Dynamics and Control of Spacecraft
with Retargeting Flexible Antennas
by
Moon Kyu Kwak

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in

Engineering Mechanics

APPROVED:

L. Meirovitch, Chairman

~C. W. Smith TR /VanLandindham

S. L. Hendricks \ D. P. Telionis

April 8, 1989

Blacksburg, Virginia



Dynamics and Control of Spacecraft
with Retargeting Flexible Antennas
by
Moon Kyu Kwak
L. Meirovitch, Chairman
Engineering Mechanics

(ABSTRACT)

This dissertation is concerned with the dynamics and control of spacecraft consisting
of a rigid platform and a given number of retargeting flexible antennas. The mission consists
of maneuvering the antennas so as to coincide with preselected lines of sight while stabilizing
the platform in an inertial space and suppressing the elastic vibration of the antennas. The
dissertation contains the derivation of the equations of motion by a Lagrangian approach
using quasi-coordinates, as well as a procedure for designing the feedback controls.
Assuming that antennas are flexible, distributed-parameter members, the state equations of
motion are hybrid. Moreover, they are nonlinear. Following spatial discretization and
truncation, these equations yield a system of nonlinear discretized state equations, which are
more practical for numerical caiculations and controller design. Linearization is carried out
based on the assumption that the inertia of the rigid body is large relative to that of flexibie
body. The equations of motion for a two-dimensional model are also given. The feedback
controis are designed in several ways. Disturbance-minimization control plus regulation is
considered by using constant gains obtained on the basis of the premaneuver configuration
of the otherwise time-varying system. In the case of unknown constant disturbance,
proportional-plus-integrai (Pl) control has proven very effective. Pl control is used to control
the perturbed motions of the platform with muiti-targeted flexible appendages. A new control
law is obtained for the system with small time-varying configuration during a specified time
period by applying a perturbation method to the Riccati equation obtained for P! control.
According to the the proposed perturbation method, the control gains consist of zero-order

time-invariant gains obtained from the solution of the matrix algebraic Riccati equation



(MARE) for the post-maneuver state and first-order time-varying gains obtained from the
solution of the matrix differential Lyapunov equation (MDLE). The solution of the MDLE has
an integral form, which can be approximated by a matrix difference equation. The adiabatic
approximation, which freezes the matrix differential Riccati equation or Lyapunov equation is
also discussed. Comparisons are made based on system stability by Lyapunov’s second
method. A spacecraft consisting of a rigid platform and a single flexible antenna is used to
illustrate disturbance-minimization control, and a spacecraft consisting of a rigid platform and
two flexible antennas reorienting into different directions is used to demonstrate the
effectiveness of the disturbance-accommodating control. A time-varying spring-mass-damper
and a two-dimensional model, representing a reduced version of the original spacecraft
model, are considered to demonstrate the perturbation and adiabatic approximation methods.
To illustrate the effect of nonlinearity on the dynamic response during reorientation, a

numerical example of the spacecraft having a membrane-type antenna is presented.
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1.0 Introduction

1.1 Preliminary Remarks

In many space applications, it becomes necessary to reorient a certain line of sight in
a spacecraft. Examples of this are the reorientation of a space telescope or of an antenna in
a spacecraft. In some cases, such as in the space telescope, the line of sight can be regarded
as being fixed relative to the undeformed structure, in which cases reorientation of the line
of sight implies maneuvering of the whole spacecraft (Refs. 3-5,16,28-30,38,40-43,46 and 47).
However, many spacecraft can be represented by mathematical models consisting of a rigid
platform with one or more flexible appendages, such as flexible antennas, so that the mission
involves the maneuvering of a hybrid (lumped and distributed flexible) system. Quite often,
the line of sight coincides with an axis fixed in a small component of the spacecraft, such as
an antenna, in which case it may be more advisable to retarget only the antenna and not the
entire spacecraft. This is particularly true when the inertia of the antenna is much smaller than
the inertia of the spacecraft. The argument becomes even stronger when several antennas
must be retargeted independently in space. In such cases, it appears more sensible to

conceive of a spacecraft consisting of a platform stabilized in an inertial space with several
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appendages, rigid or flexible, hinged to the platform and capable of pivoting about two
orthogonal axes relative to the platform (Refs. 31,33-36). In this case, reorientation relative to
the stabilized platform is equivalent to retargeting in an inertial space. Note that such a
maneuvering spacecraft is characterized by the fact that its configuration varies with time.
This dissertation is concerned with the mission of independent retargeting of the line of sight
of each antenna relative to the inertial space.

Figure 1 shows a spacecraft comprising a rigid platform with a given number of flexible
appendages. Assuming that the flexible appendages represent antennas, the mission
consists of maneuvering the antennas so as to coincide with preselected lines of sight. For
given target directions of the antennas, the maneuvers can be designed as if the antennas
were rigid. Of course, the antennas are flexible in actuality, so that the maneuvers are likely
to cause elastic vibration of the antennas, which in turn also induce perturbations in the
platform. Hence, the mission design can be regarded as involving several interdependent
tasks. The first task is to select and implement policies for the maneuvering of the antennas
relative to the inertial space. The second consists of stabilizing the attitude and position of the
platform relative to the inertial space. The third task is simply to suppress any vibration of the
flexible antennas caused by the maneuver. Of course, maneuvering of the antennas,
stabilization of the platform and vibration suppression are to take place simultaneously.

The mathematical formulation consists of a hybrid set of equations of motion, in the
sense that there are six ordinary differential equations for the rigid-body transiations and
rotations of the platform and partial differential equations for the elastic motion of each
antenna. The equations of motion are not only hybrid, but the maneuvering of the antennas
relative to the platform according to some prescribed function of time introduces
time-dependent coefficients into the equations. Moreover, the equations contain terms
reflecting persistent disturbances caused by inertial forces. If the mass of the antennas is
small relative to the mass of the platform, then the equations of motion can be regarded as
linear. Because control of the systems governed by sets of hybrid differential equations

cannot be readily designed, even when the equations are linear, it is necessary to discretize
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the partial differential equations in space, which can be carried out by the classical
Rayleigh-Ritz method or the finite element method (Ref. 24).

Under certain circumstances, the time-varying terms are sufficiently small that they can
be ignored in the control design. - Even then, however, the full time-varying system must be
considered in implementing the feedback controls designed on the basis of the time-invariant
system.

This dissertation contains the derivation of the equation of motion for the spacecraft
described above, as well as the procedure for designing the feedback controls. Hybrid state
equation of motion for a spacecraft with retargetipg flexible antennas are derived by a
Lagrangian approach using quasi-coordinates (Refs. 23, 32 and 34). Upon discretization and
linearization, a more manageable set of state equations is obtained. For future reference,
state equations for the case of two-dimensional elastic members are also derived. In general,
a time-varying gain matrix for the system is obtained by solving the matrix differential Riccati
equation (MDRE), where the backward integration process must be carried out before the
maneuver.

For a given maneuver, the control problem reduces to the minimization of the effect of
the persistent disturbances caused by the maneuver and the annihilation of the elastic
vibration and of the perturbations in the rigid-body maneuvers. To design the control
minimizing the effect of the disturbances, the disturbances must be known a priori. This is,
of course, a trivial matter if we can predict the disturbances accurately. However, the
disturbances can be different for each maneuver, so that designer may not be always
successful in accommodating the disturbances.

If the maneuver is to be carried out in minimum time, then the control law must be
bang-bang (Ref. 25). Bang-bang control implies that the maneuver angular acceleration is
constant over the first haif of the maneuver, reverses sign at one half of the maneuver period
and continues at the same level over the second half of the maneuver.
Proportional-plus-integral (Pl) control of the perturbations proves to be effective in the case

of constant disturbances (Ref. 1 and 11). This approach is used in Chapter 3 to contro! the
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vibration and rigid body perturbations in a spacecraft. Under the same assumption that the
time-varying part in the coefficients is small, the control design is based on the constant part,
which permits the use of constant control gains.

The Pl control can be extended by considering control gains consisting of a large
constant part and a small time-varying part. To this end, this dissertation presents a genuine
perturbation approach to the optimal control problem for systems with time-varying
coefficients, where the time-varying part is of one order magnitude smaller than the constant
part. As in Ref. 33, we solve a steady-state matrix Riccati equation for the constant part. This
represents the zero-order portion of the solution. On the other hand, for the first-order portion
of the solution, we solve a differential {instead of an aigebraic) matrix Lyapunov equation, thus

permitting fast time variation in the time-varying part of the Riccati matrix.

1.2 Literature Survey

Beginning in the late 1950's, the dynamics of flexible spacecraft became a concern
(Modi, Ref. 37). The maneuvering of flexible spacecraft has received considerable attention
since flexibility makes the control design more complex, because the control objective is now
to maneuver the spacecraft and suppress vibrations simultaneously.

Turner and Junkins (Ref. 45) addressed the problem of single-axis rotational maneuver
of flexible spacecraft. They formulated the necessary conditions from Pontryagin’s minimum
principle and proposed a relaxation procedure for solving the associated nonlinear two-point
boundary-value problem. The model considered in Ref. 45 consists of a rigid hub with four
identical elastic appendages, in which a control torquer is located on the hub and is used for
both rotational maneuver and vibration suppression. This places severe requirements on the
controller, since the large-angle rotational maneuver and vibration suppression are performed

simultaneously. In fact, numerical difficulties are encountered when solving the associated
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two-point boundary problem with terminal constraints. Turner and Chun (Ref. 46) extended
the results by adding extra torquers to the elastic appendages. Breakwell (Ref. 5) addressed
the same problem in a similar manner and used standard fixed-time
linear-quadratic-Gaussian regulator control theory and verified the proposed method
experimentally. A common approach is to represent the elastic motion as a finite series of
space-dependent admissible functions multiplied by generalized coordinates. This implies
simultaneous discretization and truncation. Baruh and Silverberg (Ref. 3 and 4) suggested
removing the terminal constraints, thereby permitting separation of the controi problem into
two problems, maneuver control and vibration suppression, where vibration suppression was
carried out without considering rigid-body motions. Mostafa and Oz (Ref. 38) applied the
variable structure control (VSC) technique to the model considered by Turner and Junkins
(Ref. 45). They proposed ways of eliminating the chatter phenomenon, which occurs when
implementing VSC.

Some projected NASA missions involve experiments consisting of the control of
flexible bodies carried by a shuttle in Earth orbit. Wang, Lin and Ih (Ref. 48) presented a paper
concerning the feasibility study of dynamics and control of shuttie-attached antenna
experiments. They proposed a hardware design for isolation and decoupling between the
shuttle and the antenna. A program initiated by NASA is referred to as the Spacecraft Control
Laboratory Experiment (SCOLE) (Taylor and Balakrishnan, Ref. 44). The control objective of
SCOLE is to reorient the line of sight in minimum time with limited control authority. Kakad
(Ref. 16) presented a paper concerning the dynamics and control of the SCOLE model. He
considered Euler parameters to define the rigid-body slewing. In this case, vibration
suppression was performed at the end of the maneuver, where the feedback control law was
derived from an infinite-time regulator problem. Juang, Horta and Robertshaw (Ref. 15)
conducted hardware experiments involving the slewing control of a structure consisting of a
steel beam and a solar panel. Although these experiments lacked some rigid-body motions,

it was sufficient to demonstrate the hardware design concepts necessary for slewing flexible

4
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structures. In their experiments, the linear optimal terminal control law was implemented by
means of an analog computer.

Meirovitch and Quinn (Refs. 28 and 29), Quinn (Ref. 40) and Quinn and Meirovitch
(Refs. 41 and 42) applied a perturbation method to control the motion of a SCOLE model
undergoing large rigid-body motions and small elastic deformations. The perturbation method
permits a maneuver strategy independent of the vibration control. Of course, there are small
perturbed rigid-body motions resulting from the elastic vibrations. A minimum-time open-loop
control was used for the large-angle slewing, and optimal control and pole placement
techniques were used to suppress the vibration. First-order actuator dynamics, leading to a
smoothed bang-bang, were considered to reduce the excitation. Meirovitch and Sharony (Ref.
30), Sharony and Meirovitch (Ref. 43) extended the previous studies (Ref. 42) by introducing
integral control to accommodate the piecewise-constant disturbances caused by the internal
forces resulting from.the maneuver, and suggested a method of alleviating the effect of control
spillover on the residual modes by introducing a Luenberger observer. Finite-time stability
was achieved by means of an exponential convergence term included in the finite-time
performance index.

The above papers were concerned with the reorientation of the entire spacecraft. Quite
often, the line of sight coincides with an axis fixed in an antenna, in which case it may be more
advisable to retarget only the antenna and not the entire spacecraft. Meirovitch and Kwak
(Ref. 31) first addressed this situation. In Ref. 31, the elastic appendages are hinged to the
platform and capable of pivoting about two-orthogonal axes relative to the platform and the
maneuvering angles are assumed to be the known functions of time. A
disturbance-minimization technique was used in Ref. 31, a proportional-plus-integral (P
control was used in Ref. 33 and a perturbation method was applied to the time-varying system
in Ref. 36. This dissertation contains the summary of these papers. Recently, Meirovitch and
France (Ref. 35) introduced a discrete-time approach to the system considered in Ref. 31, and
deveioped the substructure decentralized control method in which each substructure was

controlled independently by either linear or bang-off-bang controllers.
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The main difficulty encountered in addressing the dynamics of a system is how to
derive the equations of motion easily. In general, the equations of motion for the spacecraft
have very complicated expressions (Refs. 8, 18-20, 47), so that new methods of deriving
equations of motion have been proposed (Refs. 9, 17 and 21). Kane and Levinson (Ref. 17)
compared seven methods in their paper. Lagrange’s equations of motion in terms of
quasi-coordinates for a hybrid system were used first by Meirovitch (Ref. 26) and then by
Williams (Ref. 48) and Brown (Ref. 6). Recently, Meirovitch {Ref. 32) and Meirovitch and Kwak
(Ref. 34) showed that Lagrange’s equations of motion in terms of quasi-coordinates are quite
useful for deriving the equations of motion for the maneuvering and control of flexible
spacecraft. Because the derived equations of motion are based on body-fixed coordinates,

control design based on body-fixed coordinates is very convenient.

1.3 Outline

This dissertation is concerned with the dynamics and control of spacecraft with
retargeting flexible antennas. The object of Chapter 2 is to produce equations capable of
describing the motion of such a spacecraft. To this end, Lagrange’s equations of motion using
quasi-coordinates are first derived. In the derivation, the spacecraft is treated as a rigid body
and the antennas as flexible appendages.

The equations describing the rigid-body motions of the spacecraft are nonlinear
ordinary differential equations. On the other hand, the equations describing the small elastic
displacements of a flexible appendage relative to a frame embedded in the undeformed
appendage are partial differential equations. Hence, the complete equations describing a
spacecraft during reorientation represent a set of nonlinear hybrid differential equations.

In general, hybrid systems of equations do not permit closed-form solution, so that one

must consider an approximate solution, which implies spatial discretization and truncation.
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Spatial discretization and truncation can be carried out by representing the motion as a finite
set of admissible functions multiplied by time-dependent generalized coordinates: this is done
in Section 2.4. The resulting discretized equations are nonlinear and can be cast in state form.

If the inertia of the platform is much larger than that of the flexible appendages, the
equations can be linearized, so that the control design can be carried out as if the system
were linear; this is done in Section 2.5. At times, especially when there is only one appendage
and the motion takes place in a given plane, the equations of motion for the three-dimensional
case are not really necessary. The equations are considerably simpler than those for the
three-dimensional motion, as can be concluded from Section 2.6.

Chapter 3 deals with the implementation of control for the suppression of the
perturbations caused by the maneuver and other disturbances. The maneuver strategy and
the nature of the disturbances are discussed in Section 3.1. Disturbance-minimization controi
method is discussed in Section 3.2. Disturbance-accommodating control is discussed in
Section 3.3, in which a proportional-plus-integral (Pl) controlier is introduced. A perturbation
method is introduced in Section 3.4. and a new control law is obtained for systems with
time-varying configuration.

Chapter 4 contains numerical examples illustrating the control strategies developed
in Chapter 3.

Finally, Chapter 5 presents a summary of the solution techniques and of the numerical

results, as well as conclusions. Recommendations for the future work are also included.
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2.0 Derivation of the Equations of Motion

2.1 Introduction

In this chapter, the equations of motion for a spacecraft with retargeting flexible
antennas are derived. The spacecraft is assumed to consist of a rigid body and flexible
antennas, where the flexible appendages are regarded as distributed parameter members.

The equations describing the rigid-body motions of the spacecraft are nonlinear
ordinary differential equations. On the other hand, the equations describing the small elastic
displacements of a flexible appendage relative to a frame embedded in the undeformed
appendage are partial differential equations. Hence, the complete equations describing a
spacecraft during reorientation represent a set of nonlinear hybrid differential equations.

In general, hybrid systems of equations do not permit closed-form solution, so that one
must consider an approximate solution, which implies spatial discretization and truncation.
Spatial discretization and truncation can be carried out by representing the motion as a finite
set of admissible functions multiplied by time-dependent generalized coordinates. Moreover,
the equations are first linearized and then recast in compact state equations. However, the

state equations still contain time-varying coefficients and persistent disturbances.
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2.2 Equations of Motion of the Spacecraft

Let us consider a system consisting of a main rigid body, acting as a platform, and a
certain number of flexible appendages hinged to the main rigid body. The interest lies in
reorienting the flexible appendages independently so as to point in different preselected
directions in the inertial space. The object is to derive the equations of motion capable of
describing this task.

To describe the motion of the platform, we introduce a set of inertial axes XYZ and a
set of body axes xyz attached to the rigid platform. Then, the motion of the platform can be
defined in terms of three transiations and three rotations of body axes xyz relative to the
inertial axes XYZ. To describe the motion of the flexible appendages, we consider a typical
appendage hinged at point e and regard e as the origin of a set of body axes x,y,z, embedded
in the appendage in its undeformed state. Then, the motion of a nominal point of the
appendage consists of the motion of xyz, the motion of x,y,z, relative to xyz and the elastic
motion relative to x,y,z, . The system and the various reference frames are shown in Fig.
1.

From Fig. 1., the position vector of a point in the rigid body and in the appendage can

be written as

Rr=Ro +1L (2—1a)
Re = Ro + foe + Lo + Ue . €=12....N @ — 1b)

where R, is the radius vector from O to o, r is the position vector of a nominal point in the
rigid body relative to xyz, r,, is the radius vector from o to e, r, is the position vector of a
nominal point in undeformed appendage relative to x,y,z, and u, is the elastic displacement
of that point. Vector R, is given in terms of components along XYZ, r and r,, in terms of

components along xyz, and r, and u, in terms of components along x,y,z,
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The velocity vector of o can be written in terms of components along xyz in the form
Vo = CR,. (2-2a)

where C is the matrix of direction cosines between xyz and XYZ and R, is the velocity vector
of o in terms of components along XYZ. Matrix C depends on the angular displacements 6,
(i=1,2,3) defining the orientation of axes xyz relative to axes XYZ. Furthermore, the angular

velocity vector of axes xyz in terms of components along xyz is given by
@ = Dg (2-2,b)

where Q is a vector of angular velocities 9, and D is a matrix depending on angular
displacements 8, (i=1,2,3). Figure 2 shows a set of such angular displacements. For this

choice of angles, the matrices C and D are as follows:

clycl, cO,50, + s6,50,c05 84505 — cl,56,c04

C= - C92593 C01C03 - 501 502503 501C03 + C81 502393 (2 - 33)

592 - 301 002 C01 Ce2 J

C02C83 593 0

D = -—602503 C93 0 (2—'3b)
s, 0 1
where cf,=cosf, and s@ =sinf, . Note that this choice of angles helps us avoid

singularities at the initial stage of the motion, §,=0.
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In view of the above, the velocity vector of a point in the rigid body in terms of

components along xyz is simply

Ve=Vot+ta@xr (2—4a)

and that of a point in the typical appendage e in terms of components along XYeZe IS

Ve=Ee(Vo+ @ Xloe) + (Eqw + we) X (la+ Ua) +Ve , €=12,...N (2 —4b)

where ¢, is the angular velocity vector of axes x,y,z, . E, is a matrix of direction cosines
between the x,y,z, and xyz and vy, is the elastic velocity of the point in the appendage
relative to x,y,z, . ¥, = U, . In the maneuver proposed, the angular velocity vectors «, of
X,YZ, relative to xyz are given, so that the rotational motions of the appendages relative to
the platform do not add degrees of freedom. The only degrees of freedom arises from the
rigid-body translations and rotations of the platform and the elastic displacements of the
~appendages.

The equations of motion can be obtained by means of Lagrange’s equations in terms

of quasi-coordinates (Ref. 32 and 34).

8, 0L .~ L

at oy, )t ey. ~C R, =k (2 — 5a)
—gt-(g—EHVO 6‘3-0 +5g—;—(DT)'1%E—=M (2 — 5b)
9 6Ce 0Tq A

E(a!e)—age+$e.!e=ge (2 - Sc)
where

L=T-V 25
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is the Lagrangian and 'II\', is the kinetic energy density, in which T is the kinetic energy and V
is the potential energy, f., is the Lagrangian density, both for appendage e, and %, is a
matrix of homogenous differential operators. Equations (2-5) are hybrid in the sense that Egs.
(2-5a) and (2-5b) are ordinary differential equations and Egs. (2-5c) are partial differential
equations. It should be noted that the tilde over a symbol indicates a skew symmetric matrix
with entries corresponding to the components of the associated vector (Ref. 31; see also

Appendix A for vector and matrix operations). For the system of Fig. 1, we write the kinetic

energy
1 - 1
T T
T= 2 f P YdD + D | pViV,dD,
D, e= D,
= %mt¥I¥o+¥g§Z“~’ +'%'°L’T|t‘£ + Z[%QZ'e“’e*‘ 5 J. PeYeVedDe
e=1 D.

+ o+ The) EL(STi0 + | pota®D0) + @"Elloze

D,
+ (Eew + Qe)Tf Pe(?e + Ee)l’edDe] 2-7
D.
where
N
my=m, + Zme , m,=J prdD, me=f pedDq (2—8a,b,c)
e=1 Dr Do
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N
S¢=S5,+ Z (me?oe + E:SeEe) v S = f perdD, Se= j Pe(?e + Ue)dDe (2—8d.e\f)
e=1 Dr D.
N
~ o~ T ~ TS ™~
k=1 + Z (Meroeloe + EeleEe ~ MoeEeSeEe — EeSeEeloe) (2 -8g)
e=1
~T ~ o N~ =T .
Iy =J prrrdDr g =f Pe(fe + Ue)(Te + Ue) dDq (2 - 8ij)
Dr D.

in which p, and p, are mass densities and D, and D, are the domain of the rigid platform and
of a typical appendage, respectively, m, is the total mass of the system, §, is a skew symmetric
matrix of first moments of inertia for the system and |, is the inertia matrix. For simplicity, we
assume that the potential energy is due entirely to elastic effects, in which case it can be

written in the form

N N

V=—;'Z[L’e'2e]= Zf E;geﬂedoe 2-9

e=1 e=1"0s

where [, ] denotes an energy inner product (Ref. 24). The terms F and M on the right side

of Egs. (2-5a) and (2-5b), respectively, are the force and torque vectors on the platform, both
A

in terms of components along axes xyz, and the term U, on the right side of Eq. (2-5c) is a

distributed force vector on appendage e in terms of components along x,v,Z, .
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2.3 Hybrid Nonlinear State Equations of Motion

Inserting Egs. (2-7) and (2-9) into Egs. (2-5) and considering Egs. (2-2) and (2-3), we

obtain the hybrid nonlinear Lagrange’s equations

.~ N - N ~S
Mo +8{e + ) Eq f peledDe = — MBV, + 352 + . En{2(@eSel + Seu)Ee2
e=1 D. e=1
- 2a’ef PeVedDe + a"ege‘i?e + §e$‘;’e} +E (2 -10a)
D,

N
Styo + ha + Zf Pe[FerI + E;(?e + lje)]iedDe = §Vow — a"t‘i’
e=1 D.

N ~~/
+ ) ([~ EN(2Bele — trleie) + 2FooE([BeSel + Sey) + 261 I Pe(TelUe)VedDelEewVodDe
e=1 D

"I PeEFer;‘T’ + E;‘T’e(?e + Ge)] +?er:(‘7’eSe‘£e + See + Seywe)
D,

- El(a"ele“.le +le@e + leve)} + M (2 —10b)

. ~ ~ ~ T . .
Pe{EeVo + [Eeloe + (Fe + Ug) Eold + Veo}

N/ ~ o~ -~ o~
= pe{ — [Ee@] Eel¥o — Foe@) + 2[VoEq — (re + Ug)@eEq + @e(re + Ug)Eglw

_ ~, . A
— 2weVe — ([Eew]” + we + we)(lp + Ua)} — Lele + Ue (2 - 10c)

where
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Sev = f PevedDe v ey = J Pelve(?e + Ee)T + (Fe + Ee)vl]doe (2—-11a,b)
D D

The hybrid set of equations consist of Egs. (2-10) and the kinematical relations

Ro=C'Vo . 8=D"9 , lo=¥o . e=12..N (2 - 12a,b,c)

2.4 The Discretized Nonlinear State Equations of Motion

The equations of motion are hybrid, in the sense that the equations for the rigid-body
transiations and rotations of the platform are ordinary differential equations and those for the
elastic motions of the appendages are partial differential equations. Moreover, because of the
maneuver angular velocity vector «, , which is a given function of time, they possess
time-dependent coefficients. Control design of systems described by hybrid equations is not
feasible, so that we wish to discretize the partial differential equations in space, leaving us
with only ordinary differential equations. To this end, we express the elastic displacements
as linear combinations of space-dependent admissible functions muitiplied by time-dependent

generalized coordinates, or

Ye(fe: t) = Pg(Le)Ge(t) e=12...N (2-13)

where @, is a matrix of admissible functions and q, is a vector of generalized coordinates.
The Lagrangian equations in terms of quasi-coordinates for the rigid body motions of
the platform remain in the form of Egs. {2-5a) and (2-5b). On the other hand, inserting Eq. (2-13)

into Egs. (2-5¢), we obtain the ordinary differential equations for the discretized elastic motions
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4,0, _ ot _ _ )
at ¢ age) G0y Qe . e=12,..N 214
where
Pe=0e (2 - 15)
TA
Qe= f ®lU.dDy . e=12,...N o1
D.

are corresponding vectors of generalized forces.
The Lagrangian remains in the form (2-6) but the kinetic energy and potential energy

change. Indeed, introducing Eq. (2-13) into Egs. (2-7), we obtain the discretized kinetic energy

N
1 T Pt 1 1 7 1.7 T
T = P} mYoVo + !ISI‘L’ + P} QTI&’ + Z | ) Welewe + ) Eej pePePedDepe
e=1 Da )
M ~T \TT,aT TeT
+ (¥ + Foe) Ee(Sewe +I PePedDePe) + @ Eelowe
K Do
"~/
+ (Eew + Qe)TJ- Pelre + [(Deﬂe])d’edDeEe ] (2-17)
D,

Many of the quantities in Eq. (2-17) are defined by Egs. (2-8), with the exception of

5=
D,

Moreover, inserting Eq. (2-13) into Eq. (2-9), the discretized potential energy has the form

"~/ "~/ "~/
Pelre + [(Deﬂe])dDe v e =J Pelle + [(beSe])(re + [(Deﬂe])TdDe (2—18a,b)
D

1 T 1 T
v=—2—23e[¢e:¢e]se = ?ZﬂeKeEe (2-19)

e=1 e=1
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where

Ke=[ D, D, ]

(2 — 20)

Following the same procedure as used earlier, the discretized nonlinear state

equations can be written as follows:

N N/ N
mi/o + S;rﬁ.’ + 2ZE;([Se‘£e]Eeﬁ?_Sev) + Z

e=1 e=1 e=1

N
+ mwY, — oS = F + ZE;(SeQe'*"T’éeQe)
ae=1

N ~/
SiVo + hex + Z {E;(2a’ele = trigwe) + 2?erI([Se“~’e] — Sey)
e=1

Yy "N N

N
T= . Tr = ~
EqDups + 2 ExiveDePe

(2 — 21a)

"~/
- 2E;f Pe(?e + [(Deﬂe])[q’ege]doe} Eex + Z (E;(De +?erI¢eElJ. Pe[q’ege](bedoe)Ee
D, D,

(Y e=1
"~/

e=1 D.

N
=M+ Z EFer:(Se‘i’e + eSewe) — E:('e‘i’e + welewe)]
e=1

"N/
TLEwl, + BBV, + BLEeTle + 31+ | 0e0l[00geTTaDE2
D

"~/ Yy N

+ 2[(1’;5’: +J‘ Peq);([q)eﬂe]a"e — Gele — [Depe] - we[ ®ee)dDe]Eee

O,
+ Mepg + 2He(we)Pe + [Ke + F‘.e(‘.i.’e) + ﬁe(Eeﬁ.’) + Hel(@e)lge

Derivation of the Equations of Motion

N
+ Z [ToeEae®g + EnaDe + Evnivg f pel®e0e 10dD)Pe + SiVow + Ghe

(2 — 21b)
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= Qe — 6;‘.% + J Peaea’e?eﬂ.’edoe (2—21c)

D.
where
Mg = f peDidedDy . By = J pe®edDy . Dy = f pefe®edDy (2 —22a,b,c)
D. Dy D.
ﬁe(.?.) = J. Pe(b; a @y dD,, He(@ =j Pe‘bg a 2¢e dD, (2—22d.e)
D, O,

2.5 The Discretized Linear State Equations of Motion

The object is to maintain the position and attitude of the platform fixed in a inertial
space. Hence, we assumed that the rigid-body motions are small. Moreover, elastic
displacements tend to be small. Expanding Eq. (2-17) and neglecting higher-order terms, the

kinetic energy becomes

T~ eTaT, T 1 .Ta, - 1 1 TeTE ¢
+ @ (foeEeSe + Eale)we + ?SeMeEe - "é'ﬂeHe(“Je)ﬂe + VoEe®Dele

TeT~ = T L TE o ™ Th TET
+ VoEewe®Pele + @ FoeEePele + @ FoeEa®Pele + GePeEew
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TET T TeT T ~ o~
+ GePee + GeHe(we)de + @ Egle(we)de + ‘L’e‘[ PelewePedDege | (2-23)
D.
In addition to the various quantities defined by Egs. (2-22), we have
~~/

Je (2) =f pe(Ted + [Tea 1) dD, (2-24)
D,

in which a is a vector representing w, or @,, and §, and |, are redefined for the linearized

equation as follows:

S = f PeledDe, lg = f PeTeTe dDg (2 —25a,b)

D, D,

Also note that a tilde over a symbol denotes a skew symmetric matrix obtained from the
associated vector (Ref. 31).

Before deriving the linearized equations of motion, it is advisable to express the
generalized forces appearing on the right side of Egs. (2-21) in terms of actual forces. To this
end, we denote by F, the actuator force and by M, the actuator torque acting on the platform.
In addition, every appendage e is subjected to a distributed actuator force vector Q,. The
vector F, and M, are in terms of components along xyz and the vectors Q, are in terms of
components along x,y,z, . In writing the virtual work, we propose to express all vectors in

terms of components along xyz. Consistent with this, we write the distributed force in the form

A
Ua . e=12,...N (2 —26)

where E, is the matrix of direction cosines introcduced earlier. Moreover, the virtual
displacement associated with a point on appendage e can be written in terms of components

along xyz as
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N/
6Re = 6Ro — (Toe + [Eala])68 + Eqp due @2-27)

Hence, considering Egs. (2-26) and (2-27), the virtual work in terms of actual forces has the

form

N
W = «E;(SBO + Mgég + ZJ- géBedDe
e=1"0D,
N A ~~/
= E0Ro + W30 + ). | DlEa16R, — (Foo + 1E]L 168 + EL b, 0D,
e=1 Yo

N
A
= £ToR, + Mg + ) | (Tau,00, 2-28)
e=1"0
where
N A N "N A
E=fot ). [ EL0aaD, . M=o+ D [ (oo + 1E]L 1E] U 0D, (2 - 29a.5)
e=1"D, e=1 D,

In practice, we use point actuators instead of distributed ones. But, discrete forces can be

regarded as distributed by writing

n

e =D Lo 8(ta—La) (2 - 30)

i=1

ic>

where [, time-dependent force amplitudes and &(r, —r,) are spatial Dirac delta functions.

inserting Egs. (2-30) into Egs. (2-29) and (2-16), we obtain

N DNg N DNg
E=F, + ZZE;,Im. M=M + ZZ(rere+Eerel).fel (2-31a,b)
e=1i=1 e=1i=1
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n.
T
Z J- (De~e| (e — Lei) dDg = Z Pe(lei) foi e=12..N (2-31¢9)
=1 "Ds i=1
Linearized state equation can be obtained either by inserting Eq. (2-23) and (2-19) into
Egs. (2-53), (2-5b) and (2-14) or neglecting nonlinear terms in Egs. (2-21). Recalling Egs. (2-31),
we obtain the following equations of motion

N "~/ N N
myo + S;r‘i.’ + 2ZEZ[Se£‘.’e]Ee‘£ + ZE;(Dege + 2ZE;‘T’e¢ege
e=1 e=1 e=1

N N N
+ Z Ee(“’e + we)(beqe =5 t+ Z ZE;IBI' + Z E;(Se‘i’e + weSewe) (2 - 32a)

e=1|=1 e=1
"~/

SWo+h + . (EL2@ele — trlgbe)Ee + 2ocE Sewe o) @
e=1

N
Z ELDe + FooEe®e)ie + Z[%e 15eDq + ELde®e + ELdo(e) 1o

e=1

+ ) [ToeEa(@2 + 5e)®q + Ex(@edale) + Jolize) a0

e=1

N Ny
+ Z Z ?er +E rei),el + Z Cr. Ee(SeQe + wg ewe) - e('e“’e + @elowe)] (2 —32b)
e= =

e=1

BLEV, + (DeEeTie + PrEQ)® + [Drivn — Je(we)Eew + Mede + 2He(we)de

+ [Ke + Ae(we) + Hel2e) I, = Zwegele, - Ol + J peDedelewedDe (2 — 32¢)
D

i=1 .
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In addition to the above equations, if we assume small motions, Egs. (2-12) become
Vo=Ro @=8 pe=2e (2 - 33a,b,c)

If we express Eq. (2-32) and (2-33) in matrix form, then we obtain the linearized state

equation
x(t) = A@x(t) + B()f(t) + D(hd(t) (2-34)

where

T T TqT
x() = (RS 07 a7 a3 . a\ Yo @" pi p3 - pi ] (2-35)

is the state vector, in which @ is a vector of angular displacements of the platform, V, is the

translational velocity vector of the platform and P.(e =1.2,..,N) are elastic velocity vectors,

0 |
Alt) = § p } (2 - 36)
| =M K =M GG
[ 0
B(t) = P (2-37)
| MB (1)
0
D(t) = ) (2 —38)
M)

are the matrices of coefficients,
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N

TS . L ~3
Z Ee(See + waSewe)
e=1

N
Z EFer;(Se‘i’e + DeSews) — E;(leé‘;’e + @elewe) ]
e=1
=T T~ ~
at) = — Q@ + J p1®1w4ry@4dD, (2-39)

Dy

- Doy + J PNDDNTNE2NIDy
Y

is the disturbance vector and
T oWT T T T T T T T T qT
10 = [ Eo Mo fiy f12 - fan, 21 f22 - fon, So1 - N, ] (2-40)

is the vector of control forces. Moreover, the mass matrix is given by
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M(t) =

and

Gt =

mi S
St e
DIE;  DIE, + DEsTgy

=7 ~7 —T_ ~T
ONEy  DNEN + ONEnron
N "~/
0 2 ) EllSewel
e=1

0 [®]3] - dilen)IE

~

[Dfay — Inlen) JEN

o

E1®,
EI(S1 + ?01 EI61

M,

2E15, D,
1

Gas

2Hq (1)

plays the role of a gyroscopic matrix, where
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LDy

EN®y + TonENDy

2Hp(@N)

2 - 41)
@2 - 42)
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N "~/
Gy = Z (E;(zz’e'e - tr'e‘:"e)Ee + 2?er;[Se£’e]Ee) (2 - 43a)
e=1
e ~ T~ = T~ X T
Gz = 2rgeEewePq + Eqwe®p + Eedalwe) (2 — 43b)
In addition,
T~ T~ | ~2E
0 0 E1 ((01 + w1)¢1 . . EN((DN + CDN)(DN
0 o Kia oo Koy
0 0 Ky+Hle)+Hi@) . . 0
K(t) = (2-49)
0 0 0 .. Ky +Hylen) + Hy@n)

is effectively the stiffness matrix, where

Kze’3 = ?oe EZ ( ‘T’g + c~;”e ) EN + E; ( ‘7’3 Jo (we) + Jg(26)) (2—49)
I b b2 pN
0o ¢ o 0
) 0 0 ¢ . . o
B(t) = (2 - 46)
0 0 O N |
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relates the discrete force vectors to the modal force vectors, in which

Eq EL . Eq
b® = (2-47)
~ T T o~ T ™ ~ T it
foeEe + Eefe1 FoeEe + Eafep .- roeEe + Eeren.
e _ T T T
¢® = [ De(fe)) Deller) - Dellen,) I (2 —48)

2.6 Two-Dimensional Equations of Motion

Let us consider the planar motion of a system consisting of a main rigid body and a
flexible appendage hinged to the main rigid body (Fig. 18). The equations of motion for the

two-dimensional motion of the system shown in Fig. 18 can be obtained from Egs. (2-34) as

follows:
[Mo+M118 + Gvd + [ Ko+ Ky I8 = £() + d(t) (2 — 49)
where
6=[R/ R, 0 g5]" (2 - 50)

is the configuration vector, in which R, and R, represent the translations in the y- and
z-directions, f# represents the angular motion and g, are generalized coordinates. Moreover,
f(t) and d(t) represent resultant control forces and disturbances, respectively, and they are

given by

1=[F F, M, QL 1" @-51)
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and

Se(B2ch + Bsh)

Se(B%sB — fich)

d= (2-52)
. " v
~ leB + Seroe(B°sB — BcB)
R,
In addition,
m 0 0 0
0 mt St 60
Mg = (2 — 53)
0 S A B + roeDe
0 5; 5: + ro,ﬁl Mo
0 0 0 0
0 0 0 0
Ko = (2 — 54)
0 0 0 0
0 0 0 Ke

are the constant part of the coefficient matrices and
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M1=

G1=

sfMg + (1 —cf) M,

— 2B (sBGs + cBG,)

= (3% — Bch) Koy — (B°cB + fisp) Kpp — B° Kpa

are the time-varying parts, in which

o

2Saloe

r'oe(b-le-
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(2 — 55)

(2 — 56)

(2-57)

(2 — 58a)

(2 — 58b)
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0 0 Se O,

0 0 0 0
Kot =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 Se o,
Koz =

0 0 0 FoePe

0 0 0 0

0 0 0 0

0 0 0 0
Kpg =

0 0 0 0

0 0 0 Mg

Derivation of the Equations of Motion

(2 - 58¢)

(2 - 58d)

(2 — 58e)
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i -
0 0 0 0
0 0 Se -0,
G =
0 0 loeSe . N
0 0 0 0
0 0 Se -,
0 0 0 0
G, =
0 0 0 0
0 0 o 0
I ]

(2 — 581)

(2 —589)

where f represents the angle between the flexible body and the rigid body, in which

sf and cf denote sin f and cos 8, respectively. Finally,

m=m+mMg, S =S +Sg+Mglog, } = I,+I,+m°r§e+2roese

Sr=J. prrdDy , Se=J. PeTe dDe
D, D,

2 2
e = J per” dDe , lg = J Pe e dDe
D, D

Derivation of the Equations of Motion
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(2 — 59d.e)
(2 - 59f,g)
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D =f pe®edDy . D =J. pe T Dg dDg (2 — 50h,i)
D, D,

Mg = j pePeDedDy , Ko = [@,, @, ] (2 — 59i,k)
D.

in which p,and p, represent the mass density for the rigid body and flexible body, m, and m,
represent the mass of the rigid and flexible bodies, respectively, S, and S, represent the first
mass moments about the point o for the rigid body, about the point e for the flexible body,
I, and |, are the mass moments of inertia of the rigid body and flexible body, respectively, and
[. ] represents the energy inner product (Ref. 24). It can be seen that time-varying matrices
depend on the maneuver angle, angular velocity and acceleration of the flexible body. Let
us consider a pseudo-modal approach whereby the eigenvectors of the premaneuver
spacecraft are used to simplify the equations. The eigenvalue problem for the premaneuver

spacecraft has the form

Ked = AMgd (2 — 60)

Solving Eq. (2-60), we obtain the matrix U, of eigenvectors. Then, introducing the linear

transformation

é=Un (2~ 61)

into Eq. (2-49) and using the orthnormality relations
UgMoUp = |, UiKoUp = Ag (2 — 62a,b)
Eq. (2-49) can be rewritten as follows:

(+M)i + Gy + (Ag+K)n = F + D (2-63)
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My = UgM;Uqy = Mg + (1 — cB)M,

Gy = UjGyUg = — 2B(sBGs + cfG,)

Ky = UgKqUp = (B%sB — BecP)Kpy — (B2cB + BsB)Kpy — f?Kpa

M = UgMUp . M = UgMcUg

G, = UjGUy . G, = UjG.Ug

Kot = UoKpalp . Kpp = UgKpalp . Ko = UgKnalg
F=U)f, D=uUd

(2 — 64a)
(2 — 64b)
(2 — 64c)
(2 - 64d,e)
(2 — 64,g)
(2 — 64h,i.j)
(2 — 64Kk))

Equation (2-63) is said to be in pseudo-modal form. The equation can be used for the

simulation and testing of new control laws, because it has the same dynamic characteristics

as Eq. (2-34) and it is easier to work with.

Derivation of the Equations of Motion

33



3.0 Control Design

3.1 Maneuvering and Disturbances

The maneuver considered consists of retargeting antennas so as to point in given
directions in the inertial space. By stabilizing the platform in an inertial space, the task
reduces to reorienting the antennas reiative to the platform. For a minimum-time maneuver,
the control law is bang-bang, which implies that the angular acceleration of an antenna
relative to the platform is constant, with the sign changing at half the maneuver period.
Ideally, the maneuver should not cause elastic deformations in the flexible appendages. This
is not possible in theory. Even, infinitesimally small deformations are likely to require a long
maneuver time, which is in conflict with the minimum-time requirement. Hence, elastic
deformations are likely to occur, which in turn implies perturbation of the platform from a fixed
position in the inertial space.

The motion of the system is governed by Eq. (2-34). The system is characterized by
two factors that distinguish it from most commonly encountered systems: it is time-varying

and it is subjected to persistent disturbances. Both factors arise from the retargeting
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maneuver angular velocities @, , angular accelerations @, and the matrices E, of direction
cosines (e=1,2,...,N), all quantities being known functions of time.

Disturbances acting persistently on the system during reorientation arise from known
sources. Indeed, these disturbances arise from the inertial loading due to the motion of the
flexible appendages. This information depends on the policy of reorienting flexible
appendages and should be regarded as qualitative in nature. In practical applications,
disturbances appear as given functions of time, so that conventional design methods for
time-varying systems can be used. Disturbances tend to have undesirable effects on the
pointing accuracy of spacecraft. As a result, it is necessary to design counteracting controls
to mitigate any adverse effects. Moreover, discretization and truncation of the
distributed-parameter system results in reduced-order realization for the disturbances.
Hence, the a priori information concerning d(t) is usually not complete enough to permit
accurate description of the nature of the disturbance, so that we are faced with the problem
of designing disturbance-accommodating control with only an incomplete knowledge of this
disturbance.

In this chapter, we consider first a disturbance-minimization control. To cope with
unknown disturbances, proportional plus integral (Pl) control will be explored. Pl contro! will
be extended by applying a perturbation method to the optimal control problem for systems
with time-varying coefficients, where the time-varying part is of one order magnitude smaller

than the constant part.

3.2 Disturbance-Minimization Control

The action of disturbances on the system tends to produce undesirable effects on the

pointing accuracy. In view of this, it is customary to view the ideal control situation as one in
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which the effects of the disturbances on the system performance can be completely eliminated
by proper choice of counteracting controls.

Consistent with the nature of the system, we consider a control consisting of two parts:
one part counteracting the persistent disturbances and a second part driving the state to zero.
The control counteracting the persistent disturbances is open loop and the regulator is

closed-loop. Hence, we assume a control vector in the form
£ = L0 + &0 @-1

where f(t) is responsible for the disturbance-minimization and f(t) is responsible for

regulating the perturbed motions in the system. Substitution of Eq. (3-1) into Eq. (2-34) yields
X = A{t)x(t) + BN + £:(1) + D) 3-2

The strategy of disturbance-accommodation consists of designing the control f, to
cancel out the effects of the disturbances on the system completely. Hence, the open-loop

control is assumed to satisfy

B(t), + D(t)d() = O ' (3-3)
or, recalling Egs. (2-37) and (2-38),

B (i) + dit) = 0 (3-4)

In general, there are fewer actuators than the number of degrees of freedom of the discretized
model, so that B(t) is a rectangular matrix, which does not possess an exact inverse. Hence,
when the number of actuators is smaller than the number of degrees of freedom, it is
impossible to eliminate completely the effect of disturbances. In such a case, one can
minimize the effect of the disturbance in a least-squares sense by choosing f,(t) so as to

satisfy

o = -[8'mI 4 (3-5)

Control Design 36



where [B"]t = (B"B")-'B'T is the pseudo-inverse of B".
On the assumption that the effect of the disturbances is virtually eliminated by the
control f,(t) , the remaining control problem can be regarded as an ordinary regulator problem.

In view of Egs. (3-2) and (3-3), the regulator is governed by
X = A)x(t) + BL(t) (3—16)

so that one can now proceed to design f.(t) by conventional methods. It should be noted that
the technique of dividing the control design into two parts, as shown in Eq. (3-1), is a simple
but effective idea, which appears to be unique to disturbance-accommodating control (DAC)
theory (Refs. 12-14). |

The closed-loop control is assumed to be optimal, in the sense that it minimizes the

performance index

t
J= 2 x"torxty + %f (xTax + fRE )t @=7
t°

where t, and t, are the initial and final time, respectively, and H, Q and R are penalty coefficient

matrices to be selected by the analyst (Ref. 2). Minimization of J yields the optimal control law
L= —R'0B PO @3-8)
where P is an optimal control gain matrix satisfying the matrix Riccati equation
P=—-PA-A"P-Q+ PBRTB™P (3 — 9a)
subject to the boundary condition

P(t) = H (3~9b)

The closed-loop state equation is obtained by inserting Egs. (3-4) and (3-8) into Eq.

(3-2), with the result
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X(t) = Atx(t) + Dc(hd(t) (3—-10)

where

A, = A - BR'BTP

0 ]
- (3 — 11a)
-M'K+BR'M'B) Py —M'G+B R M'B)P,,

in which P, and P,, are submatrices of P, as given by

P14 Paa
P = (3 — 11b)

P2y Py
and

0]

D, = D-BB) = (3 - 11c)

M -87(8)'8T'B)}

Clearly, how well the controller is able to reduce the elastic vibration and deviations
of the platform from equilibrium relative to the inertial space depends to a large extent on how
close D, is to the null matrix, which in turn depends on how close the matrix B® is to a square

matrix. The latter depends on the number of actuators.
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3.3 Disturbance-Accommodating Control

In the previous section, we designed counteracting controls and optimal controls
based on the assumption that the disturbances are known functions of time. Clearly, the
disturbance term D(t)d(t) in Eg. (2-34) depends on the maneuver policy. In the case of
minimum-time maneuver, the policy is bang-bang, which implies that the maneuver angular
acceleration is constant over both halves of the maneuver period. If the maneuver is relatively
slow, so that M is virtually constant, then the disturbance is constant over both halves of the
maneuver period. In this case, we can use proportional-plus-integral (Pl) feedback control.

Introducing the notation
B(hu(t) = B)f(t) + D(td(t) (3—12)
Eq. (2-34) can be rewritten as
x(t) = A{t)x(t) + B(t)u(®) -1

Assuming that D(t) and d(t) vary slowly, so that D(t)d(t) is almost constant during the control

interval, we can write
at) =it = L (3-14)
Introducing a new state vector defined by

z=[x u ] (3 —15)

~

Egs. (3-13) and (3-14) can be combined into the expanded state equation

3 = Az + BO L0 (3-16)
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where

A Aty B(Y) A 0
Al) = . . . B{t) = (3—17a,b)

A A

are coefficient matrices. Note that if A(t) and B(t) are a controllable pair, then A(t) and B(t)
are also a controllable pair (Ref. 1).

We consider an optimal control policy in the sense that f,(t) minimizes the

performance measure

1 1,.A 1t 1. A T A
1= 30zt + [0 z0 + GoRo L) o (3=18)
to
The optimal control law is

Lty = =R ()B ) P 2(H) = G(t)z(t) @-19

A A
where G(t) = — R-'(t) B7(t) P(t) represents a control gain matrix, in which P(t) satisfies the

matrix Riccati equation

. At A AA_4AT
P= —-—PA—-—AP-Q+ PBRTBK (3-20)

Solving Eq. (3-20), we essentially obtain the optimal control faw. Using Eqgs. (3-13) - (3-15) and

(3-19), it can be shown

dt t t
ot = (G4 —G,B'A)x + G,B'x B3-21)
where G, and G, represent the submatrices of G corresponding x and u, correspondingly, and

Bt = (B"B)-'BT is the pseudo-inverse of B. Integrating Eq. (3-21), we obtain the optimal

control law
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t t
ft) = £(0) + f (Gy — G,BTA)xdT + f G,B'xdr (3-22)
0 0

If t, is sufficiently large and A and B can be assumed to be constant, then the gain matrix is

constant. Moreover, if x(0) and f(0) are zero, then Eq. (3-22) yields

t

j(t)=Gp5+GiJ5dr (3 — 23)
0

where

G, = G,B", G = G,-G,B'A (3 — 24a,b)

Equation (3-23) represents the optimal control law for the time-invariant system subjected to
unknown constant disturbances, and is known as proportional-plus-integrai (Pl) control.

In general, the above control law cannot be used for the type of problem considered
here. When the maneuver is relatively slow, however, so that the matrices A and B are nearly
constant, the control law (3-23) can be used with satisfactory resuits. In this case, the control

must be regarded suboptimal.

3.4 Perturbation Method

We are concerned here with the case in which the time-varying part of the coefficients
is of one order of magnitude smaller than the constant part. In this case, we can use a
perturbation approach to compute the controi gains. To this end, we rewrite Eq. (2-63) in the

form
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&M = [Ag+ A,(IE® + [By + By()IE) + D(1)) (3 - 25)

where

¢=0n 4 17 (3 - 26)
0 0

Ao = . Bo = (3 - 27a,b)

~Ay O |

i 0 0 0

A, = . By = (3 - 27c,d)
| MiA-K, -G -M,

in which quantities with the subscript 1 are of one order of magnitude smaller than quantities
with the subscript 0.

Introducing the notation

g=FE+0D (3 — 28)

and assuming that the disturbance vector D is constant during each half intervai of the

maneuver, we can write
g=F (3 — 29)

Inserting Eq. (3-28) into Eq. (3-25) and combining with Eq. (3-29), we obtain the new state

equation

(3 - 30)

£
I
>>
=
+
o>
T
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where

A A A
w=_[{"g"T . A=A+A (3 - 31a,b)
Ao By A1) By(t) 0
A A A
Ap = LAY = , B= (3—31c,d.e)
0 o0 0 0 |

Next, we consider the performance index

1 (T 1 2T
Jd = ?J. (w Qw + F'RF)dt (3-32)
0
so that the optimal control law is given by

. _1AT
F= —R B Pw (3—133)

where P is the solution of matrix differential Riccati equation (MDRE)

—-P=PA+AP+Q-PBR BP (3 —34a)
and is subject to the boundary condition
PM=0 (3 — 34b)

note that T represent the terminal time of control action.
Consistent with the perturbation approach, we divide P into a zero-order term and a

small perturbing term, or
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Inserting Eq. (3-35) into Egs. (3-34), we obtain a zero-order matrix differential Riccati equation

(MDRE)

. A Ap A __4AT
— Py = PoAg + AgPy + Q — P,BR™'BTP, (3 — 36)

and a first-order matrix differential Lyapunov equation (MDLE)

s oA At A At
— Py = PyAge + AgcPy + PoAq + A4Pg 3-37)
where

A A A _4A7

Agc = Ag — BRT'B'Py (3-38)

denotes a closed-loop matrix. From Eq. (3-34b), the boundary conditions are
Po(T) =0 , Py(T)=0 (3 — 39a,b)

If the final time T approaches infinity and the maneuver ends at time t, t,< T, we can
use the steady-state solution of the zero-order MDRE for the post maneuver period because
time-varying coefficients no longer exist after the termination of the maneuver. Then, the

zero-order MDRE, Eq. (3-36), becomes the MARE

A Ap A _4A7
PoAg + AgPg + Q — PBR™'BTPy =0 (3 — 40)

The MDLE, Eq. (3-37), is effective only during the maneuver, so that the boundary condition

(3-39b) should be rewritten as
Pytp =0 3—-41)

where t, indicates the final time of the maneuver. The solution of Eq. (3-37) subject to the

boundary condition (3-41) can be expressed as
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U AT ety AT A Ayc(e—t)
Pyt) = J. e "V [ A (1)Pg + PgA (1)) eoct™ Vg (3—-42)
t

as shown in Appendix B.
To obtain a discrete-time solution, we discretize Eq. (3-42) in time. To this end, we let

tees =t + At, so that Eq. (3-42) yields

A At Ay A A
Pi(teyr) = e~ P [pet) — f ot Ity + &) efoct gg] o™ Foct (3 — 43)
0

A A
where T'(t,+ &) = [Al(t + &)Py + PAs(t, + £)] . Derivation of Eq. (3-43) is given in Appendix
C. Equation (3-43) represents a matrix difference equation for the first-order solution. The

initial condition is given as

Y A -
P,(0) = f e” " [(r) e” "¢ dr (3—-44)
0

It is common to assume that the time-varying terms are constant over the small time interval

0 <t<At, so that Eq. (3-43) gives

Ar Ar At A At A
Pilteys) & e~ A2 [pt) — efoe 7 Ity + _A2L) efoc T At] e~ Aoctt (3 — 45)

The control law given by Eq. (3-33) is not ready for implementation. The next task is
to use the equation to generate the final control law. To this end, we consider the following

partitioning of the matrix P(t)
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P(t) =

(3 — 46)

Then, recalling Eq. (3-31e} and the nature of the state vector w , Eq. (3-33) can be rewritten

as

E = =Ry —R™"Pyi —R™"Pyg

so that, using Egs. (3-28) and (2-63), g can be expressed as
g=(+M)j + G + (Ag+Ky

Inserting Eq. (3-48) into Eq. (3-47), we obtain

Ex - [67+6/mInm — [6p+G1a® — [63 + Gyt lict)

where

60 = RCRS + Pado]

(0]
(=)
]

®
a
i

Superscripts 0 and 1 denote zero- and first-order, respectively.

obtain

Control Design

6/ = RT'[P3y + PisAq + P3Ky]
= R'[P} + P3,Gy]

= R7'[P}; + PI:M, ]

@—47)

(3 — 48)

(3 — 49)

(3 — 50a,b)

(3 — 50c,d)

(3 — 50e.f)

Integrating Eq. (3-47), we
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t t
F(t) = F(0)— fo [6) + G/ () In(r)dr — jo‘[eg + Gp(1)Ji(x)dz — J; [G3+ Gy lii(dr  (3—51)

Assuming that the time-varying first-order gain matrices change slowly, F(t) can be
approximated by taking the gain matrices outside the integral sign. Moreover, aithough initial
conditions appear in Eq. (3-51), arbitrary values can be assigned to the initial control force
F(0) ;. we choose this value as zero. In addition, the maneuver starts from the rest, so that

n(0) and 5(0) are zero as well. Hence, Eq. (3-51) can be rewritten as

t
Et) = —[6’+a6/m] f n(r)dz — [G) + Gy In(t) — [GF + G Tact) (3-52)
V]

Inserting Eq. (3-52) into Eq. (2-63), we obtain the following closed-loop equation:

v 0 s . 0 1 2
(1 + My)# + (G + Gy + Gy) i + (Ag + G + Gy + Ky)n

+(G?+G,1)J:1(1)dr=g (3 — 53)

Equation (3-53) can be written in the state form

y=Ay+BD (3 — 54)
where

t
yt =L J;g(r)dr n® A ] (3 — 55a)
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[0 1 o [0 ]
A= 0 o i ., B =]|o0 (3 - 55b,c)
L J -
. T v=1,a0 4 A
Ay = = (I+My) (G +G) (3 — 55d)
Ay = —(+M) " (Ag+ G+ G} +Ky) (3 - 55e)
Az = —(+M)'(G3+ Gl +Gy (3 — 55

Equation (3-54) is in a standard form and its solution can be obtained by the transition matrix
approach.

The procedure for designing the control can be summarized as follows:

¢ Obtain the steady-state zero-order solution by solving the MARE, Eq. (3-40).

e Calculate the zero-order gains by means of Egs. (3-50a,c,e).

® Obtain the time-varying first-order Riccati solution by evaluating the integral in Eq. (3-42).

® Calculate the first-order gains by means of Eq. (3-50b.d,f).

* Compute the closed-loop response by solving the state equation (3-54).

If the rate of time-variation of the parameters is slow relative to the closed-loop
response, one approach is to design the control gains under the assumption that the process
is time-invariant, and then schedule the gains as a function of parameters that varies with time

(Ref. 7). The idea of an adiabatic approximation used in Ref. 7 is to use the solution of the
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matrix algebraic Riccati equation (MARE) at each instant of time instead of solving the matrix
differential Riccati equation (MDRE). If we use the concept of adiabatic approximation to the
perturbed Riccati equation, the adiabatic solution for the time-varying part can be obtained
by solving the MDLE, Eq. (3-13) by letting P, = O for each instant of time. The resulting matrix

algebraic Lyapunov equation (MALE) is

A AT A AT
PiMAge + AgcPi(t) + PoAs(t) + A{(t)Pg=0 (3 — 56)

The solution of the MALE should satisfy the stability criteria by the second method of
Lyapunov. Its feasibility is decided by the asymptotic stability of the system, not by optimality.
The advantage of this solution is that the time-varying gain matrix can be calculated at each
instant time without solving the differential equation. However, stability must be checked a
priori. All of this can also be precalculated prior to any maneuver, thus saving real-time
computations.

The closed loop equation can be written as

A A A A
w=[A-BRTBPIw=Aw (3-57)

The second stability theorem of Lyapunov is concerned with the asymptotic stability

of a system in the neighborhood of the origin and it reads as follows:

Theorem: If there exists for the system (3-57) a positive definite function V(w) whose total time
derivative V(w) is negative definite along every trajectory of (3-57), then the trivial solution is

asymptotically stable.

~ By assumption, the matrix P(t) that satisfies Eq.(3-34) is positive definite. Thus,

V=w'Pw>0 for all w #0 and t (3 — 58)
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The scalar function V defined by Eq. (3-58) is a candidate Lyapunov function. Now consider

dv/dt, or
: Tb, ph AT T
V=w(P+PA+APw = w Fw , (3—59)
where
. Ag A
F=P+ AP+ PA, (3 —60)

For the control law developed by applying a perturbation method in this section,

Ao—1AT 2
Foert = —Q—(Pg+ P4(1))BR™ B (Pg + P4(t)) + O(c*) (3—61)

For the adiabatic approximation case,

. A 1At 2
Fadia = P1(t) = Q — (Po + Py(1)BR™ B (Po + P4(1)) + O(c") (3-62)

The stability of the system depends on negative definiteness of F. If the eigenvalues of F are
all negative, the systém is guaranteed to be stable. As can be seen from Eq. (3-61), the
negative definiteness of F,, can be easily justified. On the other hand, the negative
definiteness of F,,, depends on the contribution of P, to F,,. Although P, is O(e), the
time-derivative can be larger if the time-varying system parameters change abruptly. This can
happen during maneuvering because there is a rapid change from the acceleration to
deceleration at half the maneuver period due to the bang-bang control. Therefore, the use
of the adiabatic approximation for the control of the maneuvering spacecraft is not indicated,
even though the first-order solution can be obtained with relative ease when compared to the

evaluation of the integral in Eq. (3-42).
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4.0 Numerical Results

4.1 Numerical Example 1

The preceding developments for disturbance-minimization control have been applied
to a spacecraft consisting of a rigid platform with a single flexible appendage in the form of a-
beam (Fig. 3). The maneuver consists of slewing the beam relative to the platform through a
45° angle about the x-axis, so that @, = [, 0 0] The time history of the angular
acceleration [3, is a smoothed bang-bang, where the smoothing was used to reduce the
excitation of the elastic appendage. Plots of the angular acceleration B, , angular velocity f!,
and angular displacement 8, as functions of time are shown in Fig. 4. The elastic motion
consists of bending vibration in the x- and y-directions, with the vibration in the z-direction
being identically equal to zero. The vibration was represented by five admissible functions in
each direction, so that the matrix @, in Eq. (2-13) is 3x 10 and the vector g, is a

ten-dimensional vector. The admissible functions have the expressions

¢x) = — (cos Bz — cosh B;2) + C(sin fjz —sinh B;z), j=12...5 4-1
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which are recognized as cantilever modes (Ref. 24). The admissible functions ¢, (i=6,7....,10)
have exactly the same expressions. The coefficients in Eq. (4-1) have the values C, = 0.7341,
1.0185, 0.9992, 1, 1 and the arguments of the trigonometric and hyperbolic functions can be
obtained from g;l, = 1.8751, 4.6941, 7.8548, 10.9955, 14.1732, where |, is the length of the beam.
The mass matrix, Eq. (2-22a), and the stiffness matrix, Eq. (2-20), are 10 x 10 and have the

block diagonal form

Mety O Kety O
Me = v K= (4 - 2a,b)
0 Mgy 0 Ke2
Mats = Magp = [ mes; 1. ij=12..5 (4 — 3a)
Keir = Kopp = 2 112 1.)26 ij=12..5 4—3b
et1 — e22 — _Ia—-(ﬁl e) (BJ e) ” ’ '!j_ 164000y ( — )
a

Moreover, the matrices 6, and &), given by Egs. (2-22b) and (2-22c), respectively, are 3 x 10

and have the form

d’e 0 0 - ¢e
Po=| 0 Po|. D®o=|¢s O (4 — 4a,b)
0 0

where $, and ;S, are given in Appendix D. Other numerical values used are as follows:
m, = 15.6 slugs, m, = 0.30 slugs

S, =(0.0.,0) slugsef, So = (0., 0., 1.65)" slugs.f

130 00 00 125 0.0 00
I, =| 00 480 00 |slugsef’, lg=] 00 1.25 0.0 | slugs.f?
00 00 590 00 00 00
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le=5f El =500 Ibefi?, r,=(0.,0.,04 f

Figure 5 shows the time history of the tip elastic displacement of the appendage in the
absence of control. Although five admissible functions were used to represent the elastic
displacements, sufficient accuracy can be obtained with a single admissible function alone.
Indeed, there is no discernible difference in the open-loop response using one or five
admissible functions, as can be verified by examining Fig. 5.

Figures 6 and 7 show time histories of the rigid-body translations and rotation of the
platform during the maneuver, respectively, without and with control. Finally, Figure 8 shows
the tip elastic displacement of the appendage during the maneuver, without and with control.
The controls were implemented by six actuators mounted on the rigid platform and two

actuators each for the x- and y-directions and located on the appendage at z,=1,/2 and

For the values of the parameters chosen, the time-varying terms in the coefficient
matrices turned out to be small compared to the constant terms. In view of this, the control
gains were computed as if the system were time-invariant. They were obtained by solving the
steady-state Riccati equation in conjunction with Potter's method (Ref. 39). The coefficient
matrices A and B used in the solution were according to the premaneuver state. Moreover,
we chose the performance index coefficient matrices H = 0, Q = 100 | and R = 0.001 | where
I is the identity matrix. This assumes large final time t,. It should be stressed once again that
the time-invariant system was used only for computing the control gains, and the closed-loop
response plots were obtained by considering the actual time-varying system, as described by

Eq. (2-34).
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4.2 Numerical Example 2

The mathematical model consists of a flat rigid platform and two flexible beams, each
one having one end hinged to the platform and the other end free (Fig. 9), where the beams
are originally parallel to the z-axis of the platform. The maneuver consists of slewing each of
the beams through a 45° angle, one about the x-axis and the other about the y-axis of the
piatform. The beams are discretized in space by using three admissible functions for each
component of displacement. Six actuators are used for the rigid platform and three actuators
are used for each displacement component of both beams. The latter actuators are located
at 4 f, 7 ft and 10 ft from the pivot point, the third coinciding with the tip of the beam.
Maneuver time histories are the same as those given in Numerical Example 1. Figures 10 and
11 display both the uncontroiled and controiled translational and angular displacements of the
platform, respectively, and Figs. 12 and 13 show the tip displacements of the two beams. As
can be verified, the maneuver and control of the spacecraft are quite satisfactory. The
disturbance-accommodating control is carried out by the proportional-plus-integral control

approach. In obtaining the numerical results, the following data was used:

m, = 134.15 slugs, mg = 0.1873 slugs

S = (0., 0., 0) slugs-ft, S, = (0., 0., 0.9365)" slugs-ft

186.021 0.0 0.0 6.243 00 00
=] 00 18021 00 slugs-f%, 1, =| 00 6.243 00 | slugs.f?
0.0 00  357.733 00 00 00

Iy = Iy = 10 R, El = 3028.9 Ib.f?

©.. —10,05 R ry,= (0., 10,05 #

o1
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Moreover, the weighting matrices appearing in the performance index, Eq. (3-18), are as

follows:

Q =

A 1001 0.0
00 !

A
J , R = 0.0011

where | is the identity matrix. Of course, consistent with a steady-state solution of the matrix
Riccati equation, il-‘i was taken as zero. Finally, for control design purposes, the coefficient
matrices A and B were taken as constant and corresponding to the premaneuver configuration
of the spacecraft. Of course, in implementing the control, the time-varying matrices A(t) and

B(t) were used.

4.3 Numerical Example 3

As an example of the control design by the perturbation method developed in Sec. 3.4,

the following second-order differential equation is considered
i+ (@ +eu=f+d (4 —5)

where f and d represent modal control force and disturbance respectively and ¢ is the small

time-varying coefficient that exists only for some period. Recalling Eq. (3-31), we have

[ 0 1 o] [ 0 o o] [ 0 ]
A ) A A
Ap=| —o®> 0 1| A=|-c 0 0| B=|o (4—6ab,c)
0 0 0 0 0 o0 1
L - L - L -
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We use the performance index

J=L°°(xTQx+Rf2)dt @-"7
with
(o, 0 o |
Q=] 0 Q © 4—8)
| 0 0 Q|

The MARE, Eq. (3-40), yields the six nonlinear equations

PO 2 PO 2
Q; — 2P%0% - ( ;:) =0 , Q+ 2P},- ( ;3) =0 (4 —9a,b)
0 \2 0 0
P Po,P
Qs + 2P3; — ( 3R3) =0 , PY-PLe’®- %—21=0 (4 - 9c.d)
p2,P3 PasP3
0 o 2 137 33 (o} 0 237 33
P12— P23(D - _R'—=0 , P13+ P22 - _R—=0 (4—93,0

The above equations can be reduced to the following 4th-order equation for Pg, :
(PR)* + 40°R (P)® + 2R (20°R — Q, + 20°Qy) (P’
- 4R? (0°Q, + 2Q,) PY + Q2R? — 4R%(Qq + ©?Qy) Q; = 0 (4 - 10)

Solving Eq. (4-10) for P, the remaining entries of P, can be obtained from Eqgs. (4-9) as follows:

po. 1 (P2)? Q PO \/R 202p0
2= 7 - Q v Pia = = {/R(Qy —20°Pyp) (4-11a,b)

R
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0 0 0 P23P3s
P33 = «/R(Qz + 2P33) v Pp= —f— - P% (4—11c.d)

0 o0
P13P23

0 250
Piy = 0"Pp+—¢

(4—11e)

Instead of evaluating the integral in Eq. (3-42), because Eq. (3-37) is only of order six, we can

write it explicitly as follows:

21 2 2P0 1 0
p11 0 2(0 -'R_‘ 0 0 0 P11 2P12
P P
P, -1 0 2 o 2 0 P, Py
. P Py
1 33 2 13 1 0
P13 0 -1 T 0 @ —‘R‘— P13 P23
= + £ 4-12)
2P)
P] 0 -2 2 9 P] 0
22 R 22
o} v}
. P}, P
1 33 23 1
Pla o o -1 -1 2 Paa 0
o}
- 2P
Pis 0o 0o 0o 0 -2 2| Py 0
L o L _J L. -

so that the first-order perturbation to the Riccati matrix can be obtained by integrating Eq.

(4-12). Hence, using Eq. (3-52) and recalling Egs. (3-50), we obtain the control law

t
f=— g,J. udr — gpu — ggu (4—-13)
0

where
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gi= % [P+ Pl + (@ + PGy + 0?Pl] (4 —14a)

1 1
=% [ng + P;:;] » Q=g [Pgs + P;s] (4—14b.c)

For the example at hand, we use the numerical data

10sin(2nt), 0<t<3 100, 0<t<3
£ = . d = )
0, t<0;t>3 0, t<0;t>3

Zero-order solutions are obtained by solving Egs. (4-10) and (4-11). Figures 14 through 16
show the gains obtained by backward integration, perturbation method and adiabatic
approximation. It can be seen that the solution by the perturbation method is closer to the
exact solution than the solution by the adiabatic approximation. Figure 17 shows the
uncontrolled and controlled responses. For the comparison, the Independent Modai-Space

Control (IMSC) method (Ref. 27) is applied to the same system. The IMSC control law is

f= wl@-+/o®+R" u - \/[2w(—co+ o +R M +RM @ (4 —15)

where R = 0.01 is used. Note that IMSC had to be modified to account for the presence of

unknown constant disturbances. As can be seen in Fig 17, IMSC is not effective for controlling
the system under persistent disturbance. This comes as no surprise, as IMSC was not

designed for this type of problems. The theory used in this dissertation can be extended to

the case of any arbitrary disturbances.
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4.4 Numerical Example 4

This example is concerned with the planar model shown in Fig. 18. The maneuver of
the appendage relative to the platform was carried out by means of a bang-bang for the

angular acceleration. Hence, we have

t
ct®  for tS—L

2

[SIEN

B=c, p=ct, p=

t

f=—c, B=—(ct—t), B=:2—1-c(t—t,)2+%ct,2 for

st<t

40
where ¢ =?'— and 8, and t, represent final maneuver angle and time.
f

Data for numerical mode! are as follows:

m, = 15.6 slugs , mg = 0.15 slugs
S = 0.0 slugs.ft , Sg = 0.375 slugs-ft

lr = 13.0 slugs«fi? le = 1.25 slugs « ft?

fog = 04 1t , @y =0117 , @, = 0.427
=50, Elg=2500, Kg=49449 , M, = 0.15

For simplicity, we used only one admissible function. Other parameters entering into Eq.
(2-64) are given in Appendix E. ‘

Figures 19 through 21 show uncontrolled and controlled responses for the solutions
obtained by the perturbation method and adiabatic approximation, where Q = I, R = 0.01 |,

8,=90° and t, = 3s are used. For the first-order solution, The approximation given by Eq.

(3-45) is used.
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4.5 Numerical Example 5

The effect of nonlinearity on the system response is illustrated by means of a
spacecraft consisting of a rigid platform with a single membrane-type flexible appendage (Fig.
22). The maneuver of the appendage relative to the platform was carried out by means of a
smoothed bang-bang (Ref. 40) for the angular acceleration, where the smoothing of the
bang-bang was done to reduce the elastic deformations of the appendage. The elastic
vibration of the appendage was represented by ten degrees of freedom in the z-direction, i.e.,
by ten admissible functions in the discretization(-in-space) process, so that the matrix @, in

Eqg. (2-13) is 3 x 10, or

0 0 0
®o=| 0 0 .. o (4 —16)
¢1 ¢ $10
in which
1 Jo(Bo1") 1 Jo(Bo2")
= = 4—17ab
Y= T We® | T Tmra W) (4=17a.)
V2 (B0 V2 5(Bagn)
= g ., = 0 4—17¢c,d
& npea Y2(8113) cos b4 npea Y2(B123) o8 ( <9
J2 daBayn) J2 Ja(Baor)
= = 20 4 —17e,
& npea Y3(B213) cos26 . s npea Y3(B223) o8 ( °0
\/2_ J1(ﬂ11r) \/5- J1(ﬁ12r) .
- ing - 9 4—17gh
o npea Y2(8113) o b npea Y2(B123) o ( %1
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V2 ) g o N2 SalbaD)
npea Ya(213) npea Y3(B223)

$g= n 20 (4—17i,j)
in which ¢, and ¢, are recognized as axisymmetric modes, and the other as antisymmetric
modes respectively (Ref. 22). The vector q, is ten-dimensional. The arguments of the Bessel
functions of the first kind can be obtained from f,a = 2.405, B,a = 5520, f,a = 3.832,
B2 = 7.016, B,,a = 5.136 and Bra = 8.417. The mass matrix, Eq. (2-22a), and the stiffness

matrix, Eq. (2-20), are 10 x 10 and have the block diagonal form

Me=1, Kg=A (4~ 18a,b)

where | is the 10 x 10 identity matrix and A is a diagonal matrix with the diagonai entries

2 2
A1) = ?(%13)2 . A@R2) = ?(5023)2 (4—19a,b)
2 2
A@B3) = AT = “5'2'(5113)2 . A@d4) = AB8) = %(ﬁuaf  (4—19c,d)
C2 2 C2 2
ABGS) = A9 = Z(Brna) . AGS) = A(010) = = (Ba) (4 —19e.f)

where a is the radius of the membrane and ¢ = J‘r—,,Jb'—, , in which T, is the tension applied to
the membrane and p, represents the mass per unit area of the membrane. Moreover, the
other matrices given by Egs. (2-18) and (2-22) are given in Appendix F.

Two cases with the same numerical data for the elastic appendage but with different

inertia terms for the rigid body are tested. The data for the elastic appendage is as follows:

me = 0.283 slugs , Se = (0., 0., 1.415) slugs«ft
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7712 00 00
le=| 00 7712 00 | siugs.n?
00 00 1.274

Pe=001slugs/® , a=3ft , c=20 f/sec r,, = (0., 0., 1.0) ft

For the rigid body, we consider:

Case 1

m, = 134.15 slugs, §, = (0., 0., 0.) slugs«ft

186.021 0.0 0.0

=] 00 18021 00 | slugs.f?

0.0 00 357.733

and Case 2

m, = 21.464 slugs, S, = (0., 0., 0.) slugs«ft

8943 00 0.0

00 8943 00 | slugs.f?
00 00 14.309

As seen above, the rigid-body model of Case 1 has large inertias relative to those of
the flexible body. On the other hand, the mass moment of inertia of the rigid body of Case 2
is almost the same as that of the flexible body, although the mass of the rigid body is
sufficiently large. This is due to the fact that the mass moment of inertia of rigid body is about

the center of mass and the mass moment of inertia of flexible body is about the hinge, which

is far removed from the mass center of the flexible body.
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Two cases are compared with the results obtained by using linearized state equation.
Figures 23 through 26 show time histories of the rigid-body translations and rotation and the
elastic displacements of the membrane at the center and the point defined by
X, = 0 andr = 1.5ft for Case 1. The figures contain responses for the uncontrolled nonlinear
system and linearized system, as well as for the controiled case. Figures 27 through 30 show
the responses for Case 2.

A simple controlier is considered for the nonlinear system control. Controllers for the

rigid body translations and rotation are uniform damping control. The control laws are:

Eo= —amV, , My, = —chw (4 — 20a,b)

where a = 10 is used for this example. Controllers for the elastic motions are IMSC controllers

(Ref. 27), or

Q = ow;—~Jof +R™')q, = \/ [20( - @ +of +RT)+R™'] p,
i=12,...,10 (4 — 20c)

where w; = /A(i,i) and R = 0.0002 are used. It can be shown that the control of the nonlinear
system is possible, but the control gains are too high because of the presence of disturbances.
Hence, control design for the nonlinear system should be carried out in a different way.

The elastic displacements at the center and at r =0.5 a, § = 90° are calculated by using

the following formulas:

Wy_o=——— (1.08684 q, — 1.65807 q,) (4 —21a)

A

1
Wr=05a, 9=00° = ﬁ—
e

(0.72806 g4 + 0.27919 q,

— 1.06924 q5 + 0.90574 g5 + 1.15061q; — 0.35635qg) (4—21b)
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A nonlinear state equation is solved by using IMSL routine DIVPAG (Ref. 10).

Numerical Results
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5.0 Summary and Conclusion

The equations describing the motion of a spacecraft consisting of a rigid platform and
retargeting flexible antennas can be derived most conveniently by means of a Lagrangian
approach in terms of quasi¥coordinates. The strategy used consists of stabilizing the platform
relative to an inertial space and maneuvering the antennas relative to the platform. In general,
the equations are nonlinear and time-varying. In the case in which the inertia of the antennas
is small relative to the spacecraft, the equations can be linearized, aithough they remain
time-varying. In addition, the equations contain persistent disturbances due to inertial loading.
Because control design for the hybrid system is not feasible, discretization and truncation are
carried out.

The control can be divided into two parts, the first counteracting the persistent
disturbances and the second providing regulation of the perturbed system. The state subject
to regulation consists of the deviations of the platform from equilibrium relative to the inertial
space and the elastic motions of the appendages. The feedback control gains for the reguiator
can be made optimal by minimizing a certain performance measure. Numerical Example 1
shows the application of this control method.

Bang-bang control implies that the maneuver angular acceleration is constant over

each half the maneuver period and disturbances depend largely on acceleration (by way of
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inertial loading). This permits the use of proportional-plus-integral feedback control for
disturbance accommodation. In the case in which the time-varying terms are relatively smail,
which means the maneuver is not very fast compared to the lowest natural frequencies of the
nonmaneuvering antennas, the control gains can be computed on the basis of the
time-invariant system obtained by ignoring the time-varying terms. Of course, in the computer
simulation of the maneuver and control, the full time-varying system must be considered. A
numerical example, in which a spacecraft consisting of a rigid platform and two flexible
antennas undergoes reorientation in different pianes, is presented.

To treat with the control problem of a system with small time-varying terms, and one
subject to disturbances acting persistently on the system during reorientation, a new control
method based on a perturbation technique is developed. The solution of the time-varying
matrix differential Riccati equation (MDRE) for the case of infinite final time can be divided into
two parts: time-invariant solution of matrix algebraic Riccati equation (MARE) and
time-varying solution of matrix differential Lyapunov equation (MDLE). The time-varying
solution takes an integral form, which enables us to compute the time-varying gains more
easily. This method is superior in optimality and stability compared to the adiabatic

approximation.
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Figure 2. Angular Displacements and Velocities of the Rigid Platform
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Figure 3. The Spacecraft with a Single Maneuvering Flexible Appendage
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Figure 9. Rigid Platform with Two Flexible Beams

Figures



Displacement (ft)

0.005
U
Uncontrolled R, e
0.004 ] T
; P ‘ ///’ ——————————————
0.003 ] e /"= Uncontrolled R,
/I, //
0.002 1 S
J . /
r,/ //
0.001 1 ’,//, /// Controued RZ ZControlled Rx
] A
T . o A—
~0.001 Controlled Ry
—0.002
—0.003
' Uncontrolled R,
—0.004 7
—0.005 ITIIITITIIlllllllllllllTlI'r]lllIllll]ll]llllII‘Y
0 1 2 3 4 5
t(s)

Figure 10. Time History of the Platform Translational Motions

Figures

81



0.01 ]
] Uncontrolled 6,
'§ 0.00 ]
= Controlled 0, Controlled 6,
[+
£
18}
i‘g ] Controlled Oy
& -0.011 -
(] |
-0.02 ] Uncontrolled 0,
Uncontrolled 6,
1 .
—0.03 Y'T|IIIIFITIllllllllllllf'IXI'ITI'IVIIIIIII‘I‘TII
0 1 2 3 4 5
t(s)
Figure 11. Time History of the Platform Angular Motion

Figures

82



lllllllllllllllllllll > ”
T 3 X
................. o s
............... 2 [~
T ©° :
.............. = [
o e c i
| <o S5 |
T c [
w ::::::::::::::::::: > -
: : sk
= Rt -
o b T
W 2 Ty :
2 TEsnTTT i
~ D < T ’ ;
S g T [
< . o
S S )
s BT [
llllllll ! s
-- 5 :
\\\\\\\\\\ 5 H
S B ;
,,,,, 9 ]
I £ |
lllllll ——

::::: c” :
\\\\\\\\\\\ 5 :
< © :

T 1 7 — T vt .
0 + Mo o 8 5 8 3 S 8
q 3 ) N 5 S o o o o o
© ©6 © o o ©o @ 9 9 < 9

(W) yuswade|dsiq

t(s)

Figure 12. Tip Displacement of Beam 1

83

Figures



0.05
0.047 Uncontrolled u,
0.037 controlled Uy
0.02 1
E 0.1 Controlled uy UL A A
E 1 . . \ d ‘ \ N \ ! \ \\‘ \
(3] PN / \ ! \ ' ¢ 1
B e v VAL e = e
Q J M N4 [ vy B ! '
Y i S T A T 0 B (R (W
& —0.017 SRy
o )
-0.02 1
—-0.03 1
1 Uncontrolled u,
-0.04
_0.05 IlllIl7rlllllllllI|l"T("lll‘Illll)lll!ll T L LIS
0 1 2 3 4 5

Figure 13. Tip Displacement of Beam 2

Figures

t(s)

84



1150

1100 1

1050 1

950 1

S00 1

Perturbation Method

Adiabatic Approximation

850

t(s)

Figure 14. Gain corresponding to integral of x

Figures

rr rrr ] rr oo

2



28

26 7

24 7]

22 1

Exact

Adiabatic Approximation

Figure 15. Gain corresponding to x

Figures

86



12.5

12.4 1

12.3 7

12.0 7

11.9 7

Exact

Adiabatic Approximation

11.8
0

Figure 16. Gain corresponding to derivative of x

Figures

87



e e e

Adiabatic Approximation

\/

e
A
—n -

Perturbation Method

Uncontrolled

T

0

o
|

Juswaoeds|qg

]
Q
|

¥

n

-
|

Q
o
|

t(s)

Figure 17. Time Response

Figures



Rigid Body
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Figure 26. Elastic Displacements at the Center
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Appendix A. Some Useful Properties

If a is a three-dimensional vector, i.e., 3 = [a, a, 2,17, then the skew symmetric matrix

a is defined as
0 - 33 82
a= a3 0 —a (A-1)
- 32 a1 0
The cross product of two vectors can be expressed as
axp=3ap= -ba (A-2)

[3b] = -b"3= -[bal" =2a"b (A —3)

[3b]=3b-ba (A-49)

Another useful relation is
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~J ~o
[abcl+ [bac]l=abc+bac+cba+cab—2(bca+ach) (A -5)
If | is a symmetric matrix, | =7, then following relation holds:

~
la+al+[1al =tr(ha (A - 6)

where tr denotes the trace of the matrix.
The time derivative of the direction cosine matrix C given by Eq. (2-3a) can be

expressed in either of the two forms

C=-oC and C'=C"3 : (A —7a,b)

Finally, the direction cosine matrix E, satisfies

~
Ec3E, = [Esa] (A-8)
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Appendix B. Proof of Eq. (3-42)

Introducing the change of variables t =t,— v, Eq. (3-52) becomes

A At
Py’ = PjAgc + AgcPy + Ity —1) ®-1)
where

A At
Lty — 1) = PoAy(ty—7) + Aylty— )P (8-2

and prime denotes d/dr. Then, boundary condition (3-56) becomes P,(0) =0 . Multiplying Eq.

{B-1) on the left by S,(r) and on the right S,(r) , we obtain

S{Py'Sy = S;P1AgcS, + S1AncPsS, + SiT(t — ), 8 -3)
Next, we consider

Ed;(31p132) = §¢'P1S3 + §1P4’Sy + §4P4S)’ (B-4
so that Eq. (B-3) can be rewritten as
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d P ' A
o (81P1S2) = S41P1(Sy' + AgcSy) = (54 +81A00)P1S; = SiT(l — 1)S,
On the assumption that S, and S, satisfy
S1'+S1AOC=0 , S2'+A0CS2=0
Eq. (B-5) reduces to
d
F (81 P1 Sz) = S1r(tf b ?)Sz

Integrating Eq. (B-7), we obtain

t
wmmwwm=£amnwﬂ%wm

Equation (B-8) yields

v
P,t) = sT(t) fo S4(7) Tty — 7) S,y(r) de S7 ' (1)

Equations {B-6) have the solutions

A A
Sy(1) = e TS, 0) |, Sy() = e AT 5,(0)

so that, inserting Eqs. (B-10) into Eq. (B-9), we obtain

tr A , A s
P,(t) = f P (t, — 1) eoc= g
0

(B-5)

(B — 6a,b)

B-7)

(B-8)

(B-9

(B — 10a,b)

B—-11)

Introducing the changes of the variables t"=t,— r and t'=t,—t , we can rewrite Eq. (B-11)

as
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U AT 4oty A=)
Py(t) = f ePoct™=0 g7y gRoct ™D gy (B - 12)
t

Finally, replacing t* by r, we obtain Eq. (3-42)
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Appendix C. Derivation of Eq. (3-43)

The object is to discretize Eq. (3-42) in time. To this end, we let t=t, and

t=t,., =1+ Atin Eq. (3-42) and write

{ALlr—t) 1y ucl— 1
Pslty) = J. e I(r)e de (-1

ty

ATt Anclr-t ALt (¥ AT (-t Aot AncAt
Piteqs) = Pt [(g) efocl = et g = o™ Aoc J‘ ePocl™= 1 (7) focl= W g o~ Aac

tyet te
—AT At et ATty A1) — At
= e~ A [p,(t,) —J =W (1) gPocl=1 g7 ] ™ Aoc
ty
Ar At A A A
= e AucBtp,(t,) — f efocd Ity + &) efoct gg] e Aot (C-2)
0

where we introduced the change of variables v =t, + ¢ in integral.
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Appendix D. Expressions for Parameters

Inserting admissible functions given by Eq. (4-1) into Egs. {2-22) and (2-24), we obtain

$e = mg[ 0.783 0.434 0.254 0.182 0.141] O-1
;e = mgle [ 0.569 0.091 0.032 0.017 0.010 ] (-2
_ 0| . —(a3 + a2)l aq a,
He(8) = azm, .+ He(@) = mg 2 2 (D-349)
1 O 3182| —(a1+a3)|
A3, 0
Jo(@) = — 0 a3, (D-5)
a14’3 a1¢’e
be
f PeledPedDy = —azmglg 0 de (D—6)
D,
0

where | is the 5 x 5 identity matrix.
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Appendix E. Expressions for Matrices

The matrices given by Eqgs. (2-64) are computed by using the numerical data given in

the Numerical Example 4. The resulting matrices are

1575 0 0 0
0 1575 0435 0.117
Mo =
0 0435 14574 0474
0 0117 0474 0450
(000 0 o |
o 0 0 0
Ko =
0 0 0 O
0 0 0 49.449
[ o 0 -0375 =—0.117 |
o 0 o0 0
Mg =
—0375 0 0 0
0117 0 0 0
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o O o o o O O o o ©O o o

o O o o

0
0.375
0.375 0.3
0.117 0.047
6 0.375
0 0
0 0
0 0
0 0
0 0375
0 0
0 0
0 O 0
0 o 0
0 o0 0
6 O 015
0 0
0 0.375
0 0.150
0 0

0.117
0.047
0

0.117 |
0
0
0

0
0.117
0.047

o]

-0.117
—0.047
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0 0
0 0
G, =
0 0
0 0

The matrix of eigenvectors associated with the premaneuver state is

-

0.2520 0 0 0
0 0.2521 0  -00179
v 0  -00075 02619 —0.0883
| o 0 0 2.7327 |
so that, using Eqg. (2-62) and (2-64), the modal matrices are
(0 0 o o ]
0 0 0 0
AO =
0 0 0 0
| 0 0 o 3692661 |
L o 0.0007 —00248 —00722 |
_ 0.0007 0 0 0
Ms =
—00248 0O 0 0
| o072 o 0 o |
[ o 0 o |
_ 0 —00014 00242 0.0715
M=o ooz oo 0020
| 0 00715 00249 -0.0306 |

0.375

=0.117
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0 -0.0007
0 0
0 0
0 0

0
—0.0007

Ke2 =
0

o O o o

0.0001

Koz =

0o O O o

0

0]
%)
]

0

0 -0.0007
0 -0.0003
0

0.0002

L

-0.0007

]}
o
[

0

0
0 o
0
0

0

0.0248
0
0
0

0
0.0248
0
—0.0018

0
0.0245
0.0103

—0.0052

0.0248
0
0
0

-

0.0722
0
0
o

0
0.0713
0.0336

—0.0165

0
—0.0879
—-0.0371

0.0188

—0.0889
0
o

0
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Appendix F. Expressions for Parameters

For the given configuration, the position vector of a nominal point in the membrane

appendage can be expressed as

Nra=[rsin6,rcosl9,h]'r (F —1)

Inserting the admissible functions given by Egs. (4-17), together with Eqg. (F-1), into Egs. (2-22)

and (2-24), we obtain

1
0 o0
P12
1
0o o
Boza
®l=2a/n5, | 0 0O 0 (F—2)
0 o 0
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0 0 0
0 0 0
1
0 - 0
Bna
1
0 - 0
B12a
~ 0 0 0
<Dg = Jf275, a° (F=23)
0 0 0
1
(4] 0
B11a
1
0 0
Bi2a
0 0 0
0 0 0
and
= 2 2
He(2) = — (a7 + a3)l (F—-4)

He(2) = [0] (F-5)

Appendix F. Expressions for Parameters 115



2ha, 2ha, 0
Bmna Bna
2ha, 2ha, .
[V Boza
—aa, 0 — aa,
J2 12 YT
— aag 0 — aa,
J2 B2 J2 B1za
0 0 0
T —
Je(8) = 2a/npg (F—6)
0 0 0
0 — aas — adp
J2 Bysa J2 B1ya
0 — aag — aa,
J2 B2 J2 B3
0 0 0
0 0 0
L J
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( h
ha, ha, 0
Bna Bara
ha1 h62 0
Bo2a Bo2a
—aa
0 0 1
J2 B1ya
—aa
0 0 _
J2 Bypa
o 0 0
f peDedaTedDe = 22./7P, F=7
D,
0 0 1]
- aa
0 0 %2
J2 Bysa
- aa
0 0 — %2
J2 B1pa
0] 0 0
0 0 o
"~/
J- pel Pege 1¥edDy = [0] (F-8)
D

where we note that the above null matrix is 3 x 1. In addition,
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f Pe[(bege]doe: 0 - oy 0 (F-9)
D

a4

2ah,/npe[ Pr_ P2 ] | (F — 10a)
0

- -
2 p— P3 P4
0y = a8° \/2npg Bira + Biga (F — 10b)
[ P
as = a°.2np, B?:a + ﬁ1:a W (F — 10¢)
10 1 o 0
j pe Ug Ve dDg = _ZQI pi |0 1 0 (F-11)
> = o 0 o
— w44 wdy 0
—@4G; @G, O
f pe Dr B Ug dDg = : : . (F —12)
D.
—w4Gy9 @80 O
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J.Ped)eSedDe= 2a./npg
D

Sev = 234mp,

P1

G4

P

| Bora

P2

Ba

Bo2a
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(F —13)
(F — 14)
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