient

matrices A and B used in the solution were according to the premaneuver state. Moreover,

we chose the performance index coefficient matrices H = 0, Q = 100 I and R = 0.001 l where

l is the identity matrix. This assumes large final time t,. lt should be stressed once again that

the time-invariant system was used only for computing the control gains, and the closed-loop

response plots were obtained by considering the actual time-varying system, as described by

Eq. (2-34),
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4.2 Numerical Example 2

The mathematical model consists of a flat rigid platform and two flexible beams, each

one having one end hinged to the platform and the other end free (Fig. 9), where the beams

are originally parallel to the z-axis of the platform. The maneuver consists of slewing each of

the beams through a 45° angle, one about the x-axis and the other about the y-axis of the

platform. The beams are discretized in space by using three admissible functions for each

component of displacement. Six actuators are used for the rigid platform and three actuators

are used for each displacement component of both beams. The Iatter actuators are located

at 4 ft, 7 ft and 10 ft from the pivot point, the third coinciding with the tip of the beam.

Maneuver time histories are the same as those given in Numerical Example 1. Figures 10 and

11 display both the uncontrolled and controlled translational and angular displacements ofthe

platform, respectively, and Figs. 12 and 13 show the tip displacements of the two beams. As

can be veritied, the maneuver and control of the spacecrah are quite satisfactory. The

disturbance·accommodating control is carried out by the proportionaI·pIus·integral control

approach. In obtaining the numerical results, the following data was used:

m, = 134.15 slugs, ma = 0.1873 slugs

§, = (0., 0.,
0.)T

sIugs�ft, §_8 = (0., 0., 0.9365)], slugs�ft

186.021 0.0 0.0 6.243 0.0 0.0

I, = 0.0 186.021 0.0 slugs�ft2, IB = 0.0 6.243 0.0 sIugs�tt2

0.0 0.0 357.733 0.0 0.0 0.0

I, = I2 = 10 ft, EI = 3028.9 lb·fl2

T T
ro, = (0., -1.0, 0.5) tt, [D2 = (0., 1.0,0.5) ft
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Moreover, the weighting matrices appearing in the performance index, Eq. (3-18), are as

followsx

A 100l 0.0 A
Q = , R = 0.001]

0.0 I

where I is the identity matrix. Of course, consistent with a steady-state solution of the matrix
A

Riccati equation, H was taken as zero. Finally, for control design purposes, the coefficient

matrices A and B were taken as constant and corresponding to the premaneuver configuration

of the spacecraft. Of course, in Implementing the control, the time-varying matrices A(t) and

B(t) were used.

4.3 Numerical Example 3

As an example ofthe control design by the perturbation method developed in Sec. 3.4,

the following second·order differential equation is considered

ü+(w2+6)u=f+d (4-5)

where fand d represent modal control force and disturbance respectively and 6 is the small

time-varying coeflicient that exists only for some period. Recalling Eq. (3-31), we have

0 1 0 0 0 0 0

A 2 A A
Ao = —w 0 1 A1 = -s O 0 B = O (4—Ba,b,C)

0 0 0 0 0 0 1
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We use the performance index

(4-7)
O

with

Q = 0 Q2 0 (4-8)

The MARE, Eq. (3-40), yields the six nonlinear equations

PO 2 PO 2
Q, - 2P?,22’-% = 0 , Q, + 21%-% = 0 (4-gb)

PO 2 PO PO
Q, + 2%-% = 0 , P2,-%w2PO

PO PO PO
P?2-1=22«»2 - $--0 . P$l>3+Pg2 — $-0 (4-0-.0

The above equations can be reduced to the following 4th-order equation for P3, :

(%)" + 4w2R (%)° + 2R(2w4R - Q, + 2w2Q3)(Pg3)2
(

— 4R2(w2Q2 + 2Q,) % + QäR2 - 4R2 (Q, + w2Q2)Q3
-
0 (4- 10)

Solving Eq. (4-10) for P2;. the remaining entries of P, can be obtained from Eqs. (4-9) as followsz

1 (P° fP?2 02 .
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Po Po
PS3 PS3 <4—11¤.¤>

Po Pa
PS, = 3>°PS2+{ (4- 11e)

lnstead of evaluating the integral in Eq. (3-42), because Eq. (3-37) is only of order six, we can

write it explicitly as follows:

. 2Po
( P1, 0 2w2 0 0 0 P11

2P1’2

. P° P°
P12 -1 0 { 332 { 0 P12 PS2

. P° P°
P12 0 -1 0332=

+ s (4 —- 12)
. 2Po
PS2 0 -2 0 0 { 0 PS2 0

. P° P°PS2 0 0 -1 -1 { { PS2 0

. 2Po
PS2 0 0 0 0 -2 { PS2 0

so that the first-order perturbation to the Riccati matrix can be obtained by integrating Eq.

(4-12). Hence, using Eq. (3-52) and recalling Eqs. (3-50), we obtain the control law

'
.

f =-
gd-

ud-: - gpu — gdu (4-13)
O

where
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((021

1gp =F
[Pla + Pla] , gd =F

[Pla + Pla] (4 —14b,c)

For the example at hand, we use the numerical data

10 sin(2rrt). 0$t$3 100, 0$t$3
g = , d =

'

0, t<0;t>3 0, t<0;t>3

Zero·order solutions are obtalned by solving Eqs. (4-10) and (4-11). Figures 14 through 16

show the gains obtalned by backward integration, perturbation method and adiabatlc

approximation. It can be seen that the solution by the perturbation method is closer to the

exact solution than the solution by the adiabatlc approximation. Figure 17 shows the

uncontrolled and controlled responses. For the comparison, the Independent Moda!-Space

Control (IMSC) method (Ref. 27) is applied to the same system. The IMSC control law is

r= w(w·-a/w2+R_1 )u — «/[2w(—w+„/w2+R_1)+R-130 (4-15)

where R = 0.01 is used. Note that IMSC had to be modified to account for the presence of

unknown constant disturbances. As can be seen in Fig 17, IMSC is not effective for controlling

the system under persistent disturbance. This comes as no surprise, as IMSC was not

designed for this type of problems. The theory used in this dissertation can be extended to

the case of any arbitrary disturbances.
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4.4 Numerical Example 4

This example is concerned with the planar model shown in Fig. 18. The maneuver of

the appendage relative to the platform was carried out by means of a bang-bang for the

angular acceleration. Hence, we have

.. . 1
ß=c, ß=ct, ß=%-ct2 for tsé-

·· _ · __ _ -1 2 1 2 tfß-—c, ß-—(ct—t,), ,8-—{-c(t—t,) +7ct, for Ystst,

40, _
where c =?— and 0,and t, represent final maneuver angle and time.

l

Data for numerical model are as follows:

m, = 15.6 slugs , m6 = 0.15 slugs

S, = 0.0 sIugs�lt , S6 = 0.375 slugs�lt

I, = 13.0 slugs�tt2 , I6 = 1.25 slugs�ft2

r66 = 0.4 lt , $6 = 0.117 , $6 = 0.427

I6 = SR , EI6 = 500 , K6 = 49.449 , M6 = 0.15

For simplicity, we used only one admissible function. Other parameters entering into Eq.

(2-64) are given in Appendix E.
I

Figures 19 through 21 show uncontrolled and controlled responses for the solutions

obtained by the perturbation method and adiabatic approximation, where Q = l, R = 0.01 I,

0,= 90° and t, = 3s are used. For the lirst—order solution, The approximation given by Eq.

(3-45) is used.
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4.5 Numerical Example 5

The effect of nonlinearity on the system response is Illustrated by means of a

spacecraft consisting of a rigid platform with a single membrane·type flexible appendage (Fig.

22). The maneuver of the appendage relative to the platform was carried out by means of a

smoothed bang-bang (Ref. 40) for the angular acceleration, where the smoothing of the

bang-bang was done to reduce the elastic deformations of the appendage. The elastic

vibration of the appendage was represented by ten degrees of freedom in the z-direction, i.e.,

by ten admissible functions in the discretization(-in-space) process, so that the matrix <D, in

Eq. (2-13) is 3 x 10, or

0 0 0

(DB = 0 0 0 (4- 16)

¢*1 ¢2 ¢10

in which

1 JO(ß01r) 1 J0(ßO2r)=——-i— , =l ———· 4—17a,b)(#1
„/vrßc a J1(ßo1a)

(#2
./1:36 a J1(ßo2a) (

2 J 2 J

./nßa a J2(ß11a) „/wie a J2(ß12a)

2 J 2 J
cos29 cos20 (4-17e,f)„/nßa a Ja(ß21a) „/wie a Ja(ß22a)

2 J 2 J r

a J2(ß11a) ./1:,78 a J2(ß12a)
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J? —¤2<ß2.r> J? .¤2<ß„r>
qß =—— ——— sin29, ¢> =l— —— sin29 4-17i,j9

,/wie a Ja(ß21a) 10 ,/wie a Ja(ß22a)
( )

in which ¢>, and 43, are recognized as axisymmetric modes, and the other as antisymmetric

modes respectively (Ref. 22). The vector g, is ten-dimensional. The arguments of the Bessel

functions of the tirst kind can be obtained from ß„,a = 2.405, ß,,,a = 5.520, ß„a = 3.832,

ß,2a = 7.016, ß,,a = 5.136 and ßzza = 8.417. The mass matrix, Eq. (2-22a), and the stiffness

matrix, Eq. (2-20), are 10 x 10 and have the block diagonal form

I
Me = I , Ka = A (4- 18a,b)

where I is the 10 x 10 identity matrix and A is a diagonal matrix with the diagonal entries

cz 2 cz 2A(1,1) = T(ßo1a) , A(2,2) = T(ßO2a) (4—19a,b)
a a

c2
2 cz

2M3.3) = M7.?) = 7(ßila) . M4.4) = M8.8) = ?·(ß«2¤) _ (4-1%.4)
a

c2
2 cz

2M5.5) = M9.9) = 7(ßlla) . M6.6) = M10.1¤) = 7(ßlga) (4- 1%.*)
a a

where a Is the radius of the membrane and c =,/T„,/3, , in which T,„ is the tension applied to

the membrane and fi, represents the mass per unit area of the membrane. Moreover, the

other matrices given by Eqs. (2-18) and (2-22) are given in Appendix F.

Two cases with the same numerical data for the elastic appendage but with different

inertia terms for the rigid body are tested. The data for the elastic appendage is as follows:

mc = 0.283 slugs , §e = (0., 0., 1.415) sIugs�ft
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7.712 0.0 0.0

le = 0.0 7.712 0.0 slugs�ft2

0.0 0.0 1.274

ße=0.01 slugs/R2 , a=3 ft , c=20 ft/sec [DB = (0., 0., 1.0) ft

For the rigid body, we consider:

Case 1

m, = 134.15 slugs, §, = (0., 0., 0.) slugs�ft

186.021 0.0 0.0

I, = 0.0 186.021 0.0 slugs � ft2,

0.0 0.0 357.733

and Case 2

m, = 21.464 slugs, §, = (0., 0., 0.) sIugs�l't

8.943 0.0 0.0

I, = 0.0 8.943 0.0 slugs�ft2,

0.0 0.0 14.309

As seen above, the rigid-body model of Case 1 has large inertias relative to those of

the flexible body. On the other hand, the mass moment of inertia of the rigid body of Case 2

is almost the same as that of the flexible body, although the mass of the rigid body is

sufflciently large. This is due to the fact that the mass moment of inertia of rigid body is about

the center of mass and the mass moment of inertia of flexible body is about the hlnge, which

is far removed from the mass center of the flexible body.
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Two cases are compared with the results obtained by using linearized state equation.

Figures 23 through 26 show time histories of the rigid-body translations and rotation and the

elastic displacements of the membrane at the center and the point defined by

x, = 0 and r = 1.5 ft for Case 1. The tigures contain responses for the uncontrolled nonlinear

system and linearized system, as well as for the controlled case. Figures 27 through 30 show

the responses for Case 2.

A simple controller is considered for the nonlinear system control. Controllers for the

rigid body translations and rotation are uniform damping control. The control laws are:

EO =
— amt!.) , Mo =

— altgg (4-208,b)

where a = 10 is used for this example. Controllers for the elastic motions are IMSC controllers

(Ref. 27), or

¤„ = «»„<«»„ — „/w? + R" >¤„ — „/ E2«»„< — w. + „/wi + R" >+ R"J p.

i=1,2,....,10 (4-20c)

where w, = „/A(i,i) and R = 0.0002 are used. It can be shown that the control ofthe nonlinear

system is possible, but the control gains are too high because of the presence ofdistulrbances.

Hence, control design for the nonlinear system should be carried out in a different way.

The elastic displacements at the center and at r = 0.5 a, 9 = 90° are calculated by using

the following formulasz

1
w =O=5( 1.08684 q1

— 1.65807 q2) (4-21a)l'
Ta

1w =o_5 _0=90� = 5- (0.72806 q1 + 0.27919 q2T 8—

1.06924 qs + 0.90574 qö + 1.15061 q; — 0.35635 qß) (4-21b)
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A nonlinear state equation is solved by using IMSL routine DIVPAG (Ref. 10).
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5.0 Summary and Conclusion

The equations describing the motion of a spacecraft consisting of a rigid platform and

retargeting flexible antennas can be derived most conveniently by means of a Lagrangian

approach in terms of quasiÄcoordinates. The strategy used consists of stabilizing the platform

relative to an inertial space and maneuverlng the antennas relative to the platform. In general,

the equations are nonlinear and time-varylng. In the case in which the inertia of the antennas

is small relative to the spacecralt, the equations can be linearized, although they remain

time·varying. In addition, the equations contain persistent disturbances due to inertial loading.

Because control design for the hybrid system is not feasible, discretization and truncation are

carried out.

The control can be divided into two parts, the first counteracting the persistent

disturbances and the second providing regulation of the perturbed system. The state subject

to regulation consists of the deviations of the platform from equilibrium relative to the inertial

space and the elastic motions of the appendages. The feedback control gains for the regulator

can be made optimal by minimizing a certain performance measure. Numerical Example 1

shows the application of this control method.

Bang-bang control implies that the maneuver angular acceleration is constant over

each half the maneuver period and disturbances depend Iargely on acceleration (by way of
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inertial loading). This permlts the use of proportional-plus·integral feedback control for

disturbance accommodation. In the case in which the time-varying terms are relatively small,
l
which means the maneuver is not very fast compared to the lowest natural frequencles of the

nonmaneuvering antennas, the control gains can be computed on the basis of the

time·invariant system obtained by ignoring the time-varying terms. Of course, in the computer

simulation of the maneuver and control, the full time-varying system must be considered. A

numerical example, in which a spacecraft consisting of a rigid platform and two flexible

antennas undergoes reorientation in different planes, is presented.
I

To treat with the control problem of a system with small time-varying terms, and one

subject to dlsturbances acting persistently on the system during reorientation, a new control

method based on a perturbation technique is developed. The solution of the time-varying

matrix differential Riccati equation (MDRE) for the case ofinlinite final time can be divided into

two parts: time·invariant solution of matrix algebraic Riccati equation (MARE) and

time-varying solution of matrix differential Lyapunov equation (MDLE). The time-varying

solution takes an integral form, which enables us to compute the time-varying gains more

easily. This method is superior in optimality and stability compared to the adiabatic

approximation.
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Appendux A. Some Useful Properties

lf g is a three·dimensionaI vector, i.e., a = [a, az a,]* , then the skew symmetric matrix

E is defined as

0 * a3 az

E = ag 0 -6, (A- 1)

* 32 a1 O _

The cross product of two vectors can be expressed as

.ä><Q=äQ= —Eä (A-?)

Furthermore, the transpose of the cross product can be expressed in several ways, namely,

[Eg]T= —gTS= —[Eg]T=_gTE (A-:2)

The skew~symmetric matrix of the cross product is

r\J
~ ~[ag]=ab-ba (A-4)

Another useful relation is

Appendix A. Some Useful Properties 103



rx.! rx!

[äh;] + [hä;] = ähä + hää + Ehä + 'Eäh -
2(bcuäl

+ ääh) (A-6)

lfl is a symmetric matrix, l= Ii , then following relation holds:

rx!

¤ä+ä¤+[l;]=tr(i)ä (A-6)

where tr denotes the trace ofthe matrix.

The time derivative of the direction cosine matrix C given by Eq. (2-3a) can be

expressed in either of the two forms

c= —£;c and cT=cT«7„ — (A-7a,h)

Finally, the direction cosine matrix E, satisties

rv
E§äE„=[E§;] (A—6)
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Appendix B. Proof of Eq. (3-42)

Introducing the change of variables t= t,— 1 , Eq. (3-52) becomes

A AT
PT' = PTAOC + AOCPT + I‘(t,—1) (B—1)

where

A AT
F(tr ‘ T) = PoA1(t1‘ T) + A1(tf ‘ T)P0 (B " 2)

and prime denotes d/d1. Then, boundary condition (3-56) becomes P,(0) =0 . Multiplying Eq.

(B-1) on the left by S,(1) and on the right S2(1) , we obtain

A AT
STPT'S2 = STPTAOCS2 + STAOCPTS2 + STI“(t,—1)S2 (B—3)

Next, we consider

d I I I (3*4)

so that Eq. (B-3) can be rewritten as
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d l A I A
'a';'(S1P1S2) — S1P1(S2 +AOCS2) · (S1 +S1^0c)P1S2 = S1V(tr‘*)S2 (B—·5)

On the assumption that S, and S, satisfy

AT A
S1' + S1^0c = 0 ·

S2' + ^ocB2 = 0 (B - 68.b)

Eq. (B-5) reduces to

d (B — 7)

lntegrating Eq. (B-7), we obtain

t'
S,(t') P, (t') S2(t') =

L)
S,(1) I“(t, — 1) S2(1) d1 (B — 8)

Equation (B-8) yields

tl

P, (t') = S{1(t').L S,(1) I“(t, — 1) S2(1) d1 S§1(t') (B — 9)

Equations (B-6) have the solutions

AT A
S«(¢) = B_A°°1S1(0) � S20) =

¢”
A°°'S2(0) (B- 1¤¤-b)

so that, inserting Eqs. (B-10) into Eq. (B-9), we obtain

p
· -

tl
— €

1-(tf*‘l')€dt0

Introducing the changes of the variables t" =t,— 1 and t' =t,—t , we can rewrite Eq. (B-11)

as
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°' Ü (v-1) Ä (z'-1)
P1(t) = e

°°
I“(t")e

°°
dt" (B- 12)

t

Finally, replacing t" by 1-, we obtain Eq. (3-42)
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Appendix C. Derivation of Eq. (3-43)

The object is to discretize Eq. (3-42) in time. To this end, we let t=t,„ and

t=t„.,, =t,, + At in Eq. (3-42) and write

T' Ü (1-:,,) A (1- :,,)P1(tk) =
I

e
°°

l"(1)e
°°

d1- (C—1)
Tx

T' Ü (1-: ) Ü,C(1-: ) -Ü At T' Ü (1-:,,) Ü,C(1-:,,)
-A

At
P1(tk+1) =f e

°°

"*‘
I“(1·)e

"*‘
dr = e

°° I
e
°° l'“(1-)e dre A°°

Tim Ti:

-Ü At
T*+‘ AT

1- :,,) A (1- :,„)
-A

At
-
6 ¤¤ ¤¢ :1116 ^¤¢

k

AT At AT A A

-
6* 5) 6^¤¤* :15] 6*

^¤¤^‘
(c - 2)

o

where we introduced the change of variables 1 = t,
+€

in integral.
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Appendix D. Expressions for Parameters

Inserting admissible functions given by Eq. (4-1) into Eqs. (2-22) and (2-24), we obtain

$6 = mel; 0.783 0.434 0.254 0.182 0.141 ] (D -1)

= m8I„[ 0.569 0.091 0.032 0.017 0.010] (D—2)

_ 0 I „ —(aä+a§)I a1a2I
He@) = a3 me

·
He(§) = me 2 2 (D‘3�4)

I 0 a1a2I —(a1+a3)I

aßge 0

Je(ä) = " 0 86% (D — 5)

am am

¢B 0

PeEe5<DedDe = ‘a3meIe 0 ¢e ([3*6)
DI

0 0

where I is the 5 x 5 identity matrix.
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Appendix E. Expressions for Matrices

The matrices given by Eqs. (2-64) are computed by using the numerical data given in

the Numerical Example 4. The resulting matrices are

15.75 0 0 0

0 15.75 0.435 0.117
I

Mo =
0 0.435 14.574 0.474

0 0.117 0.474 0.150

0 0 0 0

0 0 0 0
Ko =

0 0 0 0

0 0 0 49.449

0 0 -0.375 -0.117

0 0 0 0
Ms =

-0.375 0 0 0

-0.117 0 0 0
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0 0 0 0

0 0 0.375 0.117
Mc =

0 0.375 0.3 0.047

0 0.117 0.047 0

0 0 0.375 0.117

0 0 0 0
Km =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0.375 0.117

Kb2 =
0 0 0 0.047

0 0 0 0

0 0 0 0 _

0 0 0 0

Kos =
0 0 0 0

0 0 0 0.15

0 0 0 0

0 0 0.375 -0.117
Gs =

0 0 0.150 -0.047

0 0 0 0
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0 0 0.375 -0.117

0 0 0 0
GC =

0 0 0 0

0 0 0 0 -

The matrix of eigenvectors associated with the premaneuver state is

0.2520 0 O 0

0 0.2521 0 -0.0179
U i

0 -0.0075 0.2619 -0.0883

0 0 0 2.7327

so that, using Eq. (2-62) and (2-64), the modal matrices are

0 0 0 0

0 0 0 0
Ao = _

0 0 0 0

0 0 0 369.2661

0 0.0007 -0.0248 - 0.0722

_ 0.0007 0 0 0
Ms =

-0.0248 0 0 0

-0.0722 0 0 0

0 0 0 0

_ 0 -0.0014 0.0242 0.0715
M 2.C

0 0.0242 0.0206 0.0249

0 0.0715 0.0249 -0.0306
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0 -0.0007 0.0248 0.0722

_ 0 0 0 0
Km =

0 0 0 0

0 0 0 0

0 0 0 0

_ 0 -0.0007 0.0248 0.0713

Kb2 =
0 0 0 0.0336

0 0.0001 -0.0018 -0.0165

0 0 0 0

_ 0 0 0 0
Kb3 =

0 0 0 0

0 0 0 1.1201

0 0 0 0

_ 0 -0.0007 0.0245 -0.0879
G ES

0 -0.0003 0.0103 -0.0371

0 0.0002 -0.0052 0.0188

0 -0.0007 0.0248 -0.0889

_ 0 0 0 0
GC =

0 0 0 0

0 0 0 0
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Appendix F. Expressions for Parameters

For the given configuration, the position vector of a nominal point in the membrane

appendage can be expressed as

g„=[rsin6,rcos0,h]T (F—1)

lnserting the admissible functions given by Eqs. (4-17), together with Eq. (F-1), into Eqs. (2-22)

and (2-24), we obtain

10 O ——
ßma

10 0 ——-

ßoza

$;= 2a./1566 0 0 0 (F—2)

0 0 0
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0 0 0

0 0 0

10 — —-— 0
/*118

10 — ——— 0
/*123

„ 0 0 0
wg = ,/21:;,; az (F - 2)

0 0 0

1— 0 0
ß11a

1l 0 O
/*128

0 0 0

0 0 0

and

¤„ca>= —<¤$+¤ä>¤ (F-4)

where I is 10 x 10 identity matrix. Moreover,

¤„(a>=Ko] (**-5)
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2ha, 2ha2
0

ß01a ßma

2ha1 2ha2
0

ßoza ßO2a

* aaa
0

* 881

«/-Eßwa «/Eßna

* 333
0

* 831

0 0 0

JÄ<a>=2¤„/«F„ <F—6>

0 0 0

0
* 883 " 332

«/-Eßna «/Eßua

0
* aaa * 832

0 0 0

0 0 0
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h81 ha2
0

ßma ß01a

haq haz
0

ßoza ßoza

0 0
* 381

000

O 0

Do

0 0 0

0 0
* 382

O 0
‘** 382

0 0 0

0 0 0

DO

where we note that the above null matrix is 3 x 1. In addition,
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" G1 0 0
/‘\J

f01,[<1>1„g1,]¤¤„= 0 -01 0 (F-0)
DO

6:2 :13 0

where

il
(F—10a)ßo1aßoza6:2

I;
-2;-

+ ll
il

(F—10b)
ß11a ß12a

0:3ß11a ß12a

1 0 O
10

fp0ü„V0=1¤„= -21:1 ¤ 1 0 <r—11>
D,

‘=1I 0 0 0

“ w1q1 w2q1 0

* w1q2 w2q2 0

I
101, :0; 270,,ü,, 60,1 = . . . (F -12)

DO

— w1q10 w2q10 0
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0

0 (F—13)

0

0 (F-14)
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