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DYNAMICS AND IDENTIFICATION OF FLEXIBLE AIRCRAFT

William R. Wells
University of Cincinnati

INTRODUCTION

The practical necessity of removing all excessive structural

weight through either conventional design practices or an active
aerodynamic control system, has resulted in vehicles that are more

aeroelastic. However, most existing parameter estimation methods

used in the study of the stability and control and handling proper-
ties of the aircraft stop short of explicity identifying important
aeroelastic parameters that affect the aircraft dynamics. Previously,

structural motion was considered as part of the measurement noise and

filtered rather than modeled dynamically.

The purpose of this paper is twofold: (1) to present, in detail,
a development of the equations of motion for an elastic aircraft in-
dicating, when appropriate, the difference and similarities with the
dynamics of the rigid airplane, (2) discuss the additional computational
difficulties due to the inclusion of added stability derivatives .

arising from consideration of aeroelastic effects.

EQUATIONS OF MOTION

Rigid Body Motion

The first set of equations to be obtained are the "rigid body



equations of motion" for the elastic airplane. These result from the
application of Newton's laws of motion to the aircraft as a whole and
describe the motion of the aircraft center of mass relative to an
inertial system.

Consider the elemental mass and surface area shown in Figure 1.
The externally applied forces acting on these are a body force, R,
and a surface force F. The body force will be assumed to be gravi-
tational and the surface force aerodynamic. The thrust and control
surface forces can be added independently after the equations are
formulated under the assumption that these quantities do not contri-
bute to the elastic deformation of the structure. In this figure, i
is the location of the mass element relative to the center of mass
before the aircraft distorts and d represents the elastic displacement
of the particle due to distortion.

Conservation of linear and angular momentum dictate that the

following equations be satisfied:

a -9

gt eragzdv=/RavV + [ Fds (1)
v v s

d - dr’

Ic [ or' x gz 4V = Jr'xRdAV + [ r' x F ds (2)
v v s

where V and S refer to volume and surface quantities respectively.
The time rate of change of the vectors in the left-hand sides of

equations (1) - (2) are relative to the inertial earth fixed system.
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R(Body force)

das
2
av
d
= - F (surface force)
¢ r £ -
' P center of mass
z '
r
Y
X
X,¥,2 Body fixed axis system
rl
o x',y',2z' Inertial axis system
yl
L
Figure 1. - Definition of axis systems used to describe the aircraft
deformation.



If the vector r' is replaced by

r; + r in equation (1), the
result is
dr ! dr
d n—o d w - —_
g [PVt [Ra [ Eds

The center of mass is located by the vector

1 -
S AR

From the definition of the center of mass location,

it follows that

and

2
o &
1R
oh}
<

These results allow equation (1), the linear momentum equation, to be
expressed as '

dyc .
M—z=[Fds+Mg (3)
s
where
dr/}
- =0 . = 2
Vo= 7 R=°f4



M,

Similarly, equation (2) can be written in the form

av
L

d . £
rl x M —4g - Mg - é F ds] + g¢ £ frx=—dv=/[rxFds

The bracketed term in this equation vanishes due to equation (3);
consequently, the conservation of angular momentum equation reduces

to

ds . (4)

o
]
1
n—
L
®
o]

d I -
— prXx
dt v -

At this point in the development it is of interest to note how
coupling between the elastic deformation and rigid body motions occurs.
In eguations (3)-(4) both vectors F and r depend on the shape of the
aircraft and, hence, upon the elastic deformation represented by d. An
objective of the analysis is to minimize, as much as possible, this
coupling without sacrificing accuracy. |

Next, equations (3)-(4) will be written in terms of velocities
and accelerations relative to the body axis system which translates
and rotates relative to the inertial system with angular velocity w.
The reason for doing this is to illustrate the similarity of this
overall motion or axis system motion to the motion of the rigid air-
craft and to indicate how elastic effects are treated.

I1f - and (.) represent the rate operators as measured in in-

dt
ertial and body axis systems, respectively, then



av, .

at - Yo tuex,
dr .

Jg T rLtaextk

Further, let

w=Pi+Qj+Rk

V., =Ui+ Vvj + Wk

--C — —

g = -gsinéi + g cos6sin¢j + g cosécos¢k

das = Fx_:l_. + Fy.l + Fz)_c_

n—
|=

ds = Mxi + Myl + Mz&

0
in
»
I

where i, j, and k are unit base vectors in the body fixed axis system.

In scalar form, the linear momentum equations (Equation (3)) are
written as
MU + M(QW-RV) = -Mgsine + F,

MV + M(RU~-PW)

Mgcos@sing +Fy

Mﬁ + M(PV-QU) Mgcos6cos¢ + Fz (5)

It can be seen that in these equations, the rigid body motion and elastic de-
formations are dynamically uncoupled; that is, the effects of elastic defor-
mation enter the equations only in the right-hand side through the
applied force terms.

The angular momentum equation, from equation 4, can be rewritten

as



a—%fitgxé+£x(9_x£)]'dv=§ (6)

\'

where the identities é;é and M = [ r x F dS have been used. Note

S
that the rigid body motion and elastic deformation are dynamically coupled in

this equation due to the presence of r and é in the left hand side

-

of the equation.

The dynamic coupling expressed in equation (6) can be eliminated
by the adoption of two approximations: the rate of elastic displacement
is slow relative to the velocity w x r and the total angular momentum
about the center of mass of the deformed aircraft can be computed with
r = i as if the aircraft is undeformed.

The first approximation assumes that f P Irx é dv = 0 which is
v
also an approximation consistent with the normal mode method to be
discussed later. This allows the angular momentum equation to be

written as

P rx (wxr)dv=»M (7)
v

o

The second approximation, r = r allows the angular momentum
equations to be written in terms of moments of inertia of the jig

shape and allows equation (7) to be written as
a - - =
g/ frx(exz av=n (8)

For a constant mass, symmetric aircraft with the x y z axis as

principal axes, Equation (8) can be expressed in scalar form as



Ixx P - Ixz R - Ixz PQ + (Izz - Iyy) RQ-= Mx

(p2 - r?) (9)

z Y

[]
=

Iyy Q + (Ixx - Izz) PR+ Ix

I _R-TI__ P+ (I
( y

zz xz - Iuyx) P Q4 Iz QR=M

Y z z

In either equation (8) or (9) it is noted that the effects of
elasticity enter through the applied moments.

Equations (5) and (9) can be expressed in terms of perturbed
state variables u, r, w, p, q, etc. from a reference flight condition
'Ul, Vl' wl, Pl, Ql' etc. For sake of brevity, the perturbed form of
equations (10) and (11) are presented for the special reference con-

ditions of zero roll (P; = 0) and level flight (w1 = 0) as
. _ _ - f
Mu + M(Qlw Rlv Vlr) + Mgepcosel x

Mv + M(Rju + V,r) + Mg(%51nelsln¢l-dp cose,cosé,) = fy (10)

Mw + M(le - Qlu - Ulq) + Mg(%§1nelcos¢l +4}c059151n¢1) = fz

TuxP = Ixz® = Iyxy QP + (I, - Iyy)(er + RyQ) x

Il
=

Iyyq - 2Ixz er + (Ixx - Izz) Rlp = my (11)

It~ Ixzp + Ixz(er + qu) + (Iy

Z - Ixx) le =m

Yy

In equations (10) - (1l1l), the quantities with subscript "1" refer

to reference values and the quantities (£, ., fy’ fz}, {mx, my,mz}



o “"’ﬂwgw!

s

refer to perturbed values of the externally applied forces and
moments respectively.

Equations (10) - (1l1l) represent the uncoupled equations of
perturbed motion in body axes of an elastic airplane consistent with
the assumptions necessary to achieve decoupling. They are to be

considered further in another section.

Elastic Body Motion

In addition to the six equations for the rigid body motion for
the body axis system, there exist 3n equations of motion which reflect
the internal equilibrium of the n lumped masses making up the total
aircraft mass. Here, it is convenient to introduce influence coeffi-
cients into the analysis which are obtained from a solution ot the Navier
equations of elasticity. This requires that we consider the deformations
gi measured relative to a coordinate system (x, y, z) with origin fixed
to a point Po coincident with the location of the aircraft center of
mass before deformation (see figure 2). After deformation, this point
translates a distance given by the vector éo relative to the center of
mass which is assumed to have its position unaltered by elastic defor-
mation. The coordinate system fixed to point Po also rotates through
an angle which can be represented by a rotation vector Eo relative to
the initial orientation of the coordinate system before deformation
or loading. Then, the deformation gi measured relative to a co-
ordinate system X Y Z with origin fixed at the center of mass of
the deformed aircraft P, consists of the deformation g& measured in the

~

X, Y, 2 system in addition to the translation go and rotation Eo X Y..

~1




P; (location of mi after deformation)
Y
n;
Pi (location of point P, after
% deformation)
xr,
Pl / X
/ llgp
a0/ 4
/ /
/ / d, = do + 80 x ;. + 4!
/ =i = - =i =i
/
/ ~ m. / P. (location of arbitrary point P,
/ r; prior to deformation) 1
X

P, center of mass
Po (prior to deformation)

Figure 2. - Vector Diagram illustrating relationship of Qi to gi
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That is,
gi = gi + go + Eo xr, (i=1,2,...n) (12)

where x; is the location of the ith particle relative to the center
of mass before deformation. it

The displacement field Qi is linearly related to the applied force
field gi (consisting of inertial, gravitational, and aerodynamic forces)

for elastic deformations which satisfy a linear stress-strain relation-
ship (reference 1l). That is,

n
' — . .
a; =_Z Ciy " Q5 r (i=1,2,...n) (13)

j=1
where n is the number of lumped'masses and Eij is a dyadic of structural

coefficients associated with the mass pair mi, mj. The components of

€ .. are expressed according to
1]

ij = i[Cxxij N nyij 1+ szij k]

+ 3 R 2 J ¥ C ..
1lCyxig & * Cyyiy L+ Cypyj K (14)

* KIC, 013 &+ Cayig L F Cppyy Kl

The physical meaning of a typical coefficient nyij is that it

represents the component of displacement of the ith lumped mass in

the x direction due to a unit force in the y direction at the jth

lumped mass.

11



The result expressed by equation (13) can be rewritten as

[c]{Q}, where

]T

{a'r =
] — 1 L ] t ] ] ] L
{a'}y = [dxl’ d 1’ dzl’ dx2’ dy2' dz2’°"dzn
_ T
{Q} - [Qxll lel Qzl’ szr Qyzl szl"'an]
r -
€311 C12 + -+ - C1p
Co1 Caz2 v+« Cyp
[cl =
Cnl Cn2 D Cnn
- - (15)
where
chxij nyij szij
L. = .. cC .. ..
ClJ nylj YY13] Cyzlj
Cexij  Czyij szi{

Substitution for gi from equation (13) into eguation (12)

results in the elastic displacement field measured relative to the

center of mass of the aircraft

n
d; =8, + 8, xxr; + 1 Tyy
j=1
where
a’cy
Q. = -m, ( - g) + F. ’
=1 i dt2 ;

(i=1,2,...n) (16)

2

(i=1,2"oon) (17)

12
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i S

In equations (16) - (17), gi is the position vector relative to an
inertial system (figure 1) of the ith mass particle after deformation
has occurred and Ei is the aerodynamic force acting on this particle.

In order to develop a system of differential eguations from
. 5
equation (16) we must express the acceleration d Xi in terms of rigid

2
dt
body quantities (center of mass motion) as well as elastic displace-

) [] = [] ~ . ! . [} » L) 13
ments. Since r; =15 +r; + d,, where rg, is the position vector to the

center of mass relative to the inertial system, we have

2., .2,
d'r{ 9’5y a%(x, + 4.
5 = ) + 1 1
at at?  at
av -

_ W, 4 ad; +ap

=gt taelag i i

. o _(i- . ~

= Vo tax Vo +gglditex (z; +4;)]

+ux (g +d) +wx lwx (£ +d)] (18)

In equation (18), the accelerations uw x éi and w x [uw x (gi+gi)]
are assumed small compared to the other terms which make up the absolute

acceleration of particle m;. Another simplification is realized by

13



computing the acceleration w X (£i + _(_i_i) as _¢_n_ X £i which utilizes
the small elastic deformation assumption. These simplifications

allow equation (18) to be written as

+(_:)_x£.+<'i. ' (19)

which results in a value of Q-i approximated as

Qo Fy +myg - m IV, +wxV, +owxr, +dl] : (20)

The governing equation for the elastic displacement field is then

n
+£ C.,. * [gj+mjg_—mj(gc+gx\_lc+9_x;_j+_ql_j)] (21)

To be consistent with the previous rigid body results (equations
(10) - (11)) we now will write the equations in their perturbed form;

that is, we let

=i = =pi

=F., + F_,
=i =li —pi
4; =435 *dpy
VvV =V + V
— <l —p
B = w4 2p

14



T

g=9g; +g,

8=9J_+9p

b= 4y + oy

R TR (22)

where the subscripts "1" and "p" denote steady-state or nominal values
and perturbed values, respectively. Isolation of nominal and perturbed

values in equation (20) results in the perturbed force

Qi = Epg My Ip ~ ™y Vop T My 8y X Vg
-m, ow X !cp - gPi m; - my Yy xr, » (i=1,2,...n) (23)

This result is further expanded into component form through the use

of the relations

Vo1 = Ui + Vi + Wk

wy, =Pyi+0;3 4+ Rk

r, =x4i+yj+zk , (i=1,2,...n) (24)
ch = ui + v) + wk

e
i

pi + qi + rk

15



gp = g[epcoseli + (¢pcoselcos¢l_— ep51n6151n¢1)1

-(epsinelcosq;1 + ¢psin¢lcosel)&] (25)

where j, jr kg are unit base vectors in the principal body axis system.

Substitution from equation (24) into equation (23) results in

- 1 . . .. . L - o ]
Qpix Fpix dpix rl 00 0 23 TY§ ?
. - ~ v
Qpiy = Fpiy - my dpiy - my 010 -z4 0 Xy A
- - = p
QpiZJ LFpiZJ _dpin -0 01 Yy "Xy 0 J é
3
. [ u
°© Ry ¢ O W -V, v
- m Rl (o} —Pl —W1 0 U1 w
- - P
Q1 P1 o Vl Ul (0]
q
r
| (0 ]
00O o -gcost, o} (o}
-m 1000 —gcoselctos¢1 gsinelsind)l 0 Z
. . o)
000 951n¢lcosel 951nelcos¢l o] ep
wP
L. ol
(i=1,2,...n) (26)

16



This result can be expressed compactly as

¢

195} = IR} = madddy) = Dol RV} + M1V ) + M) g 1)

(27)
where

- T (28)

{Qp} - [Qplx' Qplyl Qpizl szxl"" Qpnyl Qpnz]
- T (29)

{Fp} - [Fplxl Fply, Fplz, szx’.o-' Fpnyp Fpnz]
- T (30)

{dp} = [dplx' dply' dplz' dp2x""’ dpnz]
’ 31
{ch} = Iu, v, w, P, q, r]T (31)
T 32
{rép} = [o, O, O, d’pr epl ‘pp] ¢ )
.ml
m
1
m, O
m, (33)
*mJ] =
mz.
~.
‘m
O n
m
n
mn
i 4

17



(9]

[Mll =

o O O O

18

(34)

(35)



(0 oo o —gcosel 0]
00O -gcoselcos¢1 gsinelsin¢l .0
[M2]'= 00O gsin¢1cose1 gsinelcos¢1 o (36)
0 00 o o] (o] .
00O (0] o 0o
| 00 o o 0o OJ

The matrices [*m.] and [%] are referred to as the diagonal mass matrix
and rigid body mode shape matrix, respectively.

Further, if we combine the vectors d, and 8 into a vector

yo' dzo’ 0o’ eyo’ ezo]T' we can express the elastic

displacement field from equation (16) as

{B} = [dxo’ d

{d) = [#) B + [C]l{Q) (37a)

where {d} = [dxl' dyl' dzl' dx2' dy2' ST .

and

{Q} = [Qxl' lel Qzl' szl LA an]
In terms of perturbed guantities, we have

= [¢] ¢B +
{dp} (o1 o} [cl {Qp} (37b)

where {Bp} represents the perturbed value of {B} from the reference

condition.

19



The vector {B_} can be eliminated from the analysis by assuming
the mean body axis system coincides with the principal axes system.
According to Milne (references 2, 3), the mean axis system is

defined by the equations

n
) m, éi xd, =0 (38)
i=1

and
n
izl m o d =0 (39)

or equivalently
- T o .
[¢1 " 'mJ{d} = 0 (40)

Then, the perturbation in elastic displacement also satisfies this

relationship or
—T\ —_
[el°1 m~]{dp} =0 (41)

Equations (38) - (39) state that the deformation motion has zero
linear and angular momentum relative to the body axis system.

Ashley (reference 4) interprets the assumption of equations (38) -
(39) as a statement that the overall motion of the body is described
by a set of principal axes for the deforming body.

If both sides of equation (37b) are premultiplied by the matrix

[3]T[‘m.], the result is
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717 mta ) = 717w 11318} + 317 m ] [cl{g,} = 0
from which {Bp} can be solved for as

= - -1, T, _
{Bp} M} "¢l 1 m\][C]{Qp} (42)

where

M = 1317 m Q13 (43)
Substitution of {Bp} from equation (42) into equation (37b) gives
{dp} = [C]{Qp} (44)

where

1

(1 = (1 - (31 1M1 Y131 [~mll) [C] (45)

If {Qp} from equation (27) is substituted into equation (44),
we find that the perturbation elastic displacement field satisfies

the differential equation

{dp} = [c]{Fp} - ICl] [‘msl{dp}

- [ 0mIIFI UV ) + IV Y+ M) () ) (46)

It is possible to express the equation for {dp} in terms of the

1

stiffness matrix [Kll] = [C] ™~ by substitution of {Qp} from equation

2]



(27) into the expression for {dp} as expressed by equation (37b).

This results in
{dp} = [¢]{Bp} + IC]{FP} - [c] [‘m\]{dp}
- Q191 (V) + IV ) + My)r D) (47)

Again, we wish to eliminate {Bp} from equation (47). This can

be accomplished by the following operations. First, premultiply

both sides of equatioh (47) by [Kll] = [C]'-l to get

- ImIIF (V) + M1V ) + Myl iz D) (48)

Note that the rigid body perturbation equations expressed by equations

(10) and (11) can be written as
° _ =T
IM]({VCP} + [Mll{ch} + [M2]{rsp}) = [¢] {Fp} (49)

where

- T _ T
[¢] {Fp]’ = [fx’ fyr fzr mxr myr mZ]

Also note that mTrm,J{ép} = 0 since [’J]T[‘m\]{dp} = 0.
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These two results reduce equation (48) to the form
(717K, 1{d_} = [31TIK,,1[31{B_}
11" " p 11 P
from which {Bp} is solved for as

T — =1 — T
By} = (IFITIK 1FN T R1T IRy 1Ha ) - (50)

Substitution of this value for-{Bp}, which is equivalent to the value
expressed by equation (42), into equation (48) results in the

equation

{F_}

[‘m\]{dp} + [K]{dp} p

[‘m5]I¢]({ch} + [Ml]{ch} + [M2]{rép})
(51)

where

1 T

= _ _ — —. T _ - —

[K] = [K11] [K11][¢]([¢] [K11][¢]) [¢] [Klll (52)
Equation (51) represents 3n scalar equations of motion for the

n lumped masses. Only 3n - 6 of them are independent; however, since

only 3n - 6 components of {dp} are linearly independent due to the con-

straint equation (40) defining mean axes. These 3n - 6 independent
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equations for internal motion together with the rigid body or body
axes motion from equation (49) make up the necessary 3n equations
of motion to describe the dynamics of the elastic airplane.

The results represented in equations (49) and (51) are very
difficult to treat mathematically without further simplification.
Before preceding to the various approximate forms for these equations,
it is of interest to consider them in more detail. To demonstrate
the roles of the stability derivatives associated with rigid versus
elastic airplanes, we now develop the right hand side of equation
(49) . The perturbed aerodynamic force associated with the n lumped
masses 1is generally assumed to be a linear function of the velocity
and acceleration of the aircraft center of mass and of the elastic
displacement field and its velocity and accelerations fields, i.e.,

from reference 5,

(Fo) = [A[JV ) + [0V ) + [Ag)(d ) + [A,0{d )} + [Agl{d} (53)

The matrices [Al], .o [A5] are referred to as aerodynamic influence
coefficients which contribute to the stability derivatives. Sub-
stitution of {Fp} from equation (53) into equation (49) result in the
following aerodynamic force and moments due to rigid and elastic

body motions
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-7 —_T y - T

[¢] IAIJ{ch}r [4] [A2]{vcp}' [¢1 [A3]{dp}'
— T : =T :
[4] [A4]{dp}: [¢] [Asl{dp}

The nature of the elements of these quantities is demonstrated in the

following example

-
|}
1 o o1 o o'+ 1 0 ©
o 1 olto 1 t.«- ] 0 1 o
| | |
o o 1 o o 1 **Vo o 1
B R o R ) e -J' ----- s .
~ ~ l - ~ | -~ ~
O -z; ¥y, O -2z ¥y | TPn Yo
z, o) X112, o —X, :"' | 2, o ~Xn
oL Lo B
~Y, ¥y (0] ‘—yz X, o | : Y, *n o) J
11xu 211xv ®11xw 11xp 211xq 21lxr
allyu allyv [ R S S
allzu....'...'..'......-..'......‘. ru_
alzxualzxv..ll..........'...l..l'. V
w
a12yu s e s a s s es e s s st o0 s e B A s p
q
alzzu.............................. rj
alnxu--.-.-.......n.--.-.-o.--alnxr (54)
alnyu.........................
L..a.lnzu........-.--.-----..-_.-..a.lner
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where the first subscript denotes an element of [Al], the

second subscript denotes the element of mass, the third subscript

denotes the component of force and the fourth subscript denotes the

component of velocity it multiplies.

of [EIT[AI], becomes

~—. T _
1721V ) =

or,

— T _
[¢] [Al]{ch} =

Ly e

n

Y a,. Ceteeeesaaens
i=1 lizu
n

1£1 (yializu_zialiyu) e s
n

z (z.a
i=1 *
n

1 x,

a,. =y.a,,
j=1 ¢ liyu ‘i lixu

s =X.3., . e
lixu “1i llzu)

)...

-

rf £ £ £ £ f
X X X X b4 X
u v " P q r
T
Yu
fz Mt et essrsesnasesonen
u
Mx_....................
u
.
yu
Mz Nt t e s e s s nsssans e s
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where, for instance,

£ - 1/2°SU1(Cx-.u +2c.) (56)

M= 1/2psulE(c1 +2Cy) : (57)
u u

The quantities fx and Mx can be interpreted as the force in the x
u u
direction per unit change in velocity u, and moment about the x axis per

unit change in u, respectively. Also, as a second example, consider

—. T ' _
(317185104} =

B -
2311xx a3llxy 8311xz  ?312xx"° "®31nxz
a3llyx a3llyy cenane .........a3lnyz
Byiqgg *"tretteerees  eseees a3 nzz
Ago1xx "ttt Chiesae  esaesens .a32nxz
[-&’-]T a321Yz ...... Ceeesee  esesessse R {d }
P
a32].ZX e e v e o esease . R LY .
a e 60 e s 0 ssessve ossasoee .o
3nlxx 3nnxz
a cesescsaanns ceeseas
3nlyx 3nnyz
3nlzx ST ceeana ceans 3nnzz J

(58)
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The subscripts on the elements of [A3] have the following meaning:

the first subscript indicates an element of [A3], the second and third
indicates a mass element pair, the fourth indicates the component of
force and the fifth denotes the component of displacement. For instance,
a321zy represents the force acting on panel 2 in the z direction due to

a unit displacement of panel 1 in the y direction, We will defer discussion

of the stability derivatives contained in the term [3]T[A3]{dp} until

we have introduced the modal substitution concept.

Quasi-Static Approximation

The quasi-static approximation considers only those aeroelastic
forces dependent upon {dp} but not upon the time rate of change of this
displacement field. For example, the inertial forces [‘m,]{ap} and
[?]T[Aslfép} and the aerodynamic damping force [$]T[A4J{ép} are con-
sidered to be equal to zero. This assumption allows for the elastic
displacement field to be eliminated from the analysis by solving

equation (46) for {dp} as
{dp} = IC]{FP}-[C][‘m~][¢]({ch} + [Mll{ch} + [M2]{rép}) (59)

Substitution of {dp} from equation (59) into equation (53) results in

F .
{ p} given as
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1 .
LA 1V} + (B, 0V )

{F_} = (1 -~ [Ag]ICH™

(351 €1 *ma] 3] (V) + DM 1V ) + M1 {zg 1)) (60)

Substitution for the aerodynamic force given by equation (60) into
the right hand side of the rigid body equations of motion, equation (49),

results in the quasi-static form for the rigid body motion as

U1 (V) + 1V ) + DT ey D= I8 1A TV ) + [a,10,, 1 (6D)
where

m'] = (71700 + (D) - (A5 IED 7 (A1 IE1 ) " ] [F] (62)

5'1 = m1Tun - meEny (63)

Comparison of eguation (6l) with equation (49) shows that in the quasi-
static approximation, the effect of elasticity is to modify the mass
matrix [~m<] and the rigid body mode shape matrix, ¢ by amounts depending

upon the elastic properties of the aircraft,

Modal Substitution

The method of modal substitution is a means of reducing the large
numbers of equations of motion associated with the "exact" formulation éf
equations (49) and (51) while at the same time, uncoupling the degrees
of freedom of the elastic motion. To this end, we introduce the trans-
formation

{dp} = {¢$(x,¥,2)} u(t) (64)
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where {¢(x,y,2z)} is the free vibration mode matrix of constanﬁs of
dimension 3n x l,and u(t) is the generalized elastic scalar displace-
ment associated with this mode shape. The values of (¢} are determined
from the eigenvalue problem associated with the invacuum motion of the
aircraft; that is, the deformation of the aircraft.vibrating in the
absence of external forces. The values of u, however, are evaluated
from the full equation of elastic motion expressed by equation (51).
The elastic displacement field for invacuum motion, neglecting

structural damping, is governed by the equation
[mJtd )} + [K1{a } = 0 (65)
In terms of {¢} and u, equation (65) for each mode is written as
%[‘m,]{¢} = - [K1{¢}

which requires that % be set to a constant say —AZ, then
K114} = A2[>m_1{¢) ' (66)
Associated with equation (66) are 3n-6 distinct eigenvalues Ai

and corresponding eigenvectors {¢i}. The elastic displacement field
is assumed to be a linear combination of these modes as
3n-~-6

{dp} =i£l{¢i}ui (67)
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where u; is the amplitude of the mode shape {¢1}. This is further

written as

{dp} = [¢]{u} (63)

where

[$] = [{o;}, {8500eeelog, o))

= T
{u} = [ul, u2,...u3n_6]

Hence [¢] has dimension (3n) x (3n-6) and {u} has dimension (3n-6)xl.
Since the mode shapes correspond to free vibration, it is found
that the eigenvectors are orthogonal as indicated by the equations
{6,3T[KI{¢,} = K,6,.
3 i i7ij
(69)
(6.3 [*m.1{¢.} = m.6,.
] D1

i~ij

orxr

[61TIKI [¢] = [“KJ
(70)
617 md 61 = [F@.]

The matrices [*m_] and [*K . are the generalized mass and stiffness

matrices, respectively.
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Substitution for {dp}from equation (68) into equation (51) results

in the expression

I*ml] [61{u} + [RI[e]{u} = (F,}

(71)
- I\m~][$]({vcp} + IMl]{ch} + [le{rép})

If both sides of this expression are multiplied by [¢JT, it follows that

(61T~ mil [o](ul + [61T(R]I[¢]{u} = [¢]T{Fp}

(72)
-— T - e y ]
(¢1°1 m~][¢]({ch} + [Mll{ch} + [M2]{rop})
The last term on the right-hand side of equafion (72) vanishes due to

the definition of the mean axis. This reduces the equation of motion

for the generalized displacements to the form
[*mad{u} + [FR.]{u} = [¢1T{Fp} (73)

where

F ) = [All{ch} + (A 1V b + [Ag) [e]{u} |
(74)
+ 1A, [s1{u} + [A][4]{u}
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B

The term [53][¢]{u}, occurring in equation (74) is now considered
to show the form of some of the additional stability derivatives due to
elastic effects. The force [$TT[A3][¢]{u} discussed in equation (58)
in terms of‘the physical displacements'{dp} is now written in terms of

generalized displacements as

B - -
fxu fx,Ul cen fxu T v,
1 2 3n-6
fy fy_ oee fy u,
4 Y Y3n-6
fz' seese ses essscca .
S u1
[s] [A3][¢]{u} =
’ Mx Mx [P Mx .o
Y %2 Y3n-6
My o o 8 0 L ] *® o ¢ 9 0 0 - °
bt |
M * e 08 * e o 8 0 0 0 00 u
z 3n-6
] ] i J
where, for example,
_ 2., - -
fxu. = l/2pUl S/c Cxu. ' (i=1,2,...3n-6)
i 1
= 1/200.%5 C
M- s | ™y,

To summarize the results of this section, we outline the sequence

of computations to arrive at the elastic displacements {dp}:
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1) Compute [¢], the mode shape matrix, from the 3n-6 eigen-
functions of the relation

R {6} = 22 [>m ] {4}
If {¢i} is the ith eigenfunction, then

[6] = [{673{45}- (83 (3]

2) Compute the generalized mass and stiffness matrices [*m_]

and [\K\] from the orthogonality equations
01T m [s1=1~m

[41T(KI16] = K

3) Compute the generalized elastic displacement vector {u} from

the equation

[E{u} + [NR.]{u} = [¢]T{Fp}

4) Compute the physical elastic displacement vector {dp} from

the equation

{dp} = [¢I{u}

Residual Flexibility

In this formulation, the free vibration mode shapes matrix and
amplitudes are separated into dynamically retained modes [¢l] and dy-

namically deleted modes [¢ZJ. This means we take the modal substi-
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tution formulation and omit terms or forces such as [~ﬁé~]{ﬁz}, IA4].

[¢2]{62}, and [A5][¢2]{u2}, where [‘ﬁé‘] the generalized mass matrix

associated with the deleted modes. Here, we have treated the deleted

modes as we did the total displacement vector in the quasi-static

formulation.

We write {dp} as

(dy} = [41 0w} + [8,1{u,}

where

[4]

Further,

KU

let

{ul}
[[¢1], [¢ZJ] ; {u} =
{u2}
VK] [0}
= 7 FEJ =
{0] [‘Eé\]

r ﬁlsl

[0]

(75)

fo] 7

Then, we have (substituting the above relations into equation (73))

{u}

= -1

fu; } [“K ] [0] ls

{3 [0l [“K,.]

LEL) = Dmal Doyl {uy) = [mad[o,]{u,})
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Solve equation (76) for {uz} to get
- -1 T -
{uz} = -[\KZ"] [¢2] [\m\] [4’1] {ul}
(77)

-l ; 1 e
SR SO INTPS Bl O N R CPS RS T o S0 Il EPR RN Y

This equation is simplified by noting the following
T .o -
[¢2] { m~][¢l] =0

0

19

= T, .
SRy, 1e,] [vm 1o ] {u,)
The latter result follows from the basic assumption of residual flexibility.
This results in the approximation
=Y T _l T
tuy} =2 DR, 17 [e,1 7 {F ) (78)
where
(P12 (A 14V ) + [B,1V ) + (B3] 1010y}
(79)

+ 1A, [6,10u,1 + (A 106,000 ) + [Ag)[910uy)

Substitution of {u2} from equation (78) into equation (79) results in
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PR er—

(Fo) = [A 1V} + [A10V )} + [Ag][4;] {uy)

(8,116,140, 1 + [Ag1 16, {u,} (80)

+

<+

~z 1~1 T
(A1 14,1 15Ky 37 051 TF )

The last term in equation (80) which explicitly relates to the deleted

mode shape can be rewritten in terms of the identity

T ~1 T _ = — i .
(8,0 Ky 17 1e,) {FL) = [CRIIFLY = [mld 0o (uyl
(81)
- [CIDmJ 0] (V) + MV Y+ IMpT{r) ))
where
= - [/ <7 -1 T
[CRl = [C1 - [e;11-Kyl] “lg ] (82)

This identity is obtained by equating the expression for {dp} from
equation (46) to the expression obtained by using equation (76).
Substitution of equation (8l) into equation (80) results in

the following expression for {Fp}.
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—_ . =1 .
(F (111 = [A1IC T LIA IV ) + (A IV} + [Ag]1e;]{u)

-
]

(A1 (ICT Imad [93 (V) + My IV} + (M) {xg 1)
(83)

[Cpl 'mal [o714u 1) + [A,1 04,100} + [Ag)Le;){u ]

+

This form for the perturbed aerodynamic force results in the following
equations of motion for the residual flexibility approximation to the

elastic airplane:

Rigid Body Motion:
IMI (V) + M1V, ) + M I el ) =
@171 = 1A G THIA T (V) + 18,10V )
+ 1851001 {u;} = (A1 [T P md [4,10u;} (84)
- A1 mad 18] (V) + D1V o) + Myl {ry D)

+ [A4] [¢1]{u1} + [ASJ [¢l]{ul}}
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Elastic Displacement:
R ) + K diug} =
6,17 (111 - (a1 16" YA 1w} + [a,14V )
1 3 R 1 cp 2 cp
+ 185106, Tfuy} — [A,1(C,] Fmley]{u;} (85)
- (A1 @EmI ] (Vb v T} + iyl il b

+ [A,10¢;1{ug} + [A1 09T {uy )}

Modal Truncation

The modal truncation form of the equations of motion is obtained
by representing the modal matrix in terms of only r mode shapes where

r <3n-6. That is, we let {dp} = [¢l]{ul} where

[690 = (465}, {6} «ov {431

fu;} = [ug, uy, ... ur]T

This results in the following equations of motion:
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Rigid Body Motion:
[M] ({vcp} + [Ml]' {vcp} + [sz{rc')p}) =
@17 (a1 V3 + [T + (a1 Teg] {uy)
+ [2a,10¢;1 103 + [AT 4100 D)
Elastic Displacement:
@y J{ug} + DR~} =
T . .
[017 (1A 1V} + [A, 10V 3 + [Ag1 00T 1w}
+ (A0 16,1 {3 + (A T0e,1{us D)

PARAMETER IDENTIFICATION

The parameter extraction process will be discussed for the simpler
case of an elastic aircraft perturbed from symmetric, steady, level, non-
accelerating flight. In addition, the equations of motion used to re=-
present the aircraft dynamics will be the modal truncation formulation
where invacuum modes are retained., For this case, the rigid body motion

or mean axis motion from equation (84) is given as
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T (E, w4 £ G 4 £ u) (86)

I_,6_ = Muu + Mww + M 0

°p + Mﬁu + M&w + M-8

9P
C m

+ 7 M_ 5. + ) (M u, + M u,+ M° u,)
i=1 %3t =1 Myt owytoeyd

and the elastic motion satisfies

D
+
Hh
s

m:u, + K.u, = £, u+ £, w + £,
ii ii i i i'p
u W q u

(o]
+f.w+f5+2f. 8. (87)
w =
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In equations (86) -~ (87) the forces and moments due to control surfaces
are included.
The equations (86) - (87) are in dimensional form. For purposes

of estimation, they are put in nondimensional form as follows:

. _ 2 ' w
Mu + Mgep = l/2pSUl [(Cx + 2 Cxo) u/Ul + Cx T
u a 1
+ C =L + C + C + C P__
xg 207 Xy u 2 Xy gy 2 XG4y 2
1 1 1
; ;‘ 20, Gu,
+ C §, + (C u, + C + C_.. )]
.5 X i s b4 i/7, X U b4 2
i=]1 Gi i=1 uy c u 1 u, 2U1
. . 2 u w
-MU_8_ + Mw = 1/2pSU.“[(C + 2C_ ) = + C =
1lp 1 z, zZ0 Ul z, Ul
+ C —L +c = + C —= + C_, ———% (88)
2qg Y1 2y 2u,°2 Z4 20 23 4u
1 1 1
; ; 2uy ﬁi GiE
+ C s, + (C —+C_, ==+ 2C —) ]
i=1 Zsl o= Zui c z i Uy 2. 2u,
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I__6_ = 1/2pS3U.°[(C. + 2 C
XX p 1 " mo 1 « U1
6_cC .= .= 5 2
+c F—+c —+c, —x+c £
mg 20;  my oy 2 o 2U,°2 g 4U
1 1 1
; ? 2u; ﬁi ﬁiE
+ c S, + (C — 4+ C —= + C_. )1
2 m i L m m® m 2
i=1 61 i=1 u;, ¢ u; 1 uy 2Ul
o - 2 u w
mou, + Kiui 1/2pUl S[Cu. /U + Cu. /U
i 1 i 1
u a
b.c s e 8,C
u, u, , 2 u. u 2
1q 2U1 i 2Ul 1 2Ul lq 4Ul
c m . .-
z Z ( 2u., ‘G El . u.c)]
+ C + c —d + —J'Z'
j=1 %i. . j=1 9 c 4. U3 Ui oy
§j uj i uj 1

The stability and control parameters that are to be estimated from flight

test data are the components of a vector
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6k vy i uy u
C, » C, r Cour Ciun Cuv C,p
o g q Sk
CZ r CZ . r Cz.. 14 Cmul cm r Cm r
ul l ul o q

Gk u; u,
Cor v 4. # G4, 7 Gy, v Cu.,' u,,’
Ui 1u 1o 1q 1a 1o
T
cu.,' Ca. * Cu, Cu.. r Cy, . ]
i ig i,. i iy
k 3 J J

where (k=1,2,...c) , (i,j=1,2,...m).

The number of parameters listed above is 3m2 + mc + 3¢ + 15m + 20. With

the exception of the control derivatives, unindexed quantities are the

derivatives associated with rigid airplanes while the indexed 'quantities

are the additional derivatives introduced through aeroelastic effects.
Equations (88)-(89) are now rewritten in matrix notation by

defining a state vector
z = [u,w,ep,ep,ul,uz,...um,ﬁl,uz,...ﬁm]T (90)

and a control vector

T .
§ = [61,62,...60] (91)
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The equations of motion then become
Fz = Bz + G§ . (92)

where F, B, and G are matrices of stability and control derivatives
which are given in Appendix A. In the case of rigid airplanes, all
state components are available for direct measurement. Additionally,
linear accelerometers are used to augment the linear speed and angular
velocities to provide for more efficient parameter extraction. In the
case of elastic aircraft, additional accelerometer placement is
desirable since the generalized elastic displacements are not available
for direct measurement. The analytical form of the acceleration re-

corded by the ith sensor is

(93)

The form of the sensor measurements, in general, is taken as a linear

function of the state, that is,

Yy =Hz +n (94)

where n is assumed to be a white noise process of zero mean and co-
variance R, and H is either the identity matrix or some variation on
it depending on whether or not the state vector is augmented to include

the linear accelerations.
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The maximum likelihood estimate of the parameter vector p is
given as (ref. (6))

N -N

p=rp°+ (I aTeepuR™Mm ae)17 ] mac) R7D ye1 (95)
i=1 i=1

N
~ 1 T
R = ﬁizl vt v () (96)

In these equations, N is the number of measurements, A is the sensitivity
matrix aE/aE and v(t) the difference y(t) - z(p°,t). The asymptotic
value of the covariance of the error in the estimate is

N

E[(p_—é) (p_-é)T] = {Zl AT(ti)HT R™
l=

1 1

H A(ti)]' (97)

which is the Cramer-Rao lower bound on the covariance of the estimate
(reference (7)).

Several practical problems seem likely in the implementation of a
computer program to estimate the parameters of elastic¢ aircraft. Even
for the simple case of symmetric, level flight the number of parameters
is extensive and is likely to contribute to convergence problems due
to lack of understanding of the physical significance of the aerocelastic
derivatives. In addition, considerable computer effort is required to
provide supporting information in the way of initial estimates on the

parameters as well as the flexibility matrix and normal mode shapes.
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CONCLUDING REMARKS

This effort has presented in a tutorial fashion the manner in
which the complex phenomena of aeroelastic motion alters the equations
of motion and stability parameters extraction processes of conventional
rigid body aircraft. The various degrees of approximation in the
representation of the motion as provided by the quasi-static, modal
substitution and residual flexibility have been discussed in some
detail. The corresponding physical parameters which enter into the
analysis by each of these approximations are indicated and illustrated
for the case of symmetric, level, unaccelerated flight. It is anti-
cipated that potential problem areas exist in the implementation of
a computer program to extract the large number of stability and control

derivatives.
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APPENDIX

ELEMENTS OF STABILITY AND CONTROL MATRICES

The elements of the matrices F, B, and G are listed below:

F: Dimension (4+4+2m) x (4+2m)

1 -
Fi, = M- 3e8¢CcC,,
u
F --%sz C
12 2° x*
a
Fi3 =0
_ 1 =2
F14 3° © S Cy.
g
Flrgey = 00 (i=1,2,...m)
F =Lszc (i=1,2 m)
1’ 4+m+i 2° x- ! rer ..
uj
F =-Ls cc
21 2° z
F =m-Lscc
22 2° z*
Fyy = 0
_ .1 =2
F24 = sz o] Cz.
q
For g4p = 0 (i=1,2,...m)
F -isce (i=1,2,...m)
27 44m+i 2° 27 réren.
i
1 2
F31 =3¢ 8¢ G
u
1 =2
F3, - FpS ¢ Cph.
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33
_ 1 =3
F34 Ixx 3°c S Cm'
q
F3'4+i 0 ’ (i=1,2,...m)
F -Lsc?ec (i=1,2 m)
3’ 44m+i 59 ma ’ plygoase
i
F.,, = -3s3cC (i=4,5,...3+m)
ill Ep ui'l ’ g oo
F.,, = -3scc (i=4,5, ...3+m)
172 ‘2‘0 ui. ’ 4 ds e
Fi’3 =0
1 =2 .
Fi'4 = -7 pS c Cui- R (i=4,5,...3+m)
q
Firgey = O , (i=4,5,...3+m; j=1,2,...m)
1l — . .
Fi’4+m+j =m 6ij - 3pC S Cu." (i=4,5,...34m; j=1,2,...m)
lu.
J
Faem,5 = 8350 (3=1,2,...4+2m)
Faamei,j = Saumei,g ¢ (i=1,2,...m, j=1,2,...4+2m)

B: Dimension (4+2m) x (4+2m)

_ 1
By, EpSUl (2 cxo + cxu)
B =1 su, C
12 - 2°°Y1 “x
[»
B13 = - Mg
B =1 sU, ¢ C
14 v 1 b 4
q
prS
B,,. — C ' (i=1,2,...m)
17i+4 28 xu
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1
B1'4+m+i ipuls Cx-
i
B.. = 155U, (2¢._ + C
21 2P o) zu
B.. = ipSU, C
22 T 2°°%1 z,
Byy = 0
B =(M+£ps?:c YU
24 1 z 71
5 q
s
B,, . = — C ’
27441 28 zu'
1
B lu,sc
2! 44m+i 2°¥1 z,
i
B =iu scec
31 C 2°71 m
u
B =-Luscc
32 T 2°°1 m
Byy = 0
1 -2
Byy = 7°5U; ¢ Gy
g
B u?s ¢
374+i 1° “m '
u.
1
1 . =2
Byrgam+i = ZPS € le-l
i
B lusc
i’1 T 2°Y1° “tu, ¢
lu
1
Bi’2 2° S Cu. '
1
[0}
B,,3 0 ’ (i=4,5,.
1
B 1 scc
i’4 7° uy !
q

' (i=1,2,...m)

(i=1,2,...m)

’ (i=1,2,...m)

(i=1,2,...m)

R (i=1,2,...m)

(i=4,5,...3+m)

(i=4,5,...3+m)

. «3+m)

(i=4,5,...3+m)
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= C - K, 6.., (i=4,5,...34m; j=1,2,...m)

==%Usc ,  (i=4,5,...3+m; j=1,2,...m)

45 ’ (ij=1,2,...4+2m)

8. ' (i=5+4m,...4+2m; j=1,2,...4+2m)

G: Dimension (4+2m) x c

G, . =

]
it

1 .2 .
ipUlS de y (j=1,2,...c)
j
2 . .
Sou’s S, . (3=1,2,...c)
J
2, = .
-]2—'-pUlS z c‘“c . (3=1,2,...c)
j
Lusc (i=1,2,...m; § = 1,2,...c¢)
79 1 u. ’ [ IR LY g Lg e
1s.
J
=0 , {(i=m,m+1l,...2m; j=1,2,...c)
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