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ynamics and Stability of a Two Degree of Freedom 
scillator With an Elastic Stop

A two degree of freedom oscillator with a colliding component is considered. The aim of the study is to investigate the dynamic 
behavior of the system when the stiffness obstacle changes to a finite value to an infinite one. Several cases are considered. First, in the 
case of rigid impact and without external excitation, a family of periodic solutions are found in analytical form. In the case of soft 
impact, with a finite time duration of the shock, and no external excitation, the existence of periodic solutions, with an arbitrary value 
of the period, is proved. Periodic motions are also obtained when the system is submitted to harmonic excitation, in both cases of 
rigid or soft impact. The stability of these periodic motions is investigated for these four cases.
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and Unforced System
1 Introduction
Vibrating systems with clearance between the moving parts are

frequently encountered in technical applications. These systems
with impacts are strongly nonlinear; they are usually modeled as a
spring-mass system with amplitude constraint. Such systems have
been the subject of several investigations, mainly in the simplest
case of a one degree of freedom system �1–4� and more seldom
for multidegree of freedom systems �5–8�. On the other hand, the
system behavior during the contact between the moving parts can
be described as rigid impact, usually associated with a restitution
coefficient, or modeled as soft impact, with a finite time duration
of the shock. Several other parameters like damping, external ex-
citation, influence the behavior of the system.

The work is the continuation of a previous paper �9�, in which
a two degree of freedom oscillator is considered. The nonlinearity
in this case comes from the presence of two fixed stops limiting
the motion of one mass. Assuming no damping and no external
excitation, the behavior of the system is investigated when the
obstacles stiffness changes from a finite value to an infinite one. In
both cases, a family of symmetrical periodic solutions, with two
impacts per period, is obtained in analytical form.

In the present paper, a two degree of freedom system in the
presence of one fixed obstacle is considered. Assuming that no
damping occurs, we investigate four cases: Unforced system with
rigid impact, unforced system with soft impact, forced system
�with harmonic excitation� with rigid impact and, at last, forced
system with soft impact. In all cases, periodic solutions are found
and stability results of these particular motions are obtained.

2 Problem Formulation
The system under consideration �Fig. 1� is a generalization of

the double oscillator investigated in the paper �9�. It consists of
two masses m1 and m2 connected by linear springs of stiffness k1
and k2. The displacement z1 of the mass m1 is limited by the
presence of a fixed stop. When z1 is greater than the clearance, a
contact of the first mass with the stop occurs; this contact gives
rise to a restoring force associated to a spring stiffness k3. The
mathematical model of the system is given by:
Mz̈ + Kz = F + P cos��t + ��, z = �z1,z2�t, F = � f�z1�
0

� ,

�1�

f�z1� = �− k3�z1 − 1� z1 � 1

0 z1 � 1
�, M = �m1 0

0 m2
�,

K = � k1 − k1

− k1 k1 + k2
�

P= �P1

P2
� and � are the amplitude and the phase angle of the har-

monic excitation.

3 Unforced System
Let us consider the system without external excitation �P=0�.

3.1 Rigid Impact. When the stiffness obstacle k3 tends to
infinity, a rigid impact of the first mass against the stop occurs.

Starting from initial positions z0= �1

y � and initial velocities ż0

= �u

w � �u�0�, corresponding to a contact of the first mass against

the stop, assuming a perfect elastic impact, the new positions zc
and the new velocities żc after the shock are obtained by:

�zc

żc
� = � I 0

0 E
��z0

ż0
�, I = �1 0

0 1
�, E = �− 1 0

0 1
� �2�

After the impact, the system performs a free motion defined by:

�z

ż
� = C�t��zc

żc
�, C�t� = ��1�t� �2�t�

�3�t� �1�t�
�, �i = �Bi�t��−1
�i = 1,2,3� �3�



� = � 1 1

�1 �2
�, B1�t� = �C1�t� 0

0 C2�t�
�,

B2�t� =	
S1�t�
�1

0

0
S2�t�
�2


 , �4�

B3�t�= Ḃ1�t�, Ci�t�=cos �it, Si�t�=sin �it �i=1, 2�.
In these formulas, ��1 ,�2� are the roots of the characteristic

equation: ���2��det�K−M�2�=0 while 	i= � 1
�i

� are defined by
�K−M�i

2�	i=0 �i=1,2�.
The following properties for the �i matrices hold:

�1
2�t� − �2�t��3�t� = I, �i�t�� j�t� = � j�t��i�t� for i, j = 1,2,3

�5�

Moreover, the coefficients Cij�t� of the 4 by 4 matrix C�t� satisfy
the property:

Cij�t� = Ci−2,j−2�t�, �i, j = 3,4� �6�

Let us investigate if for a set of initial conditions Z0= � z0

ż0
�, z0

= � 1
y

�, ż0= � u�0
w

�, it is possible to obtain a periodic solution of pe-
riod T, with one impact per period.

The free motion performed by the system after the rigid impact
finishes at time t=T when z1�T�=1 and ż1�T��0. Let us denote by

Zf = � zf

żf
� the positions and the velocities reached by the system at

t=T.
The condition to obtain such a periodic motion is given by:

Zf � C�T�Zc = Z0, Zc = H0Z0, H0 = � I 0

0 E
� �7�

Let us introduce the position Zs reached by the system from the
initial position Z0 after a backward motion of duration T: Zs=C
�−T�Z0. The condition �7� is equivalent to: Zs=Zc.

It results for the determination of the four scalar parameters
�y , u , w , T� the four scalar equations:

�− H0 + C�− T��Z0 = 0, Z0 = �1,y,u,w�t

or equivalently:

��1 − I�z0 − �2ż0 = 0

− �3z0 + ��1 − E�ż0 = 0
�i = �i�T� �i = 1,2,3� �8�

Taking into account the properties �5� of the �i matrices, the sys-
tem �8� leads to:

z0 = ��1 − I�−1�2ż0

�9��E + I�ż0 = 0

The last equation of �9� reduces to w=0. From the first one, y and
u are obtained in terms of the period:

y =
��2t2 − �1t1��1�2

�2�2t2 − �1�1t1
, u =

��1 − �2��1�2t1t2

�2�2t2 − �1�1t1
,

ti = tan��iT

2
� �i = 1,2� �10�

In case of rigid impact, a family of periodic solutions is obtained
for which the initial conditions are defined in terms of the period
and the initial velocity w of the nonimpacting mass is zero. For
these particular motions, the conditions giving the positions and
the velocities after the shock can be formulated by:

zc = z0, żc = − ż0 �11�
These results are similar to the results obtained in Ref. �9�. The
system considered in this previous paper is a symmetrical system

with respect to the position z1 of the first mass and it can be
expected that the obtained results are due to this property. But it is
not the real explanation because the system investigated now is
not symmetrical.

3.2 Soft Impact. Let us assume that the stiffness obstacle is
bounded. The mathematical model of the system is given by:
For z1�1

Mz̈ + Kz = 0 �12�

For z1�1

Mz̈ + K1z = K3 K1 = �k1 + k3 − k1

− k1 k1 + k2
� K3 = �k3

0
� �13�

Let us assume that the initial conditions are given by: Z0
= �1,y ,u ,w�t u�0.

A periodic solution is defined in two steps:

– For 0
 t
�, z1�1, the system is defined by the motion
equations �13�. The time duration � of this constraint motion
is defined by the condition:

z1��� = 1 �14�

Let us denote by Zc=Z���= �1,yc ,uc ,wc�t the value of the
parameters at the end of shock, with the condition uC�0.

– For �
 t
�+T, a free motion obtained from Eqs. �12� and
initial conditions Zc occurs. This motion finishes when z1��
+T�=1. Let us denote by Zf =Z��+T�= �1,yf ,uf ,wf�t the
value of the parameters at the end of free motion �uf �0�.
The condition to obtain a periodic orbit of period �+T is
given by

Zf = Z0 �15�
The piecewise linear systems �12� and �13� give the two parts
of the motion in analytical form.

– For 0
 t
�, the constraint motion is deduced from a modal
analysis of system �13�:

Z�t� = H�t��Z0 − d� + d, d = �d1,d2,0,0�t

d1 =
k3�k1 + k2�

k1k2 + k3�k1 + k3�
, d2 =

k3k1

k1k2 + k3�k1 + k2�
�16�

H�t� = �H1�t� H2�t�
H3�t� H1�t�

�, Hi�t� = �Gi�t��−1

�i = 1,2,3�, � = � 1 2

1 1
� �17�

G1�t� = �c1�t� 0

0 c2�t�
�, G2 =	

s1�t�
�1

0

0
s2�t�
�2


, G3 = Ġ1,

�18�

ci�t� = cos��it�, si�t� = sin��it�, �i = 1,2�

In these formulas, �1, �2, �1= � 1
1

�, �2= � 2

1
� define the char-

Fig. 1 Double oscillator
acteristic frequencies and the eigenvectors of the constraint



system �13�. For the Hi matrices, the properties �5� obtained
for the �i matrices hold, together with the property Hij�t�
=Hi−2,j−2�t�, �i, j=3,4� for the coefficients Hij�t� of the ma-
trix H�t�.

– For �
 t
�+T, the free motion is obtained from Z�t�=C�t
−��Zc where the matrix C is defined by formulas �3� and �4�
and Zc=H����Z0−d�+d.

Let us introduce the positions and the velocities Zs
= �z1s ,z2s , ż1s , ż2s�t of the system after a backward motion of dura-
tion T from the initial position Z0. The condition �15� of period-
icity is reformulated as

Zs � C�− T�Z0 = Zc �19�

Zc = �zc

żc
� = �H1�z0 − d0� + H2ż0 + d0

H3�z0 − d0� + H1ż0
�, d0 = �d1,d2�t

Zs = �zs

żs
� = � �1z0 − �2ż0

− �3z0 + �1ż0
�, Hi = Hi���, �i = �i�T�

�i = 1,2,3� �20�

The condition �19� is equivalent to

X1 = X2, Y1 = Y2 �21�

X1 � zc − z0 = �H1 − I��z0 − d0� + H2ż0, X2 � zs − z0 = ��1 − I�z0

− �2ż0

Y1 � żc + ż0 = H3�z0 − d0� + �H1 + I�ż0, Y2 � żs + ż0 = − �3z0

+ ��1 + I�ż0 �22�

From the properties �5� of �i and Hi, we deduce:

Yi = PiXi �i = 1,2�

P1 = H2
−1�H1 + I�, P2 = − �2

−1��1 + I� �23�

The condition �21� leads to

X1 = X2, P1X1 = P2X2 �24�

Two possible cases of periodic solutions can be deduced from
�24�, namely:

X1 = X2 = 0 or X1 = X2, det�P1 − P2� = 0 �25�

3.3 Existence of Periodic Motions (Soft Impact). Let us dis-
cuss the first conditions �25�. In this case, from �22�, we deduce:

zc = z0, żc = − ż0 �26�

The condition �14� is fulfilled and the initial conditions are ob-
tained from the equations:

�H1 − I��z0 − d0� + H2ż0 = 0

��1 − I�z0 − �2ż0 = 0 �27�

This system provides four scalar equations for the determination
of the five parameters �y, u, w, �, T�. It results that, as in the case
of rigid impact, T and hence the period can be chosen arbitrarily.
Moreover, the conditions �11� and �26� obtained at the end of the
shock are the same for both rigid and soft impacts. From �27�, we
deduce:

ż0 = − H2
−1�H1 − I��z0 − d0�

��1 − I + �2H2
−1�H1 − I��z0 = �2H2

−1�H1 − I�d0 �28�

The last equation �28�, after the elimination of y, provides a rela-

tion F�� ,T�=0 between the time duration � of the shock and the
time duration T of the free motion.
-The other case X1=X2, det�P1− P2�=0 leads to no solution �see

Appendix A�.
In both cases �soft or rigid impact�, a family of periodic mo-

tions is obtained, with an arbitrary value of the period. Moreover,
the conditions �26� obtained at the end of the shock for soft impact
are consistent with Newton rules of rigid impact �11� with a res-
titution coefficient equal to one, i.e., with assumption of ideal
elastic impact. This rather remarkable result has already been ob-
tained for the symmetrical system of Ref. �9�.

4 Forced System
Let us assume that the two masses are subjected to harmonic

external excitations of period 2� /�, constant amplitudes P1, P2
and constant phase angle �. From the results obtained in the pre-
vious paragraph, where a family of periodic orbits is found with
an arbitrary value of the period, it can be expected that for the
forced system, periodic solutions of period 2� /� exist.

4.1 Rigid Impact. Let us investigate the case of rigid impact.
Starting from the initial conditions Z0= �1,y ,u ,w�t �u�0�, the
conditions Zc= �1,yc ,uc ,wc�t after the shock are obtained from �2�
and the free motion performed by the system is given by:

z = �1�t��z0 − R cos �� + �2�t��żc + R� sin �� + R cos��t + ��

ż = �3�t��z0 − R cos �� + �1�t��żc + R� sin �� − R� sin��t + ��
�29�

where R= �R1 ,R2�t is the amplitude of the response defined by:

R1 = A1 + A2, R2 = �1A1 + �2A2

Ai =
P1 + �iP2

��i
2 − �2��m1 + �i

2m2�
, �i = 1,2� �30�

The free motion finishes at time t=T when z1�T�=1, ż1�T��0. Let
us denote by Zf = �zf , ż f�t the positions and the velocities reached
by the system at this time. The condition to obtain a periodic
motion of period T is:

Zf = Z0
or :

z0 = �1�T��z0 − R cos �� + �2�T��żc + R� sin �� + R cos��T + ��

ż0 = �3�T��z0 − R cos �� + �1�T��żc + R� sin �� − R� sin��T + ��

żc = Eż0 �31�

Let us assume that T=2� /�, �=0, żc=−ż0. A periodic motion of
period 2� /� is obtained if the initial conditions Z0= �1,y ,u ,0�t

are defined by the system:

��1 − I��z0 − R� − �2ż0 = 0 �32�

�3�z0 − R� − ��1 + I�ż0 = 0

�i = �i�2�/��, �i = 1,2,3�

Taking into account the properties �5� of the �i matrices, this
system reduces to

ż0 = �2
−1��1 − I��z0 − R� �33�

and the corresponding values of y and u are obtained:

y = R2 +
��2t2 − �1t1��1�2

�2�2t2 − �1�1t1
�1 − R1� , �34�

u = �1 − R1�
��1 − �2��1�2t1t2

�2�2t2 − �1�1t1
, ti = tan��i�

�
� �i = 1,2�
Remark: In more general cases, the impact is described by a



restitution coefficient r �0�r�1�. The initial conditions and the
phase angle related to a periodic solution of period 2� /� can also
be obtained in analytical form �10�. A similar solution has been
studied in paper �6�.

4.2 Soft Impact. When the stiffness obstacle is bounded, the
motion equations of the system are given by:

Mz̈ + K1z = K3 + P cos��t + �� z1 � 1

Mz̈ + Kz = P cos��t + �� z1 � 1 �35�

From the initial condition Z0= �1,y ,u ,w�t �u�0�, the solution is
defined in two parts:

– For 0� t��, z1�1, the solution is given by:

z = H1�t��z0 − d0 − Q cos �� + H2�t��ż0 + Q� sin �� + d0

+ Q cos��t + ��

ż = H3�t��z0 − d0 − Q cos �� + H1�t��ż0 + Q� sin ��

− Q� sin��t + �� �36�

Q= �Q1 ,Q2�t is the response amplitude defined by:

Q1 =
P1�1 + 2

2� + P2�1 + 2�
��1

2 − �2��m1 + m21
2�

,

�37�

Q2 =
P1�1 + 2� + P2�1 + 1

2�
��2

2 − �2��m2 + m12
2�

The time duration � of this motion is obtained from the con-
dition z1���=1. Let us denote Zc= �1,yc ,uc ,wc�t the value of
the parameters at t=� �uc�0�.

– For �� t��+T, the motion of the system is defined by:

z = �1�t − ���zc − R cos �� + �2�t − ���żc + R� sin ��

+ R cos��t + ��

ż = �3�t − ���zc − R cos �� + �1�t − ���żc + R� sin ��

− R� sin��t + �� �38�

where R= �R1 ,R2�t is defined by �30� and �=��+�. This
motion finishes at time t=�+T when z1��+T�=1, ż1��+T�
�0. If Zf = �zf , ż f�t denote the positions and the velocities
reached by the system at this time, the condition to obtain a
periodic motion of period �+T is Zf =Z0. Let us assume that
�+T=2� /�, �=−�� /2. At the end of the first part of the
motion �t=��, the positions and the velocities are given by:

zc = H1�z0 − d0 − Q cos �̃0� + H2�ż0 − Q� sin �̃0� + d0

+ Q cos �̃0

żc = H3�z0 − d0 − Q cos �̃0� + H1�ż0 − Q� sin �̃0� − Q� sin �̃0

�̃0 = ��/2, Hi = Hi��� �i = 1,2,3� �39�

At the end of the second part of the motion �t=2� /��, we
obtain:

zf = �1�zc − R cos �̃0� + �2�żc + R� sin �̃0� + R cos �̃0

ż f = �3�zc − R cos �̃0� + �1�żc + R� sin �̃0� + R� sin �̃0

�i = �i�2�/� − �� �i = 1,2,3� �40�

The conditions of periodicity are reformulated as:

˜ ˜ ˜ ˜
X1 = X2, Y1 = Y2 �41�
X̃1 � zc − z0 = �H1 − I��z0 − d0 − Q cos �̃0�

+ H2�ż0 − Q� sin �̃0�

Ỹ1 � żc + ż0 = H3�z0 − d0 − Q cos �̃0�

+ �H1 + I��ż0 − Q� sin �̃0� �42�

X̃2 � zs − z0 = ��1 − I��z0 − R cos �̃0� − �2�ż0 − R� sin �̃0�

Ỹ2 � żs + ż0 = − �3�z0 − R cos �̃0� + ��1 + I��ż0 − R� sin �̃0�

Zs = �zs, żs�t = C�− T�Z0 �43�
As in the case of an unforced system taking into account the
properties of the Hi and �i matrices, the solution of system �41� is
given by:

X̃1 = X̃2 = 0, Ỹ1 = Ỹ2 = 0 �44�
We deduce for the forced system the existence of a periodic mo-
tion of period 2� /� for which the conditions at the end of the
shock are zc=z0, żc=−ż0. The time duration � of the shock and the
initial conditions �y ,u ,w� are obtained from the first part of sys-
tem �44�:

ż0 = Q� sin �̃0 − H2
−1�H1 − I��z0 − d0 − Q cos �̃0�

��2
−1��1 − I� + H2

−1�H1 − I��z0 = �Q − R�� sin �̃0

+ �2
−1��1 − I�R cos �̃0 + H2

−1�H1 − I��d0 + Q cos �̃0�
�45�

These formulas give the relations �28� when Q=R=0 �unforced
system�.

5 Stability of Periodic Motions (Rigid Impact)

5.1 Unforced System. Let us consider a periodic motion of

period T related to initial conditions z00= � 1
y0

�, ż00= � u0

0
�, where z00,

ż00 are defined by:

��1 − I�z00 − �2ż00 = 0 �i = �i�T�

− �3z00 + ��1 − E�ż00 = 0 �46�
Let us consider the perturbed motion defined by a set of new
initial conditions

z0 = z00 + dz0

ż0 = ż00 + dż0
where dz0 = �0

y
�, dż0 = �u

w
� �47�

This motion is defined for t�0, by:

z = �1�t�z0 + �2�t�Eż0

ż = �3�t�z0 + �1�t�Eż0

This motion ends at t=T+dT, when z1�T+dT�=1 and ż1�T+dT�
�0. Let us denote by zf, ż f the positions and the velocities of the
system at this time.

zf = �1�T + dT�z0 + �2�T + dT�Eż0

ż f = �3�T + dT�z0 + �1�T + dT�Eż0

Assuming small perturbations dz0, dż0 of the initial conditions,

dzf = zf − z00 = �1dz0 + �2Edż0 + L1dT

dżf = ż f − ż00 = �3dz0 + �1Edż0 + L2dT �48�

˙ ˙ ˙
L1 = �1z00 + �2Ez00



L2 = �̇3z00 + �̇1Eż00, dzf = � 0

yf
�, dżf = �uf

wf
�

�̇i = �̇i�T� �49�

The relations �̇1=�3, �̇2=�1, �̇3=�2
−1�1�3, Eż00=−ż00 and �46�

leads to the relations:

L1 = ż00, L2 = �2
−1��1 + I�ż00

From �48�, after the elimination of dT, we deduce:

yf = C22y − C23u + C24w

C12yf − C13uf − C14wf = C12y − C13u + C14w

�C22 + 1�yf − C23uf − C24wf = �C22 + 1�y − C23u + C24w �50�

or AXf =BX, Xf =
t�yf ,uf ,wf�, X= t�y ,u ,w�

A = 	 1 0 0

C22 − C23 − C24

C12 − C13 − C14

, B = 	C22 − C23 C24

1 0 0

C12 − C13 C14



The stability of the periodic impact solution is determined by the
eigenvalues of the matrix A−1B. If all the eigenvalues are inside
the unit circle, the periodic solution is stable. If one of them is
outside the unit circle, the solution is unstable. Critical cases occur
if some eigenvalues lie on the unit circle, the other ones being
strictly inside this circle.

Let us introduce the characteristic polynomial P��� of the ma-
trix A−1B:

P��� � det�A−1B − �I3� = − ��3 + b2�2 + b1� + b0�

�I3 unitarian matrix of order 3�

P��� = 0 is equivalent to D��� = 0, D��� � det�B − �A�

From the properties: D�1��det�B−A�=0, det�A�=det�B�, we de-
duce that one eigenvalue of A−1B is 1 and b0�−det�A−1B�=−1.
The characteristic polynomial of A−1B takes the following form:

P��� = �1 − ����2 + �1 + b2�� + 1� �51�

It results that when �= �b2−1��b2+3� is positive, the two other
eigenvalues of A−1B are real leading to the instability of the peri-
odic solution. For ��0, A−1B has a complex conjugate pair of
eigenvalues on the unit circle.

5.2 Forced System. A periodic solution of period 2� /� is

obtained for initial conditions z00= � 1
y0

�, ż00= � u0

0
�, and phase angle

�0=0, �y0 ,u0� defined by �34�.
Let us consider a perturbed motion related to initial conditions

�47� and phase angle �=�0+d�. The corresponding free motion
performed by the system for t�0, is obtained from �29�, with żc
=Eż0. This motion ends at t=2� /�+dT, when z1�2� /�+dT�=1
and ż1�2� /�+dT��0. Let us denote by zf, ż f the positions and
the velocities of the system at this time. Assuming small pertur-
bations of the initial conditions and of the phase angle:

dzf = zf − z00 = �1dz0 + �2�Edż0 + R�d�� + n1dT

dżf = ż f − ż00 = �3dz0 + �1�Edż0 + R�d�� − R�d�� + n2dT

d�� = �dT + d�

n1 = ż00 = �u0

0
�, n2 = �2

−1��1 + I�n1, � j = � j�2�/�� �j = 1,2,3�

�52�

From �52�, after the elimination of dT, we deduce the matrix N0

giving the linear correspondence between the initial perturbations
Y = �y ,u ,w ,d��t and the final ones Y f = �yf ,uf ,wf ,d���t:

Y f = N0Y, N0 = Ã−1B̃

Ã =	
1 0 0 0

C12 − C13 − C14 − �l1

C22 − C23 − C24 − �l2

0 0 0 1

 ,

B̃ =	
C22 − C23 C24 �l2

C12 − C13 C14 �l1

1 0 0 0

− �C12 �C13 − �C14 1 − ��l1



l1 = C13R1 + C14R2, l2 = C23R1 + C24R2, � =

�

u0
�53�

Let us introduce the characteristic polynomial of the matrix N0:

P̃��� � det�N0 − �I4� = �4 + a3�3 + a2�2 + a1� + a0 �54�

From the property det�Ã�=det�B̃�=det��2�,we deduce

a0 = P̃�0� = det�Ã−1B̃� = 1

In this case it is impossible that all the eigenvalues of the matrix
N0 lie strictly inside the unit circle. The periodic solution is un-
stable except if all these eigenvalues lie on the unit circle. More-

over, for any � �see Appendix B� det�Ã−�B̃��det�B̃−�Ã�.
It results that P̃�����4P̃�1/�� and hence a1=a3. The condi-

tions under which all the eigenvalues of N0 lie on the unit circle
are �Appendix B�:

�a3� 
 4, a2 − 2a3 + 2 � 0, a2 + 2a3 + 2 � 0,

a3
2 − 4a2 + 8 � 0 �55�

In the more general case of a restitution coefficient r �0�r�1�,
the stability conditions of periodic solutions have been obtained in
Ref. �10�.

6 Stability of Periodic Motions (Soft Impact)

6.1 Unforced System. When the stiffness of the obstacle is
bounded and when there is no external excitation, the mathemati-
cal model of the system is given by �12� for the free motion and
�13� for the constraint motion.

Let us consider a periodic motion of period �0+T0=2� /�,
where � is an arbitrary positive value in this case. This periodic

solution is related to the initial conditions z00= � 1
y0

�, ż00= � u0

w0
�,

where �y0 ,u0 ,w0 ,�0 ,T0� are defined in terms of � by �28� and the
condition �0+T0=2� /�.

Let us consider the perturbed motion defined by a set of new
initial conditions �47�.

This motion is defined in two steps:

– For 0
 t
�=�0+d�, the system performs a constraint mo-
tion ending when z1���=1 and ż1����0. Let us denote by

zc = z00 + dzc, żc = − ż00 + dżc,
�56�

dzc = � 0

yc
�, dżc = �uc

wc
�

the positions and the velocities reached by the system at this

time.



– For �
 t
2� /�+d�, the system performs a free motion fin-
ishing for z1�2� /�+d��=1, ż1�2� /�+d���0. Let us denote
by zf =z00+dzf, ż f = ż00+dżf the positions and the velocities
reached by the system at this time.

Assuming small perturbations dz0, dż0 of the initial conditions,

dzc = H1dz0 + H2dż0 + p1d�

dżc = H3dz0 + H1dż0 + p2d�
�Hi = Hi��0�,i = 1,2,3� �57�

p1 = Ḣ1�z00 − d0� + Ḣ2ż00 = − ż00

p2 = Ḣ3�z00 − d0� + Ḣ1ż00 = − H2
−1�H1 + I�ż00

�Ḣi = Ḣi��0�,i= 1,2,3�

�58�

In a same way

dzf = �1dzc + �2dżc + p3d�, p3 = �̇1z00 − �̇2ż00 = ż00

dżf = �3dzc + �1dżc + p4d�, p4 = �̇3z00 − �̇1ż00 = �2
−1��1 + I�ż00

��i = �i�T0�,�̇i = �̇i�T0�,i = 1,2,3� �59�

From �57� and �59�, after the elimination of d� and d�, we deduce
the correspondence between the initial perturbations �y u w�t and
the final ones �yfufwf�t:

	 yf

uf

wf

 = A3	 y

u

w

, A3 = Ā2Ā1, Āi = Mi

−1Ni, �i = 1,2� �60�

M1 = 	 1 0 0

H12 − H13 − H14

H22 − H23 − H24

 ,

�61�

N1 = 	H22 − �̃H12 H23 − �̃H13 H24 − �̃H14

H12 H13 H14

1 + �̃H12 �̃H13 �̃H14

, �̃ =

w0

u0

M2 and N2 are deduced, respectively, from the expression of M1
and N1 by substituting the terms Hij by the terms Cij. Let us

introduce the characteristic polynomial P̄��� of the matrix A3.
From the property:

det�Mi� = − det�Ni�, �i = 1,2� �62�

we deduce that P̄�0�=det�A3�=1. It is not possible in this case that
all the eigenvalues of A3 lie strictly inside the unit circle.

6.2 Forced System. Let us consider a periodic solution of
system �35�, of period �0+T0=2� /�, with �=−�̃0=−��0 /2, re-

lated to the initial conditions z00= � 1
y0

�, ż00= � u0

w0
� where

��0 ,y0 ,u0 ,w0� are deduced from the system �45�.
The stability of this periodic solution is investigated by consid-

ering the motion related to the new initial conditions �47� and new
phase angle �=−��0 /2+d�.

This motion is defined in two steps:

– For 0
 t
�=�0+d�: z, ż are defined by �36�. This motion
ends when z1���=1 and ż1����0. The positions and the ve-
locities reached by the system at this final time are defined by
�56�.

– For �
 t
2� /�+d�, the motion is defined by �38�. This
motion ends when z1�2� /�+d��=1, ż1�2� /�+d���0. Let
us denote by zf =z00+dzf, ż f = ż00+dżf, the positions and the
velocities reached by the system at this time.

˙
Assuming small perturbations dz0, dz0 of the initial conditions,
dzc = H1dz0 + H2dż0 + p̃1d� + q1d�

dżc = H3dz0 + H1dż0 + p̃2d� + q2d�
�Hi = Hi��0�,i = 1,2,3�

�63�

p̃1 = − ż00, p̃2 = − H2
−1�H1 + I��ż00 − Q� sin �̃0� − Q�2 cos �̃0

q1 = − �H1 + I�Q sin �̃0 + H2Q� cos �̃0

q2 = H2
−1�H1 − I�q1

�q1 = �q11,q12�t�

In a same way

dzf = �1dzc + �2dżc + p̃3dT + q3d��

dżf = �3dzc + �1dżc + p̃4dT + q4d��
��i = �i�T0�,i = 1,2,3�

�64�

dT = d� − d�, d�� = �d� + d�

q3 = ��1 + I�R sin �̃0 + �2R� cos �̃0

q4 = �2
−1��1 − I�q3

�q3 = �q31,q32�t�

p̃3 = ż00 − �q3

p̃4 = �2
−1��1 + I��ż00 − R� sin �̃0� − ��2

−1��1 − I�q3 − R�2 cos �̃0

�p̃3 = �p̃31, p̃32�t�

From �63� and �64�, after the elimination of d� and dT, we deduce
the matrix A3 �see Appendix C� giving the correspondence be-
tween the initial perturbations and the final ones:

	
yf

uf

wf

d��

 = Ã3	

y

u

w

d�

 Ã3 = � Ã2 Ñ2

M̃3 Ñ3

� �65�

The stability of the periodic motion is determined by the eigen-

values of the matrix Ã3.

7 Numerical Results
Some numerical investigations are performed for the following

values of the parameters: k1=k3=1, k2=5, m1=1, m2=2, P1
=2/3, P2=0. The corresponding eigenvalues of the free system
are: �1=1.7958, �2=0.8805, while the eigenvalues of the con-

Fig. 2 Actual periodic impact solution „rigid impact, unforced
system…
straint system are: �1=1.8347, �2=1.2783. An example of peri-



odic solutions obtained for forced and unforced systems is shown
in Ref. �10� in the rigid impact and soft impact cases. Stability
conditions are investigated in the case of rigid impact, for both
unforced and forced systems. In both cases, the initial conditions
�10� �unforced system� and �34� �forced system� are related to an
actual periodic solution of period T only if u0�0, z1�t��1, 0
� t�T. The initial velocity of the impacting mass is reformulated
as:

u0NF =
��1 − �2�x1x2

D̃
, D̃ = �2x2y1 − �1x1y2

�unforced system� �66�

xi = �i sin��iT/2�, yi = cos��iT/2�

u0F = �1 − R1�u0NF, T = 2�/� �forced system� �67�

In both systems, limiting cases are obtained for xi=0, �i=1, 2� or
Ti=2k� /�i, �k=1,2 ,…�. On the other hand, u0NF and u0F are not

defined if D̃=0. The corresponding motion of the impacting mass
is given by:

z1NF�t�

=
�2x2 cos �1�t − T/2� − �1x1 cos �2�t − T/2�

D̃
�unforced system�

z1F�t� = R1 cos �t + �1 − R1�z1NF�t�, T = 2�/� �forced system�
�68�

The motion of the impacting mass is symmetrical with respect to
T /2 �� /� for the forced system� and the maximum value of z1�t�
is obtained at this point. For the unforced system, the behavior of
u0,z1 max−1 and � �stability condition� are investigated in terms of
the period T. Figure 2 is related to the interval �3.2,3.8� which
contains the value T1=2� /�13.4989 for which u0=0. Figure 3
shows the behavior of � for 3.2�T�T1. Figure 4 is a zoom of the
last figure in the interval �3.49,T1� which includes a bifurcation
value T1�3.4911 of the period for which a change of the stability
occurs. �For this value, two eigenvalues of the matrix A−1B are
equal to −1.� For the forced system, the behavior of u0,z1 max−1
�Fig. 5� and the stability conditions �Fig. 6� depends on the value

Fig. 3 Stability of the periodic solution „rigid impact, unforced
system…
of � or equivalently on the value of T=2� /�. Figure 5 is related
to the interval 5�T�6 �1.0472���1.2566� while in Fig. 6, the
functions

n1� = 16 − a3
2, n2� = a2 − 2a3 + 2,

n3� = a2 + 2a3 + 2, n4� = a3
2 − 4a2 + 8

occurring in the stability conditions �55� are plotted in this inter-
val.

Three bifurcation values �T2�5.0809, T3�5.2002, and T4�
5.8109� appear in this interval: The two first values are related
to the case of two eigenvalues of the matrix N0 equal to −1 while

the last value is related to the case of complex eigenvalues �̃k

�k=1, . . ,4� on the unit circle, with �̃1= �̃2=1/ �̃3=1/ �̃4. Stability
and bifurcation conditions in the case of soft impact will be the
subject of further numerical investigations.

Fig. 4 Bifurcation value of the period „rigid impact, unforced
system…
Fig. 5 Actual periodic solution „rigid impact, forced system…



Appendix A: Discussion About the Existence of Periodic
Motions (Soft Impact, Unforced System)

The second solution arising from conditions �25� is defined by:

PX1 = 0, det�P� = 0, X1 = X2, z1c = 1

P = �Pij� = �H2
−1�H1 + I� + �2

−1��1 + I�� �A1�

From PX1=0 and X1= � X11

X12
� where X11=0 and X12�0, we deduce:

P12 = 0, P22 = 0 �A2�

These two equations give discrete values of � and T independent
of the initial conditions. y , u , w are defined by three scalar equa-
tions deduced from the conditions:

X1 = X2, X21 = 0

X2 = �X21

X22
� �A3�

Let us introduce

P1 = ��1 a

�2 b
�, P2 = ��1 a

�2 b
� �A4�

where ��1,�2,�1,�2,a,b� are deduced from the definition �23� of
P1 and P2 and the property �A2�. From �A3�, we deduce

�H1 − �1�z0 + �H2 + �2�ż0 = �H1 − I�d0 �A5�

− yC12 + uC13 + wC14 = C11 + 1 �A6�

From H1+ I=H2P1, �1− I=�2P2, �A5� gives:

H2� + �2� = �H1 − I�d0 �A7�

� = P1z0 + ż0 = ��1 + p

�2 + q
� ,

� = P2z0 + ż0 = ��1 + p

�2 + q
�,

p = u + ay

q = w + by

� p �

Fig. 6 Bifurcation values of the period T=2� /� „rigid impact,
forced system…
From �A7� it is possible to deduce Q= q :
Q = �H2 + �2�−1��H1 − I�d0 − H2�0 − �2�0�, �0 = ��1

�2
�,

�0 = ��1

�2
� �A8�

The condition �A6� can also be expressed in terms of p and q:

C13p + C14q = C11 − 1 �A9�
Equations �A8� and �A9� provide 3 scalar equations for the deter-
mination of the two parameters p and q. The condition of com-
patibility for this system is given by:

det	C13 C14 C11 − 1

H13 H14 L̃1

H23 + C23 H24 + C24 L̃2


 = 0

L̃1 = d2H12 + �1 − H11��1 − d1�

L̃2 = �d1 − 1�H21 + d2�H22 − 1� + C21

This compatibility condition is not fulfilled in the general case and
the problem has no solution.

Appendix B: Properties of the No Matrix (Rigid Impact,
Forced System)

det�B̃ − �Ã�

= �
C22 − � − C23 C24 �l2

C12�1 − �� C13�� − 1� C14�� + 1� �l1�� + 1�
1 − �C22 �C23 �C24 �l2�

− �̃C12 �̃C13 − �̃C14 1 − � − �l1�̃
��B1�

det�Ã − �B̃�

= �
1 − �C22 �C23 − �C24 − ��l2

C12�1 − �� C13�� − 1� − C14�� + 1� − �l1�� + 1�
− � + C22 − C23 − C24 − �l2

��̃C12 − ��̃C13 ��̃C14 1 − � + �l1�̃�
�
�B2�or,

det�Ã − �B̃�

= �
1 − �C22 �C23 − �C24 − ��l2

C12�1 − �� C13�� − 1� − C14�� + 1� − �l1�� + 1�
− � + C22 − C23 − C24 − �l2

�̃C12 − �̃C13 − �̃C14 1 − � + �l1�̃
�

�B3�
It is not difficult to show, after some permutations of rows and

columns in �B3�, that det�Ã−�B̃��det�B̃−�Ã�. It results that

P̃�����2Q��̃�, Q��̃�� �̃2+a3�̃+a2−2, �̃=�+1/�. Let us as-

sume that the roots �̃k �k=1, . . ,4� of P̃��� are on the unit circle:

�̃1=ei�1, �̃2=ei�2, �̃3=1/ �̃1, �̃4=1/ �̃2. The roots of Q��̃� in this
case are �̃ j =2 cos � j, �j=1, 2�. We deduce that all the eigenvalues
of the matrix N0 are on the unit circle if the roots of Q��̃� are real
and between −2 and 2. From this, we deduce the conditions �55�.

Appendix C: Obtention of the Ã3 Matrix (Soft Impact,
Forced System)

Ã2 = �C̃ − p̄M̄2�Ã1 + ��q̃�̃2 − �̄2p̃�M̄1,

˜ ˜ ¯ ¯ ˜ ˜ ˜ ˜ ˜
N2 = �C − pM2�N1 + �1�2q − �3p



M̃3 = ��M̄1 − M̄2Ã1�, Ñ3 = 1 + ���1 − �3 − M̄2Ñ1�

p = �− w0

p̃2
�, p̃ = �p̃32

p̃4
�, q = �q12

q2
�, q̃ = �q32

q4
�, p̄ = p̃ + �q̃

�1 =
q11

u0
, �̃1 = 1 + ��1, �2 = p̃31 + �q31, �̄2 = �

q31

�2
,

�̃2 = 1 − �̄2, �3 =
�̄2�̃1

�

H̃ = 	H22H23H24

H32H11H12

H42H21H22

, C̃ = 	C22C23C24

C32C11C12

C42C21C22

 ,

M̄1 =
1

u0
�H12H13H14�, M̄2 =

1

�2
�C12C13C14�

Ã = H̃ + pM̄ , Ñ = q + � p �C1�
1 1 1 1
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