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A dynamic model for a swimming scallop was developed
which integrates the mechanical properties of the hinge
ligaments, valve inertia, the external fluid-flow reaction, the
fluid pressure in the mantle cavity and the muscle
contraction. Kinematic data were recorded for a swimming
Placopecten magellanicus from high-speed film analysis.
Dynamic loading experiments were performed to provide
the required mechanical properties of the hinge for the
same species. The swimming dynamics and energetics
based on data from a 0.065 m long Placopecten
magellanicus at 10 °C were analyzed. The main conclusions
are as follows.

1. The mean period of a clapping cycle during swimming
is about 0.28 s, which can be roughly divided into three
equal intervals: closing, gliding and opening. The
maximum angular velocity and acceleration of the valve
movements are about 182 degrees s−1 and 1370 degrees s−2,
respectively.

2. The hysteresis loop of the hinge was found to be close
to an ellipse. This may be represented as a simple Voigt
body consisting of a spring and dashpot in parallel, with a
rotational stiffness of 0.0497 N m and viscosity coefficient of
0.00109 kg m2 s−1 for the 0.065 m long Placopecten
magellanicus.

3. The external fluid reaction has three components, of
which the added mass is about 10 times higher than the
mass of a single valve, and the flow-induced pseudo-
viscosity compensates for nearly half of the hinge viscosity
for the 0.065 m long Placopecten magellanicus.

4. The locomotor system powered by the muscle can be

divided into two subsystems: a pressure pump for jet
production and a shell-hinge/outer-fluid oscillator which
drives the pumping cycle. The dynamics of the oscillator is
determined predominantly by the interaction of the
external fluid reaction and the hinge properties, and its
resonant frequency was found to be close to the swimming
frequencies.

5. The momentum and energy required to run the
oscillator are negligibly small (about 1 % for the 0.065 m
long Placopecten magellanicus) compared with that for the
jet. Almost all the mechanical energy from muscle
contraction is used to perform hydrodynamic work for jet
production. Thus, the Froude efficiency of propulsion in
scallops is nearly the same as the entire mechanical
efficiency of the locomotor system. This could be a
fundamental advantage of jet propulsion, at least for a
scallop.

6. The estimated maximum muscle stress is about
1.06×105 N m−2, the cyclic work is 0.065 J and power output
is 1.3 W. Using an estimate of the mass of an adductor
muscle, the work done by the muscle per unit mass is
9.0 J kg−1 and the peak power per unit mass is 185 W kg−1.

7. The time course of the force generation of the
contracting adductor muscle is basically the same as that
of the hydrodynamic propulsive force.

Key words: swimming, jet propulsion, kinematics, dynamics,
energetics, muscle, hydrodynamic forces, viscoelasticity, scallop,
Placopecten magellanicus.

Summary
Locomotion of most aquatic animals is achieved by
interaction of the body with the surrounding fluid and is
powered by the contraction of muscles. The cyclic motion of
the body parts or appendages results in a fluid reaction on the
animal, which is in the direction of swimming and balances
both the drag and the weight. The mechanical energy generated
by the muscles not only contributes to the hydrodynamic work
but also powers the reciprocal movements of the locomotor
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apparatus. Studies of the dynamics and energetics of aquatic
locomotion must include all of the important mechanical
elements associated with the swimming animal, such as the
fluid dynamic reaction, the body inertia, the response of
deformed tissues and the muscle contraction. Studies that
integrate these elements must be based on suitable mechanical
and morphological analyses.

Such an integrative approach has been explored recently for
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swimming in some aquatic vertebrates and invertebrates
(DeMont and Gosline, 1988; Daniel et al. 1992; DeMont,
1992; Bowtell and Williams, 1994; Cheng and Blickhan,
1994). Obviously, integration is possible and reliable only after
a detailed understanding of each mechanical component has
been obtained. In each of these studies, however, more accurate
data were needed or some important mechanism was not
considered. In this paper, we examine the locomotion of the
scallop Placopecten magellanicus. The simple locomotory
system of this animal allowed us to perform a relatively
complete mechanical analysis.

Scallop swimming, with the ventral side foremost through
the water, is produced by jets of water from two openings near
the hinge (Trueman, 1975; Gould, 1971; Moore and Trueman,
1971; Gruffydd, 1976; Morton, 1980; Vogel, 1985; Dadswell
and Weihs, 1990; Hayami, 1991). Contraction of the adductor
muscle closes the two valves of the scallop and ejects water.
Valve opening is basically powered by the release of strain
energy stored in the hinge ligaments during valve closing.

There have been previous reports on the mechanical
components of scallop swimming. The mechanical properties
of the hinge ligaments in scallops have been evaluated for
various species (Alexander, 1966; Vogel, 1985; DeMont,
1990; Bowie et al. 1993; Fung, 1993). DeMont (1990)
developed a model to examine a possible resonant
phenomenon in the swimming scallop system. Marsh et al.
(1992) studied the in vivo mechanical performance of a scallop
adductor muscle during natural swimming by measuring the
pressure power of fluid in the mantle cavity, the hinge power
and the acceleration power. The contractile and mechanical
properties of the striated adductor muscle of Argopecten
irradians have been studied in vitro at different temperatures
(Olson and Marsh, 1993). Marsh and Olson (1994) measured
the in vitro performance of muscles under in vivo strain cycle
conditions.

The mechanical performance of locomotion is determined
by the interaction of all of the mechanical elements in the
system. In previous studies on scallop locomotion, some of
these mechanical elements were omitted or incorrectly
modelled. In particular, the unsteady fluid reaction on the
clapping valves due to the flow around the outer surface of the
valves was not correctly considered. We have recently
completed an analysis on these unsteady fluid forces (Cheng
and DeMont, 1996a). In the present paper, a dynamic model
for a swimming scallop was developed using a more complete
description of all relevant mechanical elements. These include
the fluid loading from the flow outside the valves and from the
flow within the mantle cavity during jetting, the properties of
the hinge, the shell inertia and the muscle contraction. The
locomotor system was modelled as two subsystems: a pressure
pump for jet production and a shell-hinge/outer-fluid oscillator
to accomplish the pumping cycle. Complete kinematic data
were recorded using high-speed cine film analysis. The
viscoelastic properties of the hinge were measured during
dynamic loading experiments. The fluid pressure in the mantle
cavity was obtained using an approach based on a fluid-
mechanics analysis of the flow in the cavity and through the
orifices. This dynamic analysis is based on kinematic data from
free-swimming animals and does not utilize invasive
procedures, such as measurements of mantle pressure using
cannulae or telemetery (Webber and O’Dor, 1986; Marsh et al.
1992). The dynamic behaviour of the locomotor system and
the flow of energy from the contraction of the adductor muscle
of a 0.065 m long Placopecten magellanicus swimming at
10 °C are presented in this paper. The present approach can
also be used to infer the in vivo force behaviour of the striated
muscle during natural locomotion, which will be given
elsewhere.

Materials and methods
We first present tests on the mechanical properties of the

hinge, following which the collection of kinematic data on
scallop swimming is described. A fluid-mechanics analysis is
then given for calculation of the reaction due to the fluid
pressure in the mantle cavity based on kinematic and
morphometric data. Finally, a dynamic model of the locomotor
system is developed by combining all the mechanical elements
associated with swimming which were developed in the
previous sections.

Mechanical properties of the hinge

The hinge consists of the inner (abductin) and outer
ligaments. The mechanical properties of the hinge ligaments
have been studied for Pecten maximus and Chlamys
opercularis (Alexander, 1966; DeMont, 1990) and
Argopecten irradians (Vogel, 1985). In those studies, the
static rotational stiffness of the inner hinge ligaments was
measured. Bowie et al. (1993) measured the resilience of the
oscillating hinge for Placopecten magellanicus and found it
to be approximately 90 % at physiological frequencies and
environmental temperatures. This indicates that there is an
energy loss, although not large, associated with the dynamic
behaviour of the viscoelastic materials of the hinge. To model
the constitutive relationship of the scallop hinge
quantitatively, we carried out dynamic loading experiments on
the hinge.

Scallops, Placopecten magellanicus (Gmelin), ranging in
mass from 0.024 to 0.121 kg and in shell height (distance
from the hinge to the front of the animal, see Fig. 2) from
0.038 to 0.104 m, were obtained from the Department of
Fisheries and Oceans, Halifax, Nova Scotia, Canada, and
were maintained at 10 °C in a 370 l recirculating tank filled
with sea water. They were maintained according to the
guidelines of the Canadian Council for Animal Care. The
scallops were eviscerated, and the sides were trimmed from
both valves to reduce total mass and therefore inertial error
in the measurements. The shells were fastened to a servo-
system apparatus (Cambridge Technology model 310) using
a nut passed through a small hole drilled into the bottom
valve. The upper valve was left to move freely, and the servo-
system arm rested on the top of this valve approximately
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Fig. 1. The force–displacement curve for a hinge isolated from a
0.063 m long scallop and oscillated at a frequency of 3 Hz. The force
was measured at a location approximately 0.010 m away from the
ventral tip, where the distance between the two shells followed a
sinusoidal cycle with the amplitude simulating the values during
swimming. The hysteresis loop of the Voigt body used to model the
hinge properties is also shown (solid line).
0.01 m from the ventral tip. A signal generator (Hewlett-
Packard 8904A) was used to drive the servo arm, and
therefore the valve, in a sine wave at frequencies ranging
from 0.5 to 5.0 Hz in steps of 0.5 Hz. The amplitude of the
sine wave was set to simulate an in vivo displacement of the
valves. The displacement of the valve and its upward force
on the servo arm were recorded using a digitizing
oscilloscope (Hewlett-Packard 54501A) and a
microcomputer (Gateway 4DX2/50) and were converted to
SI units. The temperature was maintained at 10±0.5 °C by
performing the test in a small refrigerator (Kenmore), and sea
water was dripped over the hinge using a peristaltic pump
(Omega) to keep it from drying out during the trial.

The force–displacement curve for the hinge of a 0.063 m
long animal oscillated at 3 Hz is shown in Fig. 1. The shape of
the hysteresis loop of the hinge is very close to an ellipse; thus,
the scallop hinge can be modeled as a Voigt body consisting
of a spring and dashpot in parallel. The elastic and viscous
coefficients of the Voigt body can be determined by measuring
the slope and area of the hysteresis loop (Thomson, 1988).
From the data obtained at a forcing frequency of 3 Hz (Fig. 1),
which is close to the natural swimming frequency, the
rotational stiffness (kh) and viscous coefficient (ch) of the hinge
can be measured as:

kh = 49.69×10−3 N m , (1)

ch = 1.09×10−3 kg m2 s−1 . (2)
The general mechanical behaviour of the hinge is then
described by:

where Mh is the moment about the hinge (in Nm), t is time and
γ is the angular displacement of the hinge (in degrees). Using the
model (equation 3) with the measured values of kh and ch, we can
obtain the variation of the force with the displacement cycle,
which replicates the cycle used in the loading experiments. The
force–displacement curve obtained from equation 3 is also
plotted in Fig. 1 (Voigt body line), which shows that the model
approximates the viscoelastic properties of the hinge quite well.
A more complete analysis of the hinge mechanics, including the
effects of temperature, will be presented elsewhere.

Kinematic analysis

Several scallops were placed in a 370 l recirculating tank at
10 °C with a thin layer of sand on the bottom and filled with
sea water. The tank was illuminated by two 1000 W tungsten
spot/flood lamps (Ianebeam 1000), placed approximately
0.8 m away from the scallops. One side of the tank contained
a large glass window through which filming took place, and a
white-on-black grid with 0.02 m spacing was placed on the
rear of the tank for distance calibration on the film. A starfish
(Asterias forbesii), a natural predator of the scallop, was
placed on the rear of the scallop, causing it either to take flight
or to open and close its shell in a single clap. When this
happened, the scallop was filmed using a high-speed cine

(3)
dγ
dt

Mh = khγ+ ch ,
camera (Red Lake Laboratories Locam, Kern Vario-Switar
Compact lens) at 300 frames s−1 (nominal camera setting),
placed 1–1.5 m away from the tank. In all cases, the movement
of the animal was well aligned with the plane of the film. The
camera was started as soon as the scallop moved on the bottom
of the tank, so that by the time the animal entered the field of
view, the camera was up to speed. After development, the film
(Kodak Eastman 7250) was projected onto a white screen,
magnifying the image of the scallop by about a factor of 5,
and played frame-by-frame. The shell height SL was measured
(to ±0.2 cm on the projected image) in the first frame, and the
gape (distance between the top and bottom valves at the front
of the animal) was measured in each frame (to ±0.2 cm on the
projected image). This allowed calculation of the angle of
opening [γ(t)=sin−1(gape/SL)] between the two valves at each
time interval (given by the frame speed of the camera), so that
angle of shell opening versus time could be plotted.

The magnification of the projected image was
approximately 5.6, which is considered to be large enough to
reduce the error in high-speed filming (Harper and Blake,
1989). The kinematic data were treated by using a spline
software package GCVSPL, which has been used previously
to analyze fish swimming (Beddow et al. 1995) and in many
biomechanics studies. The angle versus time data were
smoothed and interpolated with a quintic spline function using
GCVSPL. This package was chosen because it offers reliable
estimation of higher derivatives. The velocity and acceleration
are the first and second derivatives of the smoothing spline
function. In GCVSPL, the amount of smoothing required for
specific data is determined by several statistical considerations
(Woltring, 1986), which can be used to determine the spline
coefficients iteratively. The four given choices for smoothing
were tested on our data. The so-called true predicted mean-
squared error (MSE) criteria was used in our data analysis.

Theoretical models

Hydromechanical analysis of the flow in the mantle cavity

While the valves are closing, water in the cavity is ejected
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Fig. 2. Schematic top view of a scallop, showing the parameters
used to describe its morphology. Av is the area of the valve
projected on the commissural plane, Am is the cross-sectional area
of the adductor muscle, SL is the shell height, Sx is the x-coordinate
of any position on the shell, SLλ1/2 is the distance normal from the
hinge to the centre of the muscle, and SLλ2/2 is the radius of the
muscle.
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Fig. 3. Schematic side (anterior) view of a swimming scallop. The
gape angle γ(t)=2β(t) is used to describe the opening and closing of
the shell around the hinge. α is the angle of attack between the
swimming direction and the mean plane of the two shells, and αT is
the trajectory angle between the swimming direction and horizontal
surface. U is the swimming speed.
from two orifices near the hinge. There is thus a time-
dependent force acting on the inner surfaces of the two shells
due to the fluid pressure of the jet flow. The adductor muscle
pulls the two valves against this fluid force, which can be
calculated from a simple fluid-mechanics analysis and the
kinematic data. It is assumed that the fluid in the cavity is
inviscid and that there is no energy dissipation when water
goes through the orifices. When the jets are well formed at the
orifices, the exit area is very small compared with the shell
area, and the steady Bernoulli equation can be used to model
the flow in the mantle cavity and through the opening. Along
a streamline connecting a point at the inner surface of the shell
and a point at the exit, we have:

where ps, pj and Us, Uj are the pressure and velocity at the shell
and exit, respectively, and ρ is the density of sea water. Since
the movements of the two shells are assumed to be symmetrical
about an average plane (commissural plane) (see Fig. 3), the
gravitational term has been ignored in the above equation. If
the total gape angle is γ(t) at any instant, the oscillation of
either shell can be described by β(t)=γ(t)/2. According to the
non-penetration condition, the velocity (Us) of a fluid particle
adjacent to the shell at position Sx (Fig. 2) is equal to the
velocity of the shell at the same position, i.e.:

and is normal to the shell surface. Denoting Aj as the cross-
sectional area of the jet, which can be time-dependent during
the jetting phase, Av as the valve area, Am as the cross-sectional
area of the adductor muscle and SL as the shell height (Fig. 2),
the averaged jet velocity over the cross section of the jet at the
orifice (Uj) can be obtained from the mass conservation law as
(Cheng and DeMont, 1996b):

where λA=1−(Am/Av) and λAj=Aj/Av. The pressure at the exit
is reasonably approximated by the fluid pressure at infinity. So,
from equation 4, the effective pressure at the inner surface of
the shell (pi) is:

which may be simplified to:

This equation is obtained from the mass conservation and
the momentum theorem of fluid flow. It gives a relationship
between the fluid pressure at the inner surface of the shell, the

dβ
dt
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valve closing velocity, the jet area and geometrical parameters.
Note that the pressure is not constant in the cavity (equation 4)
and over the shell (equation 7). In many studies on aquatic jet
propulsion, the fluid pressure was only measured at one point
in the mantle cavity (Trueman, 1975; Webber and O’Dor,
1986; DeMont and Gosline, 1988; O’Dor, 1988; Marsh et al.
1992). Strictly speaking, the pressure is not uniform in the
cavity: the value is close to ambient near the orifice and is
higher at a position away from the exit. If the reading is taken
at some point where a mean value over the valve cavity can be
obtained, the resulting estimation of the jet energy or jet thrust
may be close to the real case, as long as other relevant data are
available. The energy required to form the internal flow that is
eventually ejected from the orifices is an integral sum of the
distributive quantities over the whole cavity surface. In
general, more attention should be paid to the measurement of
pressure in studies on jet propulsion. Nevertheless, it can be
verified that, if the jet opening is much smaller than the surface
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area of the cavity, the fluid particle velocity at the cavity wall
(Us) is much lower than the averaged jet speed (Uj) and then
the pressure may be approximated as uniform. We found this
to be true for a scallop, after examining equation 7 using
appropriate morphometric data. However, during the initial
part of the adduction, the mantle velum around the valve does
not seal completely, which results in a large opening. The
power calculated from the assumption of a uniform pressure
measured at one point could then be rather inaccurate, and
therefore we will use equation 7 to calculate the pressure
distribution on the shell.

The total force due to the inner fluid pressure acting on, for
example, the upper shell (Ffi) (excluding the part occupied by
the adductor muscle) is (positive in the direction of shell
opening):
(10)

Ffiβ =
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where λ1 and λ2 are determined by the position and cross-
sectional size of the muscle connecting the two shells, and
Av−Am is the integral domain (Fig. 2).

The moment about the hinge due to the inner fluid pressure
acting on the upper shell (Mfi) is (positive in the clockwise
direction):
(12)

Mfiβ = Mfiβ0+ Mfiβ1
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where Mfiβ0 is the moment constant due to the uniform pressure
distribution and Mfiβ1 is the moment constant due to the
contribution of the variable pressure.

The moment Mfi (or force Ffi) is proportional to the square
of the valve angular velocity, which varies during adduction.
It should be mentioned that, in general, the jet area Aj (or λAj)
can be time-dependent during jetting. However, the
quantification of the variation of the jet area is difficult. Our
observations (Cheng and DeMont, 1996b) suggest that jet size
is fairly constant for the well-formed jet which appears during
most of the jetting phase. A constant jet area (see Table 2) is
therefore used in our numerical calculations, but the equations
presented above can be used for more general cases for which
the variable jet area is recorded.
There is also an inward flow through the gape between the
valves during abduction. In principle, the same approach as
above can be taken to find the fluid pressure distribution in the
cavity in relation to the variation in gape angle. The mantle
velum regulates the flow through the ventral mantle margin,
but its control is not precisely known. Thus, the area of the
opening cannot be easily determined at any instant in time.
However, this problem is not important: since the animal is
immersed in an infinite fluid medium and the opening is
towards the swimming direction, the cavity is probably filled
instantly while the shells are opening. Thus, only a very low
pressure difference (negative effective pressure) will be needed
to draw water into the cavity, as was measured by Marsh et al.
(1992). Therefore, the moment (or force) due to the inner fluid
pressure during the abduction will be omitted in our present
model, since it is negligibly small compared with the moment
during the adduction.

The integrated dynamic model and energy expenditure

Scallops rotate the two shells around the hinge during
swimming. The rapid closing of the two valves is caused by
the nearly simultaneous contraction of the entire striated
adductor muscle (Marsh et al. 1992), which is directly
attached to the valves (Fig. 3). Abduction of the valves is
powered by the strain energy stored in the hinge ligaments
during valve closure. The production of the propulsive jet is
the result of the high fluid pressure in the mantle cavity
generated by the shells during contraction of the adductor
muscles. The periodic motion of the shells is also subject to
the time-dependent reaction of the outer flow around the
swimming scallop.

The dynamic system of the swimming scallop can be
represented by the model shown in Fig. 4A, in which the
rectilinear displacement of the mass element (shell) is
equivalent to the angular displacement. Note that the spring
and dashpot arranged in parallel represent the hinge, in
accordance with the results given above. Since the motion of
two shells is viewed as symmetrical with respect to the average
(commissural) plane, the system can be further separated into
two subsystems which function equally. Hence, we only need
to consider, for example, the upper shell movement (Fig. 4B).
In Fig. 4B, Iv is the inertial moment of half of the two-valve
mass, and kh and ch are the rotational effective stiffness and
damping coefficient of the hinge, respectively. Mfi and Mfe are
the fluid dynamic moments of the internal and external flow
about the hinge, respectively. It is a system with one degree of
freedom. If we assume that the hinge ligaments are basically
in compression throughout the cycle, the momentum equation
can immediately be written as (positive in the clockwise
direction):

where Mm is the total moment produced by muscle contraction,
and βmax is the maximum half-gape angle. The moment caused

(13)
dβ(t)

dt

d2β(t)

dt2
−2kh[β(t) − βmax] + Mfi + Mfe ,= Mm −2chIv
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Fig. 4. (A) The dynamic model of a swimming
scallop. The hinge is represented by a spring
with rotational stiffness kh and a dashpot with
damping coefficient ch in parallel, as discussed
in the text. The two shells are represented by
the two mass elements (each with an inertial
moment of Iv), each of which experiences a
hydrodynamic moment exerted by the outer
fluid flow (Mfe) and a hydrodynamic moment
due to the fluid pressure in the mantle cavity
(Mfi). The rectilinear displacement of the mass
element (or shell) is equivalent to the angular
displacement. The symmetrical (commissural)
plane is the mean plane of the two shells at any
instant. The adductor muscle pulls the two
shells together during the jetting phase, generating a total moment Mm, and the hinge resilience pushes them apart during the opening phase.
(B) The dynamic system for the upper shell, which is equivalent to the dynamic model shown in A (see text). Note that the coefficients of
viscosity and stiffness are doubled. βmax is the maximum half-gape angle; 2β(t) is the gape angle.
by the external fluid reaction (Mfe) is (Cheng and DeMont
1996a):

The meaning of the three terms, i.e. the added moment of
inertia of one shell, If, the rotational viscous coefficient of
pseudo-viscosity cf, and the rotational pseudo-stiffness kf, have
been discussed previously (Cheng and DeMont, 1996a). It is
clear that the outer fluid reaction is not represented only by the
added-mass effect. Generally, a phase shift exists between the
hydrodynamic force and the displacement (or acceleration),
which may play an important role in coordinating aquatic
locomotion, as has already been shown for fish swimming
(Lighthill, 1975; Cheng et al. 1991; Blickhan and Cheng,
1994). The moment due to the inner jetting flow is given by
equation 11. Substituting equations 11 and 14 into equation 13
yields:

where
I = Iv + If , (19)

c = 2ch − cf , (20)
and

k = 2kh − kf , (21)

are the effective inertial moment (I), viscous coefficient (c) and
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dt2
Mfe = − If + cf + kfβ(t) ,

where

and

(15)
17

60π
If = ρSL5,

(16)
1

2π
cf = ρUSL4,

(17)
1

3π
kf = ρU2SL3.
stiffness (k) due to the hinge and outer fluid reaction,
respectively. The outer fluid reaction will reduce the effects of
the mechanical stiffness and damping of the scallop hinge.

The dynamic swimming system may conveniently be
divided into two sub-elements: the jet pump and the oscillator,
consisting of the shell, hinge and outer fluid. The force
generated by the muscle contraction is used partly to pump
fluid and partly to excite the shell-hinge/outer-fluid oscillator.
The oscillator system works throughout the entire cycle, while
the pump only works during part of the cycle. Suppose the part
of the total muscle moment used to run the oscillator is Mmo

and the remaining part used to produce the jet flow is Mmj.
Then we have:

Mm = Mmo + Mmj , (22)

where Mmj is generated during the valve closing time interval
(∆tc), but does not exist during the remaining part of the cycle.
The passive muscle force is very low compared with the active
force (Olson and Marsh, 1993). It can be speculated that most
of the muscle force will be used to produce the jets, i.e. Mmj

is much larger than Mmo: this will be shown later.
Suppose that the pulling force of the contracting muscle is

uniformly distributed over the cross section of the adductor,
the muscle stress σ can then be estimated from the muscle
moment as:

where SLλ1/2 is the distance between the hinge and the centre
of the cross section of the muscle (Fig. 2), and Amq is the cross-
sectional area of the fast part of the adductor muscle.

(25)σ = 2 , t ∈∆ tc ,
Mm

SLλ1Amq

(24)Mmj = −Mfiβ , t ∈∆ tc ,
dβ(t)

dt









2

(23)
d2β(t)

dt2
dβ(t)

dt
Mmo = I + kβ(t) −2khβmax ,+ c
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The strain of the adductor muscle ε can be defined as:

where Lmo is the muscle length at the centre of the cross section
when the valves are at the maximum opening during
swimming, and Lm is the muscle length at any instant. The
muscle length when the valves are completely closed, Lmc, is:

Lmc = tm − ts , (27)

where tm is the thickness of the aerofoil shape of the scallop
and ts is the thickness of the two shells. Since

Lmo = Lmc + βmaxSLλ1 , (28)
and

Lm =Lmc + β(t)SLλ1 , (29)

from equation 26, the strain is then:

where ε0 and ε1 are defined by the first and second terms,
respectively. The strain rate of the adductor muscle is:

Based on equations 25, 30 and 31, the stress–strain and
stress–strain rate relationships can be constructed for the
contracting adductor muscle of a scallop during swimming.

The total power generated by the muscle contraction, Pm, is
the sum of the power spent on the jets, Pmj, and the power for
the oscillator, Pmo:

where Pk is the rate of change of kinetic energy for the scallop
shell mass and added mass, Pd is the rate of energy dissipation
by the effective damping and Pe is the rate of change of the
strain energy stored in the effective spring. Pmj0 and Pmj1 from
equation 33 are defined as:

(35)Pmj0 = −2Mfiβ0 ,
dβ
dt









3

(36)Pmj1 = −2Mfiβ1 ,
dβ
dt









2

and

(34)
d2β
dt2

Pmo = Pk + Pd + Pe = 2 + cI + kβ ,
dβ
dt

dβ
dt

dβ
dt

















2

(32)
dβ
dt

Pm = Mm

where

2 = Pmo + Pmj ,








(33)
dβ
dt

Pmj = −2Mfiβ = Pmj0 + Pmj1 ,








3

(31)
dβ(t)

dt

dε
dt

= − ε1 .

(30)
βmaxSLλ1

Lmc + βmaxSLλ1

SLλ1

Lmc + βmaxSLλ1
ε = β(t) = ε0 − ε1β(t) ,−

(26)ε = , 
Lmo − Lm

Lmo
where Mfiβ0 and Mfiβ1 can be calculated from equation 12. It
can easily be verified that Pmj0 due to the uniform pressure
(equation 11) is exactly the flux rate of the fluid kinetic energy
of the ejected jets, i.e. the hydrodynamic power of the jets,
which has been widely used in many previous studies. The jet
power due to the variable pressure, Pmj1, was found to be much
lower than Pmj0 and can be neglected for scallops.

The work done by the muscle during one cycle Wm is
therefore:

where Wmo and Wmj are the work on the oscillator and jets,
respectively, and T is the time for one cycle. The power and
work per unit mass can be obtained by dividing the above
quantities by the mass of the adductor muscle.

If the moment (force) generated by muscle contraction
during natural swimming is known, the movement of the shells
can be predicted by solving equations 22–24. Measurements
of muscle force during natural swimming are currently difficult
to obtain for scallops or any other living animals (Alexander,
1992). However, the problem can be reversed, and the dynamic
equations presented here can be used to infer the in vivo muscle
performance and the energetics of the locomotor system from
the measured kinematic data if the mechanics of all passive
dynamic elements in the system are known. We investigated
the dynamic properties of the scallop swimming system,
muscle performance and mechanical energy cost in natural
swimming using data from Placopecten magellanicus.

Results
Kinematics

Five swimming sequences were recorded from three
individuals. The animals swam approximately parallel to the
grid plane in each sequence. Because scallops are not active
swimmers and the field of view of the camera was very limited,
swimming events could not be recorded easily. Most filmed
events consisted of climbing before level swimming was
achieved. Fig. 5A gives the variation in gape angle with time
for a 0.065 m long animal. In the GCVSPL software package,
a trade-off between the smoothness of the spline (or of its mth
derivatives) and the goodness-of-fit to the given data can be
modified by varying a parameter called VAL. The measured
data and smoothed data at VAL=1, 3 and 10 under the MSE
criteria are shown in Fig. 5. Increasing VAL increases the
smoothness of the spline (Fig. 5A) and its derivatives
(Fig. 5B,C), but reduces the goodness-of-fit as indicated by the
variance, VAR. Three spline functions at VAL=1, 3 and 10
give obviously different results. The differences in the
acceleration curves (Fig. 5C) are especially significant. The
curve at VAL=1 gives the highest value at the maximum

(37)

+ 2c

dt

dt ,
dβ
dt









2

dβ
dt









3⌠

⌡T

⌠

⌡T

⌠

⌡T

Pmdt = Wmj + Wmo = −2MfiβWm
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Fig. 5. Comparison of the kinematic data before and after spline
smoothing for a scallop of 0.065 m in height (ang32). (A) Gape angle,
showing both raw data and the data smoothed using the GCVSPL
spline method at VAL=1, 3 and 10 (see text). (B) Angular velocity at
VAL=1, 3 and 10. (C) Angular acceleration at VAL=1, 3 and 10. VAR
is the variance of the spline smoothing.
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Fig. 6. Variation in gape angle, angular velocity and angular
acceleration with time during four swimming sequences. All data
were smoothed using the GCVSPL spline method with VAL=3. VAR
is the variance of the spline smoothing. (A) An individual with a shell
height of 0.057 m (ang01); (B) 0.065 m (ang30); (C) 0.063 m (ang31);
(D) 0.063 m (ang33).
acceleration, but shows serious fluctuations during the
remaining part of one period, which is an artefact of the
analysis. The spline at VAL=10 gives relatively smooth
accelerations but the lowest maximum value, which could be
an underestimate. The problem of choosing a suitable
smoothness to obtain the most accurate acceleration may be
resolved only by using other measurement methods, such as
an accelerometer (Harper and Blake, 1989). We decided to use
the spline function with MSE at VAL=3 to analyse our
kinematic data, since it gives a fairly good general behaviour
in angular acceleration and a reasonable estimation of
maximum acceleration for scallop swimming.

The gape angle displacements, angular velocities and
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accelerations of four swimming sequences are shown in
Fig. 6A–D. The data were smoothed using GCVSPL with
MSE criteria and VAL=3. It was found that the shell movement
is not harmonic, although it is periodic. A remarkable gliding
phase, during which the valves are closed, was observed for all
sequences. The angular displacement curves of the opening
and closing phases are approximately symmetrical about the
maximum value of the angle, which indicates that the duration
of opening is very close to that of closing. The velocity
increases as the shells open and reaches a maximum at about
one-third of the maximum angle, decreasing to zero at the
maximum opening angle. As the shells close, the angular
velocity becomes more negative and reaches the maximum
closing value, after which it becomes less negative, gradually
approaching zero after the shells are closed. A constant angular
velocity during shell closing has been assumed in almost all
studies on aquatic jet propulsion in scallops and other jet-
propelled animals. From our measurements, this is
approximately true only for the middle one-third of the closing
duration. In general, however, the angular velocity is not
constant during the shell closing phase. Maximum acceleration
occurs just before maximum gape angle is reached.
Fluctuations in acceleration values around and during the
gliding phase are considered to be artefacts, as discussed
earlier.

For descriptive purposes, it is convenient to subdivide the
time period T of one clapping cycle into three intervals. (1) The
opening phase, ∆to=λtoT, during which the half-gape angle
increases from zero to a maximum (βmax). (2) The closing
phase, ∆tc=λtcT, during which the half-gape angle decreases
from βmax to zero. (3) The gliding phase, ∆tg=λtgT, during
which the valves are kept closed or move only very slowly,
where λto+λtc+λtg=1.

Table 1 lists the maximum and minimum gape angles,
maximum opening and closing velocities and the maximum
Table 1. Kinematic data of shell clapping during the swimm

Flight (ang01) Flight (ang30

Shell length (m) 0.057 0.065
∆tc (s) 0.083 0.088
∆tg (s) 0.086 0.104
∆to (s) 0.084 0.088
T (s) 0.253 0.28
γmin (degrees) 1.9 1.45
γmax (degrees) 11.51 8.9
(dγ/dt)mo (degrees s−1) 1.87×102 1.58×102

(dγ/dt)mc (degrees s−1) −1.4×102 −1×102

(d2γ/dt2)m (degrees s−2) −8.69×103 −5.72×103

(dγ/dt)ac (degrees s−1) −1.15×102 −0.81×102

U (m s−1) 0.28
αT (degrees) 20.6

∆tc, ∆tg, ∆to and T are the durations of the closing, gliding and openi
and minimum gape angles; (dγ/dt)mo, (dγ/dt)mc, (d2γ/dt2)m and (dγ/dt)a

angular acceleration and averaged closing angular velocity, respectively
Identification of each sequence is in parentheses.
absolute accelerations from one typical period for all five
swimming sequences. The complete period is taken from the
last maximum opening angle to the previous maximum
opening angle of the valves. Approximate values of the
average closing angular velocities and the durations of the
closing, gliding and opening phases are also given in Table 1.
The mean swimming speed and the trajectory angle with
respect to the horizontal surface (see Fig. 3) were obtained for
three sequences.

Dynamics of the locomotor system

The dynamics analysis is based on one swimming sequence:
ang32 (see Table 1; Fig. 5) for a 0.065 m long Placopecten
magellanicus. Results for the other swimming sequences were
similar and are not shown for brevity. The kinematic data and
morphometric parameters used to calculate the parameters in
the dynamics equation are listed in Table 2. The volume of the
expellable water in the mantle cavity Ve is equal to the volume
enclosed by the mantle velum and the two planes connecting
the edges of the shells, Vs, minus that of the adductor muscle,
Vm. The latter (Vm) depends on the location of the adductor,
which varies during ontogeny (Gould, 1971; Dadswell and
Weihs, 1990). Thus, the expellable volume at any instant is:

Ve = Vs − Vm = λAAvSLβ , (38)
where

SLλ1/2, SLλ2/2 are shown in Fig. 2. Generally, λ1 varies during
growth and is approximately equal to 1 for the 0.065 m long
animal (Dadswell and Weihs, 1990; Table 2).

The resulting dynamic parameters, such as the coefficients
of the external forces, the mechanical properties of the hinge
and other parameters in the dynamic equations are given in
Table 3. Fig. 7A shows the normalized variation in gape angle,

(39)
Av − λ1Am

Av
λA = = 1 − λ1λ22 .
ing escape response of Placopecten magellanicus at 10 °C

) Flight (ang31) Flight (ang32) Flight (ang33)

0.063 0.065 0.063
0.092 0.092 0.081
0.114 0.11 0.125
0.088 0.079 0.082
0.294 0.281 0.288
1.42 2.1 1.64

14.1 12.75 10.15
2.08×102 1.82×102 1.53×102

−1.82×102 −1.25×102 −1.4×102

−9.73×103 −7.1×103 −7.28×103

−1.37×102 −1.14×102 −1.04×102

0.24 0.23
26.8 25.7

ng phases and one clap cycle, respectively; γmin, γmax are the maximum
c are the maximum opening and closing angular velocities, maximum
; U is the mean swimming speed; aT is the trajectory angle (see Fig. 3). 
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Table 2. Kinematic and morphometric data for the dynamic
analysis of a swimming scallop Placopecten magellanicus at

10 °C

Value Source

Shell height, SL (m) 0.065 ang32
Period, T (s) 0.29 ang32
Maximum  half-gape angle, βmax (rad) 0.1112 ang32
Minimum half-gape angle, βmin (rad) 0.0183 ang32
Effective maximum half-gape angle, βmm (rad) 0.0929 ang32
Maximum half-angular velocity, dβ/dt (rad s−1) 1.59 ang32
Maximum half-angular acceleration, 61.93 ang32
d2β/dt2 (rad s−2)

Swimming speed, U (m s−1) 0.24 ang32
Position of muscle, SLλ1/2 0.5 DW
Ratio of muscle to valve area, Am/Av 0.065 G
λ1 1 DW
λ2 0.255 G
λA=1−(Am/Av)= 1−λ22 0.935 G
λAj=Aj/Av 0.00971 CD
Thickness of aerofoil for closed valves, tm (m) 0.01566 DW
Thickness of two shells, ts (m) 0.001 ang32
Muscle length for closed valves, Lmc (m) 0.01466 ang32
Muscle length at maximum opening, Lmo (m) 0.0207 ang32
Lmo/Lmc 1.41 ang32
Maximum strain, ε0 0.292 ang32
ε1 3.14 ang32

ang32, swimming sequence given in Table 1; CD, Cheng and
DeMont (1996b); DW, Dadswell and Weihs (1990); G, Gould (1971).

Table 3. Dynamic parameters based on data for a 0.065 m
long scallop Placopecten magellanicus swimming at 10 °C

Pseudo-stiffness, kf (N m) 1.713×10−3

Pseudo-viscosity, cf (kg m2 s−1) 0.695×10−3

Added inertia moment of one shell, If (kg m−2) 106.79×10−6

Hinge stiffness, kh (N m) 49.69×10−3

Hinge viscosity, ch (kg m2 s−1) 1.09×10−3

Valve inertia moment, Iv (kg m−2) 9.955×10−6

Effective stiffness, k (N m) 97.667×10−3

Effective viscosity, c (kg m2 s−1) 1.485×10−3

Effective inertia moment, I (kg m−2) 116.75×10−6

Coefficient of internal flow moment, Mfiβ (kg m2) 0.503
Coefficient of muscle stress, σmm (m−3) 0.174×106

Density of sea water, ρ (kg m−3) 1.02×103
angular velocity and acceleration with time for the swimming
sequence used in the analysis.

The function of the adductor muscle is twofold: first to pump
water present in the mantle cavity to form the propulsive jet,
and second to run the shell-hinge/outer-fluid subsystem. The
latter can be modelled by a common oscillator consisting of a
spring, dashpot, mass and exciting source (equation 23). From
the parameters in Table 3, the natural frequency f of such an
oscillator is:

The clapping frequency of P. magellanicus during natural
swimming is 3.40–3.95 Hz for the five swimming sequences
we recorded and is approximately 2.0 Hz for a 0.050 m long
Argopecten irradians (Marsh and Olson, 1994) and 4.0 Hz for
a 0.052 m long Chlamys hastata (Marsh et al. 1992). No
swimming speeds were given in these studies.

The moments about the hinge due to the three elements in
the oscillator, external hydrodynamic forces (Mfe), hinge
reaction (Mh), valve inertia (Mv) and their sum to be supplied
by muscle contraction (Mmo) versus time are shown in Fig. 7B.
The amplitude of Mv is much smaller than those of Mfe and
Mh. Since Mv is proportional to the angular acceleration, it
reaches its peak value when the gape angle is close to the
maximum value. The moment due to the external fluid

(40)
k

I

1

2π
1

2π
2kh −kf

Iv + If
=f = = 4.67 Hz .! !
reaction, Mfe, is largely dominated by the added-mass effect at
this low swimming speed. Thus, the shape of the curve for Mfe

is close to that of the angular acceleration. The high hinge
moment lasts during the gliding phase of the cycle. As the
damping of the hinge is very weak compared with the elastic
effect, the shape of the Mh curve is close to that of the gape
angle with time. Thus, Mh and Mfe are approximately out of
phase. The resulting muscle moment Mmo required to sustain
the operation of the shell-hinge/outer-fluid oscillator is
determined by the interaction of the external fluid reaction and
the hinge properties, with very little contribution from the
valve inertia. Mmo is negative over the whole cycle. This means
that a tensile force is applied over the whole cycle. There are
two maximum values during one cycle: one occurs at about the
maximum gape angle, and is associated with the peak of the
external fluid reaction; the second appears just before valve
opening, and is associated with the force applied by the
compressed hinge.

The dynamics of the whole locomotor system is shown in
Fig. 7C. The magnitude of Mmo is very low over the whole
cycle, compared with that of Mmj, the moment required to
make the jets at the two orifices. The curves of Mmj and Mm

are hardly distinguishable. Thus, the total active muscle
moment Mm required to run the whole system is almost
completely determined by the jet production. The magnitude
of the moment increases sharply when the valves are closing,
reaches a peak after one-quarter of the closing phase, and
approaches zero at the end of the closing phase.

Power output of adductor muscle and swimming cost

Power is plotted against time in Fig. 7D. The power–time
curves of Pm and Pmj almost overlap each other. The
mechanical power required to move the oscillator is very low.
The power output of the adductor muscle is thus largely for jet
production. The time course of the total muscle power Pm is
very similar to that of the total muscle moment (Fig. 7C,D). It
increases rapidly to a peak value when the valves are closing,
then drops to zero. This corresponds to a single contraction of
the adductor. Except for the absence of an initial peak just
before the major peak, our curve of the in vivo power output
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of the scallop is close to that obtained for Argopecten irradians
by Marsh et al. (1992), who used a different approach.

The peak values of the power due to the oscillator, the jet
and the whole system are listed in Table 4. Notice that the
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value of the total power is not simply the sum of those of the
subsystems, because there is a phase delay between the two
dynamic processes. The averaged power output over the cycle
and the work done by the adductor in one cycle are also given
in Table 4.

Discussion
Kinematics

The period and the amplitude of the clap cycle were variable
during each swimming sequence. For most sequences, the clap
period increased during swimming. This was caused by the
animals climbing from the bottom to a state of level swimming
during the filming sessions. The jet force contributes both to
support of the body weight and to overcoming the drag. During
level swimming, the buoyant body weight will be largely
supported by the hydrodynamic lift, and thus the required jet
force is reduced (Cheng and DeMont, 1996b). The average jet
force is proportional to the clapping frequency; thus, the
reduced jet force slows the clapping.

The shell oscillation of the scallop in steady swimming is
not harmonic (Figs 5, 6). This is different from the steady
swimming of most fishes, in which the periodic undulation of
the body and caudal fin are quite close to harmonic motion
(Videler, 1993). In scallop swimming, one clap cycle can be
divided into three phases: closing, gliding and opening. For
Placopecten magellanicus, the averaged period of one
complete clap was approximately 0.28 s, or a frequency of
about 3.57 Hz. Shell closing lasts for approximately 0.087 s,
and shell opening is a little shorter, about 0.084 s. The gliding
phase is the longest, lasting about 0.108 s. During this phase,
movement of the two valves is minimized. Since the valves are
almost closed, the scallops may be maximizing the
hydrodynamic advantage created by their low form drag in this
configuration. Nevertheless, the definition of the gliding phase
is quite arbitrary. It merely represents a period when the valves
move very slowly after the rapid adduction phase and before
the rapid abduction phase.
Fig. 7. (A) The variation of the gape angle, angular velocity and
angular acceleration with time during one swimming sequence for a
0.065 m long Placopecten magellanicus at 10 °C. The curves have
been normalized to the maximum angle of gape, the maximum
angular velocity or the maximum angular acceleration, respectively.
This swimming sequence was used to calculate the dynamic quantities
(see text). (B) Moments versus time for the dynamic elements in the
oscillator. Mfe is the moment due to the external fluid reaction, Mh is
the moment of the hinge, Mv is the inertial moment of one valve, Mmo

is the sum of these three and is generated by the muscle to run the
subsystem of the oscillator. (C) Moments versus time for the entire
dynamic system. Mmj is the moment required to increase the pressure
for the jets, Mmo is the moment required to run the subsystem of the
oscillator and Mm is the total moment generated by the muscle to
operate the whole locomotor system for swimming. (D) Power output
versus time. Pmj is the power required to make the jets, Pmo is the
power required to run the oscillator and Pm is the total power supplied
by the muscle contraction.
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Table 5. Estimated in vivo mass-specific muscle performance
for Placopecten magellanicus and data for Argopecten

irradians and Chlamys hastata 

Placopecten Argopecten Chlamys

Peak power (W kg−1) 185 110–160 120–225
Averaged power (W kg−1) 30.6 25–33 30–62
Cyclic work (J kg−1) 9 11–21 8–17

The experimental temperature for all three species was 10°C. The
dorsal–ventral length and the striated muscle mass of the three
animals are 0.065 m and 7.21×10−3 kg for Placopecten magellanicus,
0.0501 m and 1.95×10−3 kg for Argopecten irradians and 0.052 m and
1.55×10−3 kg for Chlamys hastata.

Data for A. irradians and C. hastata are taken from Marsh et al.
(1992).

Table 4. Estimated energetic quantities for a 0.065 m long Placopecten magellanicus at 10°C

Oscillator Jet Total

Maximum moment (N m) −0.0089 −0.6041 −0.6084
Peak power (W) 0.0090 1.3242 1.3335
Averaged power (W) 0.2206
Cyclic work (J) 0.502×10−3 64.255×10−3 64.757×10−3

Maximum muscle stress (N m−2) 0.1059×106

Maximum strain 0.293
Maximum strain rate in closing (s−1) 3.441
Maximum strain rate in opening (s−1) −4.486
The closing speed of the shell reaches a constant maximum
value during one-third of the whole closing process and is
variable over the remainder. This may be true for other jet-
propelled animals, although many studies have assumed a
constant ejection speed (Moore and Trueman, 1971; Weihs,
1977; Madin, 1990). As an approximation, and for a more
convenient hydrodynamic calculation of the jet propulsive
force, a constant closing speed (calculated as the averaged
closing speed over the closing phase) can be assumed. For
Placopecten magellanicus, the mean closing speed is about
75–85 % of the maximum angular speed. The maximum
angular velocity was 182 degrees s−1, while maximum angular
acceleration occurred at approximately the maximum gape
angle and was 1370 degrees s−2.

Swimming dynamics

The external fluid reaction on a swimming scallop has three
components: the added-mass effect, flow-induced pseudo-
elasticity and pseudo-viscosity. The added-mass force is
independent of the swimming speed of the animal, but the
pseudo-viscoelasticity force is proportional to the swimming
speed (equation 14). During level swimming, a higher mean
swimming speed of 0.55 m s−1 has been reported (Dadswell
and Weihs, 1990). For this swimming speed, the flow induced
pseudo-viscoelasticity will have a significant influence on both
the amplitude and phase of the hydrodynamic force. The
swimming sequences recorded in the present study included
climbing, and the main sequence analysed was at a speed of
0.24 m s−1. For this low speed, the hydrodynamic force will be
dominated by the added mass, which is about 10 times higher
than the valve mass. We have shown that the dynamics of the
shell-hinge/outer-fluid subsystem and the muscle force
required to sustain the system are largely determined by the
interaction of the external fluid reaction and the mechanical
response of the hinge.

We have assumed that the hinge ligaments work
continuously in compression. The results in Fig. 7B show that
the adductor should always provide a tensile force to maintain
the momentum balance of the oscillator (negative values of
Mmo during the whole clapping cycle. Obviously, Mmo is
supplied by the contraction of the fast part of the adductor
muscle during the closing phase. During the gliding and
opening phases, the tensile force opposing abduction could be
supplied by the action of the smooth part of the adductor.
However, such a force will be very small, or zero, if the slow
part of the adductor muscle is not active during the gliding and
opening phases. We have omitted the tension provided by the
relaxed adductor, which is antagonistic to the hinge ligaments
and is probably very small (Olson and Marsh, 1993). If the
effect of the relaxed adductor is included in the oscillator, the
net stiffness of the whole elastic mechanism due to the hinge
and adductor should be lower than the values for the hinge
ligament alone. This will reduce the magnitude of the hinge
moment (Mh). Furthermore, during the gliding and opening
phases, the low negative effective fluid pressure which has
been omitted in the present model will assist in pulling the
valves together. Thus, the magnitude of the calculated muscle
moment during gliding, and in particular during the opening
phase, will be lower than that shown in Fig. 7B and will
probably approach zero.

The oscillator will actually have a lower natural frequency
if the stiffness of the relaxed adductor is taken into account for
calculation of kh (see equation 40). The mass or moment of
inertia of the shell is proportional to the third power of the shell
height (Dadswell and Weihs, 1990). The added inertia is
proportional to the fifth power of the shell height, and the
pseudo-elastic stiffness (kf) is proportional to the square of the
swimming speed. Thus, the natural frequencies of larger and
faster animals will be lower than the calculated value of
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4.67 Hz and may be close to the more commonly observed
clapping frequency of approximately 3 Hz. Therefore, scallops
might be designed to work at near their resonant frequencies
to operate the passive oscillator (the shell-hinge/outer-fluid
subsystem) more effectively, as already suggested by DeMont
(1990).

If the whole locomotor system is considered, the required
moment for the oscillator is negligibly low during the closing
phase compared with the required moment for jet production
(Fig. 7C). During the gliding and opening phases, the fast part
of the adductor muscle is not active, i.e. Mmj(t)=0, where t=∆tg
+∆to. The total muscle moment (Mm) is equal to the moment
due to the oscillator (Mmo), which is determined by the
moments of the hinge and by hydrodynamics. The momentum
balance is shown in Fig. 7B,C for the gliding and opening
phases.

The instantaneous propulsive force F of the two jets is
(Cheng and DeMont, 1996b):

and, from equation 24, we can see that, for any given
individual, the thrust differs from the muscle moment for jet
production only by a constant coefficient. Therefore, since the
muscle moment to run the oscillator can be neglected, the time
course of the force generation of the contracting adductor
muscle is the same as that of the hydrodynamic propulsive
force. The latter determines the swimming performance
(Cheng and DeMont, 1996b). The maximum thrust occurred at
approximately one-quarter of the closing phase, at which point
the muscle generates its peak force value. This simple
mechanical design and dynamic process of scallop swimming
results in a simple control and coordination of locomotion. It
is speculated that jet-propelled animals such as squid may use
a similar mechanism. Recent studies on fish swimming show
that there are complex timing relationships between the
contracting force of the muscle distributed along the body and
the hydrodynamic propulsive force (Cheng et al. 1994).

Although the magnitude of Mmo is much smaller than that
of Mmj, the oscillator is still an important part of the whole
locomotor system. Apart from the adductor muscle, the hinge
ligaments are some of the key components required to perform
clapping. The hinge ligaments should provide sufficient
resilience to balance the fluid reaction and shell inertia. This is
optimised by tuning the oscillator to near its resonant
frequency. The minimum stiffness of the hinge, which can be
determined from the oscillator model, should be maintained
throughout growth and under variable environmental
conditions.

Energetics and cost of locomotion

The power required to operate the oscillator is negligibly
small compared with the power required to form the jets. The
distribution of the power output during the closing phase for
Placopecten magellanicus (Fig. 7D) agrees well with that for
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Argopecten irradians (Fig. 4 in Marsh et al. 1992). The main
difference is that our curve does not show an initial peak before
the major peak. One possible reason for this disparity is that
our kinematic data were collected at a lower time resolution
than that of Marsh et al. (1992) and that this transient
phenomenon has not been detected. However, calculation of
the power output by Marsh et al. (1992) is fairly crude at the
initial part of the closing phase. This is because the velum
around the valve is not completely sealed during the initial
closing phase, and this results in a large exit opening spread
around the edge of the valve. The local fluid pressure they
measured near the adductor muscle will not adequately
characterize the pressure field in the whole cavity at this stage,
because the fluid pressure near the periphery is close to the
ambient pressure. Hence, the power calculated as the flow rate
multiplied by the pressure measured at one point in the cavity
is inappropriate, as pointed out above, and would result in an
overestimate of the initial calculated power. In fact, the initial
peak of Marsh et al. (1992) is almost masked by the amount
of noise in their curve. A larger initial peak of the in vitro
power output of the adductor muscle was obtained by Marsh
and Olson (1994). They attributed it to requirements to
accelerate the added mass and to compress the hinge ligament.
The more complete analysis of the dynamics of the locomotor
system presented in the present paper shows that the force and
power required to move the shell-hinge/outer-fluid subsystem
are far smaller than the values corresponding to the initial peak
on the in vivo or in vitro power curves of these previous studies.

Fairly good agreement was found between the scallop
adductor muscle in vivo power output and in vitro data
replicating the in vivo strain cycle on isolated muscle fibres
(Marsh and Olson, 1994). Except for the initial peaks, this
agreement in power output was found even between different
species and perhaps different swimming situations. This
implies that the power output obtained from the in vitro work-
loop measurements can give useful predictions for in vivo
performance. However, the force behaviour of the in vitro
work-loop measurements was found to be quite different from
that of the in vivo results; this will be addressed elsewhere.

We did not record the mass of the adductor muscle (or its
striated part) for the animals filmed. In order to compare our
results with those of other studies, the approximate mass of the
striated muscle of the 0.065 m long Placopecten magellanicus
can be estimated. The valve mass and the total mass can be
taken as 18.21×10−3 kg and 35.91×10−3 kg, respectively, from
Dadswell and Weihs (1990). The mass of wet soft tissues is
then 17.7×10−3 kg. The mass of the wet muscle is about half
of that of the total wet tissues (Morton, 1980), and the ratio of
the striated part to total muscle is approximately 0.815 (Gould,
1971). Thus, the wet striated muscle mass is approximately
7.21×10−3 kg.

The peak power, average power and cyclic work per unit
mass for the 0.065 m long individual filmed (ang32) are listed
in Table 5. The results for Argopecten irradians and Chlamys
hastata are also given (Marsh et al. 1992). The peak power for
P. magellanicus is higher than the average values for
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List of symbols
Aj cross-sectional area of the jet at exit
Av area of the valve projected on the commissural

plane
Am cross-sectional area of the adductor
Amq cross-sectional area of the fast part of the 

adductor
c effective viscous coefficient due to hinge and

outer fluid reaction
cf rotational viscous coefficient of pseudo-

viscosity due to outer fluid reaction
ch rotational viscous coefficient of hinge
F jet thrust
Ffi total force due to the inner fluid pressure
Ffiβ coefficient defined in equation 10
f clapping frequency
I effective inertial moment due to hinge and outer

fluid reaction
If added moment inertia of one shell
Iv inertial moment of half of the two-valve mass
k effective stiffness due to hinge and outer fluid

reaction
kf rotational pseudo-stiffness due to outer fluid

reaction
kh rotational stiffness of hinge
Lm muscle length at any instant of time
Lmc muscle length when valves are closed
Lmo muscle length at maximum valve opening
Mfe, Mh, Mv moment about the hinge for external fluid force,

for hinge deformation or for valve inertia, 
respectively

Mfi moment about the hinge due to the inner fluid
pressure

Mfiβ coefficient of internal flow moment, defined in
equation 12

Mm total moment generated by muscle contraction
Mmo, Mmj muscle moment used for the oscillator, muscle

moment for the jet flow, respectively
Pd rate of energy dissipation by the effective

damping
Pe rate of change of strain energy stored in the

effective spring
Pk rate of change of kinetic energy for scallop shell

mass and added mass
Pm total power generated by muscle contraction
Pmo, Pmj power spent on the oscillator, or power spent
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Argopecten irradians and Chlamys hastata, but the cyclic work
is lower than their average values. In general, a muscle
performs less work in each contraction when a higher power
output is needed (Alexander, 1992). The 9 J kg−1 work that the
muscle of our filmed individual was doing is lower than the
value of 20 J kg−1 suggested by Alexander (1992), although an
even lower value of 7 J kg−1 has been reported for the starling
Sturnus vulgaris (Biewener et al. 1992). However, we believe
that the mass of the striated muscle is likely to be an
overestimate. In this case, the values for the muscle energetic
quantities per unit mass will be higher.

The rate of oxygen consumption has frequently been
measured to estimate the cost of swimming for both jet-
propelled animals (Daniel, 1985; Webber and O’Dor, 1986)
and fishes (Brett, 1964; Webb, 1971; Videler, 1993). The cost
of transport for squid Illex illecebrosus was found to be about
three times that for sockeye salmon Oncorhynchus nerka, and
the efficiency of locomotion for fish was about three times that
for squid (Webber and O’Dor, 1986). Their work did not
estimate the energy required to power the movement of the
mantle and the external fluid, and the jet power was considered
to account for the entire power output of the muscle. It is not
known how the energy generated by muscle contraction during
swimming in squid is partitioned into the two basic
components, the hydrodynamic power for the jet and the power
required to accomplish the pumping cycle. DeMont and
Gosline (1988) carried out a more complete investigation on
the energetics of jellyfish swimming, although the external
fluid reaction was still omitted. They found that the total
mechanical power was spent as follows: 39–61 % on the jet,
19–32 % on the kinetic energy of the bell and 20–29 % on the
deformation of the bell.

From Table 4, the mechanical work done by the muscle on
the oscillator, i.e., the pumping structure, is 0.502×10−3 J and
the total muscle work done in one cycle is 64.8×10−3 J. The
ratio of the work done on the oscillator to the total work is
therefore about 0.007 and the former can almost be ignored in
the energy budget. This means that more than 99 % of the
mechanical energy from the muscle is spent on jet production,
which is basically the hydrodynamic power of the jet. Thus,
the Froude efficiency (Alexander, 1977) of the pulsed jet
propulsion approximates the mechanical efficiency of the
locomotor system. This could be a fundamental advantage for
the jet-propelled scallop. It has been known that the Froude
efficiency for jet-propelled animals is generally much lower
than that for most axial undulatory propulsion in fishes. Our
recent results (Cheng and DeMont, 1996b) show that Froude
efficiency for scallops (Placopecten magellanicus) decreases
during growth from 0.5 to 0.3 for level swimming, and from
about 0.4 to 0.2 for climbing at an angle of 25 °. However,
fishes may need a relatively higher proportion of the
mechanical power available from the muscles to supply the
kinetic energy for the undulation of their body (particularly for
anguilliform and subcarangiform fishes) and the strain energy
to deform the body tissues (Wainwright, 1983; Cheng et al.
1994; Cheng and Blickhan, 1994; Bowtell and Williams,
1994). Integrated energetic studies will certainly serve as a
valuable approach to provide more information on the
locomotor mechanism and the energy flow from the output of
the muscle to the useful hydrodynamic propulsive work in
aquatic animals. Comparative studies on other jet-propelled
animals and fishes may help us to understand how jet-propelled
animals with a low Froude efficiency survive and compete with
fishes in the open ocean.
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on the jets, respectively
Pmj0, Pmj1 jet power due to uniform pressure and variable

pressure, respectively
pi effective pressure at inner surface of shell
piβ coefficient defined in equation 8
pj, ps inner fluid pressure at exit, or at shell,

respectively
SL shell height (see Fig. 2)
Sx x-coordinate of any point on the shell
T time for one jet cycle
t time
tm thickness of aerofoil
ts thickness of two shells
U swimming speed
Uj, Us fluid velocity at exit, or at the shell, respectively
Ve volume of expellable water at any instant
Vm volume occupied by the adductor muscle
Vs volume enclosed by the wedge bounded by the

velum and two shell planes
Wm total work done by the muscle during one cycle
Wmo, Wmj work done on the oscillator, or work done on

the jets, respectively
α angle of attack
αT trajectory angle between the swimming

direction and horizontal surface
βmin, βmax minimum and maximum half-gape angle,

respectively
βmm effective maximum half-gape angle
β(t) half-gape angle
γmin, γmax minimum and maximum gape angles,

respectively
γ(t) angular displacement of the hinge
∆to, ∆tc, ∆tg duration of opening, closing or gliding phase,

respectively
ε muscle strain
ε0 maximum muscle strain
ε1 coefficient defined in equation 30
λto, λtc, λtg ratio of time interval of opening, closing or

gliding phase to one cycle, respectively
λ1, λ2 geometrical parameter (see Fig. 2)
λA=1−(Am/Av), λAj = Aj/Av area ratios
ρ density of sea water
σ muscle stress
σmm coefficient of muscle stress
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