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abstract

Nicotinic acetylcholine receptors (nAChRs) are broadly distributed in the nervous 

system. Due to the sub-cellular location and high diversity of nAChRs, they are thought 

to play a key role in setting the synaptic strength between neurons. 

The present work aimed to study the mechanisms that regulate the fate of neuronal 

nAChRs on the cell membrane and clarify their role in the central nervous system.

I used single-particle tracking to follow surface nAChRs on neurons. Both 

heteropentameric a3-containing receptors (a3*-nAChRs) and homopentameric a7-

containing receptors (a7-nAChRs) access synapses by lateral diffusion, where they 

moved slower and showed a constrained behavior. The nature of synaptic restraints was 

receptor-dependent, since the disruption of either lipid rafts or PDZ scaffolds rendered 

half of the stationary a3*-nAChRs to be mobile without changing the proportion of 

mobile a7-nAChRs. 

I next investigated the acute action of brain-derived neurotrophic factor (BDNF) 

on the function of a7-nAChRs. Patch-clamp experiments showed that BDNF rapidly 

decreased a7-nAChRs-mediated responses in hippocampal interneurons. This effect 

was dependent on the activation of TrkB receptors, occured through the phospholipase 

C/protein kinase C pathway and involved the actin cytoskeleton.

Finally, the role of a7-nAChRs on the adult neurogenesis was investigated. Stereotaxic 

retroviral injection into the dentate gyrus of wild-type and a7-knockout (a7KO) mice was 

used to label and birthdate adult-born neurons for morphological and electrophysiological 

measures; BrdU injections were used to quantify cell survival. In a7KO mice, adult-

born neurons developed with truncated dendritic arbors and experienced a prolonged 

period of immature GABAergic signaling. Under these conditions, neurons received 

fewer synaptic inputs and were more prone to die during the critical period when adult-

born neurons are normally integrated into networks. 

Overall, the findings here reported support a regulatory role for a7-nAChRs in the 

nervous system, pointing out an important role of these receptors on synaptic 

transmission and plasticity in the brain. 

Keywords: Nicotinic acetylcholine receptors; lateral diffusion; brain-derived 
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sumário

Os receptores colinérgicos do tipo nicotínico (nAChRs) são vastamente expressos no 

sistema nervoso. Na região do hipocampo, em particular, os mecanismos desencadeados 

por nAChRs influenciam processos de atenção, memória, aprendizagem, e constituem 

importantes alvos terapêuticos para doenças do fórum neurológico, neurodegenerativo 

e psiquiátrico. 

Atendendo à sua distribuição sub-celular e à elevada diversidade de subunidades 

expressas no sistema nervoso central, estes receptores são geralmente associados 

a fenómenos de regulação da força sináptica entre neurónios. Ainda mais, quando 

activados, os nAChRs permitem a entrada directa e/ou indirecta de cálcio (Ca2+), 

elevando consequentemente a concentração citoplasmática deste ião. O aumento 

da concentração de Ca2+ citoplasmático, mesmo que transitória, activa várias e 

diferentes cascatas de sinalização que podem, inclusivamente, alterar a expressão 

génica. Por outro lado, se a entrada de Ca2+ for excessiva, são activados fenómenos de 

excitoxicidade neuronal que eventualmente podem culminar em morte celular. Assim, 

a localização e função dos nAChRs são de extrema importância e consequentemente 

alvo de mecanismos de regulação nos neurónios. 

O trabalho descrito nesta dissertação teve como objectivo estudar os mecanismos 

intracelulares que regulam o destino de nAChRs na membrana celular, assim como 

mecanismos que regulam a sua função, e por fim clarificar o papel dos nAChRs no 

sistema nervoso central. 

Para estudar a localização e o tráfego dinâmico dos nAChRs em neurónios, recorri à 

técnica de de single-particle tracking SPT com quantum dots. Dado que nesta técnica 

são estudadas partículas individuais, é possível distinguir diferentes tipos de nAChRs 

atendendo à mobilidade. Este estudo foi efectuado em culturas de neurónios de gânglios 

ciliares, que expressam dois subtipos de nAChRs: heteropentaméricos contendo a 

subunidade a3 (a3*-nAChRs) e homopentaméricos contendo a subunidade a7 (a7-

nAChRs). Os a3*-nAChRs medeiam a transmissão sináptica nos gânglios ciliares, 

enquanto que os a7-nAChRs têm um papel regulador. Quanto à dinâmica dos nAChRs, 

identifiquei uma população imóvel e uma outra móvel, tanto para os a3*-nAChRs 

como para os a7*-nAChRs. Curiosamente, no caso dos a3*-nAChRs, cerca de 70% 



xxx

da população apresentava-se imóvel, enquanto apenas cerca de 30% dos a7-nAChRs 

se apresentava imóvel. Ambos os subtipos de nAChRs apresentavam movimento do 

tipo Browniano quando se deslocavam em áreas extrasinápticas e do tipo restrito 

quando em áreas sinápticas. Ambos os subtipos possuíam constantes de difusão 

superiores nas áreas extrasinápticas do que nas sinápticas. Distiguiu-se ainda, tanto 

para os a3*-nAChRs, como para os a7-nAChRs, uma subpopulação móvel, que transita 

entre domínios sinápticos e extrasinápticos através de difusão lateral. Os valores de 

constantes de difusão foram semelhantes para os a3*- e a7-nAChRs. Verificou-se, 

contudo, que a natureza das restrições sinápticas é diferente para os dois tipos de 

receptores. Por exemplo, perturbações ao nível das jangadas lipídicas (“lipid rafts”) ou 

das proteínas do citoesqueleto contendo domínios PDZ aumentam a proporção de a3*-

nAChRs móveis para cerca de 70%, sem contudo alterarem a proporção de a7-nAChRs 

móveis. Curiosamente, os mecanismos que regulam a difusão dos nAChRs depende do 

ambiente celular. Por exemplo, o colesterol é importante para a difusão dos a7-nAChRs 

em neurónios de gânglios ciliares, mas não em neurónios de gânglios lombares.

A acção aguda da neurotrofina brain-derived neurotrophic factor (BDNF) na função dos 

a7-nAChRs foi também investigada. O BDNF é uma molécula que existe em grande 

abundância no hipocampo e que geralmente é libertada durante períodos de grande 

actividade neuronal. O BDNF foi inicialmente descrito como uma molécula de efeitos 

relativamente lentos, que ocorriam na escala de horas ou mesmo dias. Mais recentemte, 

foram descritas acções rápidas do BDNF em vários receptores ionotrópicos, o que me 

motivou estudar uma hipotética acção desta molécula sobre os a7-nAChRs. Este estudo 

foi efectuado em fatias de hipocampo de rato (3-4 semanas) preparadas agudamente. 

Utilizou-se a técnica de patch clamp para registar correntes iónicas geradas pela 

aplicação de agonistas dos a7-nAChRs. A amplitude máxima destas correntes foi usada 

como uma medida da activação dos a7-nAChRs. A aplicação exógena de BDNF inibiu 

rapidamente as respostas mediadas pelos a7-nAChRs expressos nos interneurónios do 

stratum radiatum da área CA1 do hipocampo. Este efeito é dependente dos receptores 

TrkB para o BDNF, ocorre através das vias da fosfolipase C/cinase C de proteínas e 

requer a activação de receptores de adenosina do tipo A2A . A inibição dos a7-nAChRs 

não era dependente, contudo, da acção de cinases da família das Src. Demonstrou-

se ainda que a regulação  dos a7-nAChRs pelo par BDNF/receptor TrkB depende do 
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citoesqueleto de actina e está comprometida na ausência de Ca2+ extra- e intra-celular. 

Por fim, investigou-se o papel desempenhado pelos a7-nAChRs na neurogénese adulta. 

Nos mamíferos, a neurogénese no giro dentado mantem-se activa durante o adulto 

e parece ser essencial para o funcionamento do hipocampo. As células progenitoras 

dos neurónios expressam a7-nAChRs, o que despertou o interesse em investigar o 

papel destes receptores no desenvolvimento e maturação das células precursoras de 

neurónios. Injecções com 5-bromo-2-desoxiuridina (BrdU) permitiram observar que 

os neurónios dos animais knockout para o gene dos a7-nAChRs (a7KOs) são mais 

vulneráveis durante a fase de integração na rede neuronal que os neurónio de animais 

controlo. Esta fase crítica de morte neruonal ocorre entre a segunda e quarta semana 

após o início do processo de diferenciação e é determinante para a integração de 

neurónios na rede. De seguida, investigou-se o ritmo de desenvolvimento/maturação 

dos neurónios, na presença e ausência de a7-nAChRs. A injecção extereotáxica de 

retrovírus no giro dentado de animais adultos normais (controlos) e em a7KO foi 

utilizada para marcar e datar neurónios gerados no adulto, permitindo uma posterior 

análise morfológica (número de ramificações e comprimento das dendrites) e 

electrofisiológica (potencial de membrana, potencial de inversão do cloro, cinética das 

correntes ácido g-aminobutírico (GABA)-érgicas, frequência e amplitude das correntes 

sinápticas espontâneas) destes neurónios. A análise das propriedades dos neurónios 

foi feita três semanas depois da injecção, quando os neurónios controlo apresentavam 

parâmetros morfológicos e electrofisiológicos característicos de neurónios maturos. 

Ainda mais, durante esta idade, os neurónios estão a atravessar o período crítico de 

integração no circuito. Verificou-se que, nos a7KOs, os neurónios gerados no adulto 

apresentavam-se menos diferenciados do que nos animais controlo, quer a nível 

morfológico, quer a nível electrofisiológico. Neste caso, os neurónios possuíam árvores 

dendríticas truncadas e menos complexas. Apresentavam também um prolongamento 

do período em que o neurotransmissor GABA actua como despolarizante. De facto, as 

próprias correntes GABAérgicas mediadas pelos receptores GABA
A
 apresentavam uma 

cinética característica de estadios imaturos. Em comparação com os neurónios controlo, 

apresentavam ainda uma menor frequência de correntes sinápticas espontâneas, que 

por sua vez possuíam também uma menor amplitude. 

Em conclusão, identificaram-se, assim, novos mecanismos moleculares que controlam 
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o tráfego dinâmico dos nAChRs na membrana celular. Demonstrei, também, que estes 

mecanismos dependem da constituição dos receptores, do domínio subcelular e do tipo 

de célula. Verifiquei ainda que os a7-nAChRs são um dos alvos das acções rápidas do 

BDNF. Esta regulação poderá ser importante na regulação da transmissão e plasticidade 

sináptica no cérebro. Por fim, identificou-se um papel determinante dos a7-nAChRs na 

sobrevivência e no ritmo de desenvolvimento, maturação neuronal e integração dos 

neurónios durante a neurogénese no adulto. Em suma, os resultados apresentados 

nesta tese apontam para um papel fundamental dos nAChRs no hipocampo e são 

propostos vários factores intra e extracelulares que regulam o tráfego e função destes 

receptores nos neurónios.

Palavras-chave: Receptores colinérgicos nicotínicos; difusão lateral; brain-derived 

neurotrophic factor; neurogénese no adulto; hipocampo
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chapter 1

General IntroductIon

1.1 Scope of the theSIS

The research presented in this thesis is aimed to clarify of the mechanisms that regulate 

the functional expression of neuronal nicotinic acetylcholine receptors (nAChRs) on 

the cell surface and elucidate about the role played by these receptors in the central 

nervous system (CNS). 

1.2 chapter overvIew

Due to the broad distribution and diversity of nAChRs in the nervous system, as well 

as to the characteristics of nAChR-dependent signaling, these receptors are thought 

to play a key role in setting the synaptic strength between neurons. In the section 

1.3 of Chapter 1 some of the cellular and molecular mechanisms currently known 

to regulate synaptic strength will be revised. In section 1.4, nAChRs and nAChRs-

mediated signaling will be described, stressing out the reasons why these receptors 

are in a favorable position to act as a neuromodulators of synaptic transmission in the 

CNS. In section 1.5, there is a general description of the neurotrophin brain-derived 

neurotrophic factor (BDNF), including some intracellular pathways activated by BDNF 

to induce rapid modifications in neurotransmitter receptors function. Finally, the 

“Objectives and Rationale” are summarized in section 1.6.

Chapter 2 is about the Materials and Methods used in this thesis. In this chapter, 

the techniques used will be explained in detail, pointing out their advantages and 

limitations. Live imaging of quantum dots (QDs) and immunostaining of fixed cells were 

used to study the trafficking of a3*- and a7-nAChRs. Patch-clamp experiments were 

done to 1) evaluate the acute action of BDNF on a7-nAChR function and 2) investigate 

the impact of a7-nAChRs in the development and integration of adult-born neurons 
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in the hippocampus. Stereotaxic retroviral injection into the dentate gyrus was used 

to label and birthdate adult-born neurons for morphological and electrophysiological 

measures; BrdU injections were used to quantify cell survival.

Chapter 3 is the first chapter for the Results section. Real-time imaging with QDs was 

used to study the lateral diffusion of neuronal a3*- and a7-nAChRs. These experiments 

were executed in dissociated chick ciliary ganglion neurons. We started by characterizing 

the mobility of a3*- and a7-nAChRs in this system. Both receptors could access 

synaptic domains by lateral diffusion, displaying Brownian motion in extrasynaptic 

space and being constrained and move more slowly in synaptic space. The nature of 

their movement restraints was, however, different for a3*- and a7-nAChRs; lipid rafts, 

PDZ-containing scaffolds, microtubules, and actin filaments differentially affected their 

mobility. We found that control of nAChR lateral mobility, therefore, is determined 

by mechanisms that are domain-specific, receptor subtype-dependent, and cell-type 

constrained. The outcome is a system that could tailor nicotinic signaling capabilities to 

specific needs of individual locations.

Chapter 4 will focus on the acute action of the neurotrophin BDNF on the function 

of a7-nAChRs. Patch clamp experiments were performed in fresh hippocampal slices 

taken from young rats. Acetylcholine- or choline-evoked currents were recorded in CA1 

interneurons and were used as a measure of a7-nAChR function. BDNF rapidly reduced 

the amplitude of a7-nAChR mediated currents when applied in the perfusion solution. 

This effect was dependent on phospholipase C/protein kinase C signaling pathway and 

required Ca2+ as a cofactor. The present findings disclose a7-nAChR as a novel target 

for rapid actions of BDNF that might play important roles on synaptic transmission and 

plasticity in the brain. 

Chapter 5 will elucidate about the functional relevance of a7-nAChRs in the adult 

hippocampal formation (HF). In these experiments, adult mice were stereotaxically 

injected with Moloney murine leukemia virus-green fluorescence protein (MMLV-GFP) 

into the dentate gyrus to label and birthdate adultborn neurons in vivo; BrdU injections 

were used to quantify cell survival. In a7-nAChRs knockout mice, we observed a 
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reduced survival, delayed maturation and deficient integration of adult-born neurons in 

the network. This evidence points to a critical role of a7-nAChR in the fate of newborn 

dentate granule neurons.

This thesis will end with Chapter 6. A synopsis of all major findings is given. 

Furthermore, the possible consequences and implications of the new insights gained in 

the present study will be given and future perspectives for the study of nAChRs in the 

nervous system will be discussed.

Chapter 7 includes all the references used in this dissertation.

1.3 neuronal tranSmISSIon and SynaptIc StrenGth

1.3.1 Neuronal communication: evolution of the nervous system

The survival of an organism relies on the ability that cells have to communicate between 

each other and generate a global and effective response facing the changes that occur 

in the environment. When one looks at the evolutionary scale, the more evolved an 

organism is, the more complex is its nervous system and the more sophisticated is its 

behavior. But despite the large behavioral differences found in behavior among species, 

comparative studies of both vertebrates and invertebrates have revealed that brains 

evolved rather conservative compared with other morphological structures. Likewise, 

vertebrates, from lampreys to humans, are strikingly similar in the overall brain 

organization. In the last century, electrophysiological, pharmacological and molecular 

studies have provided a global understanding of the fundamental mechanisms of 

neuronal communication, which were also found to be highly conserved across a range 

of animal species. Despite it, changes in neural connections, neurotransmitters and 

membrane properties have occurred frequently in evolution. Thus, the brains of animals 

are a combination of small novelties that appear against a background of conserved 

features. 

In general, neural networks evolved to regulate an organism’s internal environment 
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and maintain its homeostasis. Consequently, the network developed in a way to sense 

perturbations upon the endogenous and exogenous systems, appropriately respond 

to these perturbations. Moreover, neural networks have the ability to form a memory 

of any particular episode in a way that allows them to respond more efficiently on the 

next time the same episode occurs. The capacity of the neural activity generated by an 

experience to modify neural circuit function and thereby modify subsequent thoughts, 

feelings, and behavior is generally called neuronal plasticity. Information storage and 

plasticity require that synapses carry out two opposing tasks: maintaining stable long-

term synaptic connections while at the same time remaining plastic and allowing for 

rapid changes in synaptic strength. A major challenge has been to understand how the 

large array of synaptic proteins that govern these opposing processes are regulated to 

selectively establish, maintain, and modify the strength of synapses. 

1.3.2 From the neuromuscular junction to the brain

As an emergent structure, some of the properties of the nervous system can be 

explained by the low-level properties of units in the context of their interactions. It is 

now consensual that the synaptic function is the basic and universal property of neural 

circuits. The simplest type of synapse that one can find in nature is the neuromuscular 

junction (NMJ). In contrast to synapses in the CNS, the NMJ connects two different 

cell types, the neuronal cells and muscle cells. By the simplicity of the NMJ and due to 

its easy technical accessibility, it become one of the most important model systems in 

synapse research and was the base for the molecular principles of neurotransmission. 

Essentially, the function of the NMJ, as any chemical synapse, consists in the conversion 

of an electric signal conducted by the presynaptic cell to a chemical signal, which can 

be perceived by the target cell. 

Though NMJ and neuron-neuron synapse share the basic mechanisms of synaptic 

transmission, there are clear differences between both types of synapses. In both 

cases, the electrical signal [or action potential (AP)] induces depolarization of the 

presynaptic terminal membrane to the extent of opening voltage-gated calcium channels 

(VGCC). The transient increase of the local concentration of cytoplasmic Ca2+ induces 

the fusion neurotransmitter-containing vesicles with the presynaptic membrane and, 
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consequently, stimulates the release neurotransmitters from the active zone into the 

synaptic cleft. The neurotransmitters selectively bind to neurotransmitter receptors 

located in the postsynaptic density (PSD) of the neighboring cell, opening their internal 

pores and allowing the influx of ions. This inward current eventually generates a new 

AP, leading to the propagation of the electric signal, which spreads within the muscle 

cell. 

While in the NMJ, neurotransmitter vesicles are always loaded with acetylcholine, in 

neuron-neuron synapses, the type of the neurotransmitter released can vary, depending 

on several factors (e.g. cell type, developmental stage of the cell). The endplate of the 

NMJ comprises only two types of nAChRs, while the neuronal PSD can express panoply 

of neurotransmitter receptors, which play either excitatory or inhibitory actions. 

The molecular/structural differences found between NMJ and neuron-neuron synapses 

can be easily understood if one looks at their jobs assignments. The synaptic contact 

at the muscle end plate is optimized to propagate and amplify a single AP in the 

muscle with maximal reliability. In neuron-neuron synapses, the focus lies less on 

the transmission of a single AP but rather on integration of multiple signals within the 

neuronal network and on the complexity of the network itself. In the CNS, a single 

neuron gets input from several thousands of other neurons. In contrast to the simple 

architecture of motor neurons, the complex organization of neuronal networks demands 

regulatory mechanisms orchestrating excitatory actions. 

1.3.3 Synaptic transmission in central synapses – Hippocampus as a model 

system

Synaptic transmission is the basis of most nervous system function, including controlling 

body parts, memory, learning and cognition. Complex and highly regulated steps 

take place at both pre- and post-synaptic components to guarantee normal neuronal 

communication. The hippocampal formation (Fig 1.1; HF) is probably one of the brain 

regions more extensively studied in the CNS due to its central role learning and memory. 

Furthermore, the anatomical structure of HF allows one to cut thin slices out of the HF 

in a way that preserves all of the major connections. For these reasons, HF has been 
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the primary model for transmission in 

central synapses.

The rodent HF is a C-shaped structure 

that is situated in the caudal part of the 

brain. Three distinct subregions can be 

distinguished: the dentate gyrus (DG), 

the hippocampus proper (consisting of 

CA3, CA2 and CA1) and the subiculum 

(Sub) (Amaral and Lavenex, 2007; 

Burwell and Witter, 2002). The cortex that forms the HF has a three-layered appearance 

(for a review, see Förster et al., 2006). The first layer is a deep layer, comprising a 

mixture of afferent and efferent fibres and interneurons. In the DG, this layer is called 

the hilus, whereas in the CA regions it is referred to as the stratum oriens. Superficial 

to this polymorph layer is the cell layer, which is composed of principal cells and 

interneurons. In the DG this layer is called the granule layer, whereas in the CA regions 

and the subiculum it is referred to as the pyramidal cell layer (stratum pyramidale). 

The most superficial layer is referred to as the molecular layer (the stratum moleculare) 

in the DG and the subiculum. In the CA region, the molecular layer is subdivided 

into a number of sublayers. In CA3, three sublayers are distinguished: the stratum 

lucidum, which receives input from the DG; the stratum radiatum, comprising the apical 

dendrites of the neurons located in the stratum pyramidale; and, most superficially, 

the stratum lacunosum-moleculare, comprising the apical tufts of the apical dendrites. 

The lamination in CA2 and CA1 is similar, with the exception that the stratum lucidum 

is missing in CA1. 

The principal neurons of the different HF subfields are interconnected via the excitatory 

trisynaptic circuit (Fig 1.2; Witter and Amaral, 2004; van Strien et al., 2009). According 

to the canonical model, the first step of the trisynaptic HF pathway is formed by a 

unidirectional projection from the DG to CA3: the mossy fibres. The Schaffer collaterals, 

which originate in CA3 and project to CA1, are the next step in the polysynaptic loop. 

Finally, CA1 send their projections to the Sub and deep layers of entorhinal cortex (EC), 

while Sub cells send their projections mainly to EC.

Hippocampal 
formation

Hippocampal slice

Figure 1.1 –  A  simplified diagram of the hip-
pocampus in the brain and an hippocampal 
slice.
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The net flow of information in the HF is strongly modulated by the action of the local-

circuit inhibitory interneurons, whose cell bodies are distributed throughout all layers 

of the HF. Although interneurons are poorly represented in the HF and comprise 

~10-15% of the total neuronal population, they exert a powerful control on network 

excitability and information processing in the brain since a single inhibitory nervous 

cell may contact 1000-3000 pyramidal cells via extensive arborization (Li et al., 1992; 

Buhl et al., 1994a). For this reason, interneurons can phase the output of principal cells 

giving rise to a coherent oscillatory activity (Klausberger et al., 2003; Klausberger et 

al., 2004; Klausberger and Somogyi, 2008), which has been implicated in encoding, 

consolidation and retrieval of information in the hippocampus (for review, see Freund 

and Buzsaki, 1996). Because of their central role in pacing, timing and synchronizing 

neural circuits in both spatial and temporal domains, knowledge on the mechanisms 

that control and/or modulate interneuronal function will be crucial to understand 

hippocampal computation. 

Different types of interneurons appear to perform specific and diverse functions in 

the hippocampus (Freund and Buzsaki, 1996; Klausberger and Somogyi, 2008). For 

example, some interneurons potently inhibit pyramidal cells by acting directly on their 

CA1

CA3

EC

DG

Schaffer
collaterals

Mossy fibers

Perforant 
path

Figure 1.2 – The neural circuitry in the rodent hippocampus. An illustration of the hippo-
campal circuitry. The traditional excitatory trisynaptic pathway (entorhinal cortex (EC)–dentate 
gyrus (DG)–CA3–CA1–EC) is depicted by solid arrows. The axons of layer II neurons in the en-
torhinal cortex project to the dentate gyrus through the perforant pathway (PP). The DG sends 
projections to the pyramidal cells in CA3 through mossy fibres. CA3 pyramidal neurons relay the 
information to CA1 pyramidal neurons through Schaffer collaterals. CA1 pyramidal neurons send 
back-projections into deep-layer neurons of the EC. The DG cells also project to the mossy cells 
in the hilus and hilar interneurons, which send excitatory and inhibitory projections, respectively, 

back to the granule cells.
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cell bodies or axon hillocks (Gulyás et al., 1993; Buhl et al., 1994b; McBain et al., 

1994; Sik et al., 1995; Miles et al., 1996), whereas others inhibit pyramidal cell activity 

at their dendrites (Han et al., 1993; Gulyas et al., 1993a,b; Sik et al., 1995; Miles 

et al., 1996). Another group of interneurons specifically inhibit other interneurons 

(Acsady et al., 1996; Gulyas and Freund, 1996; Hajos et al., 1996; Blasco-Ibanez et 

al., 1998). Some interneurons also appear to show long-range projections that cross 

the sub-area border and are involved in the coordination of spike timing across sub-

areas (Sik et al., 1994, 1995). The large variety of inhibitory cells in the hippocampus 

explains why it has been so complicated to find common properties that would allow 

grouping them in different subtypes. Most if not all hippocampal interneurons produce 

the neurotransmitter g-aminobutiric acid (GABA). Choline acetyltransferase (ChAT), the 

synthesizing enzyme of acetylcholine, is localized in a small number of interneurons 

in the CA1 region of the hippocampus and the dentate gyrus of the rat (Frotscher et 

al., 1986), but even these cells are also likely to contain GABA. According to Somogyi 

and Klausberger, there are at least 16 different types of interneurons just in the CA1 

hippocampal area. It is currently thought that this high heterogeneity of interneurons 

is essential for shaping different patterns of activity in the neural network. Even from 

a minimalist point of view, at least 10 types of distinct interneurons innervate a single 

pyramidal cell and actually it is not known yet if all pyramidal cells are uniformly 

innervated. In addition, the type of inhibition played by a single interneuron in the 

network can change over time depending on the afferents that activate it (Croce et 

al., 2010). Finally, the intrinsic passive and active electrical properties of interneurons, 

their synaptic kinetics and the subcellular domains of the target neurons on which they 

make GABA-releasing synapses are also important for the impact that they can exert 

in the network (Morin et al., 1996).

1.3.4 Synaptic plasticity – basis for learning and memory?

The activity-dependent modifications of the efficacy of synaptic transmission (or synaptic 

strength) at preexisting synapses are generically referred as synaptic plasticity. A key 

concept is that synaptic strength is bidirectionally modifiable by different patterns of 

activity, this meaning that synapses can be potentiated or depressed depending on 
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the input. It has been proposed that synaptic plasticity plays a central role in the early 

development of neural circuitry and in the capacity to incorporate transient experiences 

into persistent memory traces (although the molecular foundations subjacent to these 

two processes might differ due to different requirements). 

It is widely accepted that synaptic plasticity requires structural changes that occur too 

quickly to be accounted for by nuclear or even dendritic protein synthesis (Kasai et al., 

2010). Later, these changes must be stabilized or consolidated in order for memory to 

persist (Harris et al. 2002). The temporary reversible changes are referred as short-

term synaptic plasticity [or short-term memory (STM)], while the persistent changes 

are called (long-term synaptic plasticity [or long-term memory (LTM)]. Numerous forms 

of STM, lasting on the order of milliseconds to several minutes, have been observed 

at virtually every synapse examined in organisms ranging from simple invertebrates 

to mammals (Zucker and Regehr, 2002). These are thought to play important roles 

in short-term adaptations to sensory inputs, transient changes in behavioral states, 

and short-lasting forms of memory. Repetitive activation of excitatory synapses in the 

hippocampus can cause a potentiation of synaptic strength that could last for hours or 

even days (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973). This phenomenon, 

termed long-term potentiation (LTP), has been the object of intense investigation 

because it is widely believed that it provides an important key to understanding some 

of the cellular and molecular mechanisms by which memories are formed (Martin et al, 

2000; Pastalkova et al, 2006; Whitlock et al, 2006).

1.3.4.1 Mechanisms subjacent to modifications on synaptic strength in the 

CNS

To understand the mechanisms that underlie synaptic plasticity, one should look in 

detail at synapses since they are considered the first level of organization beyond the 

molecule. Moreover, the molecular mechanisms that orchestrate or mediate synaptic 

structural changes often play a role in synaptic plasticity and memory.

The regulation of synaptic strength at central synapses is dependent on many factors 

(Sudhof and Malenka, 2008). At the presynaptic level, two principal points of regulating 
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transmitter release exist: (1) the peak Ca2+ concentration produced by an action 

potential, i.e., the conversion of an action potential to a Ca2+ current (Katz, 1969); and 

(2) the release probability per given Ca2+ concentration, i.e., the conversion of a Ca2+ 

signal to exocytosis (Perin et al., 1990). Intracellular messengers and extracellular 

modulators released by neurons and glia can influence the effectiveness of an action 

potential to evoke transmitter release by affecting at least one of the regulation points 

described. Moreover, the effectiveness of release can undergo sustained activity-

dependent changes over time. For example, signaling back to the presynaptic terminal 

from the postsynaptic neuron has short-term effects on transmitter release and can 

even induce a number of forms of long-lasting synaptic plasticity (Fitzsimonds and Poo, 

1998). 

Besides the complex presynaptic machinery guaranteeing tuned neurotransmitter 

release, the PSD determines neurotransmitter response and responsiveness. Recent 

advances in high-resolution electron microscope tomography coupled with specific 

antibody labeling have allowed visualizing the anatomical structures of PSDs directly 

(Chen et al., 2008). The majority of these studies have been done at glutamatergic 

synapses. The first layer of a PSD mainly contains membrane receptors, ion channels 

and transmembrane cell-adhesion molecules, with N-methyl D-aspartate (NMDA) 

receptors at the centre and a-amino-3- hydroxy-5-methylisoxazole-4-propionic 

acid (AMPA) receptors at the periphery. The second layer is enriched with scaffold 

(or adaptor) proteins, which are closely coupled to the membrane receptors and ion 

channels and are arranged perpendicular to the PSD membrane. The third layer is 

comprised of scaffolds proteins that bind to other scaffold proteins and are arranged in 

parallel to the PSD membrane. The proteins in this third layer are further connected to 

the actin cytoskeleton. All of these membrane receptors and scaffold proteins form a 

protein network to which other cytoplasmic proteins and enzymes can bind. 

The PSD is responsible for adjusting type, number, localization and properties of 

neurotransmitter receptors. In the CNS, the majority of fast excitatory input is mediated 

by glutamatergic AMPA, kainate, and NMDA receptors, while inhibitory transmission is 

governed almost entirely by glycine (Gly) receptors and GABA
A
 receptors. The main 
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structure of these receptors is conserved, supporting the hypothesis of a common 

evolutionary origin (Chiu et al., 1999). However, in contrast to the structural similarities, 

there are pronounced functional differences among ligand-gated ion channels; the 

receptors are sensitive to different ligands and exhibit different ion selectivity. AMPAR 

and NMDAR are activated by glutamate and permeable for cations, inducing excitation 

in a neuron. GABA
A
R and GlyR are activated by GABA and glycine respectively, playing 

inhibitory roles since they allow chloride (Cl-) ions to enter the cell and, consequently 

hyperpolarizing the membrane. 

1.3.4.2 Trafficking of neurotransmitter receptors – exocytosis, lateral diffusion 

and endocytosis

Each type of receptor has its own complementary accessory proteins and regulatory 

elements, but there are some interesting commonalities between excitatory and 

inhibitory receptors of the CNS. Because neurons are highly arborized cells, newly 

synthesized receptors have to travel long distance along neuritis to reach the most 

distal synapses. This can be achieved either by vesicular transport from internal pools 

as well as by lateral diffusion on the cell membrane (Cognet et al., 2006; Newpher and 

Ehlers, 2008). These mechanisms of receptor delivery to synapses were first described 

for acetylcholine receptors in the NMJ (Axelrod et al., 1976; Anderson and Cohen, 1977) 

and have since been found to occur similarly for glutamate (Borgdorff and Choquet, 

2002), GABA (Pooler and McIlhinney, 2007) and glycine (Meier et al., 2001) receptors in 

the CNS. In fact, receptor trafficking in the CNS has been particularly well documented 

for glutamate AMPA receptors, but it was shown to occur for most of receptor types. 

The overall number of receptors is adjusted by the rate of protein synthesis, rate of 

internalization and integration from and to the membrane, respectively. Receptors are 

synthesized at the endoplasmatic reticulum and processed at the Golgi apparatus. 

Insertion sites seem to be distinct for different receptors types. In all cases, and 

once in the cell membrane, receptors are stabilized and anchored through different 

mechanisms, involving transient specific binding to scaffold molecules, steric repulsive 

interactions with other transmembrane molecules such as other receptors, and 

interactions with synaptic adhesion molecules (Heine et al., 2008a) and submembrane 
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cytoskeletal fences (Allison et al., 1998). 

The relatively high concentration of neurotransmitter receptors within the postsynaptic 

specialization and the interactions between these receptors and intracellular scaffold 

proteins both led to the predominant view that synaptic receptors are tightly fixed 

within the synapse. However, evidence for dynamic receptor populations and 

receptor exchange at synapses has long existed (Axelrod et al., 1976; Anderson and 

Cohen, 1978). More recently, single-particle tracking of glutamate receptors in the 

postsynaptic membrane has demonstrated that glutamate AMPARs rapidly alternate 

between periods of Brownian-like lateral mobility, often at extrasynaptic sites, and 

periods of confinement, mostly at synapses (Borgdorff and Choquet, 2002). The 

Brownian movement depends on thermal agitation of molecules (in this case, lipids 

shaking on proteins) and is characterized by a linear relationship between the surface 

explored versus time. The confinement at synapses results of molecular crowding and 

the presence of receptor binding sites at the synaptic scaffolds, which promote the 

concentration of receptors at the PSD. 

It was recently shown that learning drives AMPA-type glutamate receptors into the 

synapse of postsynaptic neurons (Rumpel et al., 2005; Whitlock et al., 2006); if AMPA 

receptor synaptic incorporation is blocked, memory will also be reduced (Rumpel et al., 

2005). Since learning and memory critically depend on the trafficking of receptors in 

the membrane, it is important to study the mechanisms that contribute for synaptic 

incorporation of receptors. The control of receptor diffusion into an out of the synapse 

is central for determinant of synaptic strength. The increase in synaptic receptors due 

to lateral diffusion is now thought to result from a complex set of events involving 

receptor-scaffolding protein unbinding, untethering of receptors from the cytoskeleton 

following depolymerization or a change in transmembrane adhesion molecules.

Trafficking within the surface membrane has recently emerged as a key step for 

regulating synaptic responses. Exocytosis, endocytosis and lateral trafficking have 

been highlighted as a key process in receptor renewal and concentration at synapses, 

accounting for the construction and plasticity of synapses in the membrane (Fig 1.3). 

Recent studies indicate that AMPAR endocytosis occurs in endocytic zones positioned 
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in the vicinity of the PSD (Blanpied et al., 2002; Petralia et al., 2003; Racz et al. 2004; 

Lu et al., 2007). Receptors are not simply degraded upon internalization, as previously 

thought (Gardner and Fambrough, 1979). Instead, a significant number of receptors, 

rather than being metabolized upon internalization, recycle back into the postsynaptic 

membrane. Interestingly, both endocytic zones and local receptor recycling are required 

to maintain a mobile pool of receptors at synapses (Petrini et al., 2009). 

1.3.4.3 Molecular determinants of lateral diffusion in the cell membrane – 

lipids, scaffolds and cytoskeleton

Membrane compartmentalization explains, in part, the heterogeneous diffusion of 

receptors in the cell surface. The cohesive forces that assemble and maintain different 

microdomains in the cell membrane include lipid–lipid, protein–protein, and protein–lipid 

interactions, as well as sub- and supramembrane effectors (cytoskeletal, extracellular 

Exocytosis

Transport

Degradation

Endocytosis

Lateral diffusion

Figure 1.3 – Receptor exchanges between synaptic, extrasynaptic and intracellular 
compartments. The extrasynaptic receptors can access synapses by lateral diffusion. The 
surface receptors are exchanged with the intracellular pool by insertion and internalization. 
The intracellular pool also features receptor synthesis, transport, recycling and degradation.
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matrix) (Anderson and Jacobson K, 2002; Kusumi et al. 2004; Kwik et al., 2003; 

Murase et al., 2004; Nicolau et al., 2006; Lenne et al., 2006). 

Biological membranes contain hundreds of lipids with different properties and can 

undergo dynamic changes in composition. The phospholipids form the major lipid part 

of biological membranes and are composed of two fatty acids plus a phosphate attached 

to a glycerol. Their hydrophilic head and hydrophobic tail constitute the basis for the 

formation of self-assembled phospholipid bilayers or micelles in aqueous environments. 

The great variety of phospholipid molecular species, the differences in their molecular 

shapes, physical properties, and their asymmetric distribution in the membrane bilayer 

possibly contribute to the formation of membrane microdomains (Shaikh et al., 2001). 

Cholesterol is another essential lipidic component of membranes that influences 

membrane fluidity, membrane protein trafficking, and consequently regulates 

neurotransmission and receptor trafficking (Allen et al., 2007; Renner et al., 2009). When 

introduced into lipid bilayers, cholesterol intercalates between the hydrocarbon parts of 

the other lipids, filling in the flickering spaces between the acyl chains. Because of its 

rigid planar structure, cholesterol increases the order of the neighboring acyl chains, 

making the membranes laterally more condensed and more densely packed. Thus, the 

physicochemical properties of the membrane are altered; in particular, permeability 

is decreased and mechanical strength and rigidity increased (Needham et al., 1988; 

Feigenson and Buboltz, 2001). Additionally, cholesterol can also appear concentrated 

in microdomains or rafts, which are composed by cholesterol and sphingolipids in the 

exoplasmic leaflet of the bilipid layer and cholesterol and glycerophospholipids in the 

endoplasmic leaflet. The lipid rafts can measure several tens of nanometers in diameter 

and behave as “moving platforms” (Simons and Ikonen, 1997; Pralle et al., 2000). 

One of the most important properties of lipid rafts is that they can include or 

exclude proteins to variable extents based on how well they fit within this organized 

lipid environment (Simons and Ikonen, 1997;). Proteins with raft affinity include 

glycosylphosphatidylinositol-anchored proteins, doubly acylatedproteins, such as Src-

family kinases or the a-subunits of heterotrimeric G proteins, cholesterol-linked and 

palmitoylated proteins, and transmembrane proteins, particularly palmitoylated ones 

(Levental et al., 2010). Thus, lipid rafts serve as platforms that organize different 
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signaling components into dynamic modules and control their subcellular sorting and 

efficient function. 

Cholesterol plays a crucial role in the generation of ordered domains in the plasma 

membrane that laterally segregate certain proteins, thus reducing their rate of lateral 

diffusion and, by virtue of this, increasing clustering and consequently signaling strength 

(Edidin, 2003; Hancock and Parton, 2005; and Hancock, 2006; Lingwood and Simons, 

2010). For these reason, lipid rafts determine the functional properties of membrane-

resident proteins like ion channels and transmitter receptors (Allen et al., 2007).

A vast number of components have been identified linking directly or indirectly AMPA 

and NMDA receptors in the PSD (Newpher and Ehlers, 2007). The number of scaffold 

proteins in the PSD exceeds the number of receptors by a big margin, ensuring plenty 

of ‘slots’ for the various binding partners. The members of the membrane associated 

guanylate kinases (MAGUKs) family are the most abundant scaffolds in excitatory 

synapses and are the best-described scaffolds of glutamate receptors (Elias and Nicoll, 

2007). This family includes PSD95, PSD93, SAP102 and SAP97. A common feature 

of all these proteins is that they share the same organization with three N-terminal 

post synaptic density protein (PSD95)/Drosophila disc large tumor suppressor 

(DlgA)/ zonula occludens-1 protein (zo-1) (PDZ) domains, a Src-homology 3 (SH3) 

domain and a C-terminal catalytically inactive guanylate kinase (GK) domain (Cho 

et al., 1992; Feng and Zhang, 2009). These domains interact with a relatively weak 

binding affinity to the small peptide fragments situated at the very carboxyl tail of the 

scaffolds’ targets, thereby ensuring the dynamic range of synaptic responses. Despite 

the similarities in domain structure, PSD95-like MAGUKs (PSD-MAGUKs) are distinct in 

their N-terminal amino acid sequences, which could account for the selectivity of their 

interactions. For example, PSD-95 itself binds directly to the intracellular C-terminal 

of NMDA receptors (Kornau et al., 1995), and together with other associated PSD-95 

molecules, links numerous components in an elaborate postsynaptic scaffold. On the 

other hand, PSD95 requires a TARP link to bind AMPARs (Hashimoto et al., 1999; Chen 

et al., 2000), as well to other components important for signal transduction such as 

calcium/calmodulin-dependent protein kinase II (CaMKII).  SAP102 and PSD-93 are 

related members of the PSD-95 family and perform similar functions at glutamatergic 
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synapses depending on the developmental stage and location of the synapse (Elias et 

al., 2006). The fourth member of the family, SAP97, plays a different role, facilitating 

AMPA receptor trafficking to the surface membrane, for example (Nakagawa et al., 

2004).

The cytoskeleton provides the stability for receptor anchoring and controls the “apparent 

viscosity” of mammalian plasma membranes (Gulley and Reese, 1981; Kusumi et al., 

2005). A well-accepted hypothesis is that the cytoskeleton cortex hinders protein 

movements by controlling (1) the avidity of the postsynaptic scaffold for receptors; 

(2) creating fences below the membrane or by anchoring transmembrane molecules, 

which then act as obstacles to lateral diffusion (Kusumi and Sako, 1996; Saxton and 

Jacobson, 1997) and likely controlling (3) adhesion molecules, which create permeable 

barriers at the edge of excitatory and inhibitory synapses (Triller and Choquet, 2003).

The cytoskeleton actions above described depend on both actin (Juliano, 2002; Yamagata 

et al., 2003; Bamji, 2005) and microtubules (Barth et al., 1997; Schoenwaelder and 

Burridge, 1999). Filamentous actin (F-actin) is the main cytoskeletal component and 

forms a large cortical meshwork that is concentrated beneath excitatory and inhibitory 

postsynaptic membranes, just below the postsynaptic scaffold (Dillon and Goda, 2005). 

Microfilaments are important for maintaining synaptic integrity and function and their 

depolymerization can disrupt the signaling of activated neurotransmitter receptors 

(Charrier et al., 2006). The cytoskeleton, together with the subsynaptic proteins, 

might constitute submembranous diffusion fences; adhesion proteins are probably 

passive obstacles that hinder diffusion, whereas scaffolding molecules probably restrict 

diffusion through specific interactions with given receptors (Choquet and Triller, 2003). 

1.3.4.4 Trafficking of neurotransmitter receptors that underlie synaptic 

plasticity – the example of long-term potentiation in CA1 hippocampal region

The most extensively studied and therefore prototypic form of synaptic plasticity is 

LTP observed in the CA1 region of the hippocampus. In LTP, activation of AMPARs 

by presynaptically release glutamate must depolarize the membrane to an extension 

that allows relieving the voltage-dependent block of the NMDAR by magnesium (Mg2+) 
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(Coan and Collingridge, 1985). Under these conditions, Ca2+ enters postsynaptic 

dendritic spines, activating complex intracellular mechanisms and signaling cascades 

that include several protein kinases, most notably CaMKII (Ouyang et al., 1999). In 

a simplified scheme, the levels of Ca2+ in the postsynaptic neuron determines the 

nature of LTM, since different cytoplasmic Ca2+ concentrations recruit different subsets 

of Ca2+-dependent intracellular signaling molecules. For instance, long-term depression 

(LTD) requires a smaller rise in postsynaptic Ca2+ than LTP (Malenka and Bear, 2004). 

In the case of LTP, the primary mechanism underlying the increase in synaptic strength 

during LTP is a change in AMPAR trafficking that results in an increased number of 

AMPARs in the postsynaptic plasma membrane with no effect on NMDARs (following 

the same simple scheme, LTP involves increased exocytosis of AMPARs, whereas long-

term depression LTD involves increased endocytosis of AMPARs). The majority of 

AMPARs incorporated into synapses during LTP is from lateral diffusion of spine surface 

receptors containing GluR1. Following synaptic potentiation, GluR1-containig AMPARs 

from intracellular pools are driven to the surface primarily on dendrites (Park et al., 

2004). These exocytosed receptors likely serve to replenish the local extrasynaptic 

pool available for subsequent bouts of plasticity (Makino et al., 2009). Within a few 

hours, the maintenance of LTM requires protein synthesis.

1.3.5 New neurons in old brains – adult neurogenesis in the hippocampus

The plasticity of the brain is ultimately exemplified by its ability to generate new 

neurons throughout life. The hippocampus is one of the two regions of the adult brain 

that retains the ability of generating new neurons from stem cells (Altman and Das, 

1965; Caviness, 1973; Erikson et al., 1998; Kornack and Rakic, 1999). The function of 

adult neurogenesis in the hippocampus has been correlated with learning and memory 

(Shors et al., 2001, 2002; Rola et al., 2004; Snyder et al., 2005; Winocur et al., 2006; 

Aimone et al., 2009; Clelland et al., 2009; Deng et al., 2009; Deng et al., 2010). 

The primary source of neuronal progenitor cells (NPCs) of the DG is the subgranular 

zone (SGZ), which is located between the inner third of the granule cell layer (GCL) and 

the hilus (Altman and Bayer, 1990). Together with the NPCs of the lateral ventricular 
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wall, the SGZ is a region of the brain containing NPCs, which are self-renewing, 

multipotent cells able to generate neurons, astrocytes, and oligodendrocytes (Cameron 

et al., 1993). This ability is preserved even in the adult brain, and therefore NPCs 

underlie the phenomenon of adult neurogenesis. It has been estimated that several 

thousands of new cells are generated every day, but only about 50% of them will 

survive and finally integrate into neuronal circuits as granule cells (Dayer et al., 2003). 

Accordingly, neurogenesis includes not only cell proliferation, but also cell survival, 

neuronal cell fate determination (differentiation) and correct incorporation in the neural 

network. In the last years, several studies demonstrated that adult-born neurons exhibit 

unique properties during their maturation stages (Espósito et al., 2005; Overstreet 

Wadiche et al., 2005; Ge et al., 2006). Therefore, a strategic integration of adult-

born neurons into the existing circuitry may be the functional basis of their specific 

contribution to brain functions. Each developmental stage has its distinct physiological 

and morphological properties and, to some extent, adult neurogenesis recapitulates 

embryonic neurogenesis (Espósito et al., 2005). Interestingly, recent evidence arises 

that due to their unique characteristics, these adult born granule cells may contribute 

to hippocampal function even before they achieve complete maturation stage (Deng et 

al., 2009). 

During the first week after birth, the adult-born neurons undergo their initial 

differentiation and migrate a short distance into the inner GCL of the DG (Fig. 1.4), 

where they extend limited cellular processes, but do not seem to be synaptically 

integrated in the network. Notably, these cells are tonically activated by ambient GABA 

(Espósito et al., 2005; Ge et al., 2006). Adult-born DG cells become more neuron-like 

cells during the second week after birth: they grow polarized processes, with dendrites 

extending towards the molecular layer and axons growing through the hilus to CA3 

(Hastings et al., 2002; Zhao et al., 2006). Nevertheless, these immature neurons are 

still considerably different from mature dentate granule cells. For example, at this 

stage, the adult-born neurons lack glutamatergic input (Espósito et al., 2005; Zhao et 

al., 2006). They receive, however, synaptic GABAergic input, presumably from local 

interneurons. GABA-mediated responses are very different in a two-week old neuron 

than in mature granule cells though (Espósito et al., 2005; Overstreet Wadiche et al., 

2005; Ge et al., 2006). The spontaneous and evoked GABAergic events show slower 
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rise and decay times in immature neurons, probably due to the expression of different 

receptor subunits (Overstreet Wadiche et al., 2005; Markwardt et al., 2009). Moreover, 

the nature of the GABAergic response is different. In immature neurons, GABAergic 

input results in neuronal depolarization due to the efflux of Cl- ions via GABA
A
 channels 

(Ben Ari et al., 1989). Importantly, the initial period of depolarizing GABA is necessary 

both for early postnatal and adult-born neurons to develop properly and integrate 
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Figure 1.4 – Adult hippocampal neurogenesis. The proliferation of neural progenitor 
cells morphologies gives rise to adult-born dentate granule cells. The fate-committed, adult-
born DGCs undergo several stages of development, with gradual changes in morphologi-
cal and physiological characterists. About 7 days after birth, the adult-born DGC extends its 
dendrite into the granule cell layer and molecular layer and projects the axon into the hilus 
toward CA3. The adult-born DGC receives excitatory GABAergic input, presumably from lo-
cal interneurons. The GABA is still depolarizing due to a reversed chloride gradient, which is 
generated by the highly expressed chloride transporter NKCC1. During the third week after 
birth, the DGC receives glutamatergic input from the perforant pathway. At this stage, the 
GABA input changes from being excitatory to being inhibitory due to the increased expres-
sion of KCC2 (and decreaes expression of NKCC1). Both efferent and afferent synapses of 
the adult-born DGCs begin to form around this time. During the maturation stages, there 
are two critical periods when new neurons are particularly sensitive to glutamatergic signal-
ling. At around 2 months of age, the basic structural and physiological properties of the adult-
born DGCs are indistinguishable from those of mature DGCs. Adapted from  Ge et al., 2008.
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into circuits (Rivera, et al., 1999; Ben-Ari 2002; Payne et al., 2003; Ge et al., 2006). 

The transition of GABAergic input from depolarizing to hyperpolarizing coincides with 

the onset of glutamatergic inputs and with the timing of synaptic integration. By 

approximately day 16, spines begin to appear on the dendrites of adult-born neurons, 

forming synapses with the afferent axon fibres in the Perforant Pathway that come 

from the EC (Zhao et al., 2006; Toni et al., 2008). Initially, filopodia are frequently 

present on dendrites (Toni et al., 2007). The majority of the filopodia on the adult-

born neurons target axon boutons that already synapse with existing spines on other 

neurons by forming multiple synaptic boutons. During the third week after birth, adult-

born neurons start to form afferent and efferent connections with the local neuronal 

network, followed by the formation of perisomatic GABAergic inputs (Zhao et al., 

2006). For glutamate signaling, glutamatergic synapse formation starts after initial 

synaptogenesis of GABAergic dendritic synaptic inputs and before synaptogenesis of 

perisomatic GABAergic synaptic inputs. A prolonged structural modification in dendritic 

spines takes place then, and the neuron can take several months before reaching total 

maturation (Zhao et al., 2006).

One hallmark of adult neurogenesis is its regulation by the activity of the existing 

neuronal circuitry. Immature neurons start to express ionotropic receptors long 

before they are targeted by synaptic afferents, allowing them to sense transmitters 

in the ambiance. Accordingly, neurotransmitter-mediated receptor activation appears 

to provide a mechanism through which hippocampal network activity regulates 

neurogenesis to recruit and integrate the precise number of new neurons for activity-

dependent modification of the hippocampal circuitry (Ge et al., 2006; Tashiro et al., 

2007; Aimone et al., 2009). 

Pioneering work on adult neurogenesis indicates that GABA and glutamate, the main 

inhibitory and excitatory neurotransmitters, respectively, for mature neurons in the 

adult brain, play important roles in the development of adult-born neurons. These 

neurotransmitters activate neurons not only locally within synaptic clefts (phasic 

activation), but also at a distance after diffusion out of synapses (tonic activation). 

Ambient GABA starts to tonically depolarize these cells in the first week after birthday 

(Espósito et al., 2005; Overstreet Wadiche et al., 2005; Ge et al., 2006). It constitutes 
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the bulk of GABA-induced activation during the initial integration process when the 

phasic GABA activation either does not exist or is weaker than the tonic activation. 

The mechanism by which tonic GABA activation regulates neuronal development and 

synaptic integration of new DGCs in the adult brain remains to be determined. 

Glutamatergic activity through NMDA receptors encourages survival of adult-born 

neurons during a critical period when the neurons are first assimilated into behaviorally 

relevant networks (Tashiro et al., 2006; Tashiro et al., 2007). During the maturation 

stages, there are two critical periods when new neurons are particularly sensitive to 

glutamatergic signaling, the first involving NR1-dependent competitive survival of new 

neurons and the second involving NR2B-dependent enhanced synaptic plasticity (Fig. 

1.4). 

In addition, in the adult hippocampus there are more neurotransmitters other than 

glutamate and GABA that could be important for adult neurogenesis as well. Recently, 

it has been suggested that monoamines and acetylcholine also play a role in the 

development of adult-born neurons (Brezun and Daszuta, 1999, 2000; Kulkarni et al., 

2002; Cooper-Kuhn et al., 2004; Kaneko et al., 2006). The receptors and mechanisms 

by which they exert their effects, as well as possible interactions with other classes of 

neurotransmitters and/or growth factors remain to be determined. 

1.4 nIcotInIc acetylcholIne receptorS

nAChRs belong to the superfamily of ionotropic ligand-gated ion channels that includes 

the serotonin 5-HT3, GABA
A
, and Gly receptor channels (Lester et al., 2004; Sine and 

Engel, 2006), and can be activated by the agonists acetylcholine and nicotine. nAChRs 

are cationic-permeable channels, and their ongoing activity directly or indirectly 

contributes to Ca2+ signals that regulate several intracellular pathways (Vernino et al., 

1992; Séguela et al., 1993; Fucile, 2004).

Neuronal nAChRs are widely expressed in the peripheral and central nervous system 

where they are involved in a variety of physiological processes (Fig. 1.5). Fast, 

direct nicotinic synaptic transmission drives NMJ and autonomic ganglion synaptic 

transmission (Albuquerque et al., 2009). Only rare cases of fast nicotinic transmission 

have been reported in the mammalian brain, namely in the hippocampus, in the 
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supraoptic chiasmatic nucleus, and in the cortex (Roerig et al., 1997; Alkondon et 

al., 1998; Frazier et al., 1998; Hefft et al., 1999; Albuquerque et al., 2009). For this 

reason, neuronal nAChRs in the brain are more commonly associated with modulatory 

events rather than mediation of synaptic transmission (McGehee et al., 1995; Gray et 

al., 1996; Aramakis and Metherate, 1998; Alkondon and Albuquerque, 2001; Ji et al., 

2001; Le Magueresse et al., 2006; Zhang and Berg, 2007). 

By subtly influencing various aspects of neuronal communication, nicotinic mechanisms 

contribute to the overall efficiency of circuits and affect information processing and 

storage (Picciotto et al., 1995; Jones et al., 1999; Bannon et al., 1998; Maskos et al., 

2005; Bitner et al., 2007). Because cholinergic neurons are usually loosely distributed 

in the brain and sparsely innervate broad areas, it has been experimentally difficult to 

stimulate a large number of cholinergic neurons and to record from the precise location 

of their innervation. It is likely, however, that fast nicotinic transmission is present at 

low densities in more neuronal areas than the few that have been reported so far. 

Evidence from a multitude of studies converges to the conclusion that nAChRs are 

located at least at one of five primary locations: the cell soma, dendrites, preterminal 

axon regions, axon terminals, and myelinated axons on the neurons (Fabian-Fine et 
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al., 2001; Grybko et al., 2010). More recently, it was shown that nAChRs are also 

expressed in glia cells, including astrocytes (Sharma and Vijayaraghavan, 2001). Due 

to the broad sub-cellular distribution of nAChRs, they are in a position to regulate 

the strength of synapses at different levels. Modulation of neurotransmitter release 

by presynaptic nAChRs is the most prevalent and well-studied nicotinic role in the 

CNS. Direct or indirect Ca2+ influx through preterminal nAChRs promotes the release 

of several neurotransmitters, including glutamate and GABA (McGehee et al., 1995; 

Alkondon and Albuquerque, 2001; Maggi et al., 2001; Le Magueresse et al., 2006). 

Most of nAChRs have a high permeability to Ca2+:Na+, which usually falls within a 

ratio 3-4:1 (Fucile, 2004). In the case of a7-nAChR, its relative permeability of Ca2+: 

Na+ ratio is ≥10, exceeding that of the glutamate NMDA receptor (Bertrand et al., 

1993; Séguela et al., 1993). Since nAChRs constitute ionic channels by themselves, 

their activation also alters membrane resistance and, consequently, changes the space 

constant of the cellular membrane. These intrinsic properties of neurons influence the 

spread and efficiency that a synaptic input to produce an AP output in the target cell. 

In addition, axonal, dendritic and somatic nAChRs also modulate transmitter release 

and local excitability (Alkondon et al., 2009). 

1.4.1 Nicotinic acetylcholine receptors: subunits and subtypes in the nervous 

system

nACRs can be made up from a portfolio of different subunits. nAChRs are either homo- 

or heteromeric assemblies of five subunits, with each subunit arranged around a central 

pore (for review see Corringer et al., 2000; Unwin, 2005; Sine and Engel, 2006). 

The a subunits carry the principal components for the agonist/competitive antagonist 

binding sites and the b (or non-a) subunits bear the complementary component (Arias, 

2000). At present, 17 nicotinic subunits have been cloned, the muscle a1, b1, g, d and 

e subunits, and the neuronal a2 – a10 and b2 – b4 subunits (Albuquerque et al., 2009). 

Muscle nAChRs are a clear example of the strict association between subunit composition 

and function. nAChRs are hemopentameric channels that, in the case of the muscle 

subtype, can be constituted by a set of five subunits - a1, b1,  g, d or e. Under these 

conditions and from a pure mathematical point of view, cells could assemble 126 different 
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subtypes of nAChR. However, in nature, muscle cells only express two different nAChRs 

combinations, pointing out the existence of mechanisms that tightly ensure a proper 

stoichiometry of functional nAChRs. Early in development, when muscle cells are not 

innervated, nAChRs are found in a (a1)
2
b1gd combination, which confers a long-lasting 

open channel time and leads to an intermittent depolarization that favors receptor 

clustering (Mishina et al., 1986; Gu and Hall, 1988). Interestingly, this depolarization 

also leads to the expression of the e subunit (Goldman et al., 1988), which competes 

the g subunit for assembly in the receptor. The (a1)
2
b1ed combination, which can be 

found in the adult (or innervated) muscle cell, is more stable to degradation, aggregate 

at the neuromuscular junction with a higher density and exhibit a faster response to 

the agonist (Gu and Hall, 1988; Missias et al., 1996).

In the case of neuronal nAChRs, the number of different subunits found in nature is 

even higher than for muscle nAChRs. To date, 9 a-like subunits and 3 non-a subunits 

have been clone from mammalian neuronal tissue (Corringer et al., 2009). Neuronal 

subunits that form nAChRs in ab combinations include a2–a6 and b2–b4. Subunits 

capable of forming homomeric nAChRs are a7–a9, and a10 forms a heteromer with 

a9 (Dani and Bertrand, 2007). The a8 subunit has been found in avian tissue but 

has not been detected in mammals (Dani and Bertrand, 2007). Although there are 

many potential combinations of neuronal nAChRs, only a few have been found to be of 

biological importance. 

nAChRs can be assembled with different stoichiometries, which can impact on the 

receptor function and upregulation. For example, the mammalian high-affinity nicotine 

binding receptor consists of at least a4 and b2 nAChR subunits (Albuquerque et al., 

2009). a4b2-containig receptors can be constructed to the final stoichiometry of 

(a4)
2
(b2)

3
 and (a4)

3
(b2)

2 
[and sometimes (a4)

2
(b2)

2
(a5)] (Nelson et al., 2003; Zhou 

et al., 2002)
. 
While all these three forms of nAChRs bind nicotine with high affinity, it 

is the (a4)
2
(b2)

3
 nAChR that is most sensitive to the upregulation by nicotine (López-

Hernández et al., 2004). The high diversity of subunits and the possibility of different 

stoichiometries contribute, in part, to the multiplicity of roles played by nAChRs in 

physiological and pathological conditions. 
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1.4.2 Structure of nAChR subunits – Implications for function

Each nAChR subunit has a structure consisting of a conserved and large extracellular 

N-terminal domain, four hydrophobic transmembrane (TM) domains (TM1-TM4), a 

short cytoplasmic loop between TM1-TM2, a large cytoplasmic loop between the TM3-

TM4, and a short extracellular C-terminus (Fig 1.6; Unwin, 2005; Albuquerque et al., 

2009). Common to all subunits is the occurrence of a cysteine loop (Cys loop) in 

the first portion of extracellular N-terminal domain (Lester et al., 2004). a subunits 

have two adjacent cysteines, in addition, near the entrance of TM1 that seem to be 

essential for ACh binding. The nicotinic binding site lies at the interface between an 

a-subunit (the “principal” component, or positive face) and a non-a subunit (the 

“complementary” component, or negative face), except in homomeric nAChRs (Brejc 

et al., 2001). The hydrophobic residues determine the ligand binding affinity, whereas 

the residues of the negative face determine ligand selectivity (Brejc et al., 2001). The 

extracellular N-terminal domain also serves as the major binding site for antagonists 

like a-bungarotoxin (a-Bgt) and other snake toxins, which are potent inhibitors of 

Figure 1.6 - Model of the a7-
nAChR. Comparative modelling 
based on the homologue protein from 
Erwinia chrysanthemi (Protein Data 
Bank code 2VL0). A) Structure of one 
subunit of the a7-nAChR model. The 
cytoplasmic domain and its phos-
phorylation sites are schematically 
represented, as they are not present 
in the model. The ‘loops’ of the bind-
ing site  (a–e) are labelled as well as 
the loops of the interface between 
the extracellular and transmembrane 
(TM) domains (cys-loop, b1–b2 and 
b8–b9). B) Close view of the acetyl-
choline-binding site. For clarity, only 
two monomers are represented. The 
loops of the binding site (a–e) are 
labelled. C,D) Top view (c) and side 

view (D) of the a7 nAChR pentam-
er, showing five nicotine molecules 
(dark grey) in the binding sites and 
the volume of the ion channel (dark 
blue). Adapted from Taly et al., 2009.

A B

DC
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nAChRs. 

The four TM domains are a helices packed around the central hydrophilic pore. The TM2 

lines the pore, while TM1, TM3 and TM4 segments separate the pore-lining region from 

the hydrophobic membrane (Karlin, 2002; Albuquerque et al., 2009). TM4 is away from 

the pore and mostly interactive with the lipid bilayer. TM1 and TM3 complete this helix 

bundle by positioning opposite to each other and rotated by 90º relative to TM2 and 

TM4 (Unwin et al., 1998; Unwin et al., 2005). 

TM1 has a minor contribution in the pore structure the nAChR channel, only lining the 

region where the pore widens toward the extracellular membrane surface. The pore is 

mainly constituted by the transmembrane domain TM2 and is critical for establishing the 

ion gate, cation-selectivity, and channel conductivity (Dani et al., 2007; Albuquerque 

et al., 2009). Ligand binding induces rotation of the extracellular domain and this is 

translated into rotation of the TM2 helices. This step has three different consequences: 

1) removal of hydrophobic barrier residues from the pore, 2) an increase in the pore 

diameter and 3) movement of hydrophilic residues into the channel to support ion flow 

(Gao et al., 2005). Computational simulations predicted that the greatest structural 

change during gating of nAChR occurs in TM4. This might be due to the exquisite location 

of TM4 in the cell membrane, where it establishes relative few contacts with proteins in 

comparison with other TMs. In fact, TM4 contains a highly conserved cysteine residue 

that appears to be involved in receptor aggregation and interaction with cholesterol 

and other lipid-related molecules such as sterols (Barrantes, 2004). Consequently, 

manipulation of the lipid content or the degree of receptor aggregation has potential 

to modify the gating mechanism and may even have some functional consequence. 

TM1 and TM3 also seem to interact cholesterol (Taly et al., 2009), although in a less 

extension than what is described for TM4. 

The amino acid sequence of the large cytoplasmic loop between TM3 and TM4 is unique 

among eukaryotes and shows considerable diversity among different nAChR subunits, 

suggesting that this region might be important for subunit-specific behavior and 

interactions with cellular components. To date, it seems that most of the cytoplasmic 

loop is unordered, which is actually important for the function of some proteins, and 

could eventually explain the various functions of this region in the resting, open and 
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desensitized states of nAChR (Kukhtina et al., 2006). The large cytoplasmic loop is 

thought to interact with proteins involved in trafficking and targeting, scaffolding, as 

well as with kinases and other signaling proteins, making this domain important when 

considering assembly, expression and function of nAChRs (Kuo et al., 2005). The large 

cytoplasmic loop also harbors sequences important to the distribution of receptors on 

the cell surface. For example, it was shown that the cytoplasmic loop of a3 subunit 

targets a3*-nAChRs at the synapses, in ciliary ganglion in vivo (Williams et al., 1998). 

In contrast, sequences within the a7-nAChR subunits exclude a7-nAChRs from the 

synapse and favor their perisynaotic localization (Williams et al., 1998). 

1.4.3 Posttranslational modifications of nAChRs

Receptor expression seems to be regulated by a combination of intrinsic structural 

features of the respective receptor and the ability of the cell to recognize and modify 

the structural sequence in a manner favorable to subsequent receptor expression at 

the surface. Multiple sites of nAChRs subunits important for receptor folding, assembly 

and trafficking can be glycosylated, phosphorylated and palmitoylated (Alkondon et 

al., 2009). Consequently, posttranslational modification control at some extent the 

subcellular localization and function of nAChRs in the cell surface. Glycosylation, in 

which a carbohydrate chain is enzimatically attached to a protein, seems to be important 

for the surface expression of the receptor and to the ability of nAChR channels to open 

in response to the agonists (Gehle et al., 1997; Dellisanti et al., 2007). Phosphorylation 

within the cytoplasmic domain occurs for several nAChRs subtypes; the functional 

consequence of this posttranslational modification is specific for each receptor subtype, 

location and cell type, even when despolected by the same signaling pathway (Wiesner 

and Fuhrer, 2006). Palmitoylation is another posttranslational and reversible process 

that takes place in the ER, where palmitate is covalently attached to cysteine residues 

via thioester bonds that serves to anchor the proteins to either face of the cell membrane 

(Linder and Deschenes 2004; Smotrys and Linder 2004; Resh 2006). Palmitoylation 

occurs for many of the muscle and neuronal nAChRs subunits and, therefore, is likely 

to have a role in the assembly, trafficking and/or function of nAChRs (Alexander et al., 

2010a). It is believed that the palmitate inserts and assumes a place in the bilayer 
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structure of the membrane alongside the similar fatty-acid tails of the surrounding lipid 

molecules. There is some evidence however that the palmitate does not act merely as 

an anchor. It is possible that these additional lipid tails help the proteins to be properly 

sorted in the cell membrane, targeting them to specific domains, such as lipid rafts, or 

altering their conformation to regulate their activity and interaction with other proteins 

(Allen et al., 2007).

1.4.4 Trafficking of nAChRs – putting nAChRs in the cell surface

1.4.4.1 Chaperones and scaffolds as intrinsic factors that regulate the 

trafficking of nAChRs

The broad spectrum of functions and locations of nAChRs at pre- and postsynaptic 

places throughout the nervous system raises the issue of how the cellular distribution 

of these receptors is regulated. nAChRs are likely to be localized in defined cell 

compartments based on a combination of subunit composition and the presence of 

scaffold components and associated transmembrane proteins that localize them in their 

final destination (Conroy et al., 2003, 2007; Parker et al., 2004; Temburni et al., 2004; 

Farias et al., 2007; Rosenberg et al., 2008). The specific sites for insertion/endocytosis 

of neuronal nAChRs and the mechanisms that regulate their lateral diffusion on the cell 

membrane are not known yet. Trafficking neuronal nAChR seems to be distinct from 

the muscle subtype, since different proteins/scaffolds associate with them (Millar and 

Harkness, 2008). For instance, rapsyn was one of the first nAChR interactors to be 

identified, and it was found to promote clustering of nAChRs at the postsynapse of the 

NMJ (Froehner et al., 1990; Gautam et al., 1995). As in muscle, neuronal nAChRs are 

clustered, but rapsyn, which has been detected in the nervous system, is incapable of 

clustering a3b2 or a4b2 nAChRs at the cell surface (Huh and Fuhrer, 2002). In addition, 

it was observed that the clustering of a5- and b2-containing nAChRs is unaffected 

in mice lacking rapsyn, indicating that rapsyn is not necessary for neuronal nAChR 

clustering (Feng et al., 1998). 

 

Recent proteomic studies of purified mice brains identified at least 21 proteins 
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associated with the b2 subunit and 57 with the a7-nAChR (Kabbani et al., 2007; Paulo 

et al., 2009); several of these proteins are implicated in regulation of sub-cellular 

trafficking. Pursuing the functional meaning of these interactions in the future will help 

to clarify the machinery involved in the trafficking of nAChRs to, from and within the 

cell membrane. 

Once synthesized, neuronal nAChR associate with chaperone proteins that transport 

receptors away from the ER. These chaperones associate with the precursors of 

nAChR subunits to enhance and favor subunits’ folding into complete complexes. The 

dependence on chaperones and scaffolds to promote the assembly and trafficking of 

nAChRs to the cell membrane may be most pronounced for a7-nAChRs; RIC-3 has been 

identified as a chaperone indispensable for assembly and trafficking of a7-nAChRs to 

the cell surface (Halevi et al., 2002, 2003; Ben-Ami et al., 2005; Castillo et al., 2005; 

Lansdell et al., 2005; Williams et al., 2005; Wang et al., 2009). More recently, it was 

shown a dual role for RIC-3 on the expression of a7-nAChRs (Alexander et al., 2010b). 

When present at low levels, RIC-3 interactions are short-lived and promote a7-nAChRs 

assembly and release from the ER. At higher levels, RIC-3 interactions are longer-lived 

and mediate the retention of a7-nAChRs at the ER (Alexander et al., 2010b). Receptor 

internalization is also likely to depend on specific scaffold components and contribute 

importantly to the regulation of nicotinic signaling. One example is provided by the 

SNARE-dependent activity-induced internalization of a7-nAChRs (Liu et al., 2005).

Some of the proteins that contribute for the clustering of nAChRs on the cell membrane 

were already identified. The tumor-suppressor protein adenomatous polyposis coli 

(APC) targets a3*- but not a7-nAChRs to postsynaptic sites in chick ciliary ganglion 

(CG) neurons (Temburni et al., 2004; Rosenberg et al., 2008; Rosenberg et al., 2010). 

Interestingly, presynaptic a7-nAChRs co-localized with the scaffold APC in hippocampal 

neurons (Farías et al. 2007), pointing out the cell-specificity of receptor-scaffold 

interactions. 

APC's binding partners in CG neurons are the End binding protein 1 (EB1), postsynaptic 

density protein PSD-93, and b-catenin. Simultaneous block of APC's interactions with 

both EB1 and PSD-93 caused specific decreases in a3*-nAChR clusters (Temburni et al., 

2004). APC directs essential aspects of synaptic assembly by organizing a complex of 
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EB1, key cytoskeletal regulators macrophin and IQGAP1, and 14-3-3 adapter proteins 

at postsynaptic sites. The same authors showed that expression PSD-93, in vivo, caused 

no significant change in a3*-nAChR surface labeling. However, immunoprecipitation of 

solubilized components shows that PSD-MAGUK family members, including PSD-93, 

form a complex with ganglionic nAChRs (Conroy et al, 2003). Subunit specificity in 

these interactions is suggested by numerous findings. For example, in CG neurons, 

PSD-95 was shown to associate with a3- and a5-containing nAChRs, but not a7, a4b2 

or muscle nAChRs (Conroy et al, 2003). To date, specific sequences that facilitate the 

interaction between nAChRs and PDZ complexes have not been identified yet. It is 

not clear whether the interactions between nAChRs and PSD-MAGUK family members 

are direct or indirect in those cases, but it is becomig evident that these scaffold 

proteins are essential for mediating nAChR function in the autonomic nervous system. 

Denervation studies demonstrate that PSD-93 promotes synaptic stability in superior 

cervical ganglion neurons and submandibular ganglion neurons; synaptic clusters of 

nAChRs disperse much more rapidly in mice lacking PSD-93 (Parker et al., 2004). More 

recently, it was shown that axotomy leads to the loss of synaptic PSD93 that precedes 

the loss of nAChRs in submandibular ganglion (McCann et al., 2008). Disruption of PDZ 

scaffolds also interferes with signal transduction and downstream signaling by nAChRs 

(Conroy et al., 2003).

Best characterized are the roles of PSD-MAGUK family members in regulating nAChR 

function on autonomic neurons, but postsynaptic PDZ-scaffolds at nicotinic synapses 

also occur in the CNS. For instance, in hippocampal neurons, a7-nAChRs appear to co-

localize with PSD-95 (Xu et al., 2006). Other scaffold protein that controls a7-nAChR 

clustering in hippocampal neurons is PICK1 (Baer et al., 2007).

In order to synapses form and function properly, neurotransmitter receptors must be 

recruited to locations on the post-synaptic cell in direct apposition to pre-synaptic 

neurotransmitter release. Once inserted into the postsynaptic membrane, receptors 

are not fixed in place though; receptors are mobile in the plasma membrane and traffic 

to sites of nerve-muscle contact or neuron-neuron contact (Newpher and Ehlers, 2008). 

The first studies demonstrating the mobility of neurotransmitter receptors in the cell 

surface focused on muscle nAChRs (Anderson and Cohen, 1977; Axelrod et al., 1978; 

Young and Poo, 1983). That neuronal nAChRs rapidly exchange between synaptic and 
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extrasynaptic regions was only recently shown (McCann et al., 2008), almost 30 years 

after the first reports on the NMJ. There are some important differences that should be 

considered when looking at the dynamics of muscle and neuronal nAChRs. First, these 

two types of receptors are expressed in different cellular and molecular environments 

(muscle and neurons), and second they have a different subunit composition. As a 

consequence, nAChRs interact and/or associate with different molecular partners on 

muscle cells and neurons. Knowledge on the specific mechanisms that regulate the 

trafficking of neuronal nAChRs is still very limited.

1.4.5 Signaling cascades mediated by nAChRs

Although traditionally thought to serve primarily as receptor anchors or placeholders, 

receptor-associated proteins have been shown to play a central role in coupling 

neurotransmitter receptors with specific intracellular signaling cascades (Neff et al., 

2009a). Once nAChRs are activated, the channels open and allow the influx of cations. 

Since nAChRs are strong inward rectifying channels, they are active at hyperpolarised 

or resting membrane potentials and show attenuated inward currents at strongly 

depolarised potentials (Albuquerque et al., 1995). nAChRs, specially the a7 subtype, 

are permeable to Ca2+ (Bertrand et al., 1993; Seguela et al., 1993). In addition, nAChR 

activation can indirectly induce an increase in cytoplasmic Ca2+ through the activation 

of VGCC and/or from intracellular Ca2+ stores (Dajas-Bailador and Wonnacott, 2004). 

For these reasons, nAChR activation has been have been implicated in Ca2+ entry-

dependent events, including neurotransmitter release and regulation of secondary 

messenger cascades (Dajas-Bailador and Wonnacott, 2004). Both protein kinase A 

(PKA)- and protein kinase C (PKC)-dependent signalings have been implicated in the 

regulation of/by nAChRs (Downing and Role, 1987; Nishizaki and Sumikawa, 1998; Klein 

and Yakel, 2005; Shen et al., 2009). Ultimately, nAChR-mediated signaling can lead 

to alterations in gene expression, as originally shown for immediate early genes and 

genes involved in transmitter synthesis (Chalazonitis and Zigmond, 1980; Greenberg 

et al., 1986; Pelto-Huikko et al., 1995; Salminen et al., 1999; Gueorguiev et al., 2000).
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The pathways activated by nAChRs are also involved in the regulation of their own 

function, supporting the idea that receptors are regulated by components tethered 

in their immediate vicinity. The inactivation or rundown of a7-nAChRs depends on 

receptor activation, cytoplasmic Ca2+, calmodulin function, and CaMKII activity (Liu 

and Berg, 1999). In the same study, it is also reported that a parallel path using many 

of the same intermediates (but ending with calcineurin activity instead of CaMKII) 

opposes this activity-dependent inactivation. The state of the cell and internal milieu 

determine the outcome by determining the balance of the calcineurin and CaMKII 

responses (Liu and Berg, 1999). 

1.4.6 Function of nAChR in the nervous system

The diversity of nAChRs and their widespread cellular and subcellular localization 

suggest that they play different roles in the nervous system. It has been described that 

cholinergic systems are involved in arousal, sleep-wakefulness, locomotor’s behavior, 

learning and memory (Woolf, 1991; Dani and Bertrand, 2007). 

Functional cholinergic synapses have been identified in a number of peripheral neurons, 

like parasympathetic ganglions and sympathetic ganglions, and in muscle cells. In 

the peripheral nervous system (PNS), nAChRs often mediate excitatory synaptic 

transmission (Albuquerque et al., 2009). Postsynaptic structures and functional aspects 

of interneuronal cholinergic synapses are best characterized in chick ciliary ganglia, 

where developmental and innervation profiles have been intensively investigated. 

Chick ciliary ganglion neurons express a3, a5, b2, b4, and a7 subunits (Conroy and 

Berg, 1995). In these cells, two major combinations of nAChRs subunits have been 

identified: the a-bungarotoxin sensitive component comprised of a7 subunits and the 

monoclonal antibody (mAb) 35-immunoreactive nAChRs  (which can be found at least 

in two different classes, depending on the presence of b2 subunits, e.g., a3a5b2b4and 

a3a5b4). Whereas clusters of a3/a5 subunit-containing ganglionic receptors are found 

at PSDs and extrasynaptic sites (Williams et al., 1998), a7-containing receptors, 

which represent the most abundant population of ganglionic receptors, are exclusively 

localized on perisynaptic somatic spines (Shoop et al., 1999). 
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Cholinergic neurons were also identified in the CNS. To date, there were identified 

three major cholinergic subsystems above the brainstem that innervate nearly every 

neural area. One system sends widespread projections from the pedunculopontine 

tegmentum and the laterodorsal pontine tegmentum to the thalamus and midbrain 

dopaminergic areas and also to the caudal pons and brain stem (Woolf, 1991). The 

second cholinergic system arises from various basal forebrain nuclei projecting through 

the cortex and the hippocampal formation (Woolf, 1991). These two systems provide 

broad, diffuse, and generally sparse innervation to wide areas of the brain. The third 

major cholinergic subsystem is an exception to this principle of broad innervation; it 

consists of striatal cholinergic interneurons, which project throughout the striatum and 

the olfactory tubercule (Zhou et al., 2002). 

Information regarding building up and maintaining interneuronal cholinergic synapses in 

the CNS is limited, mainly due to the diffuse cholinergic innervation and to the relatively 

low levels of expression of nAChRs in some brain areas. The majority of neuronal 

nAChRs in the brain fall into two categories: those that bind agonist with high affinity 

(nM concentrations), and those that bind with lower affinity (mM concentrations). The 

low-affinity receptors are presumably homomeric a7 receptors that are a-bungarotoxin 

sensitive, whereas high-affinity nicotinic receptors are a4b2-nAChRs, which account for 

>90% of in the brain (Whiting and Lindstrom, 1986). Their physiological contributions 

to neurotransmission, signaling, and behavior are not completely understood. 

1.4.6.1 Cholinergic signaling in the hippocampus 

The septum/nucleus of the diagonal band of Broca (nDBB) is the primary source of 

cholinergic input to hippocampus (Lewis et al., 1967; Mellgren and Srebro, 1973; 

Mosko et al., 1973; Lynch et al. 1977). The cholinergic innervation enters via the 

fornix/fimbria and diffusively projects to all hippocampal areas, establishing direct 

synaptic contacts onto pyramidal cells, granule cells, interneurons, and neurons of the 

hilus. In addition to this directed input, a significant proportion of cholinergic release 

sites do not associate with postsynaptic specializations, suggesting an additional bulk 

transmission role (Lendvai and Vizi, 2008).
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Cholinergic septohippocampal neurons are believed to produce various rhythms in 

the hippocampus (Gogolak et al., 1968; McQuiston, 2010), influencing attention and 

memory processing (Chiba et al., 1995; Hasselmo, 2006). Several lines of morphological 

data demonstrate that both major classes of cholinergic receptors (muscarinic and 

nicotinic) are expressed in the hippocampus. In contrast to nAChRs, the muscarinic 

AChRs (mAChRs) are sensitive to muscarine and constitute G protein coupled receptors 

that activate phosphoinositide-specific PLC b and Ca2+ release from internal stores 

(Eglen, 2006). Due to the characteristics of mAChR signaling, it is considered that they 

have slower and longer lasting effects than nAChRs.

The hippocampus expresses a wide variety of nAChR subunits, although a7, a4, and 

b2 predominate (Dani and Bertrand, 2007). The diffuse extracellular ACh signal and 

the broad distribution of nAChRs at synaptic and nonsynaptic locations ensure multiple 

targets and a variety of nicotinic responses in the hippocampus (Lendvai and Vizi, 

2008). 

An important aspect of the diffusive nicotinic signal is the fact that the eventual hydrolysis 

of ACh creates choline (Ch), which activates/desensitizes nAChRs by itself in a subtype-

selective manner. Therefore, ACh provides a diffuse, volume signal that continues as 

a longer-lived Ch signal that acts both at an ongoing background level and at higher 

concentrations in specific microdomains. Although ACh and Ch activate a7-nAChRs with 

similar single channel open time and conductance, Ch dissociates more rapidly from 

the receptor and, consequently, induces a less stable state than ACh does (Mike et al., 

2000). It is tempting to speculate, however, than during maturation of the nervous 

system choline acts as the primary endogenous a7-nAChR agonist, because expression 

of the ACh-synthesizing enzyme choline acetylcholine acetyltransferase lags behind 

the appearance of nAChRs in developing neurons. It is yet to be determined whether 

any circumstances Ch rather than ACh serves as an endogenous neurotransmitter to 

activate a7-nAChR. 

Levels of the a7-nAChR are high in the hippocampus, where it can fulfill several 

roles early on during development. At the anlage of the hippocampal formation, the 

mRNA and protein for a7-nAChR are detected on embryonic day (E) 13 and on E15, 

respectively, which is long before the entry of cholinergic innervation into that brain 
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structure (Adams et al., 2002). Several studies report that the septohippocampal 

pathway appears primarily in the hippocampus only after birth (however, a study found 

axons of the septohippocampal projection in the hippocampal formation as early as 

E17) (Linke and Frotscher, 1993; Adams et al., 2002;) In any case, activation of the 

a7-nAChRs before the initial appearance of these early septohippocampal projections 

would require an endogenous ligand other than acetylcholine.

During the first few weeks of postnatal life, the rodent brain undergoes extraordinary 

development. In rodents, as well in other mammals, brain development is far from 

complete at birth, and many neuronal systems mature in response to the continuous 

interaction with the changing environment. This is especially true for brain areas 

involved in higher cognitive functions, such as the hippocampus. The expression of 

a7-nAChRs dramatically increases during this period, reaching the highest levels of 

expression for the entire life span (Tribollet et al., 2003). a7-nAChR-mediated actions 

appear to be important during these times, participating in several Ca2+-dependent 

events that contribute to the maturation of the neuronal network. The activation of 

a7-nAChRs facilitates normal neuronal loss in the ciliary ganglion during development 

(Hruska and Nishi, 2007). If this action is extensive to areas of the CNS was never 

investigated. Interestingly, excessive activation of a7-nAChR can also culminate in 

abnormal and massive cell death. For instance, transgenic mice homozygous for a 

gain-of-function mutation in a7-nAChRs exhibit high neuronal apoptosis levels in the 

cortex and die shortly after birth (Orr-Urtreger et al., 2000).

Besides playing a role in neuronal survival, a7-nAChR-mediating signalling was shown 

to be important for maturation of postnatal neurons. One of the characteristic features 

of these early postnatal neurons in the hippocampus is their high intracellular Cl- 

concentration, which is determinant on dictating the nature of GABAergic signaling 

(Liu et al., 2006). In the immature hippocampus, activation of GABA
A
 receptors leads 

to the passive efflux of Cl-, resulting in an inward ionic current (since Cl- is negatively 

charged) able to depolarize cells membrane (Ben-Ari et al., 1989; Ben-Ari, 2002; Owens 

and Kriegstein, 2002). In contrast, in mature hippocampal neurons, the concentration 

of Cl- is higher outside than inside the cells, and consequently GABA
A
Rs mediate 

outward currents that hyperpolarize the cell membrane. It is currently thought that 
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the developmental shift of Cl- gradient rely on the expression of different membrane 

transporters, which accumulate or extrude Cl- in immature and mature neurons, 

respectively (Blaesse et al., 2009). The main transporters that regulate the levels of 

intracellular Cl- have been identified; the NKCC1, which plays a key role in maintaining 

a high concentration of internal Cl-, and the KCC2, which is the major extruder for Cl- in 

neurons (Rivera et al., 1999; Blaesse et al., 2009). During development, Cl− extrusion 

increases due to the downregulation of NKCC1 and upregulation of KCC2. Knowledge on 

the factors responsible for this transition is important, since Cl- transporters ultimately 

determine the nature of GABAergic signalling. Surprisingly, a7-nAChRs were identified 

as a crucial key in defining the expression of Cl- transporters (Liu et al., 2006). The 

mechanism used by a7-nAChRs is not totally clear, but is likely to involve a change in 

Cl- transporter levels, making the equilibrium potential for Cl- currents more negative. 

In other words, a7-nAChRs regulate the tempo for the conversion of GABAergic 

transmission from depolarizing to hyperpolarizing (Liu et al., 2006). 

a7-nAChR-mediated signaling also modulates the release of several transmitters in the 

developing hippocampus (Gray et al., 1996; Alkondon et al., 1997; Radcliff and Dani, 

1998; Alkondon and Albuquerque, 2001). The facilitatory effect of a7-nAChRs on the 

release of glutamate and GABA can occur on multiple timescales, extending from seconds 

to days, and regulate important developmental phenomena that shape the neuronal 

network, like the spontaneous network events termed giant depolarizing potentials 

(GDPs) (Ben-Ari et al., 1989). The spiking of these neurons has been attributed to 

a synchronous, depolarizing GABAergic input from the interneuronal network acting 

in a synergistic manner with NMDA receptors. Activation of a7-nAChRs regulates the 

frequency of GDPs in the CA3 region of the hippocampus (Maggi et al., 2001, 2003; 

Le Magueresse et al., 2006) and the effect can be dramatic to the point that nicotine 

converts silent synapses to functional synapses. The mechanisms operated by a7-

nAChRs in this process are still not known. 

After the first two postnatal weeks, the occurrence of GDPs ceases. However, a7-

nAChRs keep regulating the strength of synapses in young neurons by inducing the 

release of glutamate. nAChRs localized in mossy fibers boutons synchronize the release 

of glutamate in AP-independent form by increasing [Ca2+] (Sharma and Vijayaraghavan, 
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2003). The increase in glutamate release is sufficient to drive the postsynaptic cell above 

the threshold for firing action potentials. This process of concerted release requires the 

downstream activation of presynaptic CaMKII demonstrating a novel, kinase-mediated, 

regulation of concerted release of multiple vesicles (Sharma et al., 2008). In addition, 

a7-nAChRs are expressed at the somatodendritic, preterminal and terminal levels of 

GABAergic neurons; they can depolarize the cell membrane (Alkondon et al., 2009) and 

eventually generate action potentials that lead to the release of GABA from presynaptic 

terminals (Alkondon et al., 1999).

Between postnatal day (P) 14 and P24, activation of a7-nAChRs can facilitate or inhibit to 

the induction of long-term plasticity, depending on the cell-type where they are expressed 

(Ji et al., 2001). Properly timed activation of a7-nAChRs at pyramidal neurons boosts 

the induction of long-term potentiation via presynaptic and postsynaptic pathways (Ji 

et al., 2001; Ge and Dani, 2005). On the other hand, nicotinic activity on interneurons 

inhibits nearby pyramidal neurons and thereby prevents or diminishes the induction 

of synaptic potentiation (Ji et al., 2001). The impact of a7-nAChRs in the induction of 

LTP of the intact brain is difficult to predict due to the diffuse cholinergic innervation 

and expression of diiferent subtypes of nAChR in principal cells and interneurons. The 

expression of a7-nAChRs as well as their role in synaptic strengthening persist in the 

adult hippocampus, although it is not known yet if the same mechanisms are operated 

by a7-nAChRs in the developing and adult brain. 

In the adult brain, nicotinic cholinergic input is also positioned well to influence 

adult neurogenesis. Early on, adult-born neurons receive cholinergic innervation and 

express two major types of ionotropic nAChRs: homopentameric a7-nAChRs and 

heteropentameric b2-containing receptors (b2*-nAChRs) (Kaneko et al., 2006; Ide 

et al., 2008). Cholinergic forebrain lesion decreases adult-born neuron survival, and 

enhancing cholinergic activity increases survival (Cooper-Kuhn et al., 2004; Kaneko et 

al., 2006). Chronic nicotine exposure in vivo reduces adult-born neuron proliferation 

(Abrous et al., 2002; Shingo and Kito, 2005; Scerri et al., 2006), whereas b2-nAChR 

KO mice show decreased proliferation, but normal survival, of hippocampal adult-born 

neurons (Harrist et al., 2004; Mechawar et al., 2004). 
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1.4.6.2 Cholinergic signaling in pathology - the cholinergic hypothesis of 

Alzheimer’s disease 

Although the role of nAChRs in the adult brain is not totally understood, they seem to 

be important for cognitive functions like learning and memory. Decline, disruption, or 

alterations of nicotinic cholinergic signaling are associated with several dysfunctions, 

including schizophrenia, epilepsy, autism, Alzheimer’s disease, and addiction (Romanelli 

et al., 2007). One measure of normal age-related decline in the CNS is the diminishment 

and eventual dysfunction of the limbic cholinergic system that, in its most severe 

form, contributes to the neuropathologies of dementia, including Alzheimer’s disease 

(Gouras et al., 2010). The histopathology of this disease is known for having at least 

four components: 1) loss of cholinergic neurotransmission, 2) deposition of amyloid 

beta (Ab) peptides into plaques, 3) hyperphosphorylation of the tau protein that leads 

to excessive formation of neurofibrillar tangles and 4) increased local inflammation 

(Gouras et al., 2010). Early deficits in Alzheimer’s disease involve loss of cholinergic 

neurons and a diminution of cholinergic signaling (Whitehouse et al., 1982; Francis et 

al., 1999; Nordberg, 2001; Lyness et al., 2003). The Ab accumulated during the disease 

(Selkoe, 1994) impairs choline uptake and acetylcholine release, further compromising 

cholinergic signaling (Auld et al., 1998; Kar and Quiron, 2004). Moreover, Ab has been 

reported to inhibit a7-nAChR function either directly or indirectly (Wang et al., 2000a,b; 

Liu et al., 2001b; Pettit et al., 2001; Dougherty et al., 2003; Grassi et al., 2003; Lee 

and Wang, 2003; Pym et al., 2005), though it has also been reported to be an a7-

nAChR agonist at low concentrations (Dineley et al., 2001, 2002; Dougherty et al., 

2003; Grassi et al., 2003; Wang et al., 2003).  Several studies have reported specific 

decrements in a7-nAChRs associated with Alzheimer’s disease (Hellstrom-Lindahl et 

al., 1999; Guan et al., 2000; Lee et al., 2000; but see Reid et al., 2000). Currently, 

there is no cure for Alzheimer’s disease. The medication usually prescribed for delaying 

the progression of Alzheimer’s disease includes inhibitors of acetylcholine esterase, 

in order to prevent the cleavage of acetylcholine in the synaptic cleft and prolong its 

actions in the brain.
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1.5 neurotrophInS aS reGulatorS of SynaptIc StrenGth

Neurotrophins constitute a class of molecules first described as important regulators 

of neurite outgrowth and sprouting, cell differentiation, migration and proliferation 

(Schinder and Poo, 2000; Vicario-Abejón et al., 2002; Nagappan and Lu, 2005). In 

addition to the classical effects, which are relatively slow, neurotrophins also elicit rapid 

signaling that modulates a variety of cellular functions such as membrane excitability, 

synaptic transmission, and activity-dependent synaptic plasticity in both peripheral and 

central neurons (Kang and Schuman, 1995; Korte et al., 1995; Figurov et al., 1996; 

Patterson et al., 1996; Lu et al., 2005). For the reasons stated above, neurotrophins 

have been considered regulatory molecules linking rapid changes at synapses with 

longer-lasting modifications of circuit activity. 

The level of neurotrophins expression is high during development, but persists in 

many parts of the adult brain. Four mammalian neurotrophins have been characterized 

to date: nerve-growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). These factors are derived from 

a common ancestral gene and are largely similar in their structure and functions, hence 

the collective name neurotrophins (Lu et al., 2005). 

Neurotrophins exert their cellular effects through the actions of two different receptors, 

the tropomyosin related-kinase (Trk) of tyrosine kinase receptor family and the pan-

75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor 

superfamily (Lu et al., 2005). Each neurotrophin has its specific Trk corresponding 

receptor: NGF binds TrkA, BDNF and NT4 bind TrkB, and NT3 interacts mainly with 

TrkC. All neurotrophins bind, however, the common p75NTR with a similar affinity. The 

role for these two separate receptor systems is currently understood as follows: the Trk 

receptors mediate survival signals emanating from the mature neurotrophins, whereas 

p75NTR mediates mainly apoptotic signals in response to pro-neurotrophins. 

1.5.1 BraIn derIved neurotrophIc factor

Like all neurotrophins, BDNF is expressed in a region-specific manner in the nervous 
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system. Overall, the expression pattern of BDNF seems to be more widespread than that 

of the other neurotrophins in the adult CNS. The levels of BDNF mRNA rise dramatically 

during the first weeks after birth and BDNF remains abundantly expressed even in the 

adult brain, particularly in the cortex and hippocampus (Ernfors et al., 1990; Hofer et 

al., 1990; Maisonpierre et al., 1990). 

One of the most intriguing characteristics of BDNF supporting its major role in the 

regulation of synaptic strength is that its gene translation and protein expression 

are highly controled by neuronal activity (reviewed by Thoenen, 1995; Poo, 2001). 

Furthermore, the release of BDNF is significantly regulated by neuronal activity 

(Kuczewski et al., 2009) and curiously paradigms that elicit LTP are the most effective 

in inducing BDNF release (Hartmann et al., 2001; Aicardi et al., 2004). BDNF also 

increases its own release (Canossa et al., 1997), suggesting an important positive 

feed back loop in its signaling. Neuronal activity also elevates the responsiveness to 

BDNF by increasing available TrkB receptors in the cytoplasmic membrane via docking 

of TrkB-loaded intracellular vesicles (Castren et al., 1992; Meyer-Franke et al., 1998). 

Curiously, synaptic activity can inclusively induce TrkB activation without the presence 

of BDNF (Du et al., 2003). The findings described above might explain, at least in part, 

why BDNF signaling and function are restricted to active neurons/synapses. 

1.5.1.1 faSt actIonS of Bdnf In the hIppocampuS 

The fast actions of BDNF on synaptic function were first discovered at the NMJ in 

vitro. Application of BDNF to the neuromuscular synapses elicited a rapid enhancement 

of transmitter release (Boulanger and Poo, 1999a). At central synapses, BDNF has 

been reported to enhance excitatory synaptic transmission and suppress inhibitory 

transmission in both slice and dissociated cell cultures (Poo, 2001). In the hippocampus, 

TrkB receptors are expressed in both pyramidal neurons and GABAergic interneurons 

(Drake et al., 1999). In addition, TrkB labeling was also detected in some excitatory-

type axon terminals resembling those known to arise from extrahippocampal afferents 

(Drake et al., 1999), which may contain GABA and/or neuromodulators. An interesting 

possibility is that these terminals themselves may be subject to modulation by TrkB 
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ligands (Abraham and Bear, 1996). Most synaptic effects of BDNF are accounted by 

presynaptic modification of transmitter secretion, probably due to BDNF–induced 

increase in cytosolic Ca2+ (Berninger et al., 1993; Stoop and Poo, 1996; Pozzo-Miller et 

al., 1999). In some instances, BDNF was found to modify the properties of postsynaptic 

transmitter channels, including AMPA, NMDA, and GABA
A
 receptors (Rose et al., 2004). 

1.5.1.2 Signaling mediated by TrkB Receptors

TrkB receptors contain 10 evolutionarily conserved phosphorylation-regulated tyrosine 

residues in their intracellular domain (Huang and Reichardt, 2003). Upon ligand binding, 

TrkB receptors dimerize and become autophosphorylated in trans in their intracellular 

catalytic domain (Y701, Y705 and Y706) (Middlemas et al., 1994; Stephens et al., 

1994; Segal et al., 1996). Autophosphorylation of the TrkB catalytic domain leads, 

in turn, to the phosphorylation of tyrosine residues in the juxtamembrane domain 

or the carboxyl terminus of the receptor, which act as docking sites for many of the 

intracellular enzymes and adaptors containing Src homology (SH2) or phosphotyrosine 

binding (PTB) domains (Segal et al., 1996; Huang and Reichardt, 2003). 

Two of these tyrosines, Y515 and Y816, have been the major focus in elucidating Trk 

receptor signalling events. Phosphorylation of Y816 directly recruits and activates PLC1 

through phosphorylation (Vetter et al., 1991; Middlemas et al., 1994). Activated PLC1 

further hydrolyses phosphatidyl inositides to generate inositol 1,4,5  trisphosphate 

(IP
3
) and diacylglycerol (DAG). IP

3
 increases [Ca2+]

i
 by stimulating the release of Ca2+ 

from intracellular compartments and thus activates the signaling of a variety of Ca2+-

dependent intracellular molecules (e.g. CaM kinases). DAG activates DAG-dependent 

PKC isoforms, which can further regulate the extracellular signal-regulated kinase 

(ERK) signaling cascade. Phospho-Y515 serves as a docking site for Shc adaptor 

protein (Stephens et al., 1994), which through a series of intracellular events activates 

Ras-ERK and phosphatidylinositol-3-OH kinase (PI3K)-Akt/protein kinase B (PKB) 

cascades (Huang and Reichardt, 2003). Whereas the Ras-ERK pathway regulates 

neuronal differentiation, PI3k-Akt is important for cell survival (Huang and Reichardt, 

2003). Another adaptor molecule, fibroblast growth factor receptor substrate 2 (FRS2), 

competes with Shc adaptor molecules for binding at this site. Additional adaptor proteins 
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containing pleckstrin homology (PH) and SH2 domains, such as SH2B and SH2B2, can 

associate with Trk receptors through direct binding to phosphotyrosine residues in the 

catalytic domain of the receptor. Activation of SH-2B further activates Grb2, which 

regulates the Ras-ERK and PI3K-Akt cascades (Qian et al., 1998). 

Ras-ERK, Akt and PLC pathways can ultimately regulate the activation of CREB, an 

important transcription factor for many genes, whose products are implicated in 

neuronal plasticity, survival and neurotransmission (Mayr and Montminy, 2001). It 

is important to note that, in addition to Trk receptors, many intracellular signaling 

cascades (such as protein PKA or Ca2+-CaMK) can activate CREB. Some genes are only 

activated when the activation of these cascades simultaneously convergence (Benito 
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Figure 1.7 - Neurotrophin signaling pathways via TrkB receptor. Abbreviations used: 
AKT,serine/threonine kinase; CREB, cAMP response element binding protein; DAG, diacylglycerol; 
FRS_2, fibroblast receptor substrate-2; MAPK, mitogen activated protein kinase; MEK, MAPK kinase; 
PI-3K, phosphatidylinositol-3-kinase; IP3, inositol-1,4,5-triphosphate; PLCγ, phospholipase Cγ.
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and Barco, 2010), supporting the activity-dependent nature of CREB´s action.

Besides the three major pathways described above and in Fig 1.7, neurotrophins 

also regulate the cytoskeleton in different cellular domains, e.g. the growth 

cones and the cell soma (Yuan et al., 2003). Rapid cytoskeletal dynamics induced 

by Trk activation are controlled by Rho, Rac and Cdc42 of the Rho family of small 

GTPases, leading to the assembly of contractile actin/myosin filaments, protrusive 

actin-rich lamellipodia, and protrusive actin-rich philopodia (Yuan et al., 2003). 

1.5.1.3 a role for camp In GatInG trkB-medIated SIGnalInG

Substantial evidence indicates that 3’-5’-cyclic adenosine monophosphate (cAMP) is 

crucial for gating BDNF-mediated actions. Experiments using Xenopus nerve–muscle 

co-cultures provided some important new insights into the relationship between BDNF 

and cAMP (Boulanger and Poo, 1999b). Application of BDNF induced a rapid potentiation 

of transmission at neuromuscular synapses. Such potentiation exhibited the following 

features: (i) inhibitors of cAMP signaling blocked potentiation induced by high doses 

of BDNF; (ii) activators of cAMP signaling enhanced the potentiating effects of low-

dose BDNF; and (iii) cAMP analogs alone did not mimic the BDNF effects. Thus, cAMP 

is not a downstream effector in the BDNF-mediated signaling cascade, but instead is 

permissive for the BDNF effect. Based on these experiments, cAMP was proposed to 

act as a ‘gate’ that enables BDNF to achieve its synaptic effects. Similar ‘cAMP gating’ 

features were described for other BDNF-mediated functions, including cell survival, 

growth cone turning, dendritic spine formation and hippocampal synaptic transmission 

(Meyer-Franke, 1995; Gaiddon et al., 1996; Song et al., 1997; Diógenes et al., 2004; 

Ji et al., 2005). 

There are distinct mechanisms used by cAMP to modulate TrkB signaling in neurons. 

Early studies demonstrated that [cAMP]
i
 elevation enhanced the responsiveness of 

retinal ganglion cells to BDNF by increasing the surface expression of TrkB. Ji and 

colleagues demonstrated that cAMP modulates TrkB signaling in hippocampal neurons 

by: 1) regulating BDNF-induced TrkB tyrosine phosphorylation and 2) facilitating the 

movement of TrkB to PSDs of hippocampal neurons. More recently, it was described 
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that elevation of [cAMP]
i
 induces TrkB translocation to lipid rafts and potentiates TrkB 

receptor phosphorylation in these domains (Assaife-Lopes et al., 2010). Interestingly, 

this effect requires the presence of BDNF but it seems to involve different mechanisms 

from those used by BDNF to translocate TrkB receptors to lipid rafts (Suzuki et al., 

2004; Pereira and Chao, 2006). The interaction between neurotrophins-dependent 

pathways and other coincident signals, including neuronal and synaptic activity, is also 

important for long-term trophic effects of gene activation (Benito and Barco, 2010).

The production of cAMP relies on the activation of adenylyl cyclase. One of the major 

contributors for activating adenylyl cyclase, and consequently, elevating [cAMP]
i
 levels 

in the neurons, is the adenosine A
2A

 receptor. Adenosine is a ubiquitous modulator of 

the nervous system acting via A
1
, A

2A
, A

2B
, and A

3
 G-protein-coupled receptors (GPCRs) 

(Fredholm et al., 2003; Sebastião and Ribeiro, 2009). Adenosine receptors are widely 

distributed in the nervous system; the high-affinity A
1
 and A

2A
 receptors are responsible 

for the fine-tuning the release of neurotransmitters and other signaling molecules 

(Sebastião and Ribeiro, 2009). The levels of extracellular adenosine at synapses are 

tightly regulated and fluctuate according to the rate of neuronal firing (Sebastião and 

Ribeiro, 2009). During high frequency neuronal firing, the release of the adenosine 

precursor ATP is increased (Wieraszko et al., 1989), A
2A

 receptor activation is favored 

(Correia-de-Sá et al., 1996), and adenosine inactivation systems are inhibited (Pinto-

Duarte et al., 2005). In addition, ATP can inhibit ecto-5′-nucleotidase activity in the 

hippocampus, allowing the burst-like formation of adenosine (Cunha, 2001). 

There are several evidences for a permissive role of adenosine A
2A

 receptors on the fast 

actions of BDNF upon synaptic transmission and LTP (Diógenes et al., 2004; Fontinha 

et al., 2009; Tebano et al., 2008; Assaife-Lopes et al., 2010). Furthermore, A
2A

 receptor 

activation not only triggers cAMP accumulation, but also activates PKC (Cunha and 

Ribeiro, 2000) and Src-family tyrosine kinases, suggesting the existence of parallel 

signaling systems that could gate BDNF actions (Rajagopal and Chao, 2006; Mojsilovic-

Petrovic et al., 2006).
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1.6 ratIonale and oBjectIveS 

As reviewed above, activation of nAChRs is able to produce diverse effects due to their 

location and downstream signaling pathways activated in cells. Specifically for a7-

nAChRs, the Ca2+ influx can trigger different signaling cascades in neurons and some 

of them can inclusively regulate gene transcription. 

It became also clear that there is limited knowledge on the intracellular pathways 

and extracellular signals that regulate the expression/function of neuronal nicotinic 

receptors on the cell membrane. Furthermore, the impact of nAChR-mediated signaling 

on the CNS is not totally clear yet. The aim of this dissertation is to investigate

the mechanisms that regulate neuronal nAChRs on the cell surface and 

elucidate about the role played by these receptors in the central nervous 

system. 

To accomplish these goals, I focused my work on the following objectives:

1. Characterize the lateral diffusion of neuronal nAChRs on the cell membrane and 

identify some cellular and molecular mechanisms that underlie the dynamic 

distribution of nAChRs on the cell surface.

2. Study the acute effect of the neurotrophin BDNF on the function of neuronal 

nAChRs.

3. Investigate the role of a7-nAChRs on the development of adult-born neurons in 

the dentate gyrus.

Fundamental information about the biology and cellular processes involved in cholinergic 

transmission will be gained. In addition, knowledge of these mechanisms may open 

new windows for understanding and developing new treatments for mental disorders, 

like Alzheimer’s disease, schizophrenia and nicotine addiction.
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Chapter 2

Materials and Methods

2.1 ethiCs

All experiments were performed in accordance with European Community and 

National Institute of Health guidelines for animal care and use. Animals were maintained 

on a 12-hour light/dark cycle, and provided food and water ad libidum.

2.2 Methods for Chapter iii

2.2.1 single partiCle traCking: iMaging the lateral diffusion of MeMbrane MoleCules 

with QuantuM dots

To better understand the dynamic of receptors in the cell membrane, a variety of 

methods have been developed to optically track transmitter receptor movement, yielding 

important insight into the physical interactions and local environment of a receptor 

(Triller and Choquet, 2005; Groc et al., 2007). In the late 1980s, the emergence of 

SPT experiments allowed real-time monitoring of the movement of individual proteins 

or a small group of proteins on the plasma membrane (Geerts et al., 1987; Schnapp 

et al., 1988; Saxton and Jacobson, 1997). One of the main advantages of single-

molecule imaging is that it avoids ensemble averaging of multiple molecules. As a 

result, it enables the observation of heterogeneous behaviors of a given molecule and 

of transient phenomena that take place. 

In classical SPT experiments, the molecules of interest are specifically bound to high-

affinity ligands, (such as antibodies, natural ligands, synthesized ligands or toxins), 

which in turn are attached to latex beads, colloidal gold nanoparticles, silica), that 

can be tracked by video microscopy with 10–100 Hz acquisition frequency and spatial 

resolution of 10–50 nm (Choquet and Triller, 2003). Several physical laws underpin the 

usefulness of SPT in reporting membrane protein diffusion. First, on this scale, mass 

is not a critical factor and movements are dominated by Brownian and viscous forces. 

Second, because the viscosity of membranes is 100- to 1000-fold greater than that of 
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extracellular fluids, it is the membrane-anchored receptors that slow down the particles 

and not the reverse. Third, the diffusion coefficient of an object in a membrane varies, in 

theory, as the logarithm of its surface area, because membranes are a two-dimensional 

diffusion space (Choquet and Triller, 2003). 

Although SPT allows longer recording periods and better time resolution than other 

techniques, the size of the label can reduce or even prevent access to crowded areas 

and, for this reason, the use of SPT has been limited in neurons. For several years, the 

use of SPT was restricted to the study of extrasynaptic receptors, as the size of the 

particles prevented access to receptors to the synaptic cleft (Saxton and Jacobson, 1997). 

The recent development of fluorescent semiconductor QDs might partially overcome 

this difficulty and partially compensate the drawbacks of SPT. The total diameter of a 

QD is about 25–30 nm, making them suitable to track receptors inside the synaptic 

cleft (Dahan et al., 2003). Moreover, QDs offer unique photophysical properties that 

have provided new possibilities in biological imaging. Their bright fluorescence and 

resistance to photobleaching make it possible to achieve good signal-to-noise ratio, 

thereby increasing spatial resolution, and to track single particles for longer periods 

(the time resolution is mainly limited by the speed of the camera data transfer). 

Because they are defined point sources that can be imaged on large areas on charge-

coupled devices, their localization can be determined with a relative resolution down 

to the nanometer scale. This provides an improved resolution compared to the usual 

resolution of a light-focusing microscope, which is limited to l⁄2NA 200–500 nm, where 

l is the light wavelength and NA the numerical aperture of the lens. Such a molecular 

resolution has not been reached in approaches used to study membrane dynamics, 

such as fluorescence recovery after photobleaching (FRAP; Axelrod et al., 1976) or 

fluorescence correlation spectroscopy (Haustein and Schwille, 2004; Thoumine et al., 

2008). This precision enables the determination of diffusion coefficients over several 

orders of magnitude. Finally, QDs have the particularity of alternating between ‘on’ 

and ‘off’ states, known as blinking (Michalet et al., 2005). This complicates the particle 

tracking but ensures the identification of single QDs because signals alternate between 

0 and 1, and would be fractional in the case of multiple QDs. However, one cannot rule 

out the possibility that multiple receptors are bound to a single QD, and this point must 
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be considered carefully. It is usually impossible to precisely determine the number of 

receptors that are bound to an individual QD. Although theoretically this is not an issue, 

as diffusion of a small aggregate of receptors should be similar to that of an individual 

receptor, this only holds true if receptor aggregation facilitated by the particle does not 

trigger active mechanisms such as coupling to cytoskeleton elements. Furthermore, 

the complex microstructure of biological membranes probably impedes the diffusion of 

receptor aggregates more severely than diffusion of individual receptors. 

Although luminescence properties of individual quantum dots should allow for their 

visualization in tissue, such as brain slices or in vivo, their size would likely limit 

their penetration, diffusion, or both. For this reason, the use of QDs for studying 

neurotransmitter lateral diffusion has been limited to cell cultures. Furthermore, 

attachment of these labels to native receptors usually relies on the availability of 

antibodies, which are rather bulky ligands, targeted to extracellular domains. 

2.2.1.1 priMary neuronal Culture and transfeCtion 

White leghorn chick embryos were obtained locally and maintained at 37°C in a 

humidified incubator. Dissociated E8 CG neurons were grown in culture for 6 days on 

glass bottom culture dishes coated with poly-D-lysine, fibronectin, and lysed fibroblasts 

at 2 ganglion equivalents per 16 mm coverslip (Nishi and Berg, 1981; Zhang et al., 

1994). Under these conditions, the neurons form nicotinic cholinergic synapses on 

each other and express the same classes of receptors found in vivo (Chen et al., 

2001; Conroy et al., 2003). Dissociated E13 chick sympathetic ganglion neurons from 

the lumbar region were grown in culture for 6 days on glass bottom culture dishes 

coated with poly-D-lysine at 1.5 ganglion equivalents per 16 mm coverslip. These 

growth conditions suppress the proliferation of nonneuronal cells resulting in cultures 

comprised of ~90% cells with neuronal morphology that are sensitive to applied 

acetylcholine (Downing and Role, 1987).

Neurons were transfected at the time of plating as described (Conroy et al., 2003) 

using the transfection reagent Effectene (0.25–0.5 mg DNA/well, 1:25 ratio of DNA/

Effectene). The medium was replaced 24 hours after plating, and cultures were analyzed 

after 6 days. Typical transfection efficiencies were 1–2%.
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2.2.1.2 pharMaCologiCal Manipulations  

Actin filaments and microtubules were depolymerized by treating cultures for 1 hour 

at 37ºC with latrunculin A (3 mM) or cytochalasin D (2 mM) and nocodazole (10 mM), 

respectively, in 0.1% DMSO. For cholesterol depletion, cells were incubated for 2.5 

hours with cholesterol oxidase (COase, 2 U/ml) or with methyl-β-cyclodextrin (MbCD, 

3 mM) for 15 min at 37ºC.

2.2.1.3 synapse labeling and reCeptors tagging

Functional synaptic specializations were labeled using either FM4-64 dye or MitoTracker 

Red 580 staining. FM4-64 is a red fluorescent amphiphilic styryl dye that embeds 

into the membranes of synaptic vesicles as endocytosis is stimulated; MitoTracker 

(rhodamine derivative) is a mitochondria marker that was shown to colocalize with the 

presynaptic synaptotagmin clusters (Tardin et al., 2003; Groc et al., 2004). FM4-64 

(5 mM) labeling was achieved by a 30 s incubation at RT with 40 mM KCl added to the 

culture medium to stimulate vesicle recycling. MitoTracker Red 580 (100 nM) staining 

was performed by adding the reagent to the culture medium for 2 minutes at 37ºC, 

washing 2 times with culture media, and leaving the neurons an additional 30 minutes 

at 37ºC. 

QDs tethered to individual a3*- and a7-nAChRs via specific biotinylated ligands were 

used as fluorescent probes to follow the mobility of nAChRs. mAb 35 is a monoclonal 

antibody against one specific immunogenic region in a1, a3, a5 subunits of nicotinic 

acetylcholine receptors. a-Bgt binds with high affinity to assembled a7-nAChRs 

receptors to a site that overlaps the agonist-binding site in a pseudo-irreversible fashion 

(because of the slow binding kinetics of a-Bgt). 

After rinsing three times with phosphate-buffered saline (PBS) containing 0.1% bovine 

serum albumin, neurons were incubated with either biotinylated-aBgt (Biot-aBgt, 10 

nM) or biotinylated mAb 35 (Biot-mAb 35, 0.1 mg/ml) for 5 minutes on ice and washed 

three times. QDs 605 were tethered to individual a3*- and a7-nAChRs by incubating 

neurons for 5 minutes with streptavidin-coated QDs (605 nm, 500 pM) on ice. Neurons 



Chapter 2: Materials and Methods 55

were washed three times with recording 

medium containing (in mM): 160 NaCl, 

10 HEPES, 10 glucose, 4.5 KCl, 2 CaCl
2
, 

1 MgCl
2
, pH 7.4. The labeling was 

specific because few QDs were observed 

for a3*-nAChR labeling if the Biot-mAb 

35 was replaced with unconjugated 

mAb 35 (Fig. 2.1C). Similarly, few QDs 

were observed for a7-nAChR labeling if 

the Biot-aBgt was competed with 100 

mM nicotine (Fig. 2.2C). To minimize 

tracking internalized QD-nAChRs, all 

movies were confined to a 20-minute 

period immediately after the labeling 

(Charrier et al., 2006). Treating the cells 

with an acid wash [30 s with PBS pH 5.5 

at room temperature (RT)] removed the 

vast majority of QDs, confirming that 

little, if any, internalization had occurred 

(Fig. 2.1D and 2.2D). 

2.2.1.4 aCQuisition of spt Movies 

Neurons were imaged with an inverted 

microscope (Zeiss Axiovert 200M) 

equipped with a 63x oil immersion 

objective (NA = 1.40).  Samples were 

illuminated with a mercury lamp and 

imaged with appropriate excitation filters, 

dichroic mirrors, and emission filters.  

Settings were HQ545/30, Q565LP, and 

HQ610/75M, respectively for FM4-64 and 

Figure 2.1 - Images showing the number 
of QDs (A) when using Biot-mAb 35 (0.1 mg/
ml), (B) after acid-stripping 20 minutes follow-
ing the staining shown in A, and (C) when using 
nonbiotinylated mAb 35. (D) Histogram repre-
sents the number of QDs in different conditions; 

**p<0.01, one-way ANOVA. Scale bar: 10 μm.

Figure 2.2 - Images showing the number 
of QDs (A) when using Biot-αBgt (10 nM), (B) 
after acid-stripping 20 minutes following the 
staining shown in A, and (C) when using non-
biotinylated αBgt (10 nM). (D) Histogram repre-
sents the number of QDs in different conditions; 

**p<0.01, one-way ANOVA. Scale bar: 10 μm.
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MitoTracker Red 580; D420/40X, 470DCXR, and D605/40, respectively, for QD 605; 

and HQ487/25, Q505LP, and HQ535/40M, respectively, for GFP.  Fluorescence images 

were acquired with 95 ms exposure times at 10 Hz using a CCD camera (AxioCam 

MRm, Zeiss) and AxioVision 4.6 software (Zeiss).

2.2.1.5 traCking proCedure and trajeCtory deCoMposition

QDs were only considered for analysis if they blinked during the recording period. 

Analysis was done as in Gómez-Varela et al., 2010. The trajectory (x,y,t) of each 

single particle was reconstructed. Image sequences were processed with the ImageJ 

‘SpotEnhancing Filter’ plugin and tracking of single QD was performed with the ImageJ 

plugin (Sage et al., 2005). Periods where the fluorescence signal disappeared due to 

the blinking of single quantum dots were omitted from the analysis. In such cases, the 

trajectory was decomposed in two fragments ending and restarting immediately before 

and after the dark period of the blink respectively.

To assign synaptic localizations, trajectories were sorted into extrasynaptic and 

synaptic bins defined by the mitochondria marker MitoTracker Red 580 or the FM4-

64 dye labeling. Synaptic spaces for MitoTracker and FM4-64-labeled boutons were 

defined as punctate regions 3 pixels in diameter (0.2 mm/pixel; Aravanis et al., 2003). 

Synaptic and extrasynaptic trajectories were considered for 10 or more consecutive 

frames each, with the center of the QD inside the respective region. 

2.2.1.6 QuantifiCation of diffusion properties

Instantaneous diffusion coefficients (D
i
) were determined for each trajectory by fitting 

the first 5 points of the mean square displacement (MSD) curves versus the lag time 

(τlag; Dahan et al., 2003). MSD curves were constructed as described (Savin and 

Doyle, 2005), thereby rejecting the bias of the MSD resulting from diffusive motion 

during the exposure time of a single image:

             

   MSD (τlag, τexp) = 4 D
i 
(τlag - τexp / 3) + dloc
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where τexp represents the sum of all single exposure times applied for acquisition from 

t = 0 to t = τlag and corrects for the underestimation of D
i
 that becomes relevant if 

the exposure time τexp is comparable to τlag. The global localization accuracy (dloc) 

was determined by testing the vibrational stability of the setup, calculating MSD for 

immobile spots. Immobile QDs were defined as streptavidin-QDs stationery on the 

surface of glass bottom dishes in the absence of neurons.  The localization accuracy 

was 50 nm, and the resolution limit in terms of diffusion coefficients was 0.008 mm2/s.

Synaptic dwell time was calculated as the total time spent by a QD-nAChR in synaptic 

space divided by the number of exits by the QD from the space. Dwell time is related to 

the stability of the molecular interactions and⁄or to confinement in a given compartment.

The frequency of transitions represents the sum of entries and exits from synaptic 

space divided by the duration of the recording period. Transition frequencies are related 

to the statistics of the discrete molecular events involved and whether or not they are 

stationary. 

2.2.2 iMMunostaining of fixed Cells

To label surface a3*-nAChRs, CG neurons in culture were lightly fixed with 0.15% 

paraformaldehyde (PFA) for 20 minutes at RT, washed in PBS, and incubated with mAb 

35 (1:200) for 1 hour at RT (Conroy and Berg, 1998). A 45-minute incubation with 

rhodamine-aBgt (100 nM) was used to label a7-nAChRs prior to fixation as previously 

described (Conroy et al., 2003).  After washing in PBS, cells were then fixed with 2% 

PFA in PBS for 20 minutes at RT. To label synaptic boutons, cells were incubated with the 

anti-synaptotagmin mAb 48 (1:20) and anti-synaptic vesicle protein 2 (SV2) antibody 

(1:1000) overnight at 4°C in PBS containing 5% normal donkey serum and 0.1% Triton 

X-100.  After washing in PBS, cells were incubated with appropriate donkey Cy3- or 

FITC-conjugated secondary antibody 1 hour at RT (1:250), rinsed, and mounted on 

slides for imaging.



58

2.2.2.1 fluoresCenCe iMage aCQuisition and Quantitative analysis

Confocal images were acquired in sequential mode using a Leica SP5 confocal microscope 

with settings that did not saturate the fluorescence signals and that fulfilled Nyquist 

sampling criteria. ImageJ software was used for quantifying the labeling intensity and 

the alignment of receptor clusters with SV2/synaptotagmin puncta. For this analysis, 

regions of interest (ROIs) of 20 mm were selected on the neurites. ROIs were binarized 

automatically using the mean of the background value inside the neurite plus two 

times the standard deviation as an intensity threshold value for defining a cluster or 

puncta in each image.  Clusters/puncta within the ROIs were registered if they had 

at least 3x3 pixels above threshold (pixel diameter: 80 nm). Receptor clusters were 

considered synaptic if they were ≤ 2 pixels away from SV2/synaptotagmin puncta. 

Data are expressed as the mean ± SEM per neurite length of 10 mm.

2.2.3 statistiCal analyses

Analyses were conducted with the Prism version 4.00 (GraphPad Software). For SPT 

experiments, statistical analysis was assessed with Mann–Whitney U test (MW test) for 

comparisons of diffusion coefficients if single pairs were involved; Kruskal-Wallis test 

(KW test) was used for ≥ 3 values. Student’s t test (t test) was used for comparisons 

of dwell-times and numbers of transitions if single pairs were involved; one-way 

ANOVA was used for ≥ 3 values. The n values report the number of QDs or trajectories 

examined.  *p<0.05, **p<0.01, ***p<0.001.

For the immunostaining of fixed cells, Student’s t test (t test) was used for comparisons 

of the number, size of clusters, pixel intensity and colocalization of receptor clusters 

with presynaptic markers; *p<0.05, **p<0.01, ***p<0.001.

2.3 Methods for Chapters iv and v

2.3.1 patCh ClaMp teChniQue in tissue sliCes

The patch clamp technique allows the electrophysiological study of single or multiple 
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ion channels and transmitter receptors in cells. This technique can be applied to a 

wide variety of cells, but is especially useful when studying excitable cells such as 

neurons (Sakmann and Neher, 1994). In the present work, we used 1) whole cell 

patch clamping, which was employed to measure the average current across the entire 

surface area of one cell, and 2) perforated patch clamping, which was used to minimize 

the dialysis of intracellular components.

In the patch clamp technique, a glass micropipette with an open tip (diameter around 

1 mm) contacts the membrane surface; gentle suction leads a membrane patch to 

get enclosed into the pipette and a gigaOhm seal is formed (Hamill et al., 1981). 

The high resistance of the seal permits to electronically isolate the currents measured 

across the membrane patch with little competing noise, as well as providing some 

mechanical stability to the recording. The whole-cell configuration can be achieved by 

adding additional suction; the patch is ruptured, creating electrical continuity between 

the pipette and cell interior. 

In whole-cell recordings, the interior of the pipette is filled with an internal solution 

that eventually replaces the intracellular fluid. Although this mechanism can be used 

advantageously in many experiments, there are conditions where such a dialysis 

interferes with response to be tested, since the “washout” of intracellular biochemical 

machinery may affect electrophysiological properties. For example, the response can 

disappear sometimes within minutes (Rose et al., 2003), an event that is usually called 

“rundown”. To overcome these problems, several strategies have been developed in the 

last decades; one of them is the perforated patch clamp technique, in which pore-forming 

antibiotics such as nystatin, amphotericin B or gramicidin are added to the internal 

solution (Zhao et al., 2009). As the antibiotic molecules diffuse into the membrane 

patch, they form small pores in the membrane, providing electrical access to the cell 

interior. Although the pores are permeable to small monovalent ions, they cannot be 

trespassed by larger ions and molecules, including soluble second messengers. This has 

the advantage of reducing the dialysis of the cell that occurs in whole-cell recordings 

and prevents the “rundown” of some electrophysiological responses. Gramicidin, in 

particular, is extremely useful for measuring the natural reversal potential for Cl- in 

neurons. The pores formed by gramicidin are impermeable to negatively charged ions, 
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leaving the natural Cl- cytoplasmic content undisturbed during the recording (Ebihara 

et al., 1995; Kyrozis and Reichling, 1995).

Perforated patch clamp technique also has some disadvantages. First, the access 

resistance is higher, relative to whole-cell, due to the partial membrane occupying the 

tip of the electrode (access resistance being the sum of the electrode resistance and 

the resistance at the electrode-cell junction). This will decrease electrical access and 

thus decrease current resolution, increase recording noise, and magnify any series 

resistance error. Second, it can take a significant amount of time for the antibiotic to 

perforate the membrane (10–30 minutes, though this can be reduced with properly 

shaped electrodes). Third, the membrane under the electrode tip is weakened by 

the perforations formed by the antibiotic and can rupture. If the patch ruptures, the 

recording is then in whole-cell mode, with antibiotic contaminating the inside of the 

cell.

Independently on the patch clamp configuration, there are two different recording 

modes – the current clamp and the voltage clamp (Sakmann and Neher, 1994). In a 

current-clamp (CC) experiment, a known constant or time-varying current is applied 

to the cell and the resulting change in membrane potential is measured. This type of 

experiment mimics the current produced by a synaptic input. In voltage-clamp (VC) 

experiments, the membrane voltage is kept constant during the recordings and the 

transmembrane current is measured. Despite the fact that voltage clamp does not 

mimic a process found in nature, there are three reasons to do such an experiment: 1) 

clamping the voltage eliminates the capacitive current, except for a brief time following 

a step to a new voltage, the currents that flow are proportional only to the membrane 

conductance, i.e., to the number of open channels (except for the brief charging time), 

3) if channel gating is determined by the transmembrane voltage alone, voltage clamp 

offers control over the key variable that determines the opening and closing of ion 

channels. 

2.3.1.1 hippoCaMpal sliCes preparation

Cells in tissue slices are likely to be much closer to their original state. No disruption 
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of the normal cellular environment need take place until the preparation of slices and 

disruption is limited to the surface of the slice. 

For the experiments described in Chapter IV, rats were anesthetized with halothane 

before decapitation, the brains were removed, hemisected and trimmed to contain a 

block of tissue surrounding the hippocampus. Transverse hippocampal slices (300 mm 

thick) from 3-4 weeks old male Wistar rats (Harlan) were cut on a vibratome in an 

ice-cold solution containing (in mM) sucrose 110, KCl 2.5, CaCl
2
 0.5, MgCl

2
 7, NaHCO

3
 

25, NaH
2
PO

4
 1.25, glucose 10, bubbled with 95% O

2
/5% CO

2
, pH 7.4. Slices were then 

incubated in artificial cerebrospinal fluid containing (aCSF, in mM) NaCl 124, KCl 3; 

NaH
2
PO

4
 1.25, NaHCO

3
 26, MgSO

4
 1, CaCl

2
 2, glucose 10, pH 7.4, and equilibrated with 

95% O
2
/5% CO

2
 at 35° C for 30 min and afterwards maintained at room temperature 

(22-24º C) for at least 1h before use. 

For experiments described in Chapter V, mice had C57Bl/6 background and used at 

1 month of age.  The a7KO mice were purchased from Jackson Laboratories, bred 

as heterozygotes, and genotyped by PCR.  Animals were decapitated after being 

anesthetized by intraperitoneal injection of 10 mg/ml ketamine and 1 mg/ml xylazine 

in sterile 0.9% NaCl at a volume of 0.01 ml/g body weight. The brain was quickly 

removed from the skull and placed in an ice-cold solution containing (in mM): sucrose 

75, NaCl 87, KCl 2.5, CaCl
2
 0.5, MgCl

2
 7, NaHCO

3
 25, NaH

2
PO

4
 1.25, glucose 20, 

bubbled with 95% O
2
/5% CO

2
, pH 7.4. Transverse hippocampal slices (250 μm thick) 

were cut using a vibratome (series 1000 Plus) and and stored at 30° C for 30 min in 

artificial cerebrospinal fluid containing (ACSF, in mM): NaCl 119, KCl 2.5; NaH
2
PO

4
 

1, NaHCO
3
 26, MgCl

2
 1.3, CaCl

2
 2.5, glucose 10, pH 7.4, and equilibrated with 95% 

O
2
/5% CO

2
. After a recovery period of at least 1 h at room temperature (22-24º C), an 

individual slice was transferred to the recording chamber, in which it was continuously 

superfused with oxygenated aCSF at a rate of 2–3 ml/min.

2.3.1.2 patCh ClaMp reCordings

Individual slices were fixed on a grid in a recording chamber for submerged slices and 
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continuously superfused at 3 ml.min-1 with aCSF solution at room temperature. 

In Chapter IV, whole-cell recordings were obtained from interneurons located at 

the CA1 stratum radiatum and at the border of the strata radiatum and lacunosum 

moleculare. Cells were visualized with an upright microscope (Zeiss Axioskop 2FS) 

equipped with infrared video microscopy and differential interference contrast optics. 

Cells were held at a membrane potential of –70 mV and recordings were performed at 

room temperature (22−24° C). Responses were recorded using a List EPC7 amplifier, 

filtered at 10 and 3 kHz through a three-pole Bessel filter and digitized at 5 kHz 

with WinLTP software (Anderson and Collingridge, 2007). Pipettes resistances were 

5-7 MW. Series resistance was measured by the instantaneous current response to 

a -1 mV step with the pipette capacitance cancelled. Offset potentials were nulled 

directly before formation of a seal. Small voltage steps (1 mV, 50 ms) were evoked to 

monitor membrane and series resistances; if one of both or holding current changed 

significantly, the experiment was rejected. Junction potentials and voltage errors due 

to series resistance were not corrected. The internal solution consisted of (in mM): 

potassium gluconate 125, KCl 11, CaCl
2 
0.1, MgCl

2 
2, EGTA 1, HEPES 10, NaATP 2, 

NaGTP 0.3 and TRIS phosphocretatine 10, pH 7.3 adjusted with KOH, 280-290 mOsm. 

For perforated-patch recordings, gramicidin was diluted in the filling solution to a final 

concentration of 100 mg.ml-1. The tip of the electrode was filled with gramicidin-free 

pipette solution In some experiments (where indicated) K252a (200nM), H-89 (0.1-

1 mM), U73122 (5 mM), PP2 (100 nM), GF 109203X (2 mM) or Cytochalasin D (5 mM), 

dissolved in dimethyl sulfoxide (DMSO; 0.1%), were included in the internal solution; 

matching controls were performed with an equal percentage of DMSO in the internal 

solution. 

a7-nAChR-mediated currents were evoked using a pressure ejection system (PicoPump 

PV820). A patch pipette containing acetylcholine (ACh) (1 mM) or choline (Ch) (10 

mM) was positioned near the cell bodies and pulses of pressure were applied (5-10 psi, 

30 ms, each 3 min). Stable baselines of 30 min, at least, were obtained before starting 

each trial. All recordings were performed in the presence of TTX (1 mM), CNQX (25 mM), 

APV (10 mM) and bicuculline (20 mM). Experiments were rejected if the superfusion of 

selective a7-nAChR antagonists, MLA (10 nM) or BGTx (100 nM), failed to completely 



Chapter 2: Materials and Methods 63

block a7-nAChR-mediated currents at the end of the trials.

In Chapter V, granule cells were visualized with an upright microscope (Zeiss Axioskop) 

equipped with differential interference contrast optics and fluorescence microscopy. 

GFP+ granule cells (see under) were identified in the granule cell layer by their green 

fluorescence and their neuronal morphology.

The whole-cell patch-clamp configuration was employed in voltage-clamp or current-

clamp modes. Microelectrodes (5–8 MΩ) were pulled from borosilicate glass capillaries 

(Sutter Instruments) with a P-97 pipette puller (Sutter Instruments). 

To record spontaneous synaptic currents (SSCs), the electrodes were filled with an 

internal solution containing (in mM): CsCl 135, MgCl
2
 4, EGTA 0.1, HEPES 10, NaATP 2, 

NaGTP 0.3 and Na
2
phosphocretatine 10, pH 7.4 adjusted with CsOH, 280-290 mOsm. 

GFP+ granule cells were held at a membrane potential of -80 mV and five minutes of 

continuous sweeps were recorded. The resting membrane potential was determined in 

current clamp mode immediately after establishing the whole-cell configuration. The 

internal solution consisted of (in mM): K-gluconate 125, KCl 15, NaCl 8, EGTA 2, HEPES 

10, MgATP 4, NaGTP 0.3 and Na
2
phosphocretatine 10, pH 7.3 adjusted with KOH, 280-

290 mOsm. The criteria to include cells in the analysis was absolute leak current <100 

pA at V
Hold

.

Perforated patch recordings with gramicidin were used for measuring the polarity of 

GABAergic transmission. The gramicidin stock (5 mg/ml in DMSO) was diluted in the 

pipette solution (in mM: 135 CsCl, 4 MgCl
2
, 0.1 EGTA, 10 HEPES, pH 7.4 adjusted with 

CsOH, 300 mOsm) to a final concentration of 50 mg/ml just before the experiments. The 

tip of the electrode was filled with gramicidin-free pipette solution. Pipettes resistances 

were 5-8 MΩ. Small voltage steps (-10 mV, 50 ms) were evoked to monitor membrane 

and access resistances; if one of both or holding current changed significantly, the 

experiment was rejected. Since the collapse of the chloride gradient by strong extracellular 

stimuli or GABA applications could account for previously reported conflicting results 

regarding the polarity of GABAergic transmission, we electrically stimulated the release 

of endogenous GABA and recorded the response in adult-born neurons identified by 

MMLV labeling (see under). Extracellular stimulation (80-240 mA and 0.2 ms duration, 

0.1 Hz) was done using a concentric bipolar electrode (125 mm diameter), with a pulse 
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generator coupled through a stimulus isolator. The stimulation electrode was placed 

on the granule cell layer, around 300 µm away from the recorded cell. Evoked GABA-

mediated postsynaptic currents (GPSCs) were pharmacologically isolated by adding 

glutamatergic blockers, CNQX (20 mM) and AP-5 (20 mM), to the bathing solution. 

GPSCs were recorded under voltage-clamp at different holding potentials. The peak 

amplitude and holding potential were plotted and the reversal potential (E
GABA

) was 

calculated from the linear fit of the I-V curve for each cell. The reversal potential of a 

current mediated by an ion channel corresponds to the electrochemical equilibrium for 

that current (no net movement of ion takes place, despite the channels are opened for 

electrodifusion) and is given by the Nernst equation:

 E = (RT/zF) ln(conc
out

/conc
in
), 

where R is the gas constant (8.314 J/mol K); T is the temperature (K); z is the valencefor 

the ion; F is Faraday’s constant (96500 C/mol); E is in volts.

As a control for perforated-patch integrity, at the end of some experiments, the E
GABA

 

was calculated in the whole-cell configuration. The estimated E
GABA

 for the internal 

solution used was 2.7 mV. Current kinetic measurements were made from >5 averaged 

traces acquired at -80 mV holding potential. Current decay was determined between 

10% and 90% of peak amplitude. Since the best fit for decay was either one or two 

exponentials, weighted decay was calculated using the equation A
1
t

1
+A

2
t

2
 where A is 

the relative amplitude and t is the decay constant for each component. 

Data was collected using a MultiClamp 700A amplifier (Axon), filtered at 2 kHz and 

digitized at 5 kHz with pCLAMP 9 software (Molecular devices). Analysis was performed 

with the Clampfit 9.2 software (Molecular devices). 

2.3.1.3 statistiCal analysis

Analyses were conducted with the Prism version 4.00 (GraphPad Software). Results are 

expressed as the mean ± SEM of n experiments. Statistical significance was assessed by 

Student’s t test if single pairs were involved. One-way ANOVA followed by the Tukey–
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Kramer post hoc test was used for comparing multiple groups. *p<0.05, **p<0.01, 

***p<0.001

2.3.2 identifiCation of adult-born neurons in the granule Cell layer 

The granule cell layer is constituted by a heterogeneous population of cells with different 

degrees of cellular maturity due to the daily generation of new neurons from stem cells 

in the hippocampus. 

To identify and birthdate adult-born neurons in the DG, retroviral vectors that express 

green fluorescent protein (GFP) have been stereotaxically injected in vivo in the 

adult hippocampus. Retrovirus can only infect dividing cells; once incorporated into 

progenitors during mitosis, subsequent newborn cells express GFP and can be visualized 

in living preparations. Labeling is largely confined to neurons born within a 3-day 

window following virus injection (Zhao et al., 2006). This method has been applied 

for examining electrophysiological and morphological details in newborn neurons 

throughout their lifetime (van Praag et al, 2002). 

The bromodeoxyuridine (BrdU) is a thymidine analogue that is incorporated into the 

DNA of dividing cells and can be detected immunohistochemically in their progeny 

(Nowakowski et al., 1989). Since BrdU is incorporated by dividing cells, including by 

the neuronal precursors in the granule cell layer (Kempermann et al., 2007a,b) its 

labeling can be used to assess proliferation of a population of cells or to assess the 

survival of labeled cells.

2.3.2.1 stereotaxiC viral injeCtion

A Moloney’s Murine Leukemia Virus construct expressing GFP (MMLV-GFP) was provided 

by Fred Gage (Salk Institute). Viruses were generated by transfecting the constructs 

into HEK293T cells. Harvest and concentration by ultra-centrifugation generated 

viral titers of 108 pfu/ml in sterile PBS. The viral suspensions were stereotaxically 

delivered as described (Van Praag et al., 2002) at the following positions from Bregma:  

anteroposterior, -2mm; lateral, 1.7mm; ventral, -2mm; anteroposterior, -2.5mm; 

lateral, 2mm; ventral -2.2mm. Animal body temperature was maintained throughout 
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the surgery until anesthesia wore off.  After surgery, animals were housed singly and 

monitored to ensure no signs of infection, pain, or distress. 

2.3.2.2 BrdU labelling

5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally at 10 mg/ml in sterile 

0.9% NaCl to yield a single dose of 50 mg/g body weight on each of 4 consecutive 

days. Mice were singly housed for 2 or 4 weeks after the initial injection until tissue 

preparation. After perfusion, all steps were performed blind to genotype. After cryostat 

sectioning, slices were dipped in 2N HCl for 30 min at 37°C, followed by 0.1 M borate 

buffer for 10 min at RT. After immunostaining, counts were made of BrdU-positive cells 

in the first third of the granule cell layer in every fourth section through the entire 

hippocampus. Adult-born neurons are mostly confined to the first third of the granule 

cell layer (Zhao et al., 2006).

2.3.2.3 Imaging and quantification

Imaging was performed within 48 h of immunostaining using a Zeiss Axiovert microscope 

with 3I deconvolution software for image analysis. For morphological measurements 

neurons were imaged at 63x magnification, and a z-stack was compiled by acquiring 

images every 0.5 mm through the section. Dendritic measurements were made in 

ImageJ using the NeuronJ tracing application. Spine counts were taken over a 20 mm 

segment of dendrite located within 100 µm of the granule cell layer boundary. Cell 

selection and quantification were performed blind to genotype.

2.4 CheMiCals

Streptavidin Quantum dot 605 conjugated (QDs), MitoTracker Red 580, N-(3-

triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium 

dibromide (FM4-64), Biotinylated a-Bungarotoxin (Biot-Bgt), rhodamine-a-Bungarotoxin 

and 5-bromo-2-deoxyuridine (BrdU) staining kit were from Invitrogen. mab48 and 

anti-SV2 were from Developmental Studies Hybridoma Bank. Cy3- or FITC-conjugated 
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secondary antibodies were from Jackson ImmunoResearch Laboratories. Effectene 

was from Qiagen. 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX), 2-amino-

5-phosphonovalerate (APV), bicuculline methochloride, tetrodotoxin citrate (TTX), 

gabazine, 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]

pyrimidin-5-amine (SCH 58261), U 73122, PP2 and GF 109203X were from Tocris 

Bioscience, UK. Latrunculin A (LAT), cytochalasin D (Cyt D), nocodazole (NZ), cholesterol 

oxidase (COase), methyl-b-cyclodextrin (MbCD), acetylcholine chloride (ACh), choline 

chloride (Ch), methyllycaconitine citrate (MLA), dihydro-b-erythroidine hydrobromide 

(dhbe), phorbol-12,13-didecanoate (PDD), N-(2-[p-bromocinnamylamino]ethyl)-

5-isoquinolinesulfonamide hydrochloride (H-89) and gramicidin were from Sigma-

Aldrich. a-Bungarotoxin (a-BT) and K-252a were obtained from Calbiochem-Merck 

Biosciences Ltd., UK. Cholesterol oxidase (COase) was provided by Sigma in 10 mM 

Tris-HCl (pH≈8). Adenosine deaminase (ADA) was provided by Roche in a 200 U.ml-1 

stock solution in 50% glycerol (v/v) and 10 mM potassium phosphate (pH 6). Brain-

derived neurotrophic factor (BDNF) was kindly provided by Regeneron Pharmaceuticals 

in a 1.0 mg.ml-1 stock solution in 150 mM NaCl, 10mM sodium phosphate buffer and 

0.004% Tween-20. Inactivated BDNF (HI-BDNF) was prepared by heating aliquots to 

100ºC for 30 min. ACh (0.5 M), Ch (0.5 M), TTX (1 mM), APV (25 mM), MLA (10 mM), 

a-BT (20 nM) and dhbe (10 mM) were prepared as stock solution in water. LAT (3 mM), 

Cyt D (2 or 5 mM), NZ (10 mM), CNQX (100 mM), bicuculline (100 mM), CGS 21680 (5 

mM), SCH 58261 (5mM), H-89 (5mM), K252a (1 mM), PP2 (20 mM), U 73122 (5 mM), 

GF 109203X (1 mM), PDD (1 mM) and gramicidin (5 or 100 mg.ml-1) were prepared as 

a stock solution in DMSO. The percentage of vehicle (DMSO) in each experiment did 

not exceed 0.1%. Stock solutions were aliquoted and stored at –20°C, except for BDNF 

that was stored at -80º C, and aqueous dilutions of these stock solutions were made 

freshly before the experiment. 
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chapter 3

LateraL MobiLity of NicotiNic receptors oN peripheraL NeuroNs is DeterMiNeD by 

receptor coMpositioN, LocaL DoMaiN aND ceLL type

3.1 iNtroDuctioN

The high concentration of neurotransmitter receptors within the postsynaptic 

specialization led to the predominant view that synaptic receptors are tightly fixed 

within the synapse. Over the last 40 years, however, increasing evidences have shown 

that synaptic complexes, including neurotransmitter receptors, are highly dynamic and 

can rapidly exchange overtime (Newpher and Ehlers, 2008). 

The first evidences showing that nAChRs are mobile were found in the NMJ. Imaging 

of nAChRs with fluorescently labeled a-Bgt showed that receptors “spontaneously” 

integrated into newly assembled NMJs during development, providing clear evidence 

for the aggregation of extrajunctional receptors in the nascent NMJs (Anderson and 

Cohen, 1977). Furthermore, the population of muscle nAChRs was not homogeneous, 

since it was possible to discriminate two different populations of nAChRs in the surface; 

one that could exist freely moving diffusely and other that was relatively immobile 

contained within concentrated patches (Axelrod et al., 1978). Importantly, the relatively 

immobile nAChRs contained in patches could be dispersed by electrical stimulation 

(Axelrod et al., 1978), showing that receptor aggregation is directly affected by synaptic 

activity. Besides having a fundamental role in receptor aggregation, lateral diffusion of 

functional nAChRs was found to have a central role in replacing inactivated receptors, 

promoting the recovery of nAChRs-mediated responses at sites of local inactivation 

(Young and Poo, 1983). Taken together, these studies showed that muscle nAChRs 

exchange between distinct membrane microdomains through a process involving 

lateral diffusion in the plasma membrane. 

In neurons, transmitter receptors show lateral diffusion in the cell membrane as 

well, allowing them to exchange between extrasynaptic and synaptic sites in a short 
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time scale. A variety of methods have been developed to optically track glutamate 

receptors movement, yielding important insight into the physical interactions and local 

environment of a receptor (Groc et al., 2007; Triller and Choquet, 2008). 

Rapid trafficking of neuronal nAChRs in the surface membrane is only beginning to be 

examined. A recent study has shown that neuronal nAChRs on autonomic neurons are 

capable of rapid lateral diffusion into and out of synapses in vivo (McCann et al, 2008). 

How this trafficking is regulated and what role it might play in nicotinic signaling is still 

a matter to be studied. 

In the results section of this chapter, single-particle-tracking techniques with QDs 

(Heine et al., 2008b; Triller and Choquet, 2008) were used to follow the diffusion of 

nAChRs within the cell membrane of ciliary ganglion neurons in culture. The neurons 

form nicotinic cholinergic synapses onto each other under these conditions and express 

the same two classes of receptors found in vivo: homopentameric a7-nAChRs and 

heteropentameric a3*-nAChRs (Margiotta and Berg, 1982; Vernallis et al., 1993; Chen 

et al., 2001). Both a3*-nAChRs and a7-nAChRs are found at synaptic contacts in CG 

cultures, but a3*-nAChRs generate most of the synaptic response (Chen et al., 2001; 

Conroy et al., 2003; Neff et al., 2009b). There is little cellular diversity within this culture 

system, which was one of the attractive reasons for using this preparation in our study. 

In this chapter, the lateral diffusion of endogenous a3*- and a7-nAChRs was 

characterized; how the cytoskeleton, lipid rafts and PDZ-containing scaffolds 

regulate the lateral diffusion of these receptors was then investigated. 

3.2 resuLts

3.2.1 expressioN of nAChRs oN Neurites of cG NeuroNs iN cuLture

To study the subcellular distribution of a3*- and a7-nAChRs on the neuritis of CG 

neurons in culture, cells were fixed and immunostained for nAChRs and for the 

presynaptic markers SV2 and synaptophysin. a3*- were visualized in both synaptic 

and extrasynaptoc regions (Fig 3.1). Though a7-nAChRs are thought to be excluded 

from synaptic regions on adult CG neurons in vivo (Williams et al., 1998; Shoop et 

al., 1999), in cell cultures. a7-nAChRs were also localized on neurites at synaptic sites 
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defined by SV2 and synaptophysin immunostaining (Fig 3.2).

3.2.2 LateraL MobiLity of nAChRs oN NeuroNs

SPT technique with QD nanocrystals (Heine et al., 2008b; Triller and Choquet, 2008) was used 

Merge

a7

SV2/Syn

SV2/Syn

a7

Figure 3.1 – Expression of a3*-nAChRs in ciliary gan-
glion neurons. Images of a3*-nAChRs clusters (a3; red 
in merge) on neurites in juxtaposition to presynaptic struc-
tures revealed by the SV2/synaptophysin immunostain-
ing (SV2/Syn; green in merge). Arrows indicate examples 
of receptor-presynaptic alignment. Scale bar: 5 mm (left).

Figure 3.2 – Expression of a7-nAChRs in ciliary gan-
glion neurons. Images of a7-nAChRs clusters (a7; red in 
merge) on neurites in juxtaposition to presynaptic struc-
tures revealed by the SV2/synaptophysin immunostain-
ing (SV2/Syn; green in merge). Arrows indicate examples 
of receptor-presynaptic alignment. Scale bar: 5 mm (left). 

a*3 SV2/Syn Merge
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to follow individual nAChRs on the surface of CG neurons in culture. To specifically examine 

the lateral mobility of nAChRs on neurites of CG neurons in culture, a3*-nAChRs were 

labeled with Biot-mAb 35 and a7-nAChRs with Biot-a-Bgt. In order to reconstruct individual 

trajectories and to avoid possible particle crosslinking, labelling is usually performed at a 

low density. QDs linked to streptavidin were tagged through biotinylated ligands and allowed 

tracking of nAChRs. Synaptic sites were identified for this purpose by pre-labeling either 

with FM4-64 uptake or MitoTracker staining. Focusing on single nAChR-QD complexes as 

evidenced by their characteristic blinking, I tracked the movement of a3*-nAChRs that 

crossed a synaptic/extrasynaptic border at least twice during their trajectory (Fig. 3.3A; 

Supplememtal Movie 1 in http://www.jneurosci.org/content/30/26/8841/suppl/DC1 ). 

In SPT experiments, trajectories are recorded and subsequently analyzed individually. 

The pertinent parameters to be extracted from trajectories are the diffusion coefficient, 

the confinement, the dwell times and the transition frequency. These elements reflect 

biological properties of the plasma membrane and of the molecular interactions.

Figure 3.3 – Different mobilities of surface a3*-nAChRs in synaptic and extrasynaptic 
spaces. (A) Trajectory (16 s) of a QD-a3*-nAChR (red) along a neurite punctuated with synapses 
stained with MitoTracker (green).  Scale bar: 1 mm.  (B, C) MSD as a function of time interval for 
synaptic and extrasynaptic portions of the trajectories (means ± SDs). (D) Instantaneous Di val-
ues as a function of time along the trajectory.  Top line indicates position of QD-a3*-nAChR in ex-
trasynaptic (grey) or synaptic (green) domains.  (E) Cumulative distribution of the instantaneous 
diffusion coefficients of synaptic (green) and extrasynaptic (grey) a3*-nAChRs (n= 407, 567 for 
synaptic and extrasynaptic trajectories, respectively, from 5 separate platings; p<0.001, MW test).



Chapter 3: Lateral Mobility of Nicotinic Receptors 75

Plots of MSD versus lag time were used to examine mobility quantitatively (Fig. 3.3B,C; 

see Methods).  The initial slope yielded the D
i
 for a3*-nAChRs: 0.070 mm2/s in synaptic 

space and 0.188 mm2/s in extrasynaptic space (Fig. 3.3D,E; p<0.001 for synaptic vs. 

extrasynaptic, MW test).  The results were unchanged by a 10-fold reduction in Biot-

mAb 35 concentration used to label the receptors, indicating that antibody-receptor 

cross-linking was unlikely to have skewed the results (not shown). Thus, mobile a3*-

nAChRs displayed significantly decreased diffusion rates when in synaptic locations. 

The linear MSD plot for extrasynaptic space indicated Brownian motion, whereas the 

non-linear plot in synaptic space is consistent with constrained motion (Kusumi et 

al., 1993). Remarkably similar results were obtained with QD tracking of mobile a7-

nAChRs, which showed almost equivalent diffusion rates (Fig. 3.4A; Supplemental 

movie 2 in http://www.jneurosci.org/content/30/26/8841/suppl/DC1).  The median D
i
 

was 0.067 mm2/s at synaptic sites and 0.188 mm2/s in extrasynaptic regions (p<0.001, 

MW test). MSD plots for a given QD again indicated Brownian motion in extrasynaptic 

Figure 3.4 – Relative mobilities of a3*-nAChRs and a7-nAChRs. (A) Median Di values (± 
25-75% IQR) of a3*- and a7-nAChRs in synaptic (S) and extrasynaptic (E) space (from 407 
S and 567 E trajectories for a3*-nAChRs; 197 S and 312 E for a7-nAChRs).  (B, C) MSD plots 
versus time for synaptic and extrasynaptic portions of a7-nAChR trajectories (means ± SDs).  
(D) Transition frequency (trans/min) between synaptic and extrasynaptic space for a3*-nAChRs 
(a3*) and a7-nAChRs (a7; n = 86, 57 QDs) and proportion (mobile %) of mobile a3*-nAChRs and 
a7-nAChRs (n= 124, 245 total QDs, from 2-5 separate platings). Values in D are means ± SEMs.
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space and restricted motion in synaptic space (Fig. 3.4B,C).  Interestingly, a7-nAChRs 

clearly differed from a3*-nAChRs in the frequency with which they crossed into and 

out of synaptic space (Fig. 3.4D):  48.2 ± 2.5 and 36.6 ± 3.0 transitions/minute for 

a3*- and a7-nAChRs, respectively (p<0.01, t test).   They did not show a significant 

difference in synaptic dwell time (Fig. 2E).  Results were the same for synapses marked 

with MitoTracker staining or with FM4-64 uptake (Fig. 3.5). 

Most striking was the difference between a3*-nAChRs and a7-nAChRs on the neurites 

when immobile receptors were also considered (Fig. 3.4D). Only 34 ± 4% of all a3*-

nAChRs were mobile compared with 61 ± 3% of a7-nAChRs (p<0.05, t-test). About 

half of the total immobile receptors, both for a3*-nAChRs and for a7-nAChRs, were 

synaptic (46 and 54%, respectively). Given that synaptic membrane occupies 6.4 ± 

0.3% of the neurite surface (n = 5 visual fields; neurites visualized by GFP expression 

and MitoTracker staining, respectively), immobile receptors appear to be preferentially 

concentrated at synapses (≥ 7-fold in number per unit area over that in extrasynaptic 

space). The results indicate that mobile a3*-nAChRs and a7-nAChRs display equivalent 

diffusion rates in extrasynaptic space and that the synaptic domain restrains their 

mobility. Additional constraints render a portion of the receptors persistently immobile 

and collect a significant fraction of such receptors at synapses. This immobility involves 

Figure 3.5 – Comparison of lat-
eral diffusion values for nAChRs 
using different synaptic mark-
ers. Diffusion properties of recep-
tors were examined in synaptic (S) 
and extrasynaptic (E) regions on 
neurites stained either with FM4-
64 (5 mM, FM) or MitoTracker red 
580 (100 nM, MitoT) to label syn-
apses in cultures plated at 1 CG/
coverslip. (A) Median Di values (± 
25-75% interquartile range, IQR) 
for a3*-nAChRs (n = 30-62 trajec-
tories). (B) Values for a7-nAChRs 
(n = 18-120 trajectories). (C) Tran-
sition frequencies for a3*-nAChRs 
and a7-nAChRs between extra-
synaptic and synaptic spaces. (D) 
Dwell times insynaptic space for 
a3*-nAChRs and a7-nAChRs. In C,D 
values represent means ± SEMs; n 
= 6-25 QDs from 2 separate cul-
ture platings. ***p<0.001, KW test.
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a larger fraction of a3*-nAChRs than a7-nAChRs, demonstrating the relevance of 

subunit composition for nicotinic receptor fate on neurites. 

3.2.3 cytoskeLetaL DeterMiNaNts of nAChRs MobiLity  

When expressed in the cell membrane, nAChRs interact with different cellular 

components, like proteins and lipids. These interactions affect expression, targeting, 

function, and signaling of nAChRs. Cytoskeletal elements such as microtubules and 

filamentous actin (F-actin) can influence the mobility of membrane components on 

the surface of neurites, differentially affecting receptors in synaptic and extrasynaptic 

domains (Charrier et al., 2006; Renner et al., 2009). 

To determine whether microtubules play such a role for nicotinic receptors, incubated 

CG neurons were incubated with nocodazole (10 mM) for 1 hour to depolymerize them; 

QD trafficking was used to follow a3*-nAChRs on the neurite surface. The vehicle, 

DMSO, had no effect except for a minor slowing of extrasynaptic a3*-nAChRs (Fig. 

Figure 3.6 – Lateral diffusion of nAChRs in the presence of the vehicle DMSO. Dif-
fusion properties of receptors were examined in extrasynaptic and synaptic regions on neu-
rites in normal medium (Ctr) or in medium containing 0.1% DMSO. (A) Median Di values 
(± 25-75% IQR) for a3*-nAChRs (n = 204-567 trajectories; *p<0.05, MW test). (B) Val-
ues for Symbol7-nAChRs (n = 197-381; p>0.05, MW test). (C) Transition frequencies be-
tween extrasynaptic and synaptic spaces. (D) Dwell times in synaptic space. In C,D values 
represent means ± SEMs (n = 24-86 QDs; p>0.05, t-test; 3-5 separate culture platings).
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3.6); all subsequent comparisons were made against vehicle-treated controls.  

Nocodazole increased the mobility of the a3*-nAChRs both in synaptic and extrasynaptic 

space (Fig. 3.7A). The median D
i
 values were 0.079 mm2/s and 0.230 mm2/s, respectively; 

both were significantly different from those in vehicle conditions (p<0.01 and 0.001; 

KW test). Microtubule depolymerization also increased the frequency of transitions 

between the two domains (Fig. 3.7C):  64 ± 4 and 43 ± 3 transitions/minute with and 

without nocodazole treatment, respectively (p<0.01; one-way ANOVA). No significant 

change was seen in the synaptic dwell time (Fig. 3.7D). Collapse of F-actin by treating

with latrunculin A (3 mM) for 1 hour also increased the mobility of a3*-nAChRs in 

extrasynaptic space (Fig. 3.7A). The median D
i
 was 0.210 mm2/s (p<0.001 compared to 

vehicle; KW test). The treatment did not, however, change the fraction of mobile a3*-

nAChRs or their synaptic transitions or dwell time (Fig. 3.7A,C,D,E). Both nocodazole 

Figure 3.7 – Different cytoskeletal regulation for a3*-nAChR and a7-nAChR lateral diffu-
sion. QD-nAChR trajectories were examined in extrasynaptic and synaptic space for control con-
ditions (Ctr, 0.1% DMSO) or after disruption of microtubules with nocodazole (10 mM, NZ) or F-
actin with latrunculin A (3 mM, LAT).  (A)  Median Di values (± 25-75% IQR) for a3*-nAChRs (n = 
179-343 trajectories).  (B) Values for a7-nAChRs (86-381 trajectories).  (C) Transition frequency 
between synaptic and extrasynaptic space (n = 27-56 QDs from 2-3 separate platings). (D) Syn-
aptic dwell times of a3*-nAChRs and a7-nAChR were similar in cultures treated with vehicle (0.1% 
DMSO, Ctr) and either nocodazole (10 mM, NZ) to depolymerize microtubules or latrunculin A (3 
μM, LAT) to collapse F-actin (n = 27-56). (E) The mobile fractions of a3*-nAChRs and a7-nAChR 
were not changed by nocodazole, latrunculin A, or cytochalasin D (2 mM, CytD; n = 82-203 QDs). 
Values C, D and E represent means ± SEMs; 2-3 separate platings (p>0.05, one-way ANOVA).



Chapter 3: Lateral Mobility of Nicotinic Receptors 79

and latrunculin A had different effects on a7-nAChRs from those seen for a3*-nAChRs. 

Nocodazole increased the diffusion of a7-nAChRs in extrasynaptic regions; the D
i
 was 

0.242 mm2/s (p≤0.001 compared to vehicle; KW test). It had no effect on a7-nAChR 

diffusion inside the synaptic space or on synaptic dwell time or number of transitions 

(Fig. 3.7C). Collapse of F-actin with latrunculin A increased the mobility of a7-nAChRs 

in both domains (Fig. 3.7B). Median D
i
 values of 0.078 mm2/s and 0.233 mm2/s were 

obtained for synaptic and extrasynaptic space, respectively (p<0.05, p<0.001 versus 

vehicle; KW test). As found for nocodazole, latrunculin A had no effect on the frequency 

of transitions between the two domains (Fig. 3.7C) or the synaptic dwell time (Fig. 

3.7D). Neither nocodazole nor latrunculin A treatment changed the proportions of a3*-

nAChRs and a7-nAChRs that remained immobile (Fig. 3.7E). Cytochalasin, used as an 

alternative method of disrupting F-actin, similarly failed to alter the proportion of a3*-

nAChRs that were mobile (Fig. 3.7E). 

The results indicate that both microtubules and F-actin influence the mobility of nAChRs 

on neurites but exert different effects depending on synaptic versus extrasynaptic 

locations and discriminate between a3*-nAChRs and a7-nAChRs. By changing the 

cytoskeleton’s local properties, the effective diffusion constant of nAChRs is modified 

probably due to reorganization of submembranous obstacles. Neither microtubule nor 

F-actin constraints, however, can account for the fact that a fraction of a3*-nAChRs 

and a7-nAChRs are immobile, independent of synaptic location. 

3.2.4 Effects of Cholesterol Depletion on Receptor Mobility 

Lipid rafts, which are membrane microdomains rich in cholesterol and glycosphingolipids, 

can influence the distribution of surface components (Edidin et al., 2003; Marguet 

et al., 2006; Renner et al., 2009). By governing protein–protein and protein–lipid 

interactions, these domains selectively incorporate or exclude proteins and therefore 

have been proposed to function as membrane platforms for the sorting of molecules to 

particular cellular structures. On CG neurons in vivo, lipid rafts engulf and help stabilize 

a7-nAChRs (Brusés et al., 2001; Liu and Berg, 1999). It has also been suggested that 

lipid rafts play a role in the stabilization of a3*-nAChRs on the cell membrane (Liu et 

al., 2008).
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Lipid rafts were depleted by incubating CG neurons with COase (2 U/ml), which 

catalyzes the oxidation of cholesterol to cholestenone and disperses lipid microdomains 

(Scheiffele et al., 1997; Harder et al., 1998; Keller and Simons, 1998).  The treatment 

increased the mobility of a3*-nAChRs in the extrasynaptic space (median D
i
 = 0.208 

mm2/s; p<0.01 compared to vehicle; MW test) but had no effect on synaptic a3*-nAChR 

mobility, transitioning, or dwell time (Fig. 3.8A,C,D). In contrast, lipid raft disruption 

had extensive effects on a7-nAChRs.  Diffusion speeds were increased both within and 

outside synaptic spaces (Fig. 3.8B). Median D
i
 values were 0.091 mm2/s and 0.213 

mm2/s for synaptic and extrasynaptic space, respectively (p<0.001, p<0.01 compared 

to vehicle; MW test). In addition, a7-nAChRs underwent more transitions into and out 

of synaptic space (Fig. 3.8C): 55 ± 4 transitions/minute (p<0.001; t test).  They also 

displayed a reduced dwell time at synapses (Fig. 4D): 0.42 ± 0.02 s (p<0.001; t test). 

Unexpectedly, lipid raft disruption substantially increased the proportion of a3*-nAChRs 

that displayed mobility (Fig. 3.8E), increasing it from 34 ± 4% in controls to 54 ± 2% 

(p<0.05; t test) on neurites of COase-treated cells. A second method of disrupting 

lipid rafts, namely treating cells with MbCD, had the same effect as COase; it increased 

the proportion of mobile a3*-nAChRs to the same extent.  COase treatment had no 

effect on the proportion of a7-nAChRs that were mobile (Fig. 3.8E). Taken together, 

the results indicate multiple effects of the lipid environment on the mobility of nAChRs. 

It can immobilize a fraction of receptors depending on their subunit composition (e.g. 

a3*-nAChRs, but not a7-nAChRs) while having little effect on the diffusion of synaptic 

a3*-nAChRs once mobile.  Paradoxically, the lipid raft appears to have greatest effect 

on the diffusion of a7-nAChRs, retarding them both in synaptic and extrasynaptic 

space, but apparently does not provide the restraint that holds a fraction of a7-nAChRs 

immobile on the surface.

Immobility may be the most relevant criterion for stabilizing receptors at postsynaptic 

-> Figure 3.8 – Selective effects of cholesterol depletion. QD-nAChR trajectories were 
examined in extrasynaptic and synaptic space for control conditions (Ctr) or after cholesterol 
depletion with either COase or MbCD.  (A) Median Di values for a3*-nAChRs (± 25-75% IQR; 
n = 167-567 trajectories).  (B) Values for a7-nAChRs (n = 171-312).  (C) Transition frequency 
(n = 38-86).  (D) Synaptic dwell time (n = 38-86).  (E) Proportions of mobile a3*-nAChRs and 
a7-nAChRs (n= 124-245 total QDs, from 2-5 separate platings).  (F) Number of total (left) 
and synaptic (right) a3*-nAChRs clusters expressed per 10 mm segment of neurite. (G) Arrows 
indicate examples of alignment for a3*-nAChR clusters (a3*; red in merge) with presynap-
tic puncta defined by SV2/synaptophysin immunostaining (SV2/Syn; green in merge). Scale 
bar: 5 mm. In panels C-F, values represent means ± SEMs taken from n≥3 separate platings.



82

sites. The COase treatment, which decreased the number of immobile a3*-nAChRs, also 

substantially reduced the number of a3*-nAChR clusters on the cell surface (Fig. 3.8 

F,G). These included clusters at synaptic sites as defined by proximity to presumptive 

presynaptic puncta that co-stained for SV2 and synaptophysin (Fig. 3.8F,G). COase 

produced no decrement in the number of SV2/synaptophysin puncta, arguing against a 

major presynaptic effect (6.2 ± 0.6 and 6.5 ± 0.5 for controls and COase, respectively; 

n = 3 platings). Nor did it reduce the number of a7-nAChR puncta (6.8 ± 0.8 and 7.6 

± 0.5 for controls and COase, respectively; n = 3 platings). No change was seen in 

the mean size or staining intensity for the remaining puncta in any case. The results 

are most consistent with the lipid environment providing a restraining component that 

facilitates immobilization of a3*-nAChRs; release of the constraint tips the balance in 

favor of dispersal and/or removal.

3.2.5 coNstraiNt of NicotiNic receptors by the pDZ-coNtaiNiNG postsyNaptic scaffoLDs

The fact that glutamatergic transmission is responsible for most excitation in the brain, 

coupled with early difficulties in demonstrating nicotinic postsynaptic potentials in CNS 

circuits, led to the view that nicotinic receptors might not be found in conventional 

postsynaptic structures like PSDs.

Members of the PSD-95 family of PDZ-containing proteins establish postsynaptic 

scaffolds associated with nicotinic receptors on neurons and influence their signaling 

and localization (Conroy et al., 2003, Parker et al., 2004; Temburni et al., 2004; 

McCann et al., 2008). To test the extent to which these PDZ-proteins may constrain 

the lateral mobility of nAChRs, we transfected CG neurons with a construct encoding 

a 9 amino acid fragment of cysteine-rich interactor of PD 23 (CRIPT) that recognizes 

the PDZ3 domain of PSD-95 family members and interferes with their ability to form 

clusters (Passafaro et al., 1999; Conroy et al., 2003). Results were compared both 

to untransfected controls and to neurons transfected with a construct expressing 

GFP; no differences were seen between the latter two (Fig. 3.9). CRIPT expression 

had no effect on the diffusion parameters of mobile a3*-nAChRs (Fig. 3.10A,B) but 

clearly increased the diffusion of a7-nAChRs both in synaptic and extrasynaptic space 

(Fig. 3.10C; Supplemental Movie 3 in http://www.jneurosci.org/content/30/26/8841/
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suppl/DC1). Median D
i
 values were 0.078 mm2/s and 0.253 mm2/s for synaptic and 

extrasynaptic space, respectively (p<0.05, p<0.001 versus vehicle; MW test). No 

significant differences were seen for a3*-nAChRs or for a7-nAChRs with respect to 

synaptic dwell time or frequency of transition between synaptic and extrasynaptic space 

(Fig. 3.10E,F). CRIPT expression, however, doubled the fraction of mobile a3*-nAChRs 

(Fig. 3.10D), increasing it from 30 ± 5% in controls to 62 ± 2% (p<0.05, t test) 

in neurites of CRIPT-transfected neurons. To corroborate the results that the target 

of CRIPT action belongs to the PSD-95 family, neurons were transfected with a RNA 

interference (RNAi) construct (PSD-95/SAP102-RNAi) that knocked down PSD-95 and 

SAP102 levels (Neff et al., 2009). These constructs had a similar effect than CRIPT had 

by itself on the a3*-nAChR mobile fraction (Fig. 3.10D). CRIPT expression produced no 

change in the fraction of a7-nAChRs that was mobile. And no additional receptors were 

mobilized even when the disruptive treatments were combined: CRIPT transfection for 

PDZ-scaffolds, nocodazole for microtubules, latrunculin A for F-actin, and COase for 

lipid rafts. The proportions of mobile a3*-nAChRs and a7-nAChRs were the same as 

that seen with CRIPT expression alone (Fig. 3.10D). Notably, transfecting cells with a 

SAP102 construct that lacked a GK domain (SAP102-GK) acted as a dominant negative, 

replicating the effects of PSD-95/SAP102-RNAi; overexpressing full-length SAP102 had 

Figure 3.9 – Expression 
of GFP via transfection as 
a negative control does 
not change nAChR diffu-
sion properties. Lateral 
diffusion of receptors was 
examined in extrasynap-
tic and synaptic regions on 
neurites in untransfected 
(Ctr) or GFP-transfected 
(GFP) neurons. (A) Median 
Di values (± 25-75% IQR) 
for a3*-nAChRs (n = 49-
567; *p>0.05, MW test). 
(B) Values for a7-nAChRs 
(n = 66-312; *p>0.05, MW 
test). (C) Transition fre-
quencies between extrasyn-
aptic and synaptic spaces. 
(D) Dwell times in synaptic 
space. In C,D values rep-
resent means ± SEMs (n = 
12-86; p>0.05, t-test; 3-6 
separate culture platings).
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Figure 3.10 – Regulation of nAChR mobility by PDZ-containing proteins.  (A) QD-
a3*nAChR trajectory (red) crossing synaptic spaces labeled with MitoTracker (green) on a CG 
neurite expressing CRIPT (blue).  Scale bar: 1 mm.  (B) Median Di values (± 25-75% IQR) for 
a3*-nAChRs in extrasynaptic and synaptic space on neurites expressing GFP (control) or CRIPT 
(n = 49-66 trajectories).  (C) Values for a7-nAChRs (n = 66-145).  (D) Proportions of mobile 
a3*-nAChRs and a7-nAChRs on neurites expressing GFP, CRIPT, PSD-95/SAP102-RNAi (P95/
S102), SAP102, or SAP102-GFP (mean ± SEM; n=40-69 total QDs from 2-6 separate platings). 
Cocktail:  treatment with nocodazole (10 mM), latrunculin A (3 mM), and COase treatments (2 U/
ml). (E) Dwell times in synaptic space. (F) Transition frequencies between extrasynaptic and syn-
aptic spaces. Values in E-F are means ± SEMs (n = 12-16; p>0.05, t-test; 3-6 separate platings).
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no effect (Fig. 3.10D). None of the treatments produced a change in the fraction of a7-

nAChRs that was mobile. The results show that PDZ-containing proteins differentially 

affect the mobilities of a3*-nAChRs and a7-nAChRs, effectively discriminating on 

the basis of subunit composition. They constrain the rates of diffusion for mobile a7-

nAChRs but not for mobile a3*-nAChRs, and conversely, they increase the size of the 

a3*-nAChR mobile fraction via a GK domain without affecting this parameter for a7-

nAChRs. 

3.2.6 MobiLity of a7-nAChRs oN chick syMpathetic GaNGLioN NeuroNs

 

To assess the generality of these results, experiments were also carried out with chick 

sympathetic ganglion neurons in culture. 

The neurons express a7-nAChRs that can be 

tagged with Biot-aBgt and QDs and followed 

through synaptic and extrasynaptic spaces 

on neurites. Analyzing the trajectories and 

calculating the D
i
 values as described above 

for CG neurons indicated again a restricted 

mobility for a7-nAChRs in synaptic space, 

compared to extrasynaptic space (Fig. 3.11A).  

The synaptic D
i
 was equivalent on sympathetic 

and CG neurites, but the extrasynaptic Di was 

different (p<0.001, MW test). Disrupting the 

actin cytoskeleton with latrunculin A produced 

increases in the diffusion rates of a7-nAChRs 

both in synaptic and extrasynaptic space (Fig. 

3.12B), and the increases were comparable 

to those seen for a7-nAChRs on CG neurons. 

A clear difference, however, emerged when 

lipid rafts were disrupted. Unlike the effect on 

CG neurons, treating sympathetic ganglion 

neurons with COase produced no change in the 

Figure 3.11 – Effect of vehicle (DMSO) 
on the lateral diffusion of a7-nAChRs 
on sympathetic neurites. Diffusion 
properties of receptors were examined 
in extrasynaptic and synaptic regions on 
neuritis in normal medium (Ctr) or in me-
dium containing 0.1% DMSO. (A) Median 
Di values (± 25-75% IQR) for a7-nAChRs 
(n = 121-264; **p<0.01, MW test). (B) 
Transition frequencies between extrasyn-
aptic and synaptic spaces. (C) Dwell times 
in synaptic space. In B, C values repre-
sent means ± SEMs (n = 30-39; p>0.05, 
t-test; 3 separate culture platings).
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mobility of a7-nAChRs either in synaptic or extrasynaptic space (Fig. 3.12A), raising 

the possibility that there might be regional variation in raft–receptor interactions. The 

results indicate that the general features of a7-nAChR mobility are common among the 

two cell types but that regulatory controls can also be cell type-specific. 

Figure 3.12 – Lateral diffusion of surface a7-nAChRs in synaptic and extrasynaptic space 
on sympathetic ganglion neurites.  (A) Median Di values (± 25-75% IQR) for extrasynaptic 
(n= 193-264) and synaptic (n= 91-196) trajectories in control conditions (Ctr, 0.1% DMSO) or 
after cholesterol depletion with cholesterol oxidase (2 U/ml, COase).  (B) Median Di values (± 25-
75% IQR) for extrasynaptic (n= 170-207) and synaptic (n= 102-121) trajectories in control con-
ditions (Ctr, 0.1% DMSO) or after disruption of F-actin with latrunculin A (3 mM, LAT). Transition 
frequencies (C) between extrasynaptic and synaptic spaces and synaptic dwell times (D) were 
calculated for control conditions (Ctr, 0.1% DMSO) or after disruption of F-actin with latrunculin A 
(3 mM, LAT). Transition frequencies (E) between extrasynaptic and synaptic spaces and synaptic 
dwell times (F) were calculated for control conditions and after cholesterol depletion with COase 
(2 U/ml). Values in C-F are means ± SEMs (n= 27-39; p>0.05, t-test; 3 separate platings).
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3.3 DiscussioN

Single-particle-tracking of nAChRs was used to examine the mobility of a7- and 

a3*-nAChRs on the neuron surface. It was found that substantial fractions of both 

classes of nAChRs are mobile on the surface, that they transition between synaptic 

and extrasynaptic domains, and that they slow down when transiting synaptic space. 

In addition, a fraction of each nAChR type is immobile and preferentially localized in 

synaptic space. Strikingly, most of the a3*-nAChRs appeared to be immobile on the 

surface of the neuritis, contrasting with a7-nAChRs, which were preferentially moving. 

Disruption of the cytoskeleton, lipid rafts or postsynaptic scaffolds differentially affects 

a7- and a3*-nAChRs. Curiously, the mechanisms of a7-nAChR restraint depended, to 

a certain extent, to the cell type used. Together, these data suggests that different 

mechanisms constrain receptor populations depending on local domain, receptor 

subunit composition and cell type. 

3.3.1 Mechanisms that control the lateral diffusion of a7- and a3*-nAChRs

The postsynaptic membrane complex in glutamatergic synapses contains transmembrane 

components that restrict diffusion, as well as scaffold networks that anchor receptors 

(Kim and Sheng, 2004; Charrier et al., 2006; Renner et al., 2009). The latter includes 

PSD-95 family members, which have been shown to regulate AMPA receptor mobility 

(Bats et al., 2007). The lipid environment also restricts mobility by increasing local 

membrane viscosity (Marguet et al., 2006; Allen et al., 2007) and by concentrating 

components that tether receptors, such as palmitoylated PSD-95 and the sequestration 

of AMPA receptors (El-Husseini et al., 2002). Links to the cytoskeleton help secure the 

postsynaptic membrane complex (Feng and Zhang, 2009). 

In this study, I investigated some mechanisms that seemed to be good candidates 

for constraining nAChRs mobility in neurons. Neither actin filaments nor microtubules 

changed the proportions of mobile a7- and a3*-nAChRs. However, cholesterol 

depletion by COase (or MbCD) or disruption of postsynaptic PDZ-scaffolds by CRIPT 

(or PSD-95/SAP102 RNAi) selectively freed up a portion of immobile a3*-nAChRs but 
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not immobile a7-nAChRs on CG neurons. Curiously, the fraction of a3*-nAChRs that 

remained immobile on neurites after CRIPT or COase treatment was comparable in 

size to the fraction of immobile a7-nAChRs found under all conditions. Disruption of 

postsynaptic PDZ-scaffolds had no effect on the lateral diffusion of already mobile a3*-

nAChRs. Paradoxically, it did increase the diffusion of a7-nAChRs without changing 

the proportion of a7-nAChRs that was mobile. Combining a cocktail of disrupters 

with the CRIPT expression (to acutely disrupt microtubules, F-actin, and lipid rafts 

in addition to chronic disruption of PDZ-links) produced no further decrease in the 

fraction of immobile receptors. CRIPT and COase treatments may have generated 

equivalent outcomes because they targeted a shared mechanism, like for example the 

clustering of palmitoylated PDZ-proteins in a lipid raft (El-Husseini et al., 2002). Other 

cholesterol-protein interactions, however, may contribute to nAChR constraint (Gimpl 

et al., 2002; Allen et al., 2007). The TM4 of nAChR subunit contains a highly conserved 

cysteine residue that appears to be involved in receptor aggregation and interaction 

with cholesterol and other lipid-related molecules. Cholesterol depletion is also known 

to increase the activity of several staurosporine-sensitive kinases including PKA, PKC 

and Src (Burgos et al., 2004; Cabrera-Poch et al., 2004), which could eventually modify 

the phosphorylation and the function of scaffolds and/or receptors. 

The fact that the SAP102-GK construct acted as a dominant negative provided 

evidence that the PDZ-scaffold constrains receptor mobility by linking them to sites 

via a GK domain. It has recently been shown that the GK domain of SAP102 is, in fact, 

responsible for stabilizing the protein at the postsynaptic density (Zheng et al., 2010). 

The receptor-specific effects caused by disrupting PDZ-scaffolds may be determined 

by the individual PSD-95 family members that interact with a3*-nAChRs versus a7-

nAChRs, conferring different types of constraint (Conroy et al., 2003). 

Although the relationship between stabilization and aggregation of receptors is 

not totally clear yet, we found here that molecules that contribute for a3*-nAChRs 

immobilization seem to also contribute for the aggregation of a3*-nAChRs in clusters. 

Cholesterol depletion not only freed up immobile a3*-nAChRs, but also decrease the 

size of a3*-nAChR clusters. The double knockdown of PSD95/SAP102 had the same 

effect on aggregation/stability of a3*-nAChRs (Neff et al., 2009b and present work). 

Disruption of PDZ-scaffolds also interferes with signal transduction and downstream 
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signaling by nAChRs, indicating the importance of receptor positioning (Conroy et al., 

2003). Further, PSD-95/SAP102 RNAi decreases paired-pulse depression at synapses 

on CG neurons (Neff et al., 2009). Some of this latter effect may reflect increased 

receptor mobility providing rapid receptor exchange that diminishes the effects of 

desensitization, a phenomenon reported for AMPA receptors (Heine et al., 2008b; 

Frischknecht et al., 2009). Lateral mobility would appear to be important for recruiting 

nAChRs to desired locations if receptor localization can then be stabilized.

Changes in receptor diffusion did not necessarily induce a measurable change in either 

synaptic dwell time or frequency of transitions. This was true for diffusion of mobile 

a7-nAChRs on CG neurons following CRIPT disruption of PDZ-scaffolds.  Similarly, 

F-actin collapse by latrunculin A and microtubules disruption by nocodazole increased 

diffusion of mobile a7-nAChRs and a3*-nAChR, respectively, without changing either 

their synaptic dwell time or transition frequency. The results suggest that synaptic 

retention of mobile receptors may not simply reflect slower movement. Instead the 

receptors may be physically constrained either by a molecular border around the space 

or by a constraint that tethers them within the space (O’Connell et al., 2006; Triller and 

Choquet, 2008).

The tracking of endogenously expressed receptors currently requires the use of ligands 

that bind the receptors of interest (mAb35 and a-Bgt in our case). It is possible that 

the binding of ligands can induce conformational changes (Mitra et al., 2001) in the 

receptors, which could eventually lead to changes in their diffusion. For tracking 

a7-nAChRs, we used the antagonist a-Bgt due to the inexistence of antibodies that 

specifically bind the extracellular domain of a7 subunits. In this case, the inactivation 

of the receptors by a-Bgt could greatly affect the diffusion of receptors in the lateral 

membrane and even change the way that receptors are inserted into and/or removed 

from synapses. In the future, a good way to control how a-Bgt interferes with the 

diffusion of a7-nAChRs is doing FRAP experiments with a7-nAChRs-GFP, for instance, 

in the presence and in the absence of the toxin.

3.3.2 Context of nAChRs mobility with respect of other transmitter receptors

The surface diffusion of various neurotransmitter receptors is heterogeneous, with 
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relatively ‘slow’ diffusing receptors (e.g., NMDARs) compared to ‘faster’ ones (e.g., 

AMPAR). The first report of neurotransmitter receptor lateral diffusion revealed 

nAChR surface trafficking at the surface of cultured muscle fibers. It was shown that 

approximately 50% of a-Bgt sensitive AChRs are mobile, and the mobile fraction diffuse 

on average at 0.1-0.01 mm2/s. Values with the same order of magnitude were found 

for neuronal nAChRs in the present study. Moreover, the diffusion rates found here for 

mobile a7- and a3*-nAChRs fall within the range reported previously for membrane 

components traversing synapses (Groc and Choquet, 2008). The 3-fold difference in 

synaptic vs. extrasynaptic diffusion is comparable to that reported both for AMPA and 

NMDA receptors (Ehlers et al., 2007). This type of restriction has usually been attributed 

to limitation of receptor movements by barriers acting as fences (Jacobson et al., 

1995; Kusumi and Sako, 1996), by obstacles in the membrane (Daumas et al., 2003), 

by transient association with specialized lipid microdomains (Dietrich et al., 2002; 

Anderson and Jacobson, 2002) or by the transient association with receptor-scaffold 

clusters (Meier et al., 2001; Sergé et al., 2002). It should be noted that membrane-

anchored receptors by themselves slow down the particles inside synapses.

In the present study, the diffusion of a7-nAChRs was studied in sympathetic and 

parasympathetic neurons from the PNS. We found that the regulatory controls of 

a7-nAChRs mobility were cell type-specific, since different mechanisms controlled 

the diffusion a7-nAChR in symapathethic and parasympathetic neurons. In the CNS, 

multiple kinds of nAChRs exist, and they exert numerous effects depending on location 

and synaptic target (Picciotto et al., 1995; Newhouse et al., 1997; Bannon et al., 

1998; Marubio et al., 1999; Mansvelder and McGehee, 2002; Picciotto and Zoli, 2002; 

Raggenbass and Bertrand, 2002; Maskos et al., 2005; Bitner et al., 2007; Teper et al., 

2007). If the mechanisms that control the mobility of nAChRs are shared by peripheral 

and central neurons is still a matter to be studied. In addition, the surface diffusion 

of nAChRs might depend on the developmental stage of the neurons. For example, 

the lipid composition of neuronal membranes is altered due to cellular maturation and 

different scaffolds are expressed during development. These changes could lead to 

alterations in nAChR dynamic as neurons develop and mature.
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3.3.3 nAChRs – a heterogeneous population of receptors?

There are several possibilities to explain why a3*-nAChRs did show different behaviors 

regarding their mobility, i.e., why a population of a3*-nAChRs was sensitive to 

PSD95/SAP102 disruption and other was not. First, on CG neurons, a3*-nAChRs are 

heterogeneous with respect to their subunit composition. All contain a3 and b4 subunits, 

but only some contain b2 subunits and some, but perhaps not all, contain a5 subunits 

(Conroy and Berg, 1995). This heterogeneity may explain, in part, why a3*-nAChRs 

did not respond as a homogeneous population. Even a7-nAChRs, which were thought 

to be exclusively homopentameric (Drisdel and Green, 2000), may in some cases be 

heteropentameric (Khiroug et al., 2002; Liu et al., 2009). Alternatively, the finding that 

not all receptors of a given class appear to be constrained by the same component may 

result from the restraining component being present in limited amounts.

In this study, I found that the lateral diffusion of a3*- and a7-nAChRs is controlled 

by different mechanisms. The a3 and a7 subunits are highly homologous, but show a 

major divergence in both sequence and length of the large cytoplasmic loop (Williams 

et al., 1998). Interestingly, since N- and C-terminals are located in the external part 

of the cell membrane, the large cytoplasmic loop has been considered the major 

candidate to interact with cytoplasmic transport machinery for trafficking nAChRs to 

synapses. Interestingly, it was shown that it is actually the a3 cytoplasmic loop that 

targets nAChRs at the synapses (Williams et al., 1998). It would be interesting to 

follow the dynamic of the chimeric a7 subunits with the long cytoplasmic loop of a3 

(and of the chimeric a3 subunits with the long cytoplasmic loop of a7) to study the 

importance of the long cytoplasmic loop in the lateral diffusion of nAChRs. In addition, 

the heterogeneity found on the dynamic of nAChRs may be due to posttranslational 

modifications of the large cytoplasmic loop that could change its structure, allowing the 

same nAChR subunit to interact with different organizing elements. 

3.3.4 Functional consequences of nAChR lateral diffusion

Lateral mobility allows transmitter receptors to be available for quick recruitment 

at synapses. Our results suggest that nAChRs subunit-specific interactions with 
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cytoskeletal and scaffold components are likely to be key determinants in constraining 

otherwise mobile nAChRs to unique locations according to individual receptor subtype 

and cell identity. This, in turn, can provide a mechanism for targeting individual nAChR 

subtypes to specific job assignments. Most of the a3*-nAChRs appeared to be immobile 

on the surface of the neuritis, contrasting with a7-nAChRs, which were preferentially 

moving. The stability of a3*-nAChRs, in comparison with a7-nAChRs, might be related 

with the fact that a3*-nAChRs generate most of the synaptic response in culture (Chen 

et al., 2001; Conroy et al., 2003).

In this chapter, I examined receptor trafficking on CG neurites that are innervated in 

culture, as are CG projections at comparable early stages in vivo (Landmesser and 

Pilar, 1972; Liu et al., 2006). On mature CG neurons in vivo, a3*-nAChRs, but not a7-

nAChRs, are concentrated at postsynaptic densities. In CG cultures, both a3*-nAChRs 

and a7-nAChRs traverse synaptic space on neurites, but the “synaptic” a7-nAChRs 

seen here could be perisynaptic at the ultrastructual level.

Mechanisms shown here to constrain receptor mobility have been shown to stabilize 

receptor clusters. Disruption of lipid rafts and collapse of F-actin, for example, each 

disperses the large a7-nAChR clusters found on freshly dissociated CG neuron cell 

bodies (Shoop et al., 2000; Brusés et al., 2001; Liu and Berg, 1999). Disruption of 

PSD-95 family PDZ-scaffolds in CG neurons via CRIPT expression or PSD-95/SAP102 

RNAi significantly decreases synaptic a3*-nAChRs in culture (Neff et al., 2009).

In the CNS, multiple kinds of nAChRs exist and they exert numerous effects depending 

on location and synaptic target (Picciotto et al., 1995; Newhouse et al., 1997; Bannon 

et al., 1998; Marubio et al., 1999; Mansvelder and McGehee, 2002; Picciotto and Zoli, 

2002; Raggenbass and Bertrand, 2002; Maskos et al., 2005; Bitner et al., 2007; Teper 

et al., 2007). Lateral mobility allows nAChRs to be available for quick recruitment. 

The results described in this chapter suggest that subunit-specific interactions with 

cytoskeletal and scaffold components are likely to be key determinants in constraining 

otherwise mobile nAChRs to unique locations according to individual receptor subtype 

and cell identity. 
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chaPter 4

PostsynaPtic action of Brain-DeriveD neurotroPhic factor attenuates a7 nicotinic 

acetylcholine recePtor-MeDiateD resPonses in hiPPocaMPal interneurons

4.1 introDuction

Nicotinic signaling influences attention, learning and memory in the hippocampus. 

(Romanelli et al., 2007). Understanding how nicotinic inputs are modulated is thus 

expected to reveal new aspects of learning and memory formation. The most likely 

targets of the cholinergic septohippocampal pathway are the GABAergic interneurons 

in the hippocampus (Léránth and Frotscher, 1987). These cells highly express diverse 

subtypes of somato-dendritic nAChRs, including fast desensitizing a7-containing 

receptors, as well as a variety of non-a7 nAChRs (Albuquerque et al., 2009). Although 

fewer inhibitory neurons and synapses are present in the hippocampus, inhibitory 

neurons manifest in a bewildering diversity, and their synapses exert a profound 

influence on the properties of neural circuits (e.g., see Klausberger and Somogyi, 

2008). In addition, nAChRs are also located in pyramidal cells, although at a lower 

level of expression.

The preferential location of nAChRs in interneurons explains, in part, the profound 

impact of cholinergic transmission on the regulation of synaptic transmission and 

plasticity in the hippocampus. Activation of a7-nAChRs in a single interneuron has 

the ability to rapidly counteract short- and long-term plasticity phenomena that takes 

place in the CA1 pyramidal cells (Ji et al., 2001). Interestingly, activation of a7-nAChRs 

expressed on pyramidal cells boosts STP and LTP (Ji et al., 2001). Since temporal and 

spatial coordination is so important for setting different a7-nAChRs-mediated actions, 

it is crucial to understand the mechanisms that regulate their function. Furthermore, 

activation of a7-nAChRs supplies ionic signals, including Ca2+ (Bertrand et al., 1993; 

Seguela et al., 1993), that can eventually culminate in alterations of gene transcription 

(Chalazonitis and Zigmond, 1980; Greenberg et al., 1986; Pelto-Huikko et al., 1995; 

Salminen et al., 1999; Gueorguiev et al., 2000; Chang and Berg, 2001).
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Knowledge on the first messengers that regulate nAChRs in the hippocampus is still 

limited. It has been shown that a7-nAChR levels on hippocampal neurons in culture can be

upregulated by the neurotrophin-gene family member BDNF (Kawai et al., 2002; 

Massey et al., 2006). These studies showed that BDNF specifically increases a7-nAChR 

number and clustering over a time course of several hours to days in interneurons, 

although it did not affect a7-nAChRs expressed in pyramidal cells. Furthermore, the 

action of BDNF was dependent on the activation of Trk tyrosine kinase receptors, which 

are known to engage multiple second messenger pathways (Massey et al., 2006). 

Neurotrophins have been considered regulatory molecules linking rapid changes at 

synapses with longer-lasting modifications of circuit activity (Poo, 2001). In the last 

fifteen years, several studies described that short-term regulatory effects precedes 

BDNFs’ long-term regulation on the expression of transmitter receptors. For instance, 

BDNF was found to modify the properties of postsynaptic transmitter channels, including 

AMPA, NMDA, and GABAA receptors in short- and long-term scales (Rose et al., 2004). 

In this chapter, I investigated whether BDNF drives rapid changes in the activity 

of a7 nACh receptors in inhibitory cells of the hippocampus and examined the 

downstream effectors involved in that putative crosstalk.

4.2 results

4.2.1 BDnf inDuces a raPiD DePression of a7-nAChR-MeDiateD currents

The activity of a7-nAChRs was assessed through whole-cell patch-clamp experiments 

by applying ACh (1 mM) or Ch (10 mM) onto the soma of interneurons located in 

the stratum radiatum and at the border of the strata radiatum/lacunosum-moleculare 

of the CA1 hippocampal region. This procedure elicited a7-nAChR-mediated whole-

cell currents that were sensitive to 10 nM MLA or 100 nM a-Bgt (Fig. 4.1). To avoid 

potential contaminating effects, fast glutamatergic transmission and fast GABAergic 

transmission were routinely blocked with selective antagonists, as were action potentials 

blocked with TTX. In order to minimize desensitization of a7-nAChRs and rundown of 

the currents, the agonist was applied in short pulses (30 ms) every 3 min, using a 
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pipette with 1 mm diameter. 

Stable baselines were recorded at least for 30 min before applying BDNF in the perfusion 

solution. BDNF (20 ng/ml) rapidly inhibited a7-nAChR-mediated currents (Fig 4.2). The 

inhibition reached a plateau within less than 45 min. The basal amplitudes of nicotinic 

responses, measured 60 min after initiating the superfusion of BDNF (20 ng/ml), were 

reduced in 24 of 32 cells tested by 31.6 ± 6.6% (n = 24, p < 0.001) (Fig. 4.2A,B). A 

similar inhibition (38.5 ± 7.9%) was observed when performing gramicidin-perforated 

patch clamp recording (n = 3, p < 0.05). The effect of BDNF was dependent on its final 

concentration in the bath solution. As shown in Figure 4.2C, whereas 1 ng/ml BDNF 

only attenuated a7-nAChR-mediated currents by 17.3 ± 1.7% in 4 of 5 cells, 100 ng/

ml BDNF decreased nicotinic responses by 33.5 ± 4.9% in 9 of 14 trials, which was not 

Figure 4.1 - Patch clamp recordings of a7-nAChR-mediated currents. Recordings were 
performed in interneurons located in the stratum radiatum (SR) (A) or at the border of the strata 
radiatum and lacunosum-moleculare (SR-LM) (B) of the CA1 region of rat hippocampal slices. 
a7-nAChR-mediated currents were evoked through pressure application of choline (Ch, 10 mM) 
or acetylcholine (ACh, 1 mM) locally onto the cell soma (C), as indicated by the arrows (D-F). The 
a7 nAChR selective antagonists, a-Bungarotoxin (a-BT, 100 nM) (D) or methyllycaconitine (MLA, 
10 nM) (E), completely abolished postsynaptic currents induced by 10 mM choline (Ch). F, Cur-
rents evoked by 1 mM ACh were only considered if the insensitivity to the a4b2 nAChR antagonist, 
dihydro-β-erythroidine (dhbE, 10 mM), and the full blockade by a7-nAChR antagonists were ob-
served at the end of each experiment. Scale bars: 100 ms, 100 pA (D and E); 100 ms, 50 pA (F).



98

significantly different from the effect 

produced by 20 ng/ml. The washout of 

BDNF (20–100 ng/ml) was attempted 

in 14 experiments, six of which resulted 

in the recovery of nicotinic responses 

to near baseline values (97.4 ± 2.0%) 

within 45.0 ± 15.5 min (Fig. 4.2A,B). In 

the remaining eight cells, the inhibitory 

effect of BDNF persisted for at least 1 h 

after the washout period was initiated. 

Noteworthy, the success rate of recovery 

during washout seemed to be correlated 

with the concentration of BDNF tested. 

Although for 20 ng/ml BDNF currents 

returned to baseline values in four of six 

experiments (66.7%), that proportion 

dropped to two of eight (25%) when 

100 ng/ml BDNF was used. This 

observation, together with the fact that 

BDNF is a sticky molecule (Lu, 2003), 

suggests that the failure of a7-nAChR-

mediated responses to recover might 

be attributable to the impossibility of 

obtaining a complete tissue clearance of 

the neurotrophin in some experiments. 

Superfusion of heat-inactivated BDNF 

(as a control for non-specific effects) 

did not modify the mean amplitude of 

the recorded currents in any of the cells 

tested (n = 7) (Fig. 4.3D).

Figure 4.2 - BDNF inhibits a7-nAChR-mediated 
currents in CA1 hippocampal interneurons. A, 
Time course of a typical experiment showing nor-
malized peak amplitudes of a7 nAChR-mediated 
currents recorded in the absence of drugs, during 
the superfusion of 20 ng/ml BDNF (horizontal solid 
bar) and after a prolonged washout period, as in-
dicated. Sample currents obtained from the same 
interneuron are shown in (B). Arrows indicate brief 
(30 ms) applications of Ch (10 mM) to the soma 
of interneurons. Scale bars: 100 ms, 100 pA. C, 
Concentration-dependent inhibition of a7 nAChR-
mediated responses by BDNF (1-100 ng/ml). 
Each point represents the percentage of inhibition 
achieved 60 min after initiating BDNF treatment.
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4.2.2 inhiBition of trkB recePtors 

iMPairs BDnf-inDuceD suPPression of 

a7-nAChR-MeDiateD currents

Rapid actions of BDNF have been 

attributed to its binding to the tyrosine 

kinase TrkB receptors (Blum and 

Konnerth, 2005). To evaluate whether 

the TrkB receptor was involved in 

the inhibitory action of BDNF on a7-

nAChRs, we studied the effect of this 

neurotrophin when the tyrosine kinase 

activity of Trk receptors family was 

inhibited by addition of the alkaloid 

K252a (200 nM) (Knusel and Hefti, 

1992) to the intracellular solution. In 

Figure 4.3 - BDNF-induced depres-
sion of a7-nAChR-mediated currents 
involves a Trk-type receptor. A, Illus-
trative currents showing that postsynap-
tic loading of the tyrosine kinase receptor 
inhibitor K252a (200 nM) prevented the 
inhibitory action of BDNF. B, Bath applica-
tion of adenosine deaminase (ADA; 1 U/
ml) also prevented the effect of BDNF on 
a7 nAChRs. C, Blockade of PKA by intra-
cellular dialysis of H-89 (1 mM) impaired 
BDNF (20 ng/ml) ability to depress a7- 
nAChR-mediated currents. D, Summary 
of data, as indicated. BDNF (20 ng/ml), 
heat-inactivated BDNF (HI-BDNF, 20 ng/
ml BDNF boiled for 30 min), ADA (1 U/
ml) or adenosine A2A receptor antagonist, 
SCH 58261 (100 nM), were applied in the 
superfusion solution for at least 30 min 
before BDNF. K252a (200 nM), DMSO (0.1 
% v/v) or H-89 (0.1-1 mM) were included 
in the intracellular solution. Mean effects 
were quantified 60 min after BDNF applica-
tion for all data. Error bars represent s.e.m. 
* P< 0.001 as compared to mean values 
before BDNF (two-tailed Student’s t-test). 
δ P< 0.05 as compared to BDNF alone (one-
way ANOVA). Scale bars: 100 ms, 100 pA. 
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these conditions, a7-nAChR-mediated currents were not modified by 20–100 ng/ml 

BDNF in any of the cells tested (n = 5, p < 0.05) (Fig. 4.3A).

Neuromodulation by TrkB tyrosine kinase receptors is tightly dependent on endogenous 

adenosine acting on A2A GPCRs (Diógenes et al., 2004). Thus, it was evaluated the 

effect of BDNF (20 ng/ml) when the extracellular adenosine levels were reduced with 

adenosine deaminase (ADA, 1 U/ml) or under pharmacological blockade of adenosine 

A2A receptors with SCH 58261 (100 nM). Despite the observation that neither SCH 

58261 nor ADA affected nicotinic responses per se (Fig. 4.4), their superfusion in the 

bath solution prevented the inhibitory effects of BDNF in all cells tested (n = 5–6, p < 

0.05) (Fig. 4.3B,D).

The activity of Src-family tyrosine kinases (SFKs) has been indicated as one of the 

mechanisms that can lead to the activation of Trk receptors by adenosine (Lee and 

Chao, 2001) and to the regulation of a7-nAChR-mediated currents on hippocampal 

interneurons (Charpantier et al., 2005). Moreover, a role for SFKs in Trk receptor signaling 

has also been suggested (Iwasaki et al., 1998). Thus, it was investigated whether SFKs 

might participate in the inhibitory effect of BDNF on a7-nAChRs. As Figure 4.5 shows, 

when a broad-spectrum inhibitor of SFKs, 100 nM PP2 (Berghuis et al., 2005), was 

loaded intracellularly, BDNF (20 ng/ml) still significantly (p < 0.05) depressed a7-

Fig. 4.4 - A
2A

 receptors do 
not influence per se the 
amplitude or the kinetics 
of a7 receptor-mediated 
currents. Each panel dis-
plays averaged time courses 
and two illustrative currents 
showing the absence of effect 
of the following pharmacologi-
cal drugs on a7 nAChR-me-
diated currents: (A) adenos-
ine A2A receptor antagonist, 
100 nM SCH 58261, and (B) 
adenosine deaminase (1 U/
ml). Arrows indicate brief 
(30 ms) application of ACh 
(1 mM) to the soma of inter-
neurons. Currents shown on 
the left were obtained im-
mediately before adding the 
respective drug to the bath-
ing solution and currents on 
the right were evoked 60 min 
later. Scale bars: (a) 100 pA, 
100 ms (b)200 pA, 100 ms. 
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nAChR responses in four of six of cells 

tested by 49.5 ± 10.2%, excluding a 

putative role of this family of kinases 

on BDNF-induced inhibition of nicotinic 

responses.

Adenosine A2A receptors can be also 

coupled to the cAMP–PKA signal 

transduction system and it has been 

previously shown that PKA might play 

a role in the crosstalk between A2A and 

TrkB receptors in the hippocampus 

(Diógenes et al., 2004). Therefore, it was 

investigated whether the direct inhibition 

of PKA with H-89 would also restrain

the effect of BDNF on a7-nAChRs. In 

fact, as Figure 4.3, C and D, shows, 

the intracellular loading of H-89 (0.1–1 

mM) prevented (p < 0.05) the action of 

BDNF (20 ng/ml) in the majority of the 

cells tested (four of five) and in one cell 

attenuated it, corroborating previous 

evidences that cAMP-dependent 

processes might regulate the rapid effects of this neurotrophin (Diógenes et al., 2004; 

Ji et al., 2005).

Together, the data depicted above indicate that the inhibition of a7-nAChR function by 

BDNF requires postsynaptic TrkB receptors with preserved tyrosine kinase activity and 

agree with previous evidences (Diógenes et al., 2004; Mojsilovic-Petrovic et al., 2006) 

that the antagonism of adenosine A2A receptors inhibits activation of TrkB and/or its 

downstream signaling, even when cells are provided with enough extracellular BDNF to 

tonically activate its receptor.

Figure 4.5 - The inhibitory action of BDNF 
on a7-nAChR-mediated responses does not 
involve the activity of Src kinases-family. A, 
Time course plots showing the effect of 20 ng/
ml BDNF (horizontal solid bar) on Ch-evoked cur-
rents recorded with an intracellular solution con-
taining a Src kinases-family inhibitor, PP2 (100 
nM). Error bars represent s.e.m. Illustrative cur-
rents are shown in (B). Arrows indicate brief 
(30 ms) application of Ch (10 mM) to the soma 
of the interneuron. Scale bars: 100 ms, 100 pA.
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4.2.3 BDnf action on a7-nAChRs Process requires the Plc/Pkc Pathway anD Ca2+ 

ions as a cofactor

The autophosphorylation of TrkB receptor tyrosine residues after BDNF binding creates 

independent sites for Shc and PLC-g (Vetter et al., 1991; Middlemas et al., 1994). 

Whereas the Shc site of TrkB couples the activated receptor to the Ras/MAPK pathway 

and the PI3K/Akt pathway, TrkB interaction with PLC-g is responsible for the formation 

of the Ca2+-mobilizing second messenger IP
3
 and DAG, an activator of PKC. This led us 

to investigate whether the PLCg/PKC pathway was involved in BDNF-induced inhibition 

of a7-nAChR. When the broad-spectrum inhibitor of PLC U73122 (5 mM; Tanaka et 

al., 1997) was included in the intracellular solution, BDNF failed to affect a7-nAChR-

mediated currents in all cells tested (n = 8) (p < 0.05 compared with the effect of 

BDNF alone) (Fig. 4.6A,F). Dialysis of a general inhibitor of PKC isoforms, GF 109203X 

(2 mM), through the patch pipette also completely occluded the effect of BDNF (20 ng/

ml) on a7-nAChR function (n = 8, p < 0.05) (Fig. 4.6B,F). These data together support 

a role for the PLC/PKC pathway in mediating BDNF-induced downregulation of a7-

nAChR-mediated currents.

The PKC family comprises at least 10 isoenzymes, which can be divided into three 

subfamilies on the basis of their second-messenger requirements (Jaken and Parker, 

2000). Conventional PKCs contain the isoforms a, bI, bII, and g, which require Ca2+, 

DAG, and a phospholipid for activation. Novel PKCs include the d, e, h, and q isoforms 

and require DAG, but do not require Ca2+ for activation. Conversely, atypical PKCs, 

which include z and i/l isoforms, require neither Ca2+ nor DAG for activation. It 

was then evaluated whether the inhibitory actions of BDNF on a7-nAChR function 

required calcium signals to occur, in an attempt to investigate which PKC subfamily 

participated in that mechanism. Under these conditions, BDNF was still able to inhibit 

a7-nAChR-mediated currents when the fast Ca2+ chelator BAPTA (10 mM) was loaded 

intracellularly (43.0 ± 9.9% inhibition, n = 4 of 7 cells, p > 0.05) (Fig. 4.6C,F), the 

neurotrophin did not significantly (p > 0.05) modify a7-nAChR response in any of the 

cells tested (n = 4) when the intracellular dialysis of BAPTA (10 mM) was conjugated 

with the simultaneous removal of extracellular calcium ions (Fig. 4.6D,F). Together, 
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Figure 4.6 - Signaling pathways involved in BDNF-induced inhibition of a7-nAChRs-me-
diated currents. Each panel (A,B,C,D) displays two illustrative currents obtained immediately 
before and 60 min after adding BDNF to the bath solution (20 ng/ml). BDNF failed to modify the 
amplitude of nicotinic responses when the PLC blocker U73122 (5 mM) (A) or the PKC inhibitor GF 
109203X (2 mM) (B) were dialyzed through the patch pipette. The intracellular chelation of cal-
cium with the fast Ca2+ chelator BAPTA did not affect the action of BDNF on a7-nAChRs-mediated 
responses (C), unless extracellular Ca2+ was simultaneously removed (D), a condition in which 
the depression caused by BDNF was totally suppressed. E, Treatment with PDD (1 mM), a PKC 
activator, mimicked the inhibitory effect of BDNF on a7 nAChR-mediated responses. F, Histogram 
showing the mean effects of PDD and BDNF (20 ng/ml) on the peak amplitudes of a7-nAChRs-
mediated currents after the pharmacological manipulations indicated. BDNF (20 ng/ml) and PDD 
were added to the bathing solution. U73122 (5 mM) and GF 109203X (2 mM) were included in the 
intracellular solution and loaded directly into the postsynaptic cell. In the experiments in which 
[Ca2+]

o
=0 mM, CaCl2 (2 mM) was substituted by BaCl2 (2 mM) in the extracellular solution. Mean 

effects were quantified 60 min after BDNF or PDD application for all data. Error bars represent 
s.e.m. Arrows indicate brief (30 ms) application of Ch (10 mM) to the soma of interneurons. δ P< 
0.05 as compared to the effect of BDNF alone (one-way ANOVA). Scale bars: 100 ms, 100 pA.



104

these data suggested, therefore, the involvement of a typical isoform of PKC (i.e., with 

a Ca2+-binding domain) in BDNF-induced inhibition of a7-nAChRs. Notably, because 

intracellular Ca2+ chelation per se did not prevent the effect of BDNF, it is likely that 

a7-nAChRs might supply themselves Ca2+ signals that activate PKC and ultimately lead 

to the regulation of their function. In the next set of experiments, PKC was directly 

activated through superfusion of the phorbol ester phorbol-12,13-didecanoate (PDD; 1 

mM). In such conditions, a7-nAChR responses were decreased by 32.2 ± 7.3 in four of 

six cells, mimicking the effect of BDNF by itself (Fig. 4.6E,F).

4.2.4 the attenuation of a7-nAChRs function By BDnf involves the actin cytoskeleton

The trafficking of neuronal a7-nAChRs into/from the plasma membrane depends on 

cytoskeleton proteins, such as actin (Shoop et al., 2000; Chang and Fischbach, 2006). 

Recent evidences suggesting that BDNF preserves a significant influence on the actin 

cytoskeleton in the mature nervous system (Rex et al., 2007) prompted us to investigate 

whether the attenuation of a7-nAChR function by BDNF could be regulated at that level. 

To test such possibility, it 

was examined the efficacy of 

BDNF in modulating nicotinic 

responses of interneurons 

previously loaded with the 

actin depolymerizing agent 

cytochalasin D (5 mM) (Cooper, 

1987). Notably, BDNF (20 

ng/ml) failed to significantly 

modify a7-nAChR-mediated 

currents in all cells tested 

under those conditions (n 

= 4, p > 0.05) (Fig. 4.7). 

These results suggest that 

the acute actions of BDNF on 

a7-nAChRs require the intact 

Figure 4.7 - F-actin disruption prevents 
the acute action of BDNF on a7-nAChRs. 
A, a7- nAChR-mediated responses evoked in interneurons 
loaded with the actin filament disrupter cytochalasin D (Cyt D; 
5 mM) by local pressure application of choline (10 mM), before 
and during administration of BDNF (20 ng/ml). B,  Barplot of 
mean current amplitudes for the experiments described in A. 
BDNF (20 ng/ml) was added to the bathing solution. Cytocha-
lasin D was included in the intracellular solution and allowed 
to act directly inside the postsynaptic cell. Mean effects were 
quantified 60 min after BDNF. Error bars represent s.e.m. Ar-
rows indicate brief (30 ms) application of Ch (10 mM) to the 
soma of interneurons. δ P< 0.05 as compared to the effect of 
BDNF alone (one-way ANOVA). Scale bars: 100 ms, 100 pA.

δ
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actin cytoskeleton to undergo structural alterations that ultimately affect the stability, 

and thus the function, of a7-nAChRs in the cell membrane.

4.3 Discussion

The results outlined in this chapter identified a neurotrophin gene family member, 

BDNF, as an acute modulator of nAChRs activity in the CNS. Under the experimental 

conditions used, BDNF significantly attenuated a7-nAChR-mediated currents in the 

vast majority of hippocampal CA1 stratum interneurons tested. The effect of BDNF 

on postsynaptic a7-nAChRs was dose dependent, reversible, and mediated through 

the activation of tyrosine kinase TrkB receptors. Additionally, it became clear that 

constitutively released adenosine, acting on A2A receptors, was required to gate the 

action of BDNF. It was further demonstrated the involvement of actin cytoskeleton and 

PLC/PKC signaling cascade downstream of TrkB receptor activation in the attenuation of 

a7-nAChR function. Furthermore, Ca2+ is required as a co-factor. The findings presented 

here disclose a novel target for rapid actions of BDNF that might play important roles 

on synaptic transmission and plasticity in the brain.

4.3.1 regulation of a7-nAChRs By BDnf

a7-nAChRs-mediated currents were inhibited by BDNF in the majority of cells tested. 

The absence of response to BDNF verified in less than one-fourth of the interneurons 

might be attributable to differences in density/distribution of TrkB receptors and/or 

downstream signaling pathways or, less likely, to a difficult penetration of BDNF is some 

slices. It could also depend on the intracellular levels of cAMP, which was shown to 

control BDNF-induced actions in several systems (Meyer-Franke et al., 1995; Song et 

al., 1997; Diógenes et al., 2004; Ji et al., 2005). As described above, it was found that 

blockade of cAMP-mediated signaling by of PKA with H-89 reduced the effect mediated 

by BDNF on a7-nAChR. Thus, it is possible that the occurrence of cAMP microdomains 

creates conditions for isolation and/or amplification of BDNF–TrkB-mediated signal. 

BDNF–TrkB signaling might be selectively enhanced in active neurons or synapses with 

elevated [cAMP]
i
. Following the same line, we can speculate that cAMP could act as an 
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indicator of active synapses, explaining why BDNF–TrkB signaling preferentially affects 

active neurons (although it was never demonstrated that neuronal activity directly 

increases cAMP levels). 

One of the main producers of cAMP is the adenosine A2A receptor (Fredholm et al., 2001). 

As shown here, the antagonism of adenosine A2A receptors prevented the action of 

BDNF on a7-nAChR. Although corroborating several evidences on the tight relationship 

between tyrosine kinase TrkB and adenosine A2A receptors, this set of results contrasts 

with BDNF-induced modulation of synaptic inputs to pyramidal cells, which require 

exogenous activation of A2A receptors (Diógenes et al., 2004). It is thus possible that 

either adenosine levels are greater in the vicinity of interneurons or, alternatively, 

interneurons might exhibit an increased sensitivity for the basal levels of adenosine. 

In fact, both possibilities are consistent with several reports showing that extracellular 

adenosine levels affect interneurons in a more powerful manner than pyramidal cells 

(Congar et al., 1995; Fortunato et al., 1996). 

It was previously reported that treatment with BDNF does not acutely modify a7-

nAChRs-mediated currents in ciliary ganglion neurons, although it does upregulate a7-

nAChRs expression after several days (Zhou et al., 2006). The discrepancy between that 

study and the present data might be explained by some differences in methodology. 

The most obvious difference is the type of preparation used in each study; we used 

freshly prepared hippocampal slices and recorded a7-nAChRs-mediated currents in 

interneurons, while Zhou and colleagues used dissociated ciliary ganglions in cell 

culture. It is well known that cells in culture develop under artificial conditions, since 

they are supplemented with growth factors at relatively high concentrations. In fact, 

the occurrence of trophic and growth factors in the intact nervous system is limited and 

actually cells compete for them. In this partcular aspect, acutely prepared slices are 

closer to physiological conditions and this might be particularly important when testing 

the effect of trophic factors. It is also plausible that BDNF-mediated actions are cell 

type-specific. Cilliary ganglion neurons mediate excitatory synaptic transmission, while 

interneurons in CA1 stratum radiatum are responsible for inhibiting CA1 pyramidal 

cells. In this case, the acute effect of BDNF on the a7-nAChR would be confined to 

cells that play an inhibitory role in the circuit. Finally, in the present work, a7-nAChRs-
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mediated currents were recorded in the same cell before and after applying BDNF, 

meaning that there are internal controls within each experiment, which is not the case 

for the study from Zhou and colleagues. The wide range of the peak amplitudes for 

a7-nAChRs-mediated currents could have masked a putative acute inhibition of BDNF 

on these receptors.

4.3.2 involveMent of Plc/Pkc Pathway on the regulation of a7-nAChR

The results here described demonstrate here the involvement of the PLC/PKC signaling 

cascade downstream of TrkB receptor activation in the attenuation of a7-nAChR 

function. The activation of the PLC/PKC pathway by BDNF is particularly important 

for the control of short- and long-term brain modifications that underlie learning and 

memory formation (Korte et al., 1995; Gruart et al., 2007). Previous studies suggested 

that PKC restrained paired-pulse potentiation of a7-nAChRs in rat hippocampal 

interneurons (Klein and Yakel, 2005) and accelerated agonist-induced desensitization 

of nAChR in sympathetic ganglion neurons (Downing and Role, 1987). More recently, 

a study showed that muscarinic M1 acetylcholine receptors inhibit a7-nAChR-mediated 

currents in interneurons via PLC/PKC signaling pathway (Shen et al., 2009). Consistent 

with these studies is the present finding showing that activation of PKC with phorbol 

esters causes the inhibition of a7-nAChR-mediated currents. It would be interesting 

to investigate whether PKC plays an instructive or permissive role in the regulation of 

a7-nAChRs. Posttranslational modifications induced by the activation of several second 

messenger-dependent kinases have long been recognized to inhibit nAChRs from Torpedo 

and vertebrate muscle cells. More recently, it was shown that neuronal homomeric a7-

nAChRs also constitute targets for similar mechanisms. It is tempting to speculate 

about the involvement of PKC in a hypothetical phosphorylation of a7-nAChRs, known 

to be negatively coupled to the regulation of nicotinic responses (Charpantier et al., 

2005). However, predicted consensus sequences for PKC phosphorylation are absent 

from the intracellular domains of a7 subunits, and, therefore, neuronal a7-nAChRs do 

not seem to constitute a potential substrate for direct PKC phosphorylation (Seguela 

et al., 1993; Moss et al., 1996). Nevertheless, it is possible that the acute inhibitory 

effect of BDNF on a7-nAChR function might involve phosphorylation/dephosphorylation 
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of intermediate proteins that regulate trafficking and/or clustering of the receptors. 

In contrast to glutamate NMDA receptors, neuronal a7-nAChRs remain active at highly 

negative potentials and can supply Ca2+ signals in these conditions. The relatively 

high Ca2+ permeability of the a7-nAChR may lead to an efficient colocalization of Ca2+-

binding or Ca2+-dependent proteins in neurons. The results described in this chapter 

suggest that TrkB receptor activation leads to functional changes on the a7-nAChR that 

depend on Ca2+ influx. Becasuse at the resting membrane potential, Ca2+ influx mostly 

occurs through a7-nAChRs, the action of BDNF here reported might play an important 

role on the regulation of cations influx and act to restrain excessive cell depolarization 

and avoid Ca2+-induced excitotoxicity. In fact, the complete prevention of BDNF action 

on a7-nAChR responses was only achieved when intracellular Ca2+ chelation was 

combined with the replacement of external Ca2+ with Ba2+ ions, suggesting that the 

interactions between TrkB and a7-nAChRs probably occur in the vicinity of the plasma 

membrane. Such possibility is strengthened by the observation that BDNF causes 

a similar inhibition on a7-nAChRs function in perforated vs. whole-cell patch clamp 

configurations (when dialysis of cytoplasmic second messengers is prevented or when 

it is expected to occur at some extent, respectively).

4.3.3 short- anD long-terM actions of BDnf on a7-nAChRs

It was previously reported that long-term treatment (16–72 h) with BDNF upregulates 

intracellular and surface pools of a7-nAChRs in subpopulations of hippocampal 

interneurons that mainly innervate pyramidal cells (Massey et al., 2006). However, 

it remains to be investigated which signaling cascades are involved in that long-term 

effect and whether this effect is correlated with functional modifications of nicotinic 

responses. Knowledge on these pathways is expected to clarify whether a common 

pathway downstream of TrkB receptor activation is responsible for the acute and chronic 

modifications of a7-nAChR function induced by BDNF. A biphasic response induced 

by BDNF/TrkB receptor activation would be in line with the action of neuregulin-1/

ErbB4 receptor signaling on nicotinic responses, in the sense that this system also 

acutely depresses a7-nAChR function and chronically enhances a7-nAChR number and 

function in the plasma membrane (Liu et al., 2001a; Chang and Fischbach, 2006). 
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Future studies will allow determining how different tyrosine kinase receptors coordinate 

the regulation of a7-nAChRs and whether they interact for that purpose. Noteworthy, 

the actin cytoskeleton appears to play a pivotal role on both inhibitory actions of ErbB4 

and TrkB receptors on a7-nAChR function.

4.3.4 regulation of a7-nAChRs anD its iMPact on hiPPocaMPal circuitry

The function of all circuits is shaped by GABAergic inhibition. In the case of stratum 

radiatum interneurons, it is thought that they primarily mediate feed-forward inhibition 

of pyramidal neurons. Therefore, nicotinic stimulation can shift the balance of inhibition/

excitation. For instance, it has been shown that postsynaptic a7-nAChR-mediated inputs 

to GABAergic interneurons regulate inhibition within the hippocampal network (Jones 

and Yakel, 1997; Alkondon et al., 1999). In fact, a single interneuron is estimated to 

innervate thousands of pyramidal cells and therefore can simultaneously inhibit large 

populations of cells (Sik et al. 1995; Cobb et al. 1995; Buzsaki & Chrobak, 1995). 

Hence, the action of BDNF now described might contribute to set the background 

responsiveness of a7-nAChRs and should be taken into account when considering their 

participation in the whole neuronal network activity. In this context, because BDNF does 

not modify ACh-induced currents in glutamatergic neurons (Levine et al., 1998), it is 

plausible that the dramatic increase in BDNF secretion induced by intense stimulation of 

hippocampal excitatory circuits (Gartner and Staiger, 2002) might temporarily alleviate 

a7-nAChR-mediated inputs to interneurons that tend to oppose short- and long-term 

potentiation in pyramidal cells (Ji et al., 2001). Given the key role of TrkB–PLC docking 

site in synaptic plasticity (Gruart et al., 2007) and the reversibility of BDNF action 

on a7-nAChRs, the present data might also configure a mechanism involved in the 

adaptation to local changes in neuronal activity that occur in the hippocampus during 

learning and memory formation. 

The results described in this chapter widen the fundamental mechanisms by which 

BDNF influences synaptic transmission and synaptic plasticity in the CNS. Because 

alterations on BDNF levels and disruption of a7-nAChR function in the hippocampus 

have been involved in cognitive deficits and dementia, it is expected that the link now 

described constitutes a target for novel pharmacological approaches for the treatment 
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of those disorders. 
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ChaptEr 5

EndogEnous signalling through a7-Containing niCotiniC aCEtylCholinE rECEptors 

promotEs maturation and intEgration of adultborn nEurons in thE hippoCampus

5.1 introduCtion

The discovery of neurogenesis in the brain of adult mammals overturned the long-held 

dogma that adult brain has no capacity for generating new neurons. It is currently 

known that adult neurogenesis in the DG is essential for proper hippocampal function. 

Key functions for adult-born neurons include coding time and place integration 

(Aimone et al., 2006), spatial pattern separation (Clelland et al., 2009), reinforcement 

of preexisting memories (Trouche et al., 2009), and transition of memories from 

hippocampal to cortical circuits (Kitamura et al., 2009). 

In the adult DG, new neurons are widely held to incorporate into hippocampal circuitry 

via a stereotypical sequence of morphological and physiological transitions, yet the 

mechanisms that control this process are not totally clear. Several studies indicate that 

the electrical activity of the existing neuronal circuitry is critical for adult neurogenesis 

(van Praag et al., 2005). Pioneering work on adult neurogenesis indicates that immature 

neurons start to express ionotropic receptors long before they are targeted by synaptic 

afferents, allowing them to sense transmitters in the ambiance. Depolarizing GABAergic 

activity alters precursor proliferation and is necessary for dendritic growth of adult-

born neurons (Liu et al., 2006; Ge et al., 2006). Glutamatergic activity through NMDA 

receptors encourages survival of adult-born neurons during a critical period when the 

neurons are first assimilated into behaviorally relevant networks (Tashiro et al., 2006, 

2007).

The tempo of synaptic integration and maturation is significantly slower during adult 

neurogenesis than during embryonic and early postnatal neurogenesis (Espósito et 

al., 2005; Overstreet-Wadiche et al., 2006), probably due to different characteristics 

between adult and postnatal brains. For example, the hippocampal circuitry is much 

more complex in the adult brain than in the developing brain. In early postnates, 

a7-nAChRs contribute importantly to hippocampal development. Young hippocampal 
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neurons in a7KO mice have a prolonged period of GABAergic excitation because of 

delayed appearance of the mature chloride transporter KCC2 and extended presence 

of the immature chloride transporter NKCC1 (Liu et al., 2006). Furthermore, a7-nAChR 

signaling helps drive giant depolarizing potentials that shape network development and 

contribute to synaptic plasticity (Maggi et al., 2001, 2003; Le Magueresse et al., 2006). 

Nicotinic cholinergic input is also positioned well to influence adult neurogenesis. 

Early on, the neurons receive cholinergic innervation and express two major types of 

ionotropic nAChRs: homopentameric a7-nAChRs and heteropentameric b2-containing 

receptors (b2*-nAChRs) (Kaneko et al., 2006; Ide et al., 2008). Substantial evidence 

indicates that cholinergic signaling regulates adult neurogenesis, although contributions 

of a7-nAChRs to adult neurogenesis have not been investigated yet. 

The work described in this chapter aimed to investigate if a7-nAChRs-mediated 

signaling regulates adult neurogenesis. 

5.2 rEsults

The GCL is composed by a heterogeneous population of densely packed cells. 

Stereotaxic injection of MMLV-GFP was used to label and birthdated adultborn neurons 

in vivo in WT and a7KO young adult mice (Fig 5.1A). Once MMLV is incorporated 

into progenitors during mitosis, subsequent newborn cells express GFP and can be 

visualized in living preparations. Labeling is largely confined to neurons born within a 

3-day window following virus injection (Zhao et al., 2006). Experiments were performed 

in hippocampal slices 3 weeks after MMLV injection, except when stated.

5.2.1 Nature of GABA-induced activation signaling in adult-born neurons 

depends on a7-nAChRs

One indicator of maturation is the time during development when the Cl- gradient 

acquires an equilibrium potential (E
Cl
) sufficiently negative to support inhibitory 

GABA
A
-mediated currents. Young hippocampal neurons in a7KO mice have a prolonged 

period of GABAergic excitation because of delayed appearance of the mature chloride 

transporter KCC2 and extended presence of the immature chloride transporter NKCC1 
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(Liu et al., 2006). 

To determine if maturation of the chloride gradient is also perturbed in adult-born neurons 

of a7KO mice, patch-clamp recordings were performed on 3-week-old adult-born neurons 

(Fig 5.1A) . At this stage, adult-born neurons in the wild type are expected to have a 

mature E
Cl
 (Espósito et al., 2005; Ge et al., 2006; Overstreet-Wadiche et al., 2006). 

Monosynaptic GABAergic postsynaptic currents (PSCs) were electrically evoked by focal 

stimulation of the perforant pathway in the presence of glutamate receptors antagonists 

CNQX (20 mM) and APV (20 mM). Under these conditions, all adult-born neurons from WT 

and a7KO animals showed pure GABAergic PSCs, since they were shown to be sensitive 

to the GABA
A 
receptor blocker gabazine (10 mM, Fig 5.1B). To overcome the problem 

of chloride dialysis we performed perforated patch clamp recordings with gramicidin. 

Whole-cell and perforated patch configurations could be clearly distinguish 

in our experimental conditions, since the chloride concentration

of the internal solution used was adjusted to yield a slightly positive E
Cl
 (2.7 mV) (Fig. 

5.2D). By measuring the amplitude of the evoked GABAergic PSC as a function of 

holding potential, we were able to construct I-V plots and calculate the mean reversal 

potential, this being E
Cl
. The results 

reveal that 3-week-old adult-born 

a7KO neurons retain an E
Cl
 that is 

significantly more positive than that 

of age-matched WT neurons (Fig. 

5.2A-C). No change was found in 

3-week-old mouse

3-week-old neurons

6-week-old mouse

RecordingsLabeling 
of adult-born neurons

Figure 5.1 - Recordings of GABA-me-
diated PSCs in adult-born neurons. (A) 
Mice (3 weeks old) were stereotaxi-
cally injected with MMLV-GFP to la-
bel and birthdated adult-born neurons 
in vivo in WT and a7KO young adult 
mice. Hippocampal slices were pre-
pared three weeks after injection and  
patch clamp recordings were performed 
in GFP+ cells. (B) Evoked PSCs in the 
absence (top) or presence (bottom) 
of gabazine to block GABAA recep-
tors. CNQX (20 mM) and APV (20  mM) 
were present throughout to block AMPA 
and NMDA receptors, respectively.
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Figure 5.2 - Delayed maturation of the chloride gradient in adultborn a7KO neu-
rons.  (A) Superimposed perforated patch-clamp recordings of GABAergic PSCs evoked 
in 3-week-old adultborn WT (left) and a7KO (right) neurons at the indicated holding poten-
tials.  The neurons were labeled in vivo with MMLV-GFP and visualized in freshly prepared slic-
es at the time of recording. (B) Peak amplitude of the evoked GABAergic PSC as a function 
of voltage in a WT (black) and an a7KO (red) neuron as in A. (C) Interpolated reversal po-
tentials (left; ECl; n = 6 WT and 5 a7KO) and resting membrane potentials (right; VREST; 
n = 6 WT and 8 a7KO) for WT and a7KO neurons. (D) Measurements of ECl in whole-cell 
patch-clamp mode from 5 WT and 3 a7KO adultborn neurons at 3 weeks post-neurogenesis, 
identified by prior MMLV-GFP labeling in vivo.  The values are in the range of that expected 
(2.7 mV) given the chloride concentrations present in the patch pipette and bath, and clear-
ly different from the negative values obtained with the perforated-patch clamp recording.
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the mean resting membrane potential of adult-born a7KO and WT neurons at 3 weeks 

of age (Fig. 5.2C). Comparing E
Cl
 to the resting membrane potential reveals that GABA

A
 

receptor activation remains depolarizing in adult-born neurons from a7KO mice after it 

has switched to hyperpolarizing in WT mice.

In immature neurons, the reversed chloride gradient is due to the expression of 

the chloride transporter (importer) NKCC1. During development, NKCC1 expression 

decreases and the chloride transporter (exporter) KCC2 appears. This inverts the 

chloride gradient, lowering E
Cl
 below threshold for action potentials and thereby 

rendering GABA inhibitory as required for adult function. 

To compare NKCC1 levels in WT and a7KO neurons, we birthdated the neurons by 

BrdU injection in vivo, and then prepared slices 3 weeks later for BrdU and NKCC1 

immunostaining. Three-week-old adult-born a7KO neurons in the DG displayed 

substantially higher levels of NKCC1 than did equivalent neurons in WT mice (Fig. 

5.3 A, B). NKCC1 immunostaining in mature neurons in the outer third of the granule 

cell layer, which contains few adult-born neurons, revealed no significant differences 

between WT and a7KOs. Loss of a7-nAChR signaling, therefore, delays the reduction 

in NKCC1 levels in adult-born neurons but does not permanently prevent the reduction 

from occurring in the broader population of mature granule cells. Together, these results 

Figure 5.3 - Inactivating the a7-nAChR gene prolongs an immature pattern of chloride 
transporters in the hippocampus. (A) NKCC1 immunostaining (green) of BrdU-labeled (red) 
3-week-old adultborn neurons from a WT (top) and a7KO (bottom) dentate gyrus, mounted in dapi-
containing media to reveal nuclei (blue).  (B) Quantification of NKCC1 levels in neurons as in D (3-Week-
Old) or from neurons in the outer third of the granule cell layer (mature) from the same mice (mean ± 

SEM; n = 3 animals per condition; ≥ 10 neurons per mouse). *p<0.05; **p<0.01, Student’s t-test.
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indicate that endogenous signaling through a7-nAChRs regulates the expression of 

chloride transporters during development of adult born neurons and, consequently, 

promotes the maturation of the chloride gradient in these cells.

5.2.2 GABAergic PSCs retain immature temporal characteristics in the absence 

of a7-nAChR-mediated signaling

Electrical stimulation of the granule cell layer generates GABAergic synaptic responses 

with different kinetics depending on the age of the cell (Hollrigel and Soltesz, 1997; 

Hollrigel et al., 1998; Espósito et al., 2005; Overstreet-Wadiche et al., 2006; Markwardt 

et al., 2009). Evoked GABAergic PSCs in newborn granule cells have prolonged rise 

and decay phases compared with PSCs in neighboring mature granule cells (although 

presumably a similar population of afferent fibers innervates both immature and mature 

newborn neurons.). 

In the next set of experiments, 

the temporal characteristic 

of evoked GABAergic PSCs in 

adult-born neurons from WT and 

a7KO were compared. Evoked 

GABAergic PSCs were recorded 

using the perforated patch-

clamp configuration on 3-week-

old adult-born neurons in fresh 

slices previously labeled in vivo 

with MMLV-GFP as described 

above. Measuring the rise and 

decay kinetics of the events in 

adult-born neurons revealed 

significantly longer times in 

a7KO neurons compared to WTs 

(Fig. 5.4). This suggests that 

adult-born a7KO neurons retain 

Figure 5.4 - In the absence of a7-nAChRs, GABAer-
gic PSCs display immature kinetics. (A) Averaged and 
normalized evoked GABAergic PSCs from a WT (black) and 
an  a7KO (red) 3-week-old adultborn neuron.  (B) Quanti-
fication of rise time (left) and weighted decay (t; right) of 
evoked GABAergic PSCs as in A (mean ± SEM; n = 5 WT 
and 4  a7KO).  **p<0.01, ***p<0.001 Student’s t-test.
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expression of immature GABA
A
 receptor subunits over a longer developmental period 

than do WTs. 

5.2.3 Adult-born a7KO neurons have reduced dendritic arbors and receive less 

synaptic activity compared with their age-matched WT counterparts 

Adult neurogenesis poses a unique challenge to new neurons in the sense that they have 

to be incorporated into a fully functional and active circuit. It was previously shown that 

depolarizing GABAergic signal is necessary for dendritic growth of adult-born neurons 

and integration in the network (Ge et al., 2006). Precocious conversion of ambient GABA-

induced depolarization of dentate granule cells into hyperpolarization leads to defects 

in their synapse formation and dendritic development (Ge et al., 2006). The next set of 

experiments was designed to investigate if the extended period of depolarizing GABA in 

adult-born a7KO neurons would give them some advantage in integrating into existing 

circuits. Young adult WT and a7KO mice were injected with MMLV-GFP stereotaxically 

into the DG, and 3 weeks later taken for dendritic measurements of GFP-expressing 

neurons. Surprisingly, reductions in both the total dendritic length and in the number 

of dendritic branch points were found for adult-born a7KO neurons compared with their 

age-matched WT counterparts (Fig. 5.5 A-C). 

Because no differences were found in the number of spines per unit length of dendrite 

(15 ± 2 and 13 ± 2 spines/20 mm for WT and a7KO dendrites, respectively), one can 

speculate that adult-born a7KO neurons are likely to have substantially fewer spines 

in aggregate than do WTs and therefore may have proportionately fewer synapses. 

A reduction in synapses would account for a reduced synaptic input. To test this 

hypothesis, total spontaneous synaptic currents (SSCs) were recorded in adult-born 

neurons from aged-matched WT and a7KO animals. Adult-born a7KO neurons had 

significantly fewer SSCs than did WT neurons, and their SSCs were smaller in size (Fig. 

5.5D,E). The results indicate that in the absence of a7-nAChRs, adult-born neurons 

receive less synaptic activity.
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Figure 5.5 - Adultborn neurons lacking a7-nAChRs receive less synaptic inputs than 
normal. (A) Deconvolved z-stack image of an adultborn granule neuron 3 weeks after the 
mouse was stereotaxically injected with MMLV-GFP in the dentate gyrus.  Digitally magnified 
dendritic segments (inset) were used for measurement of spine numbers. Scale bars: 10 mm.  
(B) Traces of dendrites from granule neurons in WT (left) and a7KO (right) mice 3 weeks after 
labeling with MMLV-GFP. Scale bars:  10 mm. (C) Quantification of dendritic complexity (left), 
dendritic length (middle), and spine density (right) of cells as in B (mean ± SEM; n = 3 mice 
per condition with > 4 cells per animal).  *p<0.05, one-way ANOVA with Bonferroni’s post-hoc 
test for multiple comparisons. (C) SSCs recorded in 3-week-old adultborn neurons at -80 mV 
holding potential, identified by GFP-labeling from MMLV-GFP injection in vivo 3 weeks earlier:  
WT (top); a7KO (bottom).  (D) SSC frequency (left) and amplitude (right) for WT and a7KO 
neurons (mean ± SEM; n = 6 WT and 5 a7KO neurons). *p<0.05, ***p<0.001, Student’s t-test.
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5.2.4 Reduced survival of adult-born a7KO neurons through the critical period 

A substantial fraction of newly born neurons die before they mature and the survival of 

new neurons is regulated in an activity-dependent manner (Kempermann et al., 1997a; 

Gould et al., 1999; Jessberger et al., 2005; Jessberger et al., 2007). Because adult-born 

a7KO neurons receive less synaptic input than adult-born WT neurons, it was decided 

to investigate whether the survival of new neurons is affected in the a7KO. Adult-born 

neurons in WT and a7KO young adult mice were birthdated by injecting BrdU and their 

fate was followed. Hippocampal slices 

were taken for BrdU immunostaining 

prior and after the critical period for 

activity-dependent survival (at 2 and 

4 weeks post-injection, respectively; 

Tashiro et al., 2006). No difference was 

seen in the number of BrdU-labeled 

cells in the DG of WT and a7KO mice 

at 2 weeks (Fig. 5.6). A clear difference 

was found, however, at 4 weeks. At this 

time, a7KO mice had significantly fewer 

BrdU-labeled granule neurons than did 

3 d window after virus injection (Zhao 

et al., 2006). The results indicate that, 

in the absence of a7-nAChRs, adult-

born neurons have reduced chances of 

surviving through the critical period, 

possible due to receiving less synaptic 

activity.

5.3 disCussion

It is currently known that adult 

neurogenesis is essential for proper 

Figure 5.6 - Absence of a7-nAChRs decreases 
the chance of survival for adultborn neurons 
during the critical period.  (A) Immunofluores-
cent images of the dentate gyrus showing BrdU 
(red) and dapi (blue) staining 4 weeks after injec-
tion of BrdU to WT (left) and a7KO (right) mice.  
(B) Quantification of BrdU-immunopositive cells 
at 2 weeks (left) and 4 weeks (right) after BrdU 
injection (mean ± SEM; n = 4 mice per condition).  
*p<0.05, Student’s t-test.  Scale bar:  40 mm.
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hippocampal function. However, to participate in hippocampal-dependent behaviors, 

newborn neurons must functionally integrate into the pre-existing circuit. It was 

showed here that functional a7-nAChRs are necessary for normal survival, maturation, 

and integration of adult-born neurons in the DG. In a7KO mice, we find that adult-

born neurons develop with truncated, less complex dendritic arbors and display 

GABAergic postsynaptic currents with immature kinetics. The neurons also have a 

prolonged period of GABAergic depolarization characteristic of an immature state. In 

this condition, they receive fewer spontaneous synaptic currents and are more prone 

to die during the critical period when adult-born neurons are normally integrated into 

behaviorally relevant networks. 

5.3.1 a7-nAChRs set the tempo for the maturation of GABAergic signaling in 

adult-born neurons

During the first postnatal week, adult-born neurons have GABAergic synaptic input 

with depolarized reversal potentials (Hollrigel et al., 1998) and slow kinetics (Hollrigel 

and Soltesz, 1997). As previously reported (Espósito et al., 2005; Overstreet-Wadiche 

et al., 2006; Markwardt et al., 2009), at the third postnatal week, we and others found 

that adult-born WT neurons had reversal chloride potential and rise/decay times of 

GABA-PSCs characteristic of mature granule cells; in contrast, adult-born a7KO neurons 

showed reversal chloride potential and rise/decay times of GABA-PSCs that fall in the 

range of values found for immature neurons. We conclude that a7-nAChR-mediated 

signaling modulates the tempo of adult-born neurons development.

The initial period of depolarizing GABA is necessary for both early postnatal and adult-

born neurons to develop properly and integrate into circuits (Rivera, et al., 1999; Ben-

Ari, 2002; Payne et al., 2003; Ge et al., 2006). Despite being depolarizing, it is not 

clear if GABA acts as an excitatory or inhibitory transmitter during development. One 

possible justification is that GABA-induced depolarization generates Na+-dependent 

action potentials or increases the probability that subsequent excitatory input trigger 

action potentials (Chen et al., 1996; Gao et al., 1998). In addition, GABA-induced 

depolarization might relieve Mg2+ blockade of NMDA receptors, and prone them to 

be activated by glutamate (Khalilov et al., 1999). This last hypothesis is consistent 
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with the observation that young granule cells have silent NMDA receptors in the 

presence of GABAR antagonists (Wadiche and Jahr, 2005). Finally, some authors 

suggested that depolarizing GABA inhibits cells via shunting mechanisms. In this 

case, nonhyperpolarizing inhibitory conductances reduce the depolarizing effects of 

concurrently activated dendritic excitatory PSCs via a decrease in proximal membrane 

resistivity and dendritic space constant (Barrett and Crill, 1974; Koch et al., 1983; Qian 

and Sejnowski, 1990; Staley and Mody, 1992). 

The effect of depolarizing GABA in the network seems to be dependent on the temporal 

characteristics of GABA-mediated PSCs. It is thought that GABAergic depolarization 

can reduce and augment glutamatergic postsynaptic responses at short and longer 

latencies, respectively. The reduction is due to the shunting effect of GABA
A
-mediated 

conductance. In contrast, subthreshold glutamatergic responses summated with 

GABA
A
-mediated depolarization generated spikes if they occurred at the end of GABA

A
 

depolarization, when the shunting GABA
A
 conductance ceased (Hollrigel et al., 1998). 

Theoretical simulations will help to clarify the impact of immature granule cell layers in 

the hippocampal circuitry.

Corroborating this line of thought are the observations that GABA
A
-mediated PSCs 

become progressively faster during maturation, when GABAergic signaling converts 

from depolarizing to hyperpolarizing, during maturation of adult-born neurons. As 

shown in this chapter, adult-born a7KO neurons, which still have a depolarized reversal 

potential for GABA, have significantly reduced rise/decay times for GABA
A
-mediateded 

PSCs. This finding supports that adult-born a7KO neurons maturate slower than 

neurons in the WT. 

It was previously shown that differences on GABA
A
 receptor kinetic do not depend 

on the complexity of the cell, but on the age of the neuron (Markwardt et al., 2009). 

Both the subunit composition of the receptors and the spatiotemporal characteristics 

of the GABA concentration transient contribute to the time course of GABA-mediated 

responses (Mozrzymas, 2004; Farrant and Nusser, 2005). Typically, dendritic stimulation 

evokes slow IPSCs (also called GABA
A
,slow) and stimulation near the soma evokes fast 

IPSCs (GABA
A
,fast) (Pearce, 1993; Soltesz et al., 1995; Laplagne et al., 2006, 2007). 

Both somatic and dendritic stimulation generate exclusively slow synaptic responses 

in new-born granule cells (Espósito et al., 2005; Overstreet-Wadiche et al., 2005). In 
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the present conditional experiments, the electrical stimulation was done in the granule 

cell layer, close to the cell bodies of adult-born neurons, obtaining GABA
A
,fast and 

GABA
A
,slow for adult-born WT neurons and adult-born a7KO neurons, respectively. 

This temporal difference is thought to be due to the expression of different subunits 

for GABA
A
 receptors in immature and mature neurons. Early appearing forms of the 

GABA
A
 receptor lack the a1 subunit and therefore lack the fast rise and decay kinetics 

associated with the mature form (Overstreet-Wadiche et al., 2005; Markwardt et al., 

2009).

5.3.2 Compromised integration of adult-born in the absence of a7-nAChR-

mediated signaling

Integration of new neurons into functional neuronal circuits requires proper development 

of synaptic inputs onto its dendrites. A period in which GABA currents are depolarizing 

is widely thought to be essential for promoting proper neuronal development and 

integration of neurons into circuits (Ben-Ari, 2002; Represa and Ben-Ari, 2005; Tozuka 

et al., 2005; Ge et al., 2006; Cancedda et al., 2007). Extended periods of depolarizing/

excitatory GABA signaling, as found in a7KOs, could therefore be expected to correlate 

with increased dendritic arborization and innervation. The opposite was found: adult-

born a7KO neurons have (1) shorter, less complex dendritic arbors; (2) reduced 

synaptic input; (3) an immature form of GABA
A
 receptors apparently lacking a1 subunits 

(Overstreet- Wadiche et al., 2005). Furthermore, adult-born a7KO neurons showed an 

increased likelihood of dying during the critical 2–4 weeks after neurogenesis. As a 

result, fewer neurons are added to the adult DG, thereby compromising over time the 

renewal of the mossy fiber pathway. Interestingly, it was described that around 4-6 

weeks of age, the adult-born neurons have a stronger synaptic plasticity than mature 

granule cells, as indicated by their lower threshold for the induction of LTP. Thus, it 

would be interesting to investigate how synaptic plasticity is affected in adult-born 

a7KO neurons and, if so, how it translates to behavorial tasks that depend on adult 

neurogenesis. 

The first critical period for neuronal survival/death occurs during the third week after 



Chapter 5: Nicotinic support of adult-born neurons 125

neuronal birth and depends on NMDA receptors (Tashiro et al., 2006). Interestingly, 

this critical period is associated with a high degree of morphological change in new 

neurons and does not seem to require functional NMDAR. Taking into account the 

results described in this chapter, it is proposed that a7-nAChR-mediated signaling acts 

in the early stages of adult-born neurons, advancing them to some trigger point that 

enables them to better survive during the critical period. After this, a7-nAChR signaling 

drives the mechanisms that switch chloride gradient in neurons and renders GABA 

currents inhibitory. 

The molecular mechanisms and signaling pathways that underlie a7-nAChR-dependent 

actions on the development of adult-born neurons are not known yet. In other systems, 

neurotransmitter-mediated regulation of dendritic morphology involves Ca2+ signaling 

and subsequent changes in gene expression (Borodinsky et al., 2003; Aizawa et al., 

2004; Gaudillière et al., 2004). Since a7-nAChRs have a high relative permeability to 

Ca2+ (Bertrand et al., 1993; Seguela et al., 1993), they can generate Ca2+ events in 

hippocampal neurons even in the absence of detectable currents (Fayuk and Yakel, 

2007; Szabo et al., 2008a, 2008b), and drive calcium-dependent gene transcription 

(Hu et al., 2002). Transcriptional regulation may also explain a7-nAChR-dependent 

changes in physiological maturation (Liu et al., 2006).

5.3.3 Neurogenesis and cholinergic signaling in the hippocampus

Several studies revealed interesting differences and similarities between adult 

neurogenesis and embryonic/early postnatal neurogenesis. One difference is the 

presence of spontaneous waves of excitation known as GDPs seen in much of the 

developing nervous system, including in the DG (Ben Ari et al., 1989; Kasyanov 

et al., 2004; Overstreet-Wadiche et al., 2006). In embryonic spinal cord and early 

postnatal hippocampus, nicotinic activity regulates these depolarizing waves (Hanson 

and Landmesser, 2003; Le Magueresse et al., 2006). Consequently, GDPs may enable 

nicotinic activity to act ubiquitously (though indirectly) to excite large populations 

and coordinate their maturation. The adult DG has no comparable waves of excitation 

(Overstreet-Wadiche et al., 2006), and may instead rely on direct cholinergic input to 

guide the development and integration of adult-born neurons. Interestingly, it appears 
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that a7-nAChRs have some common effects in the neuronal development of the early 

postnatal and adult DG. It is not clear yet whether these a7-nAChR-dependent effects 

are cell-autonomous or occur via alterations in the circuit. For instance, the lack of 

a7-nAChR during embryonic development could eventually modify the architecture of 

the circuitry; in an extreme case, the enthorinal cortex afferents to the DG could be 

different in WT and a7KO animals that could justify the differences found for adult 

neurogenesis in the a7KO. This question could be solved by using a construct encoding 

an a7RNAi in WT animals to silence the activity of a7-nAChRs in a discrete population 

of adult-born neurons. Interestingly, a7RNAi caused dendritic arbor defects in adult-

born neurons similar to those found in a7KOs (data not shown in this dissertation but 

see Campbell et al., 2010). These results demonstrate that a7-nAChR signaling acts 

in a cell-autonomous manner to regulate dendritic arborization of adult-born neurons. 

If physiological maturation is also a cell-autonomous process is still matter to be 

investigated.

Adult-born neurons generated in young and old animals appear to have similar fates 

with respect to differentiation and morphological end state (Morgenstern et al., 2008; 

Ahlenius et al., 2009). This suggests that the results obtained here are likely to apply 

broadly across the population of adult-born neurons in the DG, though it should be 

noted that neurons born in aged adults might differ from those born in young adults 

in some respects. This might be particularly important when studying the role of adult 

neurogenesis in neurodegenerative diseases. Early deficits in Alzheimer’s disease 

involve loss of cholinergic neurons and a diminution of cholinergic signaling (Whitehouse 

et al., 1982; Nordberg, 2001; Lyness et al., 2003). Ab accumulates during Alzheimer’s 

disease in cholinergic neurons (see Gouras et al., 2010) and impairs Ch uptake and 

ACh release, further compromising cholinergic signaling (Mesulam, 2004). Moreover, 

Ab has been reported to inhibit a7-nAChR function either directly or indirectly (Wang 

et al., 2000a,b; Liu et al., 2001b; Pettit et al., 2001; Dougherty et al., 2003; Grassi et 

al., 2003; Lee and Wang, 2003; Pym et al., 2005), although Ab has also been reported 

to have a7-nAChR agonist activity at low concentrations (Dineley et al. 2001, 2002; 

Dougherty et al., 2003; Grassi et al., 2003; Wang et al., 2003). Several studies have 

reported specific decrements in a7- nAChRs associated with AD (Hellstrom-Lindahl et 
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al., 1999; Guan et al., 2000; Lee et al., 2000) (but see Rei et al., 2000). The present 

study predicts that the loss or blockade of a7-nAChRs in Alzheimer’s disease would 

exacerbate the symptoms by decreasing the incorporation of adult-born neurons. 

Supporting this idea is the observation that donepezil, an acetylcholinesterase inhibitor 

approved as a drug for treatment of AD, has been shown to promote adult-born neuron 

survival during the critical period (Kaneko et al., 2006). 

Our results identify a7-nAChRs as potential pharmacological targets for amplifying 

adult-born neuron integration and survival. An impediment to prescribing nicotinic 

agonists, however, is the observation that prolonged nicotine exposure at concentrations 

encountered by smokers can have detrimental effects on the survival of adult-born 

neurons (Abrous et al., 2002; Shingo and Kito, 2005; Scerri et al., 2006). The nicotine-

mediated death of adult-born neurons occurs early in their development, whereas the 

beneficial effects of endogenous a7-nAChR signaling seen here become apparent 2–4 

weeks after neurogenesis. Either additional nAChR subtypes are involved or the manner 

of receptor activation is critical. This motivates additional examination of mechanisms 

controlling nicotinic regulation of adult neurogenesis. 
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chaPter 6

General Discussion anD Future PersPectives

Nicotinic receptors are widely expressed throughout the nervous system, mediating 

synaptic transmission in the periphery and influencing electrical events in nearly every 

area of the mammalian brain. They enhance neurotransmitter release, modify circuit 

excitability, and influence synaptic plasticity. There is a huge effort trying to resolve 

factors and pathways that regulate the function of nAChRs. We aimed to identify some 

of the intracellular and extracellular molecules that regulate the trafficking and function 

of nAChRs, and partly clarify the role of a7-nAChRs in the hippocampus. In Chapter 3 

(Publication I), I investigated the lateral diffusion of a7- and a3*-nAChRs and some 

intracellular mechanisms that govern this trafficking process. In this study, it was 

found that cytoskeleton elements, lipids, and scaffold proteins are involved in 

the organization of nAChRs in the plasma membrane. In Chapter 4 (Publication 

II), I investigated if the function of a7-nAChRs was under control of neurotrophins, 

which are extracelullar molecules known to play important roles in regulating synaptic 

strength. It was found that BDNF acutely and reversible inhibits a7-nAChRs-

mediated currents in hippocampal interneurons, through a PLC-PKC pathway 

and requiring Ca2+ as a cofactor. Finally, in Chapter 5 (Publication III) the role of 

a7-nAChRs-mediated signaling in adult neurogenesis was studied. This study points 

out to a critical role for a7-nAChRs in setting the tempo for maturation and 

integration of adult-born neurons in the existing hippocampal circuit.

6.1 Dynamic reGulation oF nAChRs in the nervous system 

The specific effects of nAChRs on the nervous system critically depend on receptor 

location and on their associated components likely to regulate or transduce their function. 

We characterized the lateral diffusion of nAChRs on the cell membrane of CG neurons in 

culture. So far, the use of QDs to study the lateral diffusion of receptors has been limited 

to cell cultures due to several technical limitations discussed previously in the Methods 

and Materials section of this dissertation. Several factors motivated the use cultures 
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of CG neurons. CGs in culture express only two classes of nAChRs, which are also 

found in vivo: the heteropentameric a3*-nAChRs and the homopentameric a7-nAChRs 

(Margiotta and Berg, 1982; Vernallis et al., 1993; Chen et al., 2001). Furthermore, a3*- 

and a7-nAChRs have distinct roles on CGs neurons in culture that actually resemble 

their functions in vivo a3*-nAChRs mediate fast excitatory neurotransmission in both 

sympathetic and parasympathetic autonomic ganglia (Mandelzys et al., 1995; Perry 

et al., 2002; Rassadi et al., 2005), while a7-nAChRs have a modulator role (Chen 

et al., 2001). The role of nAChRs in the hippocampus is not totally clear yet and 

hippocampal neurons in culture present several transmitters (but no acetylcholine), 

as opposal to ciliary ganglion cultures where ACh exclusively mediates synaptic 

transmission. We actually found here that some of the mechanisms that regulate the 

trafficking of a7-nAChRs are cell-type specific. It will be important in the future to 

expand these types of studies to brain regions where nAChRs play an important role, 

like the hippocampus, cortex or the ventral tegmental area (Bertrand and Dani, 2007). 

In CG cultures, a3*- and a7-nAChRs showed similar diffusion rates in the cell membrane 

and they can rapidly transit between synaptic and extrasynaptic areas. How receptors 

can enter and leave synapses remains unclear. There is so far no evidence for directed 

receptor transport by lateral diffusion on the somatodendritic membrane, and receptors 

thus reach synapses by random diffusion from the extrasynaptic membrane. There 

could, nevertheless, exist channels of diffusion. Furthermore, the periphery of the 

synapse might impose specific diffusing properties, which could create an “attractor”, 

thus increasing the probability of trapping by the PSD (Dahan et al., 2003; Tardin et 

al., 2003).  

I also found that the majority of the a3*-nAChR population is immobilized in 

control conditions, as opposal to a7-nAChRs, which are predominantly moving 

in the cell membrane. I here identified two mechanisms that anchor/immobilize 

a3*- but not a7-nAChRs in the membrane (Fig 6.1). The first one is a lipid rafts/

cholesterol and a second one is the scaffolds of PSD95/SAP102. No anchors were 

identified for a7-nAChRs. This was quite surprising, since it was previously reported 

that cholesterol and PDZ-containing scaffolds interact with a7-nAChRs in vivo 

(Conroy et al., 2003). There are several possible explanations for these results. One 

is that the interactions between a7-nAChRs and cholesterol/PDZ-containing scaffolds 
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might be important for other aspects of a7-nAChR function but not for lateral diffusion. 

Other possibilities are that the interactions verified in vivo do not occur in vitro or 

occur in later stages in vitro. The contrasting dynamics of a3*- and a7-nAChRs might 

be related to their different functions in CG neurons, where a3*-nAChRs mediate and 

a7-nAChRs modulate fast synaptic transmission, respectively. The high percentage 

of immobile a3*-nAChRs might reflect the stability required for mediating synaptic 

transmission. The importance of the a3 subunit in the nervous system can be illustrated 

by the fact that it is the only of all the neuronal nAChR genes that produces a lethal 

Figure 6.1 - Illustration of the different cellular mechanisms constraining later-
al mobility of a3*-nAChRs vs. a7-nAChRs in synaptic space. Immediately under the 
cholinergic (ACh) presynaptic terminals (Pre) is found the postsynaptic membrane (Post) 
containing a3*-nAChRs (green) and a7-nAChRs (orange), as well as lipid rafts (red), over-
lying associated PSD-95 family scaffold proteins, nearby F-actin and microtubules, plus 
an unknown a7-nAChR anchor (responsible for immobile a7-nAChRs).  Immobilizer links 
(black):  prevent lateral movement unless released; slowdown links (grey):  reduce recep-
tor mobility until disrupted. No identified links are shared by the two classes of receptors.

a7-nAChRa3*-nAChR

AChR
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phenotype when deleted in inbred mice (Xu et al., 1999), most likely because this 

subunit is an essential component of nAChRs that mediate fast synaptic transmission 

in the autonomic nervous system. The different mobilities of a3*- and a7-nAChRs may 

also be related to their rates of desensitization. It was recently suggested that lateral 

diffusion of receptors might work as a mechanism for replacing desensitized receptors 

(Heine et al., 2008b). Unlike a3*-nAChRs, a7-nAChRs are rapidly desensitized in 

response to agonist binding. From this perspective, the high percentage of mobile 

a7-nAChRs could serve as a mechanism for replacing desensitized a7-nAChRs; 

lateral diffusion would allow the trafficking of a7-nAChRs from exocytotic zones or to 

endocytic zones. In the future, the identification of the insertion and removal places 

of nAChRs on the cell membrane would contribute to understanding the dynamics of 

nAChRs. Finally, the subunit specific anchoring of nAChRs might occur at different 

development stages, with a3*-nAChRs stabilization preceding a7-nAChRs in the case 

of CGs. Other candidates for regulating the lateral diffusion of nAChRs are cell adhesion 

molecules, which regulate the expression and localization of nAChRs in CGs. These 

unsolved questions motivate further studies on the lateral diffusion of nAChRs and 

their respective scaffolds. Resolving the structure of the different subunits of nAChRs, 

as well as identifying the subunit combinations/stoichiometries present in neurons, will 

help us to understand why and how different classes of nAChRs interact with different 

molecular partners. Knowledge on these differences will be critical for developing 

therapeutical strategies targeting nAChRs. 

The physiological significance of lateral diffusion for transmitter receptors in the nervous 

system is far from clear (Gerrow and Triller, 2010). Most of our current knowledge 

comes from muscle nAChR subtype in the NMJ and glutamate receptors in the CNS. It is 

thought that lateral diffusion helps to concentrate receptors at synapses in early phases 

of development (Newpher and Ehlers, 2008). This mechanism seems to be retained by 

neurons for changing the number and/or type of receptors during short- or long-term 

plasticity (Heine et al., 2008b; Makino and Malinow, 2009). Moreover, lateral diffusion 

may constitutively substitute receptors (and other molecules) at synapses (Heine et 

al., 2008b). The relation between the constant flux of the constitutive elements and 

the homeostatic structural stability of synapses is still not understood. Some synapses 



Chapter 6: General Discussion 135

can be maintained over a time period of days, weeks and even years, though the 

lifetime of molecules is, at most, on the order of days. The study of lateral diffusion 

may contribute to our understanding the dichotomy between “synaptic plasticity” vs 

“synaptic stability”. Theoretical modeling of the lateral diffusion of nAChR receptors can 

help to clarify its impact on network activity. One of the future challenges for studying 

lateral diffusion of receptors is to characterize this mechanism in the intact brain. 

A variety of stimuli have been shown to modulate AMPAR lateral trafficking over a wide 

dynamic range. For example, global glutamate application, neuronal depolarization, 

and long-term specific block of neuronal activity increases AMPAR mobility inside 

synapses (Tardin et al., 2003; Groc et al., 2004; Ehlers et al., 2007), while a local rise 

of intracellular calcium and a high-frequency neuronal activity both rapidly immobilize 

AMPARs (Borgdoff and Choquet, 2002; Heine et al., 2008b). Knowledge on the extrinsic 

factors that regulate the lateral diffusion of nAChRs is very limited. Molecules in the list 

of candidates for regulating the lateral trafficking of nAChRs should include neuregulins 

(Liu et al., 2001a; Chang et al., 2006) and neurotrophins (Massey et al., 2006; Chapter 

4 of this dissertation). The neuregulin NRG 1 and neurtrophin BDNF seem to have 

similar actions on a7-nAChRs expressed by hippocampal interneurons; they can both 

inhibit or enhance a7-nAChRs expression on the cell membrane, due to an acute or a 

long-term exposure of interneurons to these molecules, respectively. Both NRG 1 and 

BDNF activate tyrosine kinase receptors. Whether NRG 1 and BDNF share the same 

downstream signaling pathway is still not known. I found that BDNF uses the PLC/

PKC pathway to inhibit a7-nAChRs acutely (Fig 6.2). More recently, a proteomic study 

reported that a7-nAChRs and PKC interact in the cell membrane (Paulo et al., 2009), 

but whether PCK plays a permissive or instructive role in the regulation of a7-nAChRs 

is not known yet. The pathway used by NRG 1 (and its receptor Erb4) remains to be 

identified. Interestingly, NRG 1- and BDNF-mediated inhibition of a7-nAChRs requires 

a polymerized actin cytoskeleton. Another intriguing aspect is how these short- and 

long-term effects are related. Are they dependent on each other? Does the acute 

inhibition of a7-nAChRs motivate the long-term enhancement of their expression in 

the cell membrane? Or do short- and long-term actions use completely independent 

signaling pathways? 
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Phosphorylation of nAChRs 

isolated from Torpedo 

(Huganir et al., 1986) and 

vertebrate muscle cells 

(Miles et al., 1987) has 

long been recognized as 

an important mechanism 

for rapidly regulating their 

function. Recently it was 

reported that neuronal a7-

nAChRs can be inhibited by 

direct phosphorylation of 

their major intracellular loop 

(Cho et al., 2005). Work by 

Charpantier and colleagues implicate the involvement of SKFs in the process, and 

further suggested that other non-identified kinases might act on a7-nAChRs. Whether 

a7-nAChRs are targets of posttranslational modification by PKC was not determined in 

the present study. If it occurs, it would constitute an important regulatory mechanism 

for the activity of receptors at the plasma membrane and offer an additional capacity 

for modulation of neuronal network function. 

I found that activation of adenosine A
2A

Rs enables the action of BDNF on a7-nAChRs. 

The tight relation between A
2A

Rs, TrkB receptors, and a7-nAChRs may be specially 

important during periods of intense neuronal activity that underlie learning and memory 

formation, when the levels of extracellular adenosine and BDNF are dramatically 

increased. Under these conditions, downstream signaling pathways activated by TrkB 

receptors might temporarily alleviate a7-nAChR-mediated input to interneurons, which 

tends to oppose short- and long-term potentiation in pyramidal cells (Ji et al., 2001). 

If a7-nAChRs are coincidently activated in interneurons and pyramidal cells is not 

known yet. The fact that most of the cholinergic innervation in the hippocampus comes 

from extrahippocampal areas creates difficulties for studying cholinergic transmission 

in the hippocampus. Also confounding is the fact that cholinergic innervation in the 

hippocampus is diffused and the fact that cholinergic terminals often do not closely 

Figure 6.2 – BDNF inhibits a7-nAChR-mediated cur-
rents in CA1 hippocampal interneurons. BDNF acts on 
the tyrosine kinase TrkB receptor and induces a rapid de-
crease of a7-nAChR-mediated responses in hippocam-
pal interneurons of the CA1 stratum radiatum. This inhibi-
tory effect of BDNF occurs through the PLC/PKC pathway.

BDNF

TrkB

ACh

PLCPKC

a7-nAChR
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contact nAChRs. One of next challenges will be studying the cholinergic system in 

the intact brain. A combination of tools from molecular biology with in vivo optical 

imaging techniques has provided new ways for noninvasive observation of the brain. 

For example, recently developed cell-based neurotransmitter fluorescent engineered 

reporters (CNiFERs) allows monitoring of GPCR activation in the intact brain (Nguyen 

et al., 2010). Using these kinds of reporters will help solve important questions about 

cholinergic signaling in the CNS.

6.2 role oF a7-nAChRs in the central nervous system – more unknown than known

There are more questions than answers available for the physiological significance of 

a7-nAChRs in the CNS. a7-nAChRs and NMDARs (which have been studied intensively 

in the CNS) share properties that might give us clues about the role of a7-nAChRs: they 

are both highly permeable to Ca2+ and start to be expressed early on development. 

However, some differences between a7-nAChRs and NMDA should be closely 

considered. a7-nAChRs can be activated at the resting membrane potential. Since they 

are inward rectifying channels, they are closed at depolarized membrane potential. 

In contrast, NMDARs are usually activated at depolarized membrane potentials, and 

inactive at resting membrane potentials due to magnesium blockade. Both a7-nAChRs 

and NMDARs act as Ca2+ suppliers, though at different membrane potentials. This may 

justify, at least in part, the differences found in their cellular/subcellular expression and 

the distinct physiological roles they appear to play in the nervous system. 

In humans, as well in rodents and other mammals, brain development is far from 

complete at birth, and many neuronal systems need to mature in response to ongoing 

interaction with the “ex uterus” environment. Indeed, neuronal proliferation, apoptosis, 

and synaptic rearrangement persist into adolescence. Cholinergic signaling continues 

to play an important role in post-natal brain development, which is emphasized by the 

brain-specific and transient expression profiles of nAChRs (Dwyer et al., 2008). In the 

first week after birth, the rodent hippocampus is characterized by sparse glutamatergic 

transmission and by immature GABAergic signaling (activation of GABA
A
 receptors 

depolarizes the cell membrane at early times). a7-nAChRs reach their maximal 

expression around P7 (in rodents) and play an important role during this early phase 
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of postnatal development. Liu and colleagues demonstrated that spontaneous nicotinic 

signal through a7-nAChRs is responsible for terminating GABA-induced depolarization 

and initiating inhibition. The concerted actions of chloride transporters and GABAergic 

signaling in brain development comprise an extremely wide spectrum of phenomena, 

and these will, of course manifest themselves in neural network function and behavior. 

During development, depolarizing GABAergic signaling promotes action potential 

activity, opening of voltage gated Ca2+-channels, and activation of NMDA receptors. 

These responses lead to transient elevations of Ca2+ levels and activation of intracellular 

downstream signaling cascades, which are central in mediating trophic effects of GABA 

during development (Ben-Ari, 2002; Owens and Kriegstein, 2002). Functional and 

behavioral consequences of a prolonged period of depolarizing GABAergic signaling 

(including those found in a7KOs) are not known yet. 

Recent evidence indicates that a7-nAChRs may also regulate the development 

of glutamatergic transmission. Exogenous application of nicotine can unsilence 

glutamatergic synapses in the developing hippocampus and increases glutamatergic 

transmission in the hippocampus (Maggi et al., 2001, 2003, 2004; Le Magueresse 

et al., 2006). Whether endogenous cholinergic signaling through a7-nAChRs plays a 

similar role is currently unknown. 

After the first postnatal week, the expression of a7-nAChRs in the hippocampal 

formation dramatically decreases, except in the DG where the levels of a7-nAChRs 

remain high during adulthood (Adams et al.  2002). Interestingly, the DG is one of the 

two brain areas where neurogenesis occurs in adulthood. The developmental patterns 

of GABAergic signaling are broadly repeated during adult neurogenesis (Espósito et 

al., 2005; Ge et al., 2006; Laplagne et al., 2006; Tozuka et al., 2005). Indeed, it was 

here showed that a7-nAChRs play an important role of in the adult neurogenesis that 

occurs in the DG. Newly generated neurons express unique mechanisms to facilitate 

synaptic plasticity, which may be important for the formation of new memories (Shors 

et al., 2001, 2002; Rola et al., 2004; Snyder et al., 2005; Winocur et al., 2006; Aimone 

et al., 2009; Clelland et al., 2009; Deng et al., 2009; Deng et al., 2010). A role for a7-

nAChRs in promoting the survival, maturation, and integration of adult-born neurons 

would be another way that a7-nAChRs contribute to hippocampal plasticity. The current 

work presents several lines of clear evidence that a7-nAChRs determine the tempo of 
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maturation and integration for adult-born neurons. The temporal characteristics of 

GABA
A
-mediated currents and the reversal potential for GABA remain immature in 

adult-born a7KO neurons much longer than in WT neurons (Fig 6.3).

Adult-born a7KO neurons have a reduced dendritic complexity and receive less synaptic 

inputs than do adult-born WT neurons. These features could explain, at least in part, 

the reduced survival of adult-born a7KO neurons during the critical period. Whether 

adult-born neurons eventually mature in the absence of a7-nAChR-mediated signaling 

is an important question for future investigation. For instance, 6-week old adult-born 

neurons in the a7KO still have a reduced dendritic complexity compared to WT (data 

not included in this dissertation but see Campbell et al., 2010). It would be interesting 

to determine whether adult-born a7KO neurons ever catch up with adult-born WT 

neurons in terms of physiology and the impact in the network. 

The a7-nAChR-mediated downstream signaling that promotes neuronal 

development is an important matter for further study. As a starting point, one 

could compare the sequential gene 

Figure 6.3 - Potential mechanisms un-
derlying a7-nAChRs-mediated regula-
tion of adult neurogenesis. (A) Sequential 
steps involved in generating functional and 
integrated new granule cells from neural pro-
genitor in the adult hippocampus. nAChRs 
regulate neuronal survival and synaptic inte-
gration of new granule cells into the existing 

hippocampal circuitry. (B) ACh activates a7-
nAChRs , leading to Ca2+ efflux. Other types 
of Ca2+-permeable channel might also be ac-
tivated in a voltage-independent fashion. The 
resulting rise of intracellular Ca2+ activates 
downstream signaling cascades, which are 
important for proliferation, differentiation, 
development dendrites and synapse forma-
tion. GABA starts being depolarizing during 
development due to a reversed chloride gra-
dient, which is generated by the highly ex-
pressed chloride transporter NKCC1. Later 
on development, the GABA input changes 
from being excitatory to being inhibitory due 
to the increased expression of KCC2 (and 
decreaes expression of NKCC1).  How nico-
tine affects the development and matura-
tion of adult-born neurons is not clear yet.

A

B
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expression in the presence and in the absence of a7-nAChR-mediated signaling. 

For instance, gene arrays have become a powerful approach for comparing 

complex sample RNA populations. Using array analysis, the expression profiles of 

WT and a7KO tissues can be compared in developmental stages of an organism or 

tissue. In this case, it would be easier to start the gene screening for controls and 

a7KOs in early stages of development and move on to adult neurogenesis in later 

phases. Whether the molecular mechanisms used by a7-nAChRs in embryonic and 

adult neurogenesis are the same is also unknown. One hypothesis is that a7-nAChRs 

supply Ca2+ signals when NMDA receptors are not prone to be activated. This could 

be the case for both embryonic/early postnatal neurogenesis and adult neurogenesis, 

when AMPA-mediated glutamatergic transmission might not be sufficient to depolarize 

cells and unblock NMDARs. 

The activation of a7-nAChRs creates [Ca2+]
i
 microdomains that can turn on several 

signaling pathways and eventually culminate in alterations of gene transcription. 

For this reason, it is important to study the subcellular localization and study the 

mechanisms that regulate the function of a7-nAChRs. In CGs neuron, a7-nAChR can 

transit between extrasynaptic and synaptic areas. It would be interesting to investigate 

if different signaling cascades are activated in synaptic and extrasynaptic areas in the 

future. 

The release of trophic factors, including BDNF, is enhanced during periods of intense 

neuronal activity (Lessmann et al., 2003). It is currently thought that one function of 

early spontaneous network events in the postnatal brain is to promote the release of 

these substances. BDNF is also present in adulthood and mediates several different 

functions in the regulation of synaptic transmission and plasticity. It was recently shown 

that BDNF also controls the survival and maturation of adult-born neurons through the 

activation of TrkB receptors (Bergami et al., 2008). In the absence of TrkB receptors, 

adult-born neurons showed a reduced dendritic complexity and a lower survival rate 

during the critical period, which is in part similar to the phenotype that we found for 

adult-born a7KO neurons. These observations raise the question of whether at least 

some of the actions mediated by BDNF/TrkB receptor occur indirectly via modifications 
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on the a7-nAChRs during adult neurogenesis. Bergami and colleagues also showed that 

the lack of TrkB results in impaired neurogenesis-dependent long-term potentiation 

and in a remarkably increased anxiety-like behavior. It would be interesting to test, in 

the future, if the absence of the a7-nAChR causes a similar phenotype. 

Quite surprisingly, the deficiency on a7-nAChRs has little impact on many mouse 

behaviors, since a7KO animals are apparently normal, even in old ages (Dziewczapolski 

et al., 2010). It was previously reported that a7KO show slightly higher levels of anxiety 

(Paylor et al., 1998) and have some minor defects in memory and attention (Fernandes 

et al., 2006). The absence of a more drastic phenotype for a7KO animals is puzzling 

and should be taken into account when designing new strategies for studying the role 

of this receptor in the CNS. A possible explanation is that other nicotinic subunits 

compensate for the lack of a7 subunits, masking a putative stronger phenotype in the 

constitutive a7KO. This hypothesis is quite attractive due to the fact that a7-nAChRs are 

important in the first week afterbirth, when the brain has high plasticity and ability to 

adapt. Furthermore, all brain areas express nicotinic subunits other than a7 subunits. 

Experiments using conditional a7KO animals (or using viral-mediated shRNA tranfer 

to knock down the a7-nAChR) should elucidate the role of a7 in animal behavior and 

cognitive functions such as learning and memory. Curiously, transgenic mice with a 

gain-of-function mutation in a7 subunit neurons die shortly after birth (Orr-Urtreger et 

al., 2000). A likely explanation is that excessive Ca2+ influx through a7-nAChR at early 

times is lethal to the cells. This suggests that although a7-nAChRs may not be essential 

for normal development, their aberrant function can have detrimental effects on the 

developing brain.

6.3 theraPeutic relevance oF nAChRs in PatholoGy

Abnormal nicotinic signaling has been implied in the onset of several diseases that 

currently have a tremendous impact in modern society. Probably the most common 

way of changing the signaling mediated by nAChRs in people is by their consuming 

nicotine, which is extracted from the tobacco leaves and is probably the most consumed 

drug in the whole world. Nearly one-third of adults worldwide are smokers, and the 

majority started the habit as adolescents. The use of tobacco is a major public health 
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problem worldwide and is the leading preventable cause of death in the world (WHO, 

2009); it is a major cause of death from cancer, cardiovascular disease, and pulmonary 

disease. Cigarette smoking is also a risk factor for respiratory tract and other infections, 

osteoporosis, reproductive disorders, adverse postoperative events and delayed wound 

healing, duodenal and gastric ulcers, and diabetes. About half of those who smoke 

through adulthood will die from smoking-related diseases (WHO, 1997). 

It was estimated that 11.7% of deaths in Portugal are attributable to smoking, based 

on Portuguese demographic and health statistics available from 2005 (Borges et al., 

2009). Between 1995 and 2006, the total percentage of Portuguese smokers was kept 

constant around 25% (Precioso et al., 2009), but the percentage of smoking women 

increased, especially in the group of 15-24 years old, where the percentage of smokers 

doubled (Precioso et al., 2009). This is particularly relevant, since an ever-growing 

amount of evidence shows that nicotine exposure during adolescence can lead to 

adaptations in several brain areas that last into adulthood. Furthermore, a substantial 

percentage of pregnant women keep smoking during pregnancy; even when women 

do not smoke, they might be exposed to cigarette smoke during pregnancy. The early 

expression of nAChRs during fetal development gives rise to a vulnerability of the 

human fetus to exogenous nicotine exposure. Fetal exposure to nicotine damages 

the developing brain, interfering with cell replication and differentiation (Thompson 

et al., 2009). In longitudinal studies, it was shown that fetal tobacco exposure affects 

attention and impulsivity behavior (Leech et al., 1999), and can also lead to lower 

intelligence quotient and conduct disorder in later life (Ernst et al., 2001; Wakschlag 

et al., 2002). 

Despite knowing the risks associated with tobacco use, the percentage of smokers 

that quit is still reduced mainly due to the fact that they are addicted to nicotine. 

Addiction is a complex behavioral phenomenon with causes and effects that range from 

molecular mechanisms to social interactions. Ultimately, the process of drug addiction 

begins with molecular interactions that alter the activity and metabolism of the neurons 

and consequently subverts the normal functions of the brain. Long-term exposure to 

an addictive drug produces neuroadaptative changes that are, in part, a homeostatic 

response to abnormal stimulation by the drug (Berke and Hyman, 2000; Watkins 
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et al., 2000; Kalivas, 2009). For example, long-term exposure to nicotine results in 

an increased expression of nAChRs, and that change is likely to be a homeostatic 

response arising from increased desensitization of nAChRs (Buisson and Bertrand, 

2001). The properties of individual neurons and circuits change overtime, which 

leads to complex behaviors such as dependence, tolerance, sensitization, and craving 

(Koob et al., 1997; Nestler and Aghajanian, 1997; Laviolette SR and van der Kooy D, 

2004). Addictive drugs are hypothesized to remodel circuits of the brain that normally 

reinforce rewarding behaviors. Many addictive drugs, including nicotine, increase 

dopamine levels in the mesolimbic dopamine pathway (Picciotto and Zoli, 1998; Dani 

and De Biasi, 2001; Bertrand and Dani, 2007), which includes dopaminergic neurons 

in the ventral tegmental area of the midbrain and their targets in the limbic forebrain, 

especially in the nucleus accumbens. It was recently shown that the dynamic regulation 

of BDNF synthesis and activation of TrkB-mediated signaling during ongoing cocaine 

use contributes to the development and maintenance of cocaine addiction. Short- and 

long-term actions of BDNF on nAChRs were already described (Chapter 4; Massey et 

al., 2006); whether BDNF actions contribute to nicotine addiction is a question that 

requires further investigation. In the last few decades, researchers have been interested 

in understanding the mechanisms that underlie nicotine addiction in order to develop 

better treatments to aid smoking cessation and the target population that has been 

smoking for years. It is not clear yet which nAChRs subtypes are involved in nicotine 

addiction. Classically, it has been considered that b2-containing nicotinic receptors 

underlie nicotine self-administration and, by extension, tobacco addiction (Picciotto, 

1998). It appears that b2-containing nicotinic receptors may be more important for the 

initial stage of nicotine self-administration, while a7-nAChRs may be more important 

for continuing nicotine self-administration over a period of months (Levin et al., 2009). 

In addition, it was recently shown that some nicotine-induced effects are independent 

of nicotinic receptors (Griguoli et al. 2010), which should be taken into account in the 

future when searching for the mechanisms underlying nicotine addiction. 

Adult-born neurons play a role in diminishing addictive behavior and reducing the 

incidence of relapse (Noonan et al., 2010). In showing a possible function of adult 

neurogenesis in drug reward and drug-context memory, these data urge continued 

consideration of the role of contextual cues in the treatment of addiction. We here found 
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that endogenous nicotinic signaling is essential to adult neurogenesis. How nicotine (or 

smoking) affects adult neurogenesis is not known yet. Neither is it known how adult 

neurogenesis influences smoking behavior.

A large number of studies suggest that the use of tobacco products among the 

mentally ill is significantly higher than in the general population and may be markedly 

higher than in normal subjects (Winterer, 2010). The incidence of heavy smoking is 

most frequent in subjects suffering from depression and bipolar disorder, and higher 

even still in schizophrenics (it should be noted, however, that the use of cigarettes 

in schizophrenia could have a different etiology than either depression or bipolar 

disorder). These observations suggest an underlying biological etiology to justify the 

heavy consumption of nicotine. In fact, the gene CHRNA7 encoding the a7 subunit of 

the nAChR, is a candidate based on an initial identification from linkage analysis of 

auditory evoked potential deficits observed in patients with schizophrenia (Freedman 

et al., 2001). It was also found that a7-nAChR transcription is altered in several ways in 

schizophrenic patients, suggesting that transcription-level mechanisms could account 

in part for the onset of the disease (Severance and Yolken, 2008). In parallel, human 

post-mortem tissues from schizophrenic patients show a significant decrease in BDNF 

concentrations in cortical areas and in the hippocampus, and polymorphisms in the BDNF 

gene are associated with schizophrenia. If a7-nAChR deficits are thereby considered 

as epiphenomena of underlying neurotrophin disorganization is not known yet. More 

recently, it was also suggested that regulation of adult hippocampal neurogenesis 

represents a promising approach for treating and perhaps preventing mental illness 

(DeCarolis and Eisch, 2010). 

The most common form of degenerative dementia is AD, which affects more than 15 

million people worldwide and grows as the proportion of elderly persons increases 

(Palmer, 2002). Amyloid plaques arising from deposition of Ab peptides and neurofibrillary 

tangles arising from aggregates of hyperphosphorylated tau protein are hallmarks of 

AD, which is characterized by progressive cognitive dysfunction, particularly in learning 

and memory. AD advances to affect limbic structures, subcortical nuclei, and cortical 

regions, and in that way influences multiple neurotransmitter systems. The most well 

appreciated neuronal loss, however, is in the cholinergic system, particularly the basal 
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forebrain cholinergic system comprised of the medial septal nucleus, the horizontal 

and vertical diagonal bands of Broca, and the nucleus basalis of Meynert. The decline 

of cortical cholinergic activity as measured in postmortem brains correlates with the 

severity of AD symptoms and with the intellectual deterioration observed in life. As AD 

symptoms worsen, cholinergic neurons are progressively lost and the number of nAChRs 

declines, particularly in the hippocampus and cortex. nAChRs have been implicated 

in AD, in part because significant losses in radioligand binding sites corresponding 

to nAChRs have been consistently observed at autopsy in a number of neocortical 

areas and in the hippocampi of patients with AD (Burghaus et al., 2000; Nordberg, 

2001). Recently, it was reported that forebrain cholinergic neurons express an unusual 

combination of a7b2-nAChRs, which are particularly sensitive to functional inhibition by 

a pathologically relevant concentration of Ab (Liu et al., 2009). It would be interesting 

to study the mechanisms behind the action of Ab on a7b2-nAChRs. Does Ab compete 

with ACh-binding sites and contribute to the inhibition/desensitization of a7b2-nAChRs? 

Does Ab cause posttranslational modifications of a7b2-nAChRs that cause the rundown 

of ACh-mediated currents? Does Ab cause changes in the trafficking of a7b2-nAChRs? 

Several reports indicate that alterations in trafficking of receptors likely to contribute to 

cause diseases such as depression, schizophrenia, and addiction (Nader et al., 2006; 

Witkin et al., 2007; Kessler et al., 2009). Detailed studies on the trafficking of nAChRs 

in models of Alzheimer’s disease should clarify if the dynamics of these receptors is 

changed and contributes to the onset of the disease.

Evidence that BDNF levels are decreased in Alzheimer’s disease patients has been 

growing in the last decade (Fumagalli et al., 2006). Whether the loss of cholinergic 

signaling in Alzheimer’s disease is directly related to reduced levels of neurotrophins 

has never been investigated. A recent article showed that gene therapy involving BDNF 

delivery improves cell signaling and restores learning and memory in several animal 

models Alzheimer’s disease (Nagahara et al., 2009). These studies provide support for 

exploring the clinical translation of BDNF delivery as a potential therapy for Alzheimer’s 

disease. Early and long lasting actions of BDNF on nicotinic signaling (Chapter 4; 

Massey et al., 2006), and the impact of nicotinic transmission on adult neurogenesis 

(Chapter 5), should be taking into account when designing such therapies.
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6.4 PersPective

Some significant progress has been made during this project, and clear future directions 

for the continuation of this research have emerged.

I. Chapter 3 - nAChR lateral mobility is determined by mechanisms that are 

domain-specific, receptor subtype-dependent, and cell-type constrained. 

The nature of nAChR movement restraints was different for a3*- and a7-

nAChRs; lipid rafts, PDZ-containing scaffolds, microtubules, and actin 

filaments differentially affected their mobility. The outcome is a system that 

could tailor nicotinic signaling capabilities to specific needs of individual 

locations.

II. Chapter 4 - a7-nAChR was found to be a target for rapid actions of BDNF. 

BDNF rapidly reduced the amplitude of a7-nAChR mediated currents when 

applied in the perfusion solution. This effect was dependent on phospholipase 

C/protein kinase C signaling pathway and required Ca2+ as a cofactor. The 

present findings disclose important roles for a7-nAChR and BDNF that 

should be taken into account when looking at the actions of these players 

on synaptic transmission and plasticity in the brain. 

III. Chapter 5 - a7-nAChR contributes to the survival, maturation and integration 

of adult-born neurons in the network. This evidence points to a critical role 

of a7-nAChR in the fate of newborn dentate granule neurons.
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