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Abstract In this paper, we investigate circular orbits for

test particles around the Schwarzschild–de Sitter (dS) black

hole surrounded by perfect fluid dark matter. We determine

the region of circular orbits bounded by innermost and out-

ermost stable circular orbits. We show that the impact of the

perfect fluid dark matter shrinks the region where circular

orbits can exist as the values of both innermost and outer-

most stable circular orbits decrease. We find that for specific

lower and upper values of the dark matter parameter there

exist double matching values for inner and outermost stable

circular orbits. It turns out that the gravitational attraction

due to the dark matter contribution dominates over cosmo-

logical repulsion. This gives rise to a remarkable result in

the Schwarzschild–de Sitter black hole surrounded by dark

matter field in contrast to the Schwarzschild–de Sitter met-

ric. Finally, we study epicyclic motion and its frequencies

with their applications to twin peak quasi-periodic oscilla-

tions (QPOs) for various models. We find the corresponding

values of the black hole parameters which could best fit and

explain the observed twin peak QPO object GRS 1915+109

from microquasars.

1 Introduction

In general relativity, black holes have been always very fas-

cinating and intriguing objects for their geometric properties

and their existence has been regarded as a generic result of

Einstein gravity. However, they had been so far considered as
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candidates till the discovery of gravitational waves has been

announced as a result of two stellar black hole mergers [1,2]

via LIGO-VIRGO detection and also the first supermassive

M87 black hole image under Collaboration of the Event Hori-

zon Telescope (EHT) [3,4]. After these discoveries, the new

door has been opened to reveal unknown properties of black

hole candidates and to precise constraints and measurements

of the parameter related to the geometry of astrophysical

black hole candidates.

Since particles and even photons get affected drastically

due to the strong gravitational field of black hole and exotic

compact objects, their motion has been thoroughly investi-

gated for several years with great interest. In this respect, new

observations associated with black holes give a new oppor-

tunity in understanding not only the unexplored problems

of black holes candidates but also the other existing fields

affecting geodesics of particles and the background geome-

try. These existing fields surrounding the black hole candi-

date may contribute to the motion of particles [5–11]. Thus,

the test particle motion can accordingly provide informa-

tion about the other elements in the black hole vicinity. For

example, the magnetic field due to the Lorentz force can dras-

tically affect on the charged particles near the black holes,

irrespective of the fact that it is weak [12–34]. Similarly, in

a realistic astrophysical scenario one can also consider the

effect arising from the dark matter fields in the background

environment of black holes due to the fact that supermassive

black holes may be surrounded by dark matter distribution.

Although there still exists no direct experimental detection

of dark matter, the observational data has verified its exis-

tence in galactic rotation curves of giant elliptical and spiral

galaxies [35]. Note that recent analysis and observations con-

firm that the contribution of the dark matter to the mass of
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a galaxy can reach up to 90% [36], and hence it is believed

that giant elliptical and spiral galaxies endowed with super-

massive black holes in their center are placed in giant dark

matter halos [3,4]. The question then arises of how the back-

ground geometry can include a dark matter contribution. The

question was then addressed by using a non-vacuum solu-

tion of Einstein’s equation by several authors in the literature

(see for example [37,38]). In order to model the dark mat-

ter background a static and spherically symmetric black hole

solution containing a dark matter profile was proposed by

Kiselev [37], containing a logarithmic term, α ln(r/rq), as

a non-vanishing contribution of dark matter. Later, from a

different perspective Li and Yang [39] approached another

black hole solution which contains a term (rq/r) ln(r/rq) by

imposing the condition according to which the dark mater

halo represented by a phantom scalar field is composed of

the weakly interacting massive particles (WIMPs) with the

equation of state ω ≃ 0. In doing so, Li and Yang [39] derived

the black hole solution which represents only the background

matter as dark matter. Following Li and Yang there are several

investigations that can contain dark matter fields differently

in the black hole background geometry [40–51].

Similar to the dark matter field, as regards a realistic astro-

physical scenario, cosmological effects should be taken into

consideration at large scales and in the black hole vicin-

ity as well. So far, we have confirmed that the universe is

already being expanded with an accelerating rate due to the

unknown repulsive effect of dark energy related to the vac-

uum energy associated with the cosmological constant term

Λgαβ in the standard Einstein equations. That is, the back-

ground of black holes can be no longer considered as vacuum,

like that of the cosmological constant. Thus, the repulsive

effect of the cosmological constant becomes increasingly

important at large scales even though its estimated value

is about Λ ∼ 10−52m−2 as stated by recent cosmological

observations [52,53]. There is much work revealing the sig-

nificant role of the cosmological constant in a wide range of

astrophysical phenomena [19,54–63]. Later, quintessential

scalar fields were also suggested instead of the cosmolog-

ical constant Λ as an alternative form of the dark energy

[52,64,65]. Black hole solutions surrounded by a dynamical

quintessential field were suggested by providing the equa-

tion of state p = ωqρ with ωq ∈ (−1;−1/3) [37] and

ωq ∈ (−1;−2/3) [66]. Note that the equation of state with

ωq = 1 refers to the vacuum energy with cosmological con-

stant Λ.

Generally in the low mass X-ray binary systems such as

a neutron star (NS) or a black hole, quasi-periodic oscilla-

tions (QPOs) are observed in their power spectra. They are

generally characterized by either low-frequency (LF) or high-

frequency (HF) QPOs. The latter ones which usually arise in

pairs are termed twin peak HF QPOs. The HF QPOs carry

unique information on the matter falling and/or moving in

extreme gravity around the compact object. The LF QPOs

are strong, persistent, and tend to drift in frequency, while

HF QPOs are transient and weak but do not shift their fre-

quencies significantly [67,68], and in some X-ray binaries,

both LF and HF QPOs are found together. The astrophysical

data suggests that HF and LF QPOs are created in different

parts of the accretion disk. In the literature, there are several

models available to explain QPOs [69–75].

The principal aim of this present paper is to consider the

mentioned realistic scenarios and their combined effect to the

study of epicyclic motion and its applications to the quasi-

periodic oscillations (QPOs) around the Schwarzschild–de

Sitter black holes surrounded by perfect fluid dark matter.

This is what we wish to demonstrate in this paper by studying

particle motion in the black hole metric described by the line

element proposed in [38,76].

The paper is organized as follows: In Sect. 2 we briefly

introduce the black hole metric and its properties. In Sect. 3

we provide a detailed analysis related to circular orbits of test

particles, the degeneracy relation, stability (instability) of cir-

cular orbits, and the efficiency the energy released around the

black hole. In Sect. 4 we consider fundamental frequencies in

the black hole vicinity. We end with our concluding remarks

in Sect. 5.

Throughout, we use a system of units in which gravita-

tional constant and velocity of light are set to unity. Greek

indices are taken to run from 0 to 3, while Latin indices from

1 to 3.

2 Schwarzschild–de Sitter Black hole immersed in

perfect fluid dark matter field

The Lagrange density describing a Schwarzschild–de Sitter

black hole immersed in perfect fluid dark matter field is given

by [38,76]

S =
1

16π

∫

d4x
√

−g
[

R − 2Λ

−2
(

∇µΦ∇µΦ − 2V (Φ)

)

− 4(L DM + L I )

]

, (1)

with V (Φ) related to the phantom field potential and LDM

and L I referring to the dark matter Lagrangian density and

the interaction between the dark matter and phantom field.

Given this action, the Einstein field equation is written

Rµν −
1

2
gµν R + Λgµν = 8π

(

T DM
µν + 2∇µΦ∇νΦ

−gµν∇αΦ∇αΦ + T I
µν

)

, (2)

where T DM
µν is the energy-momentum tensor of a perfect fluid

dark matter profile. Following Eq. (2) one can write the Ein-
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stein equations in detailed form [38],

e−δ

(

1

r2
−

δ′

r

)

−
1

r2

=
e−δ

2
Φ ′2 − V (Φ) + Λ − ρDM, (3)

e−δ

(

1

r2
+

α′

r

)

−
1

r2

= −
1

2
e−δΦ ′2 − V (Φ) − Λ , (4)

e−δ

(

α′′ +
α′2

2
+

α′ − δ′

r
−

α′δ′

2

)

=
1

2
e−δΦ ′2

−V (Φ) − Λ, (5)

where α and δ are the ansatz which could help find the exact

static black hole solutions. As a result of the above equations,

the Schwarzschild–de Sitter black hole metric surrounded by

perfect fluid dark matter field in Boyer–Lindquist coordinates

(t, r, θ, ϕ) can be written as follows:

ds2 = −F(r)dt2 + F(r)−1dr2 + r2dΩ2, (6)

where

F(r) = 1 −
2M

r
−

Λ

3
r2 +

λ

r
ln

r

|λ|
. (7)

Here M is black hole mass and Λ and λ, respectively, refer

to the cosmological constant and the dark matter field. It

is worth noting that, in the limit Λ,λ → 0, the above-

mentioned metric (6) takes the form of the Schwarzschild

metric. The stress energy-momentum tensor for the dark mat-

ter field distribution yields

T µ
ν

DM = diag(−ρ, pr , pθ , pφ), (8)

where the density and radial and tangential pressures are

given by

ρ = −pr =
λ

8πr3
and pθ = pφ =

λ

16πr3
. (9)

Here the point to be noted is that for a dark matter distri-

bution we further focus on the positive value of dark matter

profile, i.e. λ > 0, which refers to positive energy density.

The horizon is located at the positive root of the following

equation:

r − 2M −
Λ

3
r3 + λ ln

r

|λ|
= 0, (10)

and on solving it gives an analytical expression for small

values of ΛM2 ≪ 1 and λ/M ≪ 1,

rh = M +

√

M2 +
16

3
M4Λ − 2Mλ ln

2M

|λ|
. (11)

Note that the horizon radius is given by rh = 2M in the case

Λ = 3λ ln 2M
|λ| /8M3. From the above equation the horizon

radius rh increases as the cosmological constant Λ is intro-

duced, while it decreases once the dark matter field λ is taken

into account.

3 Circular orbits around the black hole

We now investigate particle motion around the Schwarzschild–

de Sitter black hole immersed in the perfect fluid dark matter.

From the Hamilton–Jacobi formalism, the Hamiltonian can

be taken as constant H = k/2 with k = −m2, where m is the

mass of the test particle. For photons, one has to set k = 0.

The action S for Hamilton–Jacobi can be written as

S = −
1

2
kτ − Et + Lϕ + Sr (r) + Sθ (θ), (12)

where E and L are the usual conserved quantities associated

with the time translations and spatial rotations and describe

the energy E and angular momentum L of the particle or

photon, respectively and Sr and Sθ are functions of only r

and θ , respectively. Now it is straightforward to obtain the

Hamilton–Jacobi equation in the following form:

k = −
E2

F(r)
+ F(r)

(

∂Sr

∂r

)2

+
1

r2

(

∂Sθ

∂θ

)2

+
L2

r2 sin2 θ
.

(13)

Due to the spherical symmetry of the spacetime we can

restrict the analysis to the equatorial plane θ = π/2. Then

from the separability of the action given in Eq. (13) we obtain

the radial equations of motion for particles and photons in

the form

ṙ2 = E
2 + F(r)

(

k −
L2

r2

)

= E
2 − Veff(r), (14)

where E = E/m and L = L/m, respectively, refer to energy

and angular momentum per unit mass. For a massive particle,

we have set k = −1 so that the effective potential Veff(r) is

defined by

Veff(r,L) = F(r)

(

1 +
L2

r2 sin2 θ

)

. (15)

The radial profile of the effective potential is shown in

Fig. 1 for different values of λ for given Λ. As could be seen

from the radial profile of Veff , the curves shift towards the

left for smaller r . In the case of the cosmological constant,

the curves remain at larger r .

3.1 Stable circular orbits

Let us then turn to the effective potential to find circular

orbits, for which we should solve simultaneously

Veff(r,L) = 0, ∂r Veff(r,L) = 0. (16)
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Fig. 1 Radial profiles of the effective potential for radial motion of test

particles around the Schwarzschild–de Sitter BH surrounded by PFDM

medium for different values of λ and Λ. Here we use Λ → Λ/M2 and

λ → λ/M

Fig. 2 The radial dependence of the specific angular momentum (top

panel) and energy (bottom panel) for test particles orbiting around

Schwarzschild–de Sitter BH surrounded by PFDM for different val-

ues of the DM parameter in the case of positive cosmological constant.

In this plot we use Λ → Λ/M2 and λ → λ/M

The above equation is solved to give the radii of circular

orbits for given values of E and L. The radial profiles of the

angular momentum L and energy E at the circular orbits are,

respectively, written in the following form:

L
2 =

r2
[

3λ

(

1 − ln r
|λ|

)

+ 6M − 2Λr3
]

3
[

2r − 6M − λ

(

1 − 3 ln r
|λ|

)] , (17)

E
2 =

2
[

6M + Λr3 − 3r − 3λ ln r
|λ|

]2

9r
[

2r − 6M − λ

(

1 − 3 ln r
|λ|

)] , (18)

We show, respectively, the radial profiles of the angular

momentum and energy of the circular orbits in Fig. 2. As

λ increases for fixed Λ, the curves of the angular momentum

shift towards left to smaller r , while they tend to unity from

below for the latter case. This means bound circular orbits

can exist only for λ < 0.5, i.e. E ≤ 1 is always satisfied

(see Fig. 2, bottom panel). As shown in Fig. 1, Veff has no

minimum and there is a maximum only for λ = 0.5.

Let us next consider photon orbits, which determine the

existence threshold for circular orbits which would exist r >

rph . That is defined by either L2
± → ∞ or E2

± → ∞, giving

the condition

6M − 2r + λ

(

1 − 3 ln
r

|λ|

)

= 0 , (19)

which gives explicitly the radii of the photon sphere. From

Eq. (19) one can easily find the following expression for the

photon orbit rph:

rph ≈ 3M +
1

2

(

1 − ln
27

8

)

λ + O(λ2). (20)

As shown from Eq. (20) this clearly shows that the photon

orbit rph does not depend on a cosmological constant Λ.

Further, we consider the innermost stable circular orbit

(ISCO) defined by the minimum value of the angular momen-

tum L. In order to have circular orbits the following standard

condition should hold:

∂rr Veff(r) ≥ 0. (21)

However, to find the ISCO radius one needs to solve

∂rr Veff(r) = 0, which renders the minimum radius for the

particle in a circular orbit. Thus, we have

0 =
(3λ + 2r)

(

λ − Λr3 + r
)

λ

(

1 − 3 ln r
|λ|

)

+ 6M − 2r

+3λ

(

1 − ln
r

|λ|

)

+ 6M − 5Λr3 + r. (22)

It turns out that it is complicated to solve Eq. (22) analytically,

and thus we explore it numerically.

In Fig. 3, we show the behavior of the ISCO radius as

a function of the cosmological constant Λ on the top panel

and λ on the bottom panel. As shown in Fig. 3, the radius

curve consists of two parts, i.e. the one that grows from below

corresponds to the ISCO and the other that goes down from

large r and intersects at the upper limit of the ISCO and cor-

responds to an outermost stable circular orbit (OSCO). Thus,

stable circular orbits can only exist between the ISCO from

inside and OSCO from outside in the spherically symmet-

ric Schwarzschild–de Sitter black hole vicinity. This, in turn,
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Fig. 3 Dependence of ISCO and OSCO radius as a function of the

cosmological parameter Λ in top panel (PFDM parameter λ in bottom

panel) for different values of PFDM parameter (cosmological constant).

The lower (upper) part of the curve determines the ISCO (OSCO). In

this plot we use Λ → Λ/M2

exhibits striking differences from other spacetime metrics

being asymptotically flat at large distances. Also, one can see

here that the presence of perfect fluid dark matter or PFDM

does play a decisive role for the interplay between gravita-

tional attraction and cosmological repulsion, thus reducing

the values of both the ISCO and the OSCO and shrinking

the region where circular orbits can exist; see Fig. 3 (top

panel). Notice that, for specific lower and upper values of

perfect fluid dark matter λ in the case of fixed Λ = 0.0008,

the particles can have only one circular orbit as the ISCO

and OSCO coincide; see Fig. 3 (bottom panel). This happens

because the gravitational attraction due to the contribution

of the perfect fluid dark matter dominates over cosmolog-

ical repulsion. This gives rise to the remarkable result that

there exist double matching values of the ISCO and OSCO

in the Schwarzschild–de Sitter spacetime in the presence of

dark matter field, in contrast to the Schwarzschild–de Sitter

metric. It is worth noting that the ISCO radius decreases for

small values of λ. It does, however, increase for larger values

of λ. This happens because for larger values of λ its effect

can turn repulsive due to the repulsive nature of the radial

pressures. Thus, there exist no stable circular orbits anymore

for larger values of λ at large r , as seen in Fig. 3 (bottom

panel).

Fig. 4 The dependence of the cosmological constant Λ on the perfect

fluid dark matter parameter λ for a test particle on circular orbit for

which the ISCO radius is the same as the ISCO in the Schwarzschild

spacetime

Next, let us find the values of λ and Λ for which one can

compare the behavior of test particles with the one in the

Schwarzschild case. In Fig. 4, we demonstrate the relation

between Λ and λ for which a test particle can have the same

orbits as particles on circular orbits around the Schwarzschild

black hole. Or, in other words, the combined effects of the

cosmological constant Λ and dark matter λ can mimic the

Schwarzschild black hole, thus providing the same ISCO

radius, as seen in Fig. 4.

3.2 Schwarzschild de Sitter BH surrounded by PFDM

versus Kerr BH: a comparison of the ISCO radius

In fact, the existence of perfect fluid dark matter parameter

and black hole spin shrinks the size of the ISCO radius. Since

they exhibit a repulsive gravitational charge, it would be dif-

ficult for a] far away observer to distinguish whether a black

hole has spin or is immersed in a perfect fluid dark matter

field. With this motivation, we further explore the degen-

eracy values of perfect fluid dark matter parameter of the

Schwarzschild–de Sitter black hole and the spin parameter of

Kerr BH, for which they have the same ISCO radius. Thus, in

astronomical observations, distinguishing black hole space-

times in a direct or an indirect way still remains a challenging

question.

Let us here write the ISCO radius for test particles orbiting

around rotating Kerr BHs for retrograde and prograde orbits

[77],

risco = 3 + Z2 ±
√

(3 − Z1)(3 + Z1 + 2Z2), (23)

with

Z1 = 1 +
(

3
√

1 + a + 3
√

1 − a
)

3
√

1 − a2,

Z2
2 = 3a2 + Z2

1 .
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Fig. 5 The degeneracy relation between the values of the spin param-

eter of Kerr BH and the PFDM parameter, λ for which the radius of

ISCO for the Kerr BH is the same as the ISCO for the Schwarzschild

BH surrounded by PFDM in a de Sitter spacetime. In this plot, we use

Λ → Λ/M2

We now turn to the main motivation to determine the val-

ues of the spin parameter a and perfect fluid dark matter

parameter, λ for which the ISCO radius takes the same val-

ues.

In Fig. 5 we show the degeneracy between spin parameter

a and perfect fluid dark matter parameter λ for the location

of the ISCO for different values of the cosmological constant

Λ. As shown in Fig. 5, this clearly shows that an increase in

the value of Λ leads to mimicking of smaller values of the

spin parameter a for given values of λ. This happens because

the cosmological constant is interpreted as an attractive grav-

itational charge.

3.3 Stability of orbits

In this subsection, we study the stability (instability) of circu-

lar orbits for test particles orbiting around a Schwarzschild–

de Sitter black hole surrounded by perfect fluid dark matter.

For that we consider Lyapunov exponent (LE) which rep-

resents a measure of the average rate, by which nearby tra-

jectories can converge or diverge in the phase space [78].

For a geodesic stability analysis in terms of Lyapunov expo-

nents (by λL we would mean LE) one needs to deal with the

following equation [79,80]:

λL(r;L, λ,Λ) =
√

−∂rr Veff(r;L, λ,Λ)

2ṫ2
. (24)

Here LE would play an important role as the main mathe-

matical tool in studying the asymptomatic behavior of tra-

jectories (i.e. the behavior of the orbits). Accordingly, for

test particle trajectories to be on stable orbits λL < 0 always.

For λL = 0 bifurcation points occur, while for λL > 0 the

particle trajectory becomes more chaotic. By imposing these

three conditions, we analyze stability (instability) of the par-

ticle orbits. Here, recalling Eq. (24) we derive the following

Fig. 6 The radial dependence of LE for the motion of test particles

around the Schwarzschild black hole surrounded by PFDM medium in

a de Sitter spacetime for different values of the cosmological constant

Λ and the parameter λ. In this plot we use Λ → Λ/M2 and λ → λ/M

equation for stable circular orbits:

λL =
3λ ln r

|λ| − 6M − Λr3 + 3r

√
6r2

(

6M + Λr3 − 3r − 3λ ln r
|λ|

)

×
{

2Λr3(4λ + 15M − 4r) − 3λ ln
r

|λ|

×
(

3λ ln
r

|λ|
− 4λ − 12M + 5Λr3 + r

)

−6
(

λ2 + 6M2 + 4λM − Mr
)}

1
2
. (25)

In Fig. 6, we show the radial dependence of the Lyapunov

exponent for test particle around the Schwarzschild–de Sitter

black hole immersed in perfect fluid dark matter field. As can

be seen from Fig. 6 the region where stable circular orbits can

exist expands with increasing the value of the dark matter λ

in the case of fixed Λ. For small radii, the particle trajectory

starts becoming more chaotic as there exist no stable circular

orbits for test particles. One can also see that bifurcation

points occur when the curves touch the horizontal axis, i.e.

λL = 0 which determines the location of the ISCO. As shown

in Fig. 6 the ISCO radius shifts towards the left to smaller r

as a consequence of the increase of perfect fluid dark matter

λ.

3.4 The energy efficiency

The Keplerian accretion around an astrophysical BH has been

modeled by Novikov and Thorne [81], who found that thin

disks geometrically reflect the effects of spacetime properties

on circular geodesics. Here we define the energy efficiency

of the accretion disk around a black hole. That is, the highest

energy can be extracted by the accretion disk due to the falling

of matter into the black hole. The expression for the energy
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Fig. 7 Efficiency of energy release from accretion disc around

Schwarzschild BH surrounded by PFDM in de Sitter as a function

of the parameter λ for the different values of Λ. In this plot, we use

Λ → Λ/M2

efficiency is defined by [82]

η = 1 − EISCO, (26)

with test particle energy EISCO at the ISCO. For that, we use

the energy expression Eq. (18) for particles at the ISCO by

solving Eq. (21). For an exact analytical form, one needs to

solve these two equations simultaneously, but it turns out to

be very complicated. Thus, we shall explore the combined

effects of λ and Λ on the energy efficiency numerically and

provide plots for details.

In Fig. 7 we show the dependence of energy efficiency

released by falling in particle (matter) on the perfect fluid

dark matter parameter λ for different values of the cosmo-

logical constant Λ. One can see that as a consequence of the

increase of λ the energy efficiency decreases, while it slightly

increases as Λ increases.

It is well known that the bolometric luminosity of the black

hole accretion disk is defined by the following relation [26]:

Lbol = ηṀc2, (27)

with Ṁ being the rate of accretion matter falling into the black

hole. From an astrophysical point of view, there are important

issues in observations of the bolometric luminosity, one of

which is related to the determination of the black hole type.

Since theoretical analysis and models, proposed to measure

the bolometric luminosity, show similar characters for effects

of parameters in any two different gravity models, we turn

to the question whether the combined effects of perfect fluid

dark matter and cosmological constant can mimic the effects

of the bolometric luminosity and the spin parameter of a

Kerr black hole, thus providing the same value of the energy

efficiency.

The expression of the energy efficiency released from

accretion disk of a Kerr black hole is defined by [77]

EKerr(r, a) =
a + r3/2 − 2

√
r

r3/4
√

2a + r3/2 − 3
√

r
. (28)

Fig. 8 Dependence of the energy release efficiency from Kerr BH’s ret-

rograde accretion disk from its spin parameter (top panel) and degen-

eracy relations between spin of the Kerr BH and the DM parameter

providing the same energy efficiency in the case when the matter rate

down flow to central BH is equal in the two cases. In this plot, we use

Λ → Λ/M2

Figure 8 shows the relation between the black hole spin

parameter and perfect fluid dark matter for which the energy

efficiency released from retrograde orbit onto accretion disk

in the Kerr black hole geometry is the same as the energy effi-

ciency in the Schwarzschild–de Sitter black hole geometry

in the perfect fluid dark matter for different values of the cos-

mological constant. As can be seen from the top panel, two

different values of the spin parameter can provide the same

energy efficiency η [%] given in the range (5.7191, 5.9169).

We also show the degeneracy for the spin parameter which

mimics entirely the effect of the dark matter parameter; see

Fig. 8 (bottom panel). As shown in the bottom panel, this

clearly shows that the degeneracy relations shift towards right

to larger λ due to the inclusion of the effect of the cosmolog-

ical constant.

4 Fundamental frequencies

One of the highly energetic phenomena in the universe is

an astrophysical system comprising an accretion disk sur-

rounding a compact star or a black hole. Occasionally, the

compact source-accretion disk system emits a jet along with

energetic X- and γ -rays. Such astrophysical systems are usu-

ally termed microquasars; they exhibit quasi-periodic oscil-
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lations or QPOs and are characterized by high- and low-

frequency peaks in their power spectrum. So far there is no

deep understanding as to how the QPOs are produced, but

simplified models are based on the assumption of the reso-

nance of orbital and radial oscillation frequencies of test neu-

tral particles orbiting the compact source in the perturbed cir-

cular orbits. We are mainly interested in the high-frequency

QPOs which are modeled as Kerr black holes with charged or

neutral particles in the perturbed ISCOs producing epicyclic

frequencies.

In this section, we study fundamental frequencies of test

particles around stable circular orbits in the background

geometry of Schwarzschild–de Sitter black hole immersed in

perfect fluid dark matter, i.e. Keplerian (orbital) frequency,

frequencies of radial and latitudinal oscillations with their

applications to upper and lower frequencies of twin peak

QPO objects for various models.

4.1 Keplerian frequency

The angular velocity of a particle orbiting a BH’s accretion

disk measured by an observer located at infinity, known as

the Keplerian frequency, is defined by

ΩK =
dφ

dt
=

φ̇

ṫ
. (29)

By following Eq. (29) one can find the expression for the

Keplerian frequency for test particles around static, spheri-

cally symmetric black holes in the form

ΩK =
√

f ′(r)

2r
, (30)

while for the Schwarzschild–de Sitter black hole with perfect

fluid dark matter field Eq. (29) yields

ΩK =

√

M − Λ
3

r3 + λ
2

[

1 − ln r
|λ|

]

r3/2
. (31)

Our aim here is to understand the results of fundamental

frequencies on the basis of analysis; thus we shall define them

in the standard unit (i.e. Hz)

ν =
1

2π

c3

G M
Ω, [Hz]. (32)

For that we convert geometrical units (i.e. 1/cm1/2) into the

standard one (Hz) for which we use c = 3 × 1010cm/s and

G = 6.67 × 10−8cm3/(g · s2).

The radial dependence of the Keplerian frequencies for

test particles around a Schwarzschild–de Sitter black hole

is shown in Fig. 9. From Fig. 9, one can see that as a con-

sequence of the combined effects of the cosmological con-

stant and dark matter the Keplerian frequency gets slightly

decreased.

Fig. 9 Radial dependence of Keplerian frequencies of test particles

around a Schwarzschild–de Sitter BHs for the different values of the

cosmological constant. In this plot, we useΛ → Λ/M2 andΛ → Λ/M

4.2 Harmonic oscillations

We consider here test particle motion on the stable circular

orbits. For a small perturbation r → r0+δr and θ → θ0+δθ

the particle oscillates with radial and latitudinal fundamental

frequencies with the so-called epicyclic motion. Since a test

particle is slightly perturbed around r0 one can expand the

effective potential in small δr and δθ as follows:

Veff(r, θ) = Veff(r0, θ0)

+δr ∂r Veff(r, θ)

∣

∣

∣

∣

r0,θ0

+ δθ ∂θ Veff(r, θ)

∣

∣

∣

∣

r0,θ0

+
1

2
δr2 ∂2

r Veff(r, θ)

∣

∣

∣

∣

r0,θ0

+
1

2
δθ2 ∂2

θ Veff(r, θ)

∣

∣

∣

∣

r0,θ0

+δr δθ ∂r∂θ Veff(r, θ)

∣

∣

∣

∣

r0,θ0

+ O

(

δr3, δθ3
)

. (33)

From the above equation we eliminate the first three terms by

imposing the condition Eq. (16) for stable circular orbits and

then keep only the second order terms. We then substitute

Eq. (33) into Eq. (14), so that we obtain harmonic oscilla-

tor equations for the radial and latitudinal oscillations in the

following form:

δr̈ + Ω2
r δr = 0 and δθ̈ + Ω2

θ δθ = 0, (34)

where Ωr and Ωθ , respectively, refer to the radial and lati-

tudinal angular frequencies measured by a distant observer,

being defined as

Ω2
r = −

1

2grr

∂2
r Veff(r, θ)

∣

∣

∣

∣

θ=π/2

, (35)

Ω2
θ = −

1

2gθθ

∂2
θ Veff(r, θ)

∣

∣

∣

∣

θ=π/2

. (36)

The radial and latitudinal frequencies are then given by

Ωr = ΩK

{

1 −
6M

r
+ 3Λr2 −

λ

r

(

1 − 3 ln
r

|λ|

)
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Fig. 10 Radial profiles of frequencies of radial oscillations of test particles around a pure Schwarzschild (left panel) and Swcharzschild–de Sitter

(right panel) black hole immersed in a perfect fluid dark matter field for different values of λ. In this plot, we use Λ → Λ/M2 and λ → λ/M

−
3
(

1 − Λr2 + λ
r

) (

2Λr2 + λ
r

)

3λ
r

(

1 − ln r
|λ|

)

+ 6M
r

− 2Λr2

⎫

⎬

⎭

1
2

, (37)

Ωθ = ΩK , (38)

Ωφ = ΩK . (39)

Figure 10 reflects the radial dependence of radial frequen-

cies of test particles around the Schwarzschild black hole on

the left panel and around the Schwarzschild–de Sitter black

hole on the right panel for different values of dark matter

λ. From Fig. 10, it can be seen that the radial frequency

increases and location of oscillation shifts towards the left

for small r due to the effect of dark matter. The inclusion of

a cosmological constant does, however, cause the decrease

of the frequency due to its cosmological repulsion.

4.3 Schwarzschild–de Sitter BH in PFDM vs Kerr BH: the

same frequencies of twin peak QPOs

In this subsection, we consider the possible frequencies of

twin peak QPOs around the Schwarzschild–de Sitter black

hole surrounded by perfect fluid dark matter field and com-

pare the obtained results with the one in Schwarzschild and

Kerr black hole cases for twin peak QPOs [83,84]:

– Relativistic procession (RP) model [85]. In the standard

RP model, the upper and lower frequencies are identified

through the radial and orbital frequencies as νU = νφ and

νL = νφ − νr , respectively. In modified RP1 and RP2

models, the frequencies can be identified as νU = νθ ,

νL = νφ − νr and νU = νφ , νL = νθ − νr , respectively.

– The epicyclic resonance (ER2, ER3, ER4) models [86].

In the ER models, the accretion disk is assumed to be thick

enough and QPOs appears due to the resonance oscil-

lations of uniformly radiating particles along geodesic

orbits. The upper and lower frequencies for ER2, ER3,

and ER4 models are defined through frequencies of

orbital and epicyclic oscillations as νU = 2νθ − νr ,

νL = νr , νU = νθ + νr , νL = νθ , and νU = νθ + νr ,

νL = νθ − νr , respectively.

– The warped disk (WD) model [87,88]. In WD model

the QPOs frequencies appear due to the oscillations of

warped thin disk. The upper and lower frequencies are

defined as νU = 2νφ − νr , νL = 2(νφ − νr ).

Let us then turn to the analysis of the possible frequencies

of twin peak QPOs. In Fig. 11, we show relations between

upper and lower frequencies of twin peak QPOs around the

Schwarzschild black hole, the extremal Kerr black hole, and

the Schwarzschild–de Sitter black hole immersed in perfect

fluid dark matter for various RP, WD and ER2–4 models.

Here we focus on the set of possible values of upper and

lower frequencies, and then we show the way to allowing for

test gravity theories on the basis of data by twin peak QPO

presented in the νU –νL diagram. According to the model here

considered, if the location of a twin peak QPO lies between

the black dotted and blue dot-dashed lines in νU − νL space,

as shown in Fig. 11, a black hole can be referred to as a rotat-

ing Kerr black hole. Similarly, if the QPO lies between gray

and blue dashed lines and between red dashed and brown

large-dashed lines as well, there exists the effect of the cos-

mological constant. Moreover, corresponding orange, green

and purple lines representing frequencies of twin peak QPOs

with the ratio of upper and lower frequencies νU : νL = 3:2;

4:3; 5:4 suggest that the possible range of twin peak QPOs

can be generated around a black hole. As can be seen from

the behavior of the twin peak QPOs the presence of a cos-

mological constant gives rise to the decrease in the value of

lower QPO frequencies up to values below 50 Hz (100 Hz) in

contrast to the Schwarzschild black hole where it is greater

than 120 Hz in RP, WD and ER3–4 models, respectively.

Moreover, based on the comparison of blue dashed and

solid gray lines, one may infer that the possible values of

upper and lower frequencies of twin peak QPOs decrease

as a consequence of the presence of the dark matter. In the

case of RP, WD and ER4 models, the degeneracy values
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Fig. 11 Relations between frequencies of upper and lower peaks

of twin peak QPOs in the RP, WD and ER2–4 models around the

Schwarzschild BH, extremely rotating Kerr BH and Schwarzschild–

de Sitter BH in PFDM for different values of the cosmological constant

and fixed value of PFDM parameter. In this plot, we use Λ → Λ/M2

and λ → λ/M

of lower frequency matching with two different upper fre-

quencies occur as that of the cosmological constant. Here we

restrict our attention to a more realistic case: we show, as

an example, the position of a twin peak QPO referred to as

GRS 1915+105 object [89] with upper and lower frequencies

νU = 168 ± 5 and νU = 113 ± 3 Hzs, respectively, and the

total mass M ∼ 10M⊙ in νU–νL space to find correspond-

ing values of λ and Λ with the location of the QPO. Con-

sider the numerical example: the QPO object GRS 1915+109,

respectively, at r/M = 6.3365 with corresponding values

of λ = 0.24877 and Λ = 4 × 10−4 for the RP model,

r/M = 7.97378, 7.89477 with λ = 0.363198, 0.371066 and

Λ = 10−4 for the WD and ER3 models, and r/M = 6.87144

with λ = 0.321248 and Λ = 5 × 10−4 for the ER4 model.

However, for the ER2 model, there exists no QPO object with

the frequency around a Schwarzschild–de Sitter black hole

surrounded by perfect fluid dark matter.

5 Conclusion

We studied circular orbits for test particles around

Schwarzschild–de Sitter (dS) black hole surrounded by per-

fect fluid dark matter. We showed that the presence of the

dark matter parameter reduces the ISCO radius. Similarly,

the unstable photon orbits decrease, depending on only dark

matter λ. It was interestingly shown that as a consequence of

the presence of cosmological constant Λ stable circular orbits

can only exist between the ISCO from inside and OSCO from

outside in the vicinity of the Schwarzschild–de Sitter black

hole surrounded by perfect fluid dark matter. The presence

of dark matter λ does play an important role in the interplay

between gravitational attraction and cosmological repulsion,

thus shrinking the region where circular orbits can exist. Also,

we found that for specific lower and upper values of the dark

matter parameter for fixed Λ = 0.0008 there exist double

matching values for the inner and outermost stable circular

orbits for which particles can have only one circular orbit as

that of coincidence of the ISCO and OSCO. It is due to the

fact that the dark matter contribution increases the strength

of the gravitational attraction, thereby letting it override cos-

mological repulsion due to Λ.

We found corresponding values of λ and Λ for which they

can cancel each other only at a specific radius, i.e. the test

particle around the geometry here considered can have the

same orbit as the one around the Schwarzschild geometry.

From an observational point of view, it would be possible

to distinguish the black hole geometry considered here from

another spherically symmetric black hole.

Further, we studied fundamental frequencies of test par-

ticles in the background geometry of the Schwarzschild–de

Sitter black hole immersed in perfect fluid dark matter, i.e.

Keplerian (orbital) frequency, frequencies of radial and lati-

tudinal oscillations with their applications to upper and lower

frequencies of twin peak QPO objects for various RP, WD and

ER2–4 models here considered. We have shown that under

the combined effects of the cosmological constant and dark

matter, the Keplerian frequency slightly decreases. Finally,
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we have explored the high-frequency twin peak QPO object

(GRS 1915+105) observed with upper and lower frequen-

cies and found specific values for λ and Λ to best fit the

νU : νL = 3:2; 4:3; 5:4 resonance of high-frequency twin

peak QPOs. These theoretical studies would help to test the-

ories of gravity by observational data from the resonance of

high-frequency twin peak QPOs.
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