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We present a comprehensive analytical theory of localized nonlinear excitations—dark solitons—supported

by an incoherently pumped, spatially homogeneous exciton-polariton condensate. We show that, in contrast to

dark solitons in conservative systems, these nonlinear excitations “relax” by blending with the background at a

finite time, which critically depends on the parameters of the condensate. Our analytical results for trajectory and

lifetime are in excellent agreement with direct numerical simulations of the open-dissipative mean-field model.

In addition, we show that transverse instability of quasi-one-dimensional dark stripes in a two-dimensional

open-dissipative condensate demonstrates features that are entirely absent in conservative systems, as creation

of vortex-antivortex pairs competes with the soliton relaxation process.
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I. INTRODUCTION

Bose-Einstein condensates of (exciton-)polaritons created

in semiconductor microcavities in a strong light-matter inter-

action regime are in the focus of exciting new research area,

where quantum and nonequilibrium properties can be studied

within the same physical system [1,2]. The nonequilibrium,

open-dissipative behavior is intrinsic to this system since

polaritons are subject to rapid radiative decay, and their pop-

ulation is maintained due to an optical pumping. On the other

hand, the ability of these bosoinc quasiparticles to condense

into a macroscopically occupied quantum coherent state has

prompted vigorous investigations of analogies between the po-

lariton condensate and intrinsically equilibrium, conservative

condensates of atomic gases, which exist under conditions of

careful isolation from the environment [3–5]. Many features of

atomic BEC have been successfully demonstrated in polariton

condensates, such as long-range coherence [6,7], superfluid

flow [8,9], and quantized vortices [10–12].

Nonlinearity of the polariton condensate is inherited from

strongly and repulsively interacting excitons. This results in

the nonlinear behavior akin to that of matter waves (atomic

condensates) with a positive scattering length or optical waves

in a nonlinear defocusing media. Consequently, the most basic

form of a nonlinear collective excitation in this system is a dark

soliton characterized by a density dip and an associated phase

gradient (see Fig. 1). So far, dark solitons and their dynamics

have been observed [13–16] and analyzed [17,18] mostly in

the polariton condensates coherently and resonantly driven by

a pumping laser. Formation and behavior of dark solitons in an

incoherently pumped polariton condesate with a spontaneously

established coherence, has not been explored in experiments

so far, although experimentally feasible schemes for their

generation upon scattering of the condensate on a defect [19]

or a potential step [20] have been proposed. In addition,

several numerical studies [20–22] suggest that analogies

between dark solitons in polariton condensates and those in

matter or optical waves [23–25] cannot be taken too far. The

open-dissipative nature of polariton condensates lends unique,

and so far little explored, features to localized nonlinear

excitations.

The purpose of this paper is twofold. First, we analyze, both

analytically and numerically, dynamics of one-dimensional

dark solitons in a nonresonantly excited, spatially homo-

geneous polariton condensate. By taking into account the

coupling between a condensate and an incoherent reservoir

of “hot” polaritons, we obtain a number of analytical results

that elucidate the influence of open-dissipative nature of the

system on the behavior of localized nonlinear excitations. In

particular, we show that dark solitonlike structures have a finite

lifetime, and do not remain spatially localized. Secondly, we

perform a numerical study of the stability of the quasi-one-

dimensional dark soliton stripes to transverse perturbations in

a two dimensional system. We show that the hallmark of dark

solitons in two- (or three-) dimensional optical and matter

waves, the so-called snake instability leading to formation

of vortex pairs [26,27], can be completely inhibited in two-

dimensional open-dissipative condensates.

The paper is organized as follows. In Sec. II, we consider

the mean-field model of a polariton condensate subject to

incoherent off-resonant optical excitation, discuss the ho-

mogeneous steady state and introduce appropriate scalings.

In Sec. III, we revisit the modulational stability analysis of

the homogeneous state by means of Bogoliubov-de Gennes

approach, and derive a simple analytical expression for the

boundary of a modulationally unstable region in the parameter

space. Next, in Sec. IV, we construct general asymptotic theory

for the dynamics of dark solitonic excitations supported by
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FIG. 1. Schematics of the condensate density, |�|2, and phase of

the condensate order parameter (macroscopic wave function), arg(�),

corresponding to a stationary one-dimensional dark soliton (solid) and

a moving “gray” soliton (dotted line).
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a homogeneous condensate. By comparison with numerical

simulations, we demonstrate validity of the analytical theory in

the regimes of weak and strong pumping. Section V focuses on

transverse instability of quasi-one-dimensional dark solitons in

a two-dimensional condensate and on the effect of competing

time scales between the processes of soliton relaxation and

instability development. Finally, we conclude with a brief

summary of our results.

II. THE MODEL

Within a mean-field description, the macroscopic wave

function, �(�r,t), of an incoherently, far off-resonantly

pumped polariton condensate is governed by a generalized

open-dissipative Gross-Pitaevskii (GP) equation coupled to

a rate equation for a density, nR(�r,t), of an uncondensed

reservoir of high-energy near-excitonic polaritons [2,28]:

i�
∂�

∂t
=

[

− �
2

2M
� + U (�r,t) + i�

2
(RnR − γC)

]

�, (1)

∂nR

∂t
= −(γR + R|�|2)nR + P (�r,t), (2)

where U (�r,t) = gC |�|2 + gRnR is an effective potential,

combining blueshifts due to polariton condensate interactions

and polariton-reservoir interactions. Here, gC is the strength

of nonlinear interaction of polaritons, gR is the condensate

coupling to the reservoir, R stands for the stimulated scattering

rate, and γC is the rate of loss of condensate polaritons. High-

energy, excitonlike polaritons are injected into the reservoir by

laser pump P(�r,t) and relax at the reservoir loss rate γR .

We recall that under continuous-wave (cw) and spatially

uniform pumping, P (�r,t) = P0 = const, the steady-state so-

lution is sought in the form [2,28]

�(�r,t) = �0 =
√

n0
Ce−i(E0/�)t , nR(�r,t) = n0

R, (3)

where quantities n0
C and n0

R are constant. For a weak pump P0,

the condensate is absent n0
C = 0, while the reservoir density

is proportional to the pump intensity n0
R = P0/γR . Exact

balance of loss and gain is achieved at the threshold value

Pth = γRγC/R. Above this threshold, when P0 > Pth, the

solution (3) with n0
C = 0 becomes unstable and the condensate

appears. The steady homogeneous condensate and reservoir

densities are expressed as follows:

n0
C = (P0 − Pth)/γC, n0

R = nth
R = γC/R (4)

and the condensate energy is

E0 = gCn0
C + gRnth

R . (5)

The model in (1) and (2) can be rewritten in a dimensionless

form by using the scaling unit of healing length rh = �/(Mcs)

and time τ0 = rh/cs , where cs = (gCn∗
C/M)1/2 is a local sound

velocity in the condensate, and n∗
C is a characteristic value

of the condensate density. The dimensionless equations for

the normalized condensate wave function �̄ = �(n∗
C)−1/2 and

reservoir density n̄R = nR/n∗
C take the form

i
∂�̄

∂t
=

[

− 1

2
� + Ū + i

2
(R̄n̄R − γ̄C)

]

�̄, (6)

∂n̄R

∂t
= −(γ̄R + R̄|�̄|2)n̄R + P̄ , (7)

where Ū = U/(gCn∗
C), P̄ = �P/(gCn∗2

C ), and we omitted the

bars over the dimensionless time variable. The corresponding

dimensionless parameters are

ḡR = gR

gC

, γ̄C = �γC

gCn∗
C

= γC

γR

γ̄R, R̄ = �R

gC

. (8)

For a cw background, it is convenient to choose n∗
C ≡ n0

C .

Thus the homogeneous steady state (3)–(5) can be rewritten as

�̄0 = exp(−iω̄0t), ω̄0 = 1 + ḡRn̄th
R , n̄th

R = γ̄C/R̄. (9)

Our aim for the rest of this work is to construct a theory for

propagation and stability of nonlinear waves—finite amplitude

collective excitations (such as dark solitons, quantum vortices,

etc.) of a homogeneous condensate under incoherent uniform

pumping. To this end, we consider perturbations of the

condensate wave function and the reservoir density in the

following general form:

�̄ = �̄0(t)ψ(�r,t), n̄R = n̄th
R + mR(�r,t). (10)

The perturbations ψ(�r,t) and mR(�r,t) are governed by the

dynamical equations:

i
∂ψ

∂t
=

[

− 1

2
� − (1 − |ψ |2) + ḡRmR + i

2
R̄mR

]

ψ,

(11)

∂mR

∂t
= γ̄C(1 − |ψ |2) − γ̄RmR − R̄|ψ |2mR, (12)

where γ̄R = R̄/(P0/Pth − 1).

III. STABILITY OF A HOMOGENEOUS CONDENSATE

Before analyzing dynamics of collective excitations, it is

essential to establish that the homogeneous background itself

is stable with respect to weak perturbations [2,28,29]. Here, we

revisit known results on spectra of elementary excitations for

the open-dissipative model and derive a new analytical crite-

rion for modulational stability of a homogeneous background.

The system of equations (11) and (12) has a solution |ψ |2 =
1, mR =0, corresponding to a homogeneous distribution of the

condensate density nC and the polariton reservoir density nR .

The linear stability of this stationary state can be analyzed by

means of the Bogoliubov-de Gennes approach [3,4], by intro-

ducing small perturbations of the homogeneous background

of the form [28]

ψ = 1 + ǫ
∑

�k
[a�ke

(−iωt+i�k�r) + b�ke
(iω∗t−i�k�r)], (13)

mR = ǫ
∑

�k
[c�ke

(−iωt+i�k�r) + c∗
�ke

(iω∗t−i�k�r)], (14)

where ǫ ≪ 1 is a small parameter. Substituting (13), (14)

into (11), (12) and keeping terms linear in ǫ, we obtain the

eigenvalue problem for elementary excitations [28]. Solution

of the eigenvalue problem yields the dispersion relation, which
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is a cubic equation with respect to ω(k):

ω3 + i(γ̄R + R̄)ω2 −
(

ω2
B + R̄γ̄C

)

ω = f (k), (15)

where f (k) = i(γ̄R + R̄)ω2
B − iḡR γ̄Ck2, and ω2

B(k) = k2 +
k4/4 is the standard Bogoliubov dispersion relation for an

equilibrium (atomic) condensate [3,4,29].

In general, the three dispersion branches defined by Eq. (15)

are complex: ωj (k) = 
j + iŴj , (j = 1,2,3), and in order

for a cw background to be stable, the condition Ŵj (k) � 0

should be satisfied for all j and k. This condition is always

fulfilled for k = 0 and k → ∞. Indeed, at k = 0, one of

the roots of Eq. (15) is zero, and the other two roots have

negative imaginary parts. The former is associated with a

Goldstone mode that can be understood as a slow rotation

of the condensate phase [2,28]. In the opposite limit, k → ∞,

one can show that all three dispersion branches have negative

imaginary parts: ω1(k) ≈ −i(γ̄R + R̄), ω2,3(k) ≈ ±ωB(k) −
iγ̄CR̄k2/2ω2

B(k). Thus all perturbations decay in time.

If the imaginary part of the eigenfrequency becomes posi-

tive, Ŵj (k) > 0 in some range k ∈ [k
j

1 ,k
j

2 ], the homogeneous

condensate is modulationally (dynamically) unstable, since

its density modulations grow in time exponentially. The

boundaries of the instability domain can be found from Eq. (15)

by noting that for Ŵj to change sign, two equalities should be

satisfied simultaneously:



(


2 − ω2
B − R̄γ̄C

)

= 0, (16)

(γ̄R + R̄)
2 − (γ̄R + R̄)ω2
B + ḡR γ̄Ck2 = 0. (17)

Since all the parameters of our physical system are positive and

real, this is possible only if 
 = 0, i.e., for a purely imaginary

dispersion branch ω1(k), as shown in Fig. 2. Furthermore,

k1
1 ≡ 0, and the other boundary

k1
2 = 2

√

ḡR γ̄C

γ̄R + R̄
− 1 (18)

exists only if ḡR γ̄C > (γ̄ R + R̄). If this condition is satisfied,

the perturbation with wave number k from the interval [k1
1,k

1
2]

grows, and a homogeneous condensate is modulationally

unstable. In our original variables, the stability criterion for
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FIG. 2. (Color online) Example of (a) real and (b) imaginary

parts of dispersion spectrum for excitations of a cw condensate with

k > 0. A purely imaginary dispersion branch ω1(k) = iŴ1(k) crosses

into the positive half-plane at the critical points k1
1 and k1

2 . Parameters

are γR/γC = 0.5, gR/gC = 2, P0/Pth = 2.5.

the cw background takes the form

P0

Pth

>
gR

gC

γC

γR

. (19)

Within the framework of our open-dissipative model, the

inequality (19) means that a homogeneous steady state of

a polariton condensate is stable for all values of the pump

intensity P0 > Pth only under the condition that

γCgR

γRgC

< 1. (20)

If this relation is violated, there is a range Pth < P0 <

(gRγC/gCγR)Pth, where a homogeneous background is modu-

lationally unstable. As will be shown in Sec. IV B, this regime

corresponds to effectively attractive nonlinearity in the open-

dissipative model with weak pumping. Consequently, growth

of the spatial density modulations may lead to formation

of steady states with modulated density, as discussed in

Ref. [28].

In what follows, we restrict our consideration to the

dynamics of nonlinear waves propagating on a modula-

tionally stable condensate background. Therefore we make

sure that the parameters of the system always satisfy the

condition (20).

IV. DYNAMICS OF ONE-DIMENSIONAL DARK SOLITONS

The simplest nonlinear excitation supported by a spatially

homogeneous modulationally stable condensate with repulsive

interparticle interactions is a one-dimensional (1D) dark

soliton—a localized dip in the condensate density with an as-

sociated phase gradient (Fig. 1). Such structures may exist in a

condensate with a reduced dimensionality, e.g., that contained

in a microwire. Soliton “stripes” in a two-dimensional (2D)

condensate, spatially uniform along one of the dimensions, can

also be treated as quasi-one-dimensional structures. Strictly

speaking, as we show below, the main features of a soliton,

e.g., propagation through the supporting media without any

change in shape or velocity are absent in open-dissipative

condensates. The solitonic nature of the nonlinear excitations,

such as their spatial localization, may be maintained over a

period of time determined by the system parameters, however,

the intrinsic dissipation causes the dark states to delocalize and

blend with the background. Remarkably, within the framework

of our model, we can derive simple analytical expressions for

the velocity and lifetime of the dark solitonic excitations in

polariton condensates.

A. General Asymptotic Description

If the perturbation mR(�r,t) of the reservoir density is set

to zero, Eq. (11) becomes a nonlinear Schrödinger (NLS)

equation with a repulsive (“defocusing”) nonlinearity:

i
∂ψ

∂t
+ 1

2
�ψ + (1 − |ψ |2)ψ = 0. (21)

It is well known that this equation has a single-parameter

family of solutions in the form of one-dimensional dark

solitons moving (for definiteness, along the x axis) at constant

velocity vs (0� |vs | < 1) [5,23,25,30]. In the moving reference

frame, ξ = (x − vs t), a dark soliton is described by a wave
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function of the form

ψs(ξ,vs) =
√

1 − v2
s tanh

(

√

1 − v2
s ξ

)

+ ivs, (22)

which satisfies the stationary equation

−ivs

∂ψs

∂ξ
+ 1

2

∂2ψs

∂ξ 2
+ (1 − |ψs |2)ψs = 0 (23)

and the boundary conditions at infinity ψs(ξ → ∞) → 1. A

stationary soliton (vs = 0) is often referred to as a “black”

soliton, where the BEC density drops to zero, and the phase

of the wave function ψs(ξ ) has a π phase jump across the

soliton profile (see Fig. 1). In a moving (“gray”) soliton, the

minimum value of density nmin
C = |ψs(ξ = 0)|2 increases in

proportion to the square of the soliton velocity nmin
C = v2

s , while

the phase changes smoothly. When vs → 1, the minimum

density attains the background value, i.e., nmin
C → 1 in our

dimensionless units. Simultaneously, the soliton width tends

to infinity: �s = (1 − v2
s )−1/2 → ∞.

Next, we consider the limit mR(�r,t) ≪ 1, which, as will be

shown below, is quite realistic. The right-hand-side terms of

Eq. (11) proportional to mR ,

R(mR,ψ) =
(

ḡR + i

2
R̄

)

mRψ, (24)

can be treated as small perturbations. Consequently, we can

construct the asymptotic perturbation theory for the dark

solitons [31] by assuming that a polariton condensate with

a weak coupling to the reservoir supports solitonic structures

similar to (22), but with a slowly varying in time velocity vs =
vs(μt). Here we introduced a small parameter μ ≪ 1, which

will be defined differently for each of the cases considered

below. Such solutions can be sought in the form of asymptotic

expansion in μ:

ψ(�r,t) = ψs(ξ,vs(μt)) +
∞

∑

j=1

μjψj (ξ,μt), (25)

mR(�r,t) = μm0
R(ξ,μt) +

∞
∑

j=1

μ(j+1)mRj (ξ,μt). (26)

Basic understanding of perturbation-induced dynamics for

a dark soliton can be deduced from analysis of evolution

equations for the soliton parameters. This approach is more

simple than the direct perturbation method developed in

Refs. [32–38] for optical dark solitons in several important

physical settings connected with linear damping, two-photon

absorption, gain with saturation and the effects of the Raman

self-induced scattering.

To derive the evolution equations of the soliton param-

eters, it is possible to use several different but qualita-

tively similar methods. For example, on substituting (25)

into (11), (12), to the first order in μ, we obtain the

following linear inhomogeneous differential equation for

function ψ1(ξ,μt):
[

ivs

∂

∂ξ
− 1

2

∂2

∂ξ 2
− 1 + 2|ψs |2

]

ψ1 + ψ2
s ψ∗

1

= i
∂vs

∂t

∂ψs

∂vs

− R
(

m0
R,ψs

)

, (27)

while perturbation m0
R(ξ,μt) of the polariton density in the

reservoir is determined by the wave function ψs(ξ,vs(μt)) of a

dark soliton. It can be proved that spatially localized solutions

of Eq. (27) exist if

Re

[ ∫ +∞

−∞
dξ

(

i
∂vs

∂t

∂ψs

∂vs

− R
(

m0
R,ψs

)

)

∂ψ∗
s

∂ξ

]

= 0, (28)

which is a full analog of the Fredholm alternative [39,40].

Ultimately, Eq. (28) leads to the dynamic equation:

dEs

dt
= vs

∫ +∞

−∞
dξ

(

R
(

m0
R,ψs

)∂ψ∗
s

∂ξ
+ R

∗(m0
R,ψs

)∂ψs

∂ξ

)

,

(29)

where

Es = 1

2

∫ +∞

−∞
dξ

[
∣

∣

∣

∣

∂ψs

∂ξ

∣

∣

∣

∣

2

+ (1 − |ψs |2)2

]

= 4

3

(

1 − v2
s

)3/2

(30)

is the energy of the dark soliton. Equations (29) and (30)

fully describe the dynamics (trajectory and velocity) of a

1D dark soliton propagating on a background of a spatially

homogeneous polariton condensate.

In essence, Eqs. (29) and (30) are in agreement with the

results of Refs. [41,42], and can alternatively be derived using

the so-called adiabatic approximation of the perturbation the-

ory for dark solitons. We stress that our theory so far assumes

a perturbative regime of reservoir excitations mR(�r,t)≪1. We

will now show that this condition is fulfilled in a broad range

of regimes.

B. Weak pumping

First of all, we will consider the regime of a weakly above

threshold pump intensity:

P0/Pth − 1 ≪ 1. (31)

The characteristic scale of the perturbation m0
R(ξ,μt) coincides

with the dark soliton width �s . Under the condition (31), γ̄R ≫
1, and, thereby, for all velocities vs , γ̄R ≫ 1/�s . According

to Eq. (12) and the asymptotic series (25), the perturbation

m0
R(ξ,μt) of the polariton density in the reservoir is coupled

to |ψs(ξ,vs(μt))|2:

m0
R = γ̄C

γ̄R

(1 − |ψs |2), (32)

and is a small value, provided that γ̄C/γ̄R ≡ γC/γR ≪1. Hence

the role of the small parameter in our problem is now played

by the ratio μ ∼ γC/γR ≪1. Substituting (32) into the right-

hand side of equality (29), taking into account that ψs(ξ,vs) is

determined by (22), and integrating, we obtain the expression

for the dark soliton acceleration,

dvs

dt
= 1

2τ1

(

1 − v2
s

)

vs, (33)

and velocity,

v2
s (t) = v2

s 0 exp(t/τ1)

1 − v2
s 0 + v2

s 0 exp(t/τ1)
. (34)

The velocity of the dark soliton vs determines its “darkness”

(contrast) through the simple relation nmin
C (t) = v2

s (t). The
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Eq. (34) shows that nmin
C grows in time approaching the unit

background, and as a result the dark soliton disappears at the

time:

τ1 = 3

2

γ̄R

R̄γ̄C

= 3

2

1

γCτ0

Pth

P0 − Pth

, (35)

where τ0 is the characteristic time scale for our system

introduced in Sec. II. We point out that this case is similar

to the NLS model for a defocusing nonlinear medium with the

saturated gain analyzed in Ref. [42].

As seen from Eqs. (33)–(35), the soliton relaxation time

in the weak pumping regime is not affected by the nonlinear

interaction with the reservoir. By substituting expression (32)

for mR = m0
R into Eq. (11), we can rewrite it in the

form

i
∂ψ

∂t
+ 1

2
�ψ + α(1 − |ψ |2)ψ = i

2
R̄mRψ, (36)

where α = 1 − ḡR γ̄C/γ̄R = 1 − (gRγC)/(gCγR). According

to (36), the interaction with the reservoir, characterized by ḡR ,

modifies the effective local self-induced potential exhibited by

the condensate, and therefore only slightly changes the width

and darkness of the solitonic state. Its acceleration, on the

other hand, is determined by the stimulated scattering term

proportional to R̄. We point out that at (gRγC)/(gCγR) > 1

[cf. Eq. (20)] the sign of α is changed to the opposite, i.e., the

character of nonlinearity is effectively switched from repulsive

to attractive. As established in Sec. III, in this regime, the

condensate can become modulationally unstable at some pump

intensities.

To compare our analytical predictions with direct numerical

simulation of the model equations, we show the evolution of

the condensate density distribution nC(x,t) = |ψ(x,t)|2 and

associated perturbations of the polariton reservoir density

mR(x,t) in Fig. 3 (left and middle columns, respectively).

For comparison, the dark soliton trajectory calculated using

Eq. (33) is depicted by the solid line and demonstrates a

remarkable agreement with the results of direct integration

of Eqs. (6) and (7). The right column in Fig. 3 shows the time-

dependence of the minimum value of the condensate density

associated with the dark soliton. The solid line shows the

darkness nmin
C (t) = v2

s (t) calculated analytically using Eq. (34),

and shows an excellent agreement with numerics. As seen in

Figs. 3 (d)–3(f), the soliton lifetime, τ1, reduces dramatically

with growth of the stimulated scattering rate R̄, characterizing

the efficiency of the polariton scattering into the condensed

state. Namely, the threefold increase in R̄, compared to the

parameters in Figs. 3 (a)–3(c), leads to the threefold decrease in

τ1, in agreement with Eq. (35). Likewise, longer lifetime of the

reservoir polaritons leads to shorter lifetime of dark solitons.

As can be seen in Figs. 3(g)–3(i), the relaxation time τ1 has

decreased by 5/3 when γ̄R decreased by 2/5, in full compliance

with (35). At this ratio, γ̄C/γ̄R = 1/3, therefore for correct

description of the dark soliton dynamics in the zero order

the wave function ψ(x,t) should be set taking into account

the coefficient α [see Eq. (36)], which determines the soliton

width �s = (α − v2
s )−1/2 and the density minimum nmin

C =
v2

s /α. Conversely, simultaneous increase in both radiative and

nonradiative decay rates of the reservoir, γ̄R and R̄, causes the

solitonic structures to disappear rather fast. In the particular

FIG. 3. (Color online) Dynamics of a 1D dark soliton with the

initial velocity vs(0) = 0.35 in the case of weak pumping. Shown are

contour plots of nC(x,t) (left column) and mR(x,t) (middle column),

and the dependence nmin
C (t) (right column, circles) computed using

Eqs. (11) and (12). Solid lines are calculated using the analytical

formulas (33) (left and middle columns) and Eq. (34) (right column).

Parameters are ḡR = 2, γ̄C = 3, and (a)–(c) γ̄R = 15, R̄ = 0.5;

(d)–(f) γ̄R = 15, R̄ = 1.5; (g)–(i) γ̄R = 9, R̄ = 0.5; (j)–(l) γ̄R = 9,

R̄ = 1.5.

case shown in Figs. 3(j)–3(l), the dimensionless relaxation

time is very short τ1 = 3, as predicted by Eq. (35). However,

even in this case, our asymptotic description gives quite

satisfactory understanding of the behavior of the dark localized

structures at all stages of evolution. Although neither the

initial density nor the phase structure typical of a dark soliton

in a conservative system survives in the open-dissipative

condensate, the localized nature of the dark solitonic excitation

with the distinct phase gradient across its profile is preserved

during the relaxation process (see Fig. 4).

Finally, we note that, if we assume the polariton relax-

ation time γ −1
C = 10 ps and the dimensionless parameters

in Figs. 3(a)–3(l), the time scaling variable expressed as

τ0 = γ̄C/γC takes the physical value of 30 ps. The corre-

sponding propagation time for the solitonic state shown in

Figs. 3(a)–3(c) reaches t = 1800 ps, which is much longer

than the condensate and reservoir relaxation times.
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FIG. 4. (Color online) Cross-section of a 1D dark soliton (a)–(c)

density and (d)–(f) phase for different stages of relaxation dynamics

shown in Figs. 3(a)–3(c). Solid lines are obtained analytically.

C. Slow solitons

If the velocity of a dark soliton is smaller than all

characteristic relaxation and scattering rates in the system,

i.e.,

vs ≪ γ̄C,γ̄R,R̄, (37)

we can repeat the analysis described above. Under the

condition (37), the perturbation m0
R(ξ,μt) of the reservoir

density depends on |ψs(ξ,vs(μt))|2 as

m0
R = γ̄C(1 − |ψs |2)

γ̄R + R̄|ψs |2
, (38)

and is a small value, provided that γ̄C/(γ̄R + R̄) ≪ 1. There-

fore the small parameter of the problem is μ ∼ γ̄C/(γ̄R +
R̄) = (γCPth)/(γRP0) ≪ 1. Substituting (38) into the right-

hand side of Eq. (29), taking into account the expression

for ψs(ξ,vs) (22), and integrating, we obtain the following

equation for the acceleration:

dvs

dt
= 1

2τ2

vs (39)

and the soliton velocity

v2
s (t) = v2

s 0e
t/τ2 . (40)

Here the relaxation time is

τ2 = 1

γ̄C

(

γ̄R + R̄
√

R̄γ̄R

arctan

√

R̄

γ̄R

− 1

)−1

= 1

γCτ0

[

P0√
Pth(P0−Pth)

arctan

√

P0−Pth

Pth

− 1

]−1

. (41)

When P0/Pth − 1 ≪ 1,

τ2 ≈ 3

2

1

γCτ0

P0

P0 − Pth

. (42)

From Eq. (40) it follows that a stationary black soliton with

vs(0) = 0 is unstable. Any small perturbation of the initial

velocity leads to soliton acceleration, which results in the

exponential growth of the velocity. When the condition vs ≪ 1

is violated, acceleration slows down and soliton behaves

as described in the previous section, losing its energy and

relaxing to the background. Rapid relaxation of quasistationary

dark solitons was numerically demonstrated in Ref. [22] for

moderate pumping intensities.

D. Strong pumping

The above results were obtained in the weak pump approx-

imation. However, we can also use our general asymptotic

approach to analyze the case when the pump is strong:

P0/Pth ≫ 1. (43)

Taking into account the asymptotic expansion (25) to the first

order in μ, Eq. (12) can be rewritten in the form

−vs

∂m0
R

∂ξ
+ (γ̄R + R̄|ψs |2)m0

R = γ̄C(1 − |ψs |2). (44)

Therefore the perturbation of the polariton density in the

reservoir depends on the wave function nonlocally:

m0
R = ℘e(pη−q tanh η)

∫ +∞

η

e(q tanh η′−pη′)sech2η′dη′, (45)

where

η =
√

1 − v2
s ξ, ℘ =

√

1 − v2
s

vs

γ̄C,

(46)

p = (γ̄R + R̄)

vs

√

1 − v2
s

, q =
√

1−v2
s

vs

R̄.

Under the condition (43), γ̄R ≪1 and γ̄C ≪ 1 and thereby the

value of m0
R(η) determined by (45) is small in a wide range of

values of the soliton velocity vs . Here, ℘ is a small parameter

of the system μ ∼ ℘ ≪ 1.

If p � 1, that is, R̄ � vs

√

1 − v2
s , we can replace pη′ by

p tanh(η′) in (45) and obtain an analytical expression for the

function m0
R(η):

m0
R = ℘

(p − q)
e(pη−q tanh η)[e(p−q) − e[(p−q) tanh η]]. (47)

Substituting (47) into the right-hand side of Eq. (29) and

taking into account the expresson for ψs(ξ,vs) (22), we derive

the following expression for the soliton acceleration:

dvs

dt
= − γ̄C

4

√

1 − v2
s

w2

{

ḡR(γ̄R + R̄)

v2
s

(

e−2w + 2

3
w − 1

)

+ 2ḡRR̄

(

1 − v2
s

)

v2
s w

2
[(w + 1)e−2w + w − 1]

−R̄(e−2w + 2w − 1)

}

, (48)

where

w = γ̄R + R̄v2
s

vs

√

1 − v2
s

. (49)
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Note that w(vs) can be small if R̄vs ≪
√

1−v2
s , and this is

possible even for R̄∼vs . When w(vs)≪1, Eq. (48) can be

reduced to

dvs

dt
= 1

2τ3

(

1 − v2
s

)

vs

, (50)

where

τ3 = 3

2

1

γ̄C ḡR

= 3

2

gc

gRγcτ0

(51)

is the soliton relaxation time. By integrating (50), we obtain

the expression for the soliton velocity

v2
s (t) = 1 −

(

1 − v2
s 0

)

e−t/τ3 . (52)

In the regime of strong pumping, the dominant contribution

to the perturbation (24) causing relaxation of a dark soliton

is ḡRmRψ . This results in the nonlocal coupling between

|ψs |2 and m0
R , and the explicit dependence of the soliton

lifetime (51) on the strength of the nonlinear interaction

between the condensate and reservoir polaritons, ḡR . In all our

calculations, we took ḡR = gR/gC = 2, as predicted by the

Hartree-Fock theory. However, the strength of the condensate-

reservoir interaction gR has not been conclusively verified

in experiments. Therefore, dynamics of dark solitons created

in an experiment via strong incoherent excitation, would not

only serve as a test for our model, but may potentially lead

to accurate estimation of gR from the characteristic time of

relaxation τ3.

To demonstrate agreement between our analytical theory

and numerical simulations, we show evolution of the polariton

density distribution nC(x,t) = |ψ(x,t)|2 and associated pertur-

bations of the reservoir density mR(x,t), in the left and middle

column panels of Fig. 5, respectively, for various values of the

parameters. In contrast to Fig. 4, nonlocal coupling between the

reservoir density mR(x,t) and the condensate density nC(x,t)

significantly affects the soliton dynamics, as seen in Fig. 6.

The reservoir exerts a “drag” on the dark soliton, whereby the

soliton delocalizes and develops a low density tail [Fig. 6(c)].

Nevertheless, the density minimum propagates in remarkable

agreement with the dark soliton trajectory calculated using

Eq. (48) as depicted by the solid line in left and middle

column panels of Fig. 5. The time dependence of the minimum

density value, nmin
C (t) = v2

s (t), calculated using Eq. (52) is also

in excellent agreement with the numerical solutions of Eqs. (6)

and (7), as shown in Figs. 5 (c), 5(f), 5(i), and 5(l).

In physical terms, stronger pumping leading to larger

densities of the condensate cw background, shortens the time

scale of the soliton relaxation dynamics. In particular, the

dynamics shown in Fig. 5 is very fast, and its time scale is

comparable to the polariton decay times. For γ −1
c = 10 ps, the

corresponding propagation times are t = 18 [Figs. 5(a)–5(c)

and 5(g)–5(i)], 6 [Figs. 5(d)–5(f)], and 36 ps [Figs. 5(j)–5(l)].

V. TRANSVERSE INSTABILITY OF DARK SOLITONS

Quasi-one-dimensional dark soliton stripes in two-

dimensional exciton-polariton systems emerged as an im-

portant topic in connection with the physics of superfluidity

and breakdown of the superfluid flow in a coherently driven

polariton condensates [14,15]. It is well known that dark

FIG. 5. (Color online) Dynamics of a 1D dark soliton with the

initial velocity vs(0) = 0.4 in the case of strong pumping. Shown

are contour plots of nC(x,t) (left column) and mR(x,t) (middle

column), and the dependence nmin
C (t) (right column, circles) obtained

by numerical solution of Eqs. (11) and (12). The solid lines in the left

and middle columns are obtained using Eq. (48). Solid line in the right

column is obtained analytically using the approximate Eq. (52), for

comparison, the dashed line is calculated by numerical integration

of Eq. (48). Parameters are (a)–(c) ḡR = 2, γ̄C = 0.03, γ̄R = 0.05,

R̄=0.04; (d)–(f) γ̄C =0.01, γ̄R =0.05, R̄=0.04; (g)–(i) γ̄C =0.03,

γ̄R =0.07, R̄=0.08; (j)–(l) γ̄C =0.06, γ̄R =0.04, R̄=0.15.

soliton stripes in conservative atomic condensates [24,43–46]

and optical fields [47–51] are always unstable to sufficiently

long-wavelength modulations in the direction transverse to

the soliton line (or plane). Decay into pairs of vortices

with opposite topological charges triggered by the transverse

instability has been observed in experiments with optical and

matter waves [26,27,52,53]. Our aim here is to consider,

by means of numerical modeling, peculiarities of transverse

instability development of dark solitons in an open-dissipative

condensate of polaritons with an incoherent pump. This is

a regime that so far has not been studied in experiments,

and therefore our predictions could be used to guide further

experimental efforts.

For comparison with conservative systems, we first demon-

strate the well-known result of the transverse instability
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FIG. 6. (Color online) Cross-section of a 1D dark soliton (a)–(c)

density and (d)–(f) phase for different stages of relaxation dynamics

shown in Figs. 5(a)–5(c). Solid lines are obtained analytically.

development in the framework of Eq. (21) [see Fig. 7]. The

initial dark soliton velocity (width) in these calculations is

slightly modulated by the Gaussian function:

ψ(�r,t =0) = ψs(x,vs(y)),
(53)

vs(y) = vs0 + δvs0e
−y2/σ 2

y .

As seen from the snapshots of the density distribution |ψ |2,

the quasi-1D solitonic structure (53) is destroyed and gives

rise to the first vortex-antivortex pair at t = 27.5. As the

soliton evolves, vortices are generated at the points where

both the condensate density and the curvature of the bending

soliton line reach zero [46]. Then, at t = 50, two more vortex

pairs appear, and the process repeats at the later stages of the

instability development (hence the term “snake” instability).

As a result, the soliton breaks up into several interacting

vortex-antivortex pairs. Increasing the initial velocity slows

down the process of vortex pairs formation. If the initial

velocity of a moving dark (gray) soliton approaches the

velocity of sound in the condensate, the transverse instability

results in the formation of vortex-free structures resembling

two-dimensional Kadomtsev-Petviashvilli solitons [46,50,51].

FIG. 7. (Color online) Snapshots of transverse instability devel-

opment of a dark soliton solution of NLS equation (21) at (a) t = 5,

(b) 27.5, and (c) 50. The initial velocity vs(t = 0) is modulated

along y-axis by the Gaussian function (53). Parameters are vs0 =0.25,

δvs0 =0.025, and σy =1.

FIG. 8. (Color online) Transverse instability development of a

dark soliton with the initial velocity vs0 = 0.25 for weak pumping.

The initial condensate wave function ψ(�r,t) is the same as that in

Fig. 7 and mR(�r,0) = 0. Shown are (a)–(i) condensate density nC ,

and (j)–(l) phase arg(ψ) corresponding to (c), (f), and (i). Parameters

are ḡR = 2, γ̄C = 3, γ̄R = 15, and (a)–(c) R̄ = 0.25; (d)–(f) R̄=0.5;

(g)–(i) R̄ = 1.

Quasi-1D solitons in the open-dissipative polariton conden-

sate behave in a different way. As demonstrated in Sec. IV,

dark solitons are fundamentally nonstationary excitations even

without a transverse modulation, and therefore the theory

of transverse instability developed in Refs. [24,26,27,43–57]

is not strictly applicable. Nevertheless, it is intuitively clear that

transverse instability may occur and dramatically influence

the process of relaxation of solitonic structures described

in Sec. IV. Indeed, the transverse instability of dark soliton

stripes is clearly seen in numerical simulation of the polariton

condensate dynamics in the framework of Eqs. (6) and (7).

The results of numerical simulations for a weak pump

(P0/Pth − 1 ≪ 1) are presented in Fig. 8, where we plot the

condensate density nC(�r,t) [Figs. 8(a)–8(i)] and phase arg(ψ)

[Figs. 8(j)–8(l)] at different moments in time. The reservoir

density mR(x,y) (not shown) trivially follows that of the

condensate polaritons with density peaks corresponding to

density dips in the condensate.
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At t = 0, the wave function ψ(�r,t = 0) was taken in the

form (53), whereas the velocity vs0 and parameters δvs0 and

σy were the same as in the case corresponding to Fig. 7.

The behavior of the polariton condensate was simulated for

three different values of the dimensionless scattering rate R̄ =
0.25, 0.5, 1. According to (35), for R̄ = 0.25, the characteristic

relaxation time τ1 for 1D dark soliton is equal to 30, while for

R̄ = 0.5, it is two times less, and for R̄ = 1 it is four times

less. As seen in Figs. 8(a)–8(c) and 8(j), a vortex pair is formed

from the initial distribution, as a consequence of transverse

instability development, at a remarkably lengthy period of time

(t ≈50), compared to the depicted in Fig. 7 situation, where

t � 27.5. After that, no new vortices form, the condensate

excitations smoothly relax to the homogeneous state, while

the vortex and antivortex approach each other, annihilate, and

turn into a fading vortex-free localized structure. Growth of

the stimulated scattering rate R̄ leads to inhibition of the

transverse instability, whereby no vortex-antivortex pairs form,

and slowly developing instability results in the formation of

vortex-free structures [Figs. 8(d)–8(f) and 8(k)]. Finally, if the

lifetime of the solitonic structure, τ1, becomes comparable to

the characteristic time scale of the linear stage of the transverse

instability, a dark soliton remains quasi-one-dimensional for

all the time of its existence, the transverse instability becomes

insignificant, and a solitonic stripe merges with the background

without breaking up into two-dimensional localized structures.

This regime is illustrated in Figs. 8(g)–8(i) and 8(l), where

τ1 = 7.5. For a condensate with the polariton decay rate

γc = 10 ps, this corresponds to t = 225 ps.

In the case of strong pumping (P0/Pth ≫ 1) illustrated in

Fig. 9, structures similar to those depicted in Fig. 8 are formed.

However, for the same initial conditions as in the case of weak

pumping, we clearly observe the consequence of nonlocal

coupling between the condensate nC(�r,t) and reservoir density

mR(�r,t). Indeed, the instability develops much slower than

in the case modeled by the NLS equation (21) and leads to

the formation of several vortex pairs and two-dimensional

vortex-free solitons, which then disappear [Figs. 9(a)–9(c) and

9(j)]. In this regime, the soliton lifetime τ3 is controlled by

the renormalized decay rate γ̄C . For larger decay rates (three

times longer lifetime), the transverse instability development

slows down and a vortex pair is no longer formed but three

two-dimensional vortex-free solitons appear [Figs. 9(d)–9(f)

and 9(k)]. Further growth in the decay rate (and fourfold

increase in τ3) fully inhibits the transverse instability, and the

dark stripe retains its quasi-1D nature before merging with the

background [Figs. 9(g)–9(i) and 9(l)]. In order for a vortex

pair to be formed, parameters of the condensate should be

chosen so that τ3 > τ1, which indicates that, compared to

the weak pumping case, it is more difficult to realize con-

ditions for vortex-pair formation via the transverse instability

development.

In addition, strong pumping leads to much shorter time

scales of the soliton dynamics overall. For γ −1
c = 10 ps,

the physical periods of time for relaxation and instability

development depicted in Fig. 9 are t = 3.75 [Figs. 9(a)–9(c)],

7.5 [Figs. 9(d)–9(f)], and 9 ps [Figs. 9(g)–9(i)], respectively.

From the above numerical analysis, we conclude that vortex

pairs in a polariton condensate may form due to development

of the transverse instability of quasi-1D dark stripes, but

FIG. 9. (Color online) Transverse instability development of a

dark soliton with the initial velocity vs0 = 0.3 for strong pumping.

The initial condensate wave function ψ(�r,t) is the same as that in

Fig. 7, and mR(�r,0) = 0. Shown are (a)–(i) condensate density nC ,

and (j)–(l) phase arg(ψ) corresponding to (c), (f), and (i). Parameters

are ḡR = 2, γ̄R = 0.07, R̄ = 0.08, and (a)–(c) γ̄C = 0.0075; (d)–(f)

γ̄C = 0.015; (g)–(i) γ̄C = 0.03.

only under very specific conditions and for a short period of

time.

VI. CONCLUSIONS

We have shown, within the framework of an open-

dissipative mean-field model, that a homogeneous exciton-

polariton condensate with an incoherent pump can support

spatially localized solitonic excitations with the spatial and

phase structure similar to that of one-dimensional dark solitons

in conservative systems. These nonlinear excitations have a

finite lifetime which is determined by the parameters of the

system, such as polariton decay rates, stimulated scattering

rate, and strength of polariton-polariton interactions. In the

process of evolution, the dark solitonic structures grow in width

and lose contrast eventually blending with the homogeneous

background. The soliton relaxation depends on parameters

of the condensate and proceeds differently in slightly and
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highly above-threshold pumping regimes. The characteristic

soliton lifetimes, given by compact analytical formulas, could

potentially assist experimental verification of our theory.

Finally, the scenario of transverse instability development

in exciton-polariton condensate is shown to be different from

that in atomic condensates governed by Gross-Pitaevskii (or

NLS) mean-field model. For the latter, a nonlinear stage of

transverse instability most frequently ends up with a dark

soliton decaying into vortex-antivortex pairs. By contrast, in

exciton-polariton condensate several rather strict conditions

should be satisfied for vortex-pair formation via instability

development. In the majority of regimes, a soliton breaks up

into vortex-free two-dimensional localized structures, which

disappear rather fast. The fact that the dark stripe in a two-

dimensional condensate may relax by losing its contrast before

the transverse instability takes place, could inhibit potential

experimental observation of dark soliton decay into vortex-

antivortex pairs in an incoherently formed exciton-polariton

condensate. We note that observation of decay of dark stripes

into vortex pairs has been hinted at in Ref. [58].

Previous theoretical studies have already proposed ex-

perimentally relevant schemes for generation of dark soli-

tons in an incoherently and off-resonantly pumped polariton

condensate [19,20]. Here, we complement these studies by

describing characterstic features of temporal evolution of the

dark collective excitations, while fully taking into account the

influence of the incoherent reservoir. Although our analysis is

performed for a homogeneous condensate, it is also applicable

to a realistic quasihomogeneous condensate created by a

broad beam cw excitation with a “top-hat” intensity profile,

and therefore can provide guidance for future experimental

observations.
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and B. Deveaud-Plédran, Phys. Rev. Lett. 107, 245301

(2011).

[15] G. Grosso, G. Nardin, F. Morier-Genoud, Y. Léger, and
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