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Abstract

W& have studied thermcdynamic and sane dynamic properiles of i une;
dimensional model system whose displacement fisld Hamiltonian is strongly an=-
harmonic, and is representative of those used to study displacive phase
transitions. By stwiying the classicrl equations of motion, wa find lmportant
soiutions (domain walls) which cannot be represented effectively by the usual
phonon perturbation expansiong. The thermodynzmic properties of this systen
can be salculated exactly by functiconal integral methodg, No Hartree or de-
coupling approximations are made nor is 2z temperature dependence of the
Hamiltonian introduced artifiteially. At low temperature, the thermodynamic bew
havior agrees with That found from a phenomenological model in which both
phonong and domain walls -are included s elementary excitations. We then show
that equal tima correlation functions caleculated by both functional! integral
and phanamenclogical methods agree, and that the dynamic correlation functions

{calculated only phencmenologically) sxhikit a spectrum with both phonon paaks

and o central peak due to domain wall motion,




I. Introduction

| In recent years, there has been considerzble interest in systems in which
structural phase transitions apparently take place due to the ilnstablility of
some lattice displacement patiern, which takes the system from some stable high
tenperature phase to a different low temperature lattice configuration. The
dynamics of such systems is Ireguently characterized by a vibrational mo&e
whose Irequency decreases rapidly near the criticsal temperature, as though the
restoring force for that displacement pattern softens, thus “so;t nedes”,  The

1,2,3 partieylarly in the

history of this viewpolint is generally well known,
study of ferroelectrics, though many other systems show the behavior in some
form or other, Pelerls instabilities would share sone of the features, al-
though sipnificant changes in the electronie properties ocour simultaneously
with the lattice distortion, and the coupled problem is more complex,

While it 15 likely that such displacive transiticns are at least accom-
panied by soft modes, the theoretical interpretation is not altogether satiz-
factery since formal analyses to date are all based on anhermonic phonon
perturbation theory, using some set of selif-consistent high temperaturs lattice
phoneons az s hBasis,. But at the transition tesperature, the diaplacements rela-
tive to that lattice baccﬁa large and no perturbation scheme is expected to be
satisfactory, -

Computer aimulatiﬂn?l’ﬁ'a have been carried out to shed light on these
matters; and, indeed, are very informative., In addition to showing features
which are expecied as some order parameter develops a nonzero value, there are
twé other interesting features: the appearance of clusters of locally ordered
regions, and the dév&lupment of a "central peak” near w = 0 in ihe dynamic
response function S(¢ . w). The "central peak” which acconpanies the soft mode

2,7,8

experimEntallrz has received a variety of interpretations, which also re-

main somewhat open to guestion.
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We ‘thought that it might serve a useful purpose to see whether one could
app::-oach these problems from other than a perturbation or mode-mode coupling
podnt oflviﬂW, and the work here is & first step in that direction.

To date, the development has been restricted to a one-dimensional model,
for which there cannot really he a phase transition for finite range interac—
tiops., n the other hand, we have heen able to treat ;truhg nonlinearity in
some detajil, making contact with an exact {in principle} calculation of the
equilibriom statistical mechanics using funciiconal integral methods. Several
interesting features appear in the results, principally of an interpretive
nature, The most important result potentially i1s that the Fourier (phonon}
reprezentation commonly used in perturbation calculations is inadequate to
disenas uﬁe iupurtgnt type of excitatinh that can cccur in highly nonlinear
systems, and which we refer to as "domain walls". These were postulated by
Takahashi9 some time ago on phencmenolcgicael grounds, end now appear to us to
be & natural consaequence of strong snhameonicity in the =iatistical mechanics
of this model system.

Tha plan of the paper 1s as follows: In Ssctien 11, we present the model
Hamiltonian, and discuss the solutions of the resulting equation of motion for
the dizplacement field; from the amsll émplitude phonon nodes to some liﬁiting
large displacement patterns, including time dependent solutions. In Section III,
we use the functional integral method to calcﬁlata the partition fuaction for
this Hamiltenian, adapting and -extending the work of Besrs, Scalspine, and
F-errell,lﬂl including the calculation of correlation functions. In Sﬁctinm.I?,
we.du the st-at:l.stical. meéchanics of a random array of domain walls on a back-

~ground of small amplitude phonons, and we can m%ke a complete identification with
ihe functional integral result in the low tenperaiture Iégima. In Section V, we
zhow that gtatic correlation functions can ke calculated either way, and that

one 1s led to a model for dynamic correlations which can yield a "central peak”
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in an appropriate scattering function - becouse of the motion of domains - not
becaunse of coupling to entropy fluctuztions or hydrodynamic modes. Conclusians

gnd discussion are contatned din Section VI,

I1. Model and Excitations of the Systen

A standard model Hamiltonian for & system which might undergo a displacive

4,5,68

phase transition assunes that the Hamiltonian is of the form

A ui2 " B u14 (v, - u ]2 i_z
nu=z{( N )+Ec1__l-‘—-a?—}+zmiL (1
i . 2 | J 2 i 2
Here i, } indicate lattice sites; A, B, ciJ are potentlial coefficlents; ui. ﬁi

are digplacements and velocity of the displacing ion with respect to some heavy
ion or reference lattice. Typlcally, A might be determined by atiractive inter-
actions of the mohile ion with the reference lattice, B by short range repulsioh

of those near ions, and C, by interactions betwesen the displecing atoms. In

13

the situations where this i= presumed to represent e lattice which is unstable

againgt a dizplacive transition, A i3 negative; B, pdaitive; and Ei are posi-

d
tiva. This Hamiltonian is a tremendous oversimplification of any real three-

.dimensicnal system, particonlarly of symmetry restrictione and long range forces,
which are important in real ferroeiectrics. Nene the legs, we find that even
in one dimenzion there are resylts which are fnteresting and nontrivial.
Before proceeding with the analysis, we note two approximations which are
often made in discussing the Ffinite temperature behavior of the model s}st&m:
' ‘ 2,2 2 2 3
=1u

(1) Hartree approximation: (ui ) < w > usually < ui

i i T }T h:lﬁltT;To}

in-the high temperature region, This yields a psuedo-harmonic Hamiltﬂnianl’z’lu
{also derivable by low order anharmonic phonon perturbation theory} with
ﬁf = ]h[(Tan - 1}.. This describes a stable lattice for T }-Tn, and vice versa
below Th. lany studlies have been made with this efiecfive Hamliltonian as a

_point of departure, but the approximate nature of 11= bhasis should not be forgotten.
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{2) Mean field approximation: ﬂnederall hae studied the statistical mechanics

of this system with the approximation u, = < u > in ¥ ci (ui - uj}zfz. This

T
J § 1

suppreases all dynami¢ information which depends on the detalls of inter-icn
displacements, and amounts to a collection of anharmonic ogeillators enqplad
only by their meen thermal displacements. Thus, no phonong are considered,
and interpacticle fluctuatich effects are certainly omitted.

We have tried to avold either of these approximations; and particularly in
conkrast to the analysis in reference 10, we take A = = |A| to be independent
of temperature, as in the original Hamiltonien, thus not putting in the critical
behavior artificially. We do not attempt to employ rencrmalization methods to
obtain an effective Hamiltonmian.

The one approximation we will make 1s to assune that the Hamiltonlan (1)

can ba replaced by a continuun representation
2

2 e
- [ ax J p{x) A 2 B 4 0 du
H IT {T + 3z uix)” + T uix} + z (E; )Z } )

where £ is the lattice spacing ang xj = jf = x locates an element {ion) in the
continvum representation. This approximation 1imits us to displacement fieids
vhich de not change radically over a lattice spacing, In the above, < iz the
velocity of low amplitude sound waves (phonons) which would occur if A and B
ware negligihie (1.,e., only interaction between displacing lons ere important).
¥e now prooeed with the analysis.

Taking A = - JA|, B > 0, the “on-site” potential is a double well potential

with minina at (see Figure 1)

=;|-+1|.1“:’=:(J%I-)i (3a)

2
vi+ uu} = -} l%L— (3b)

2 fu + 1)
viu )= -3 lﬁl— + 2]a] ; 2 + . (3¢




Two different physical regimes of the parameters ocour under the names of
"or;er-disorder" or "displacive' systems, If the depth of the wella is so
great that an intersite energy m:a? {Euoﬁl}ﬂ, which is the interaction
energy between nearest neighbors displaced to opposite wells, is not great
enough to 11ft the particle over the barxier, then only large thermal fluctu-
ationa at individual sites can do 1ft. Effectively, one has a collection of
weakly coupled anharmonic oscillators, randomly displaced ton 5‘:run, as one

expects in a disordered system. This "order=disorder” regime occurs for
2 2

2 4 pc u
Al » o e
J ]

In the opposite limit ta this inequality, there iz stronpg intersite interaction
and eaxtendead lattice modes determine the physics. Here the system 1s s5ald to

undergo “digplacive” transitions and

|A[2 4 munz un2
- <« —— <)
£

¥a will be concerned entiraly with the displacive casé, that being nmore releavant
to the soft made situvation,

Applications are genewally at high temperature, and no ecesentially quantum
effects are involved. Therefore, we first consider the classieal equations of
motim and théir solutionz; then in the next section, the classical statistical
mechanjies of the system.

The equation of motion for the displacement field u({x} which follaws from
{2? is

muy+Au+B u3 - mcu? u' =0 {5)

¥e note that quite penerally, if u = £{x - vt), then  nust obey
2 k|

ni{v - cﬂz} "+Af+BL =0 {7




Introduce the dimensiconless varisbles

2 2
m(ca -v )
|f a= §2 {(length squared) (8a)
a
I
)
x - vt = = (8c)
£

The dimensicnless form of the eguation is

2
20, n-n=o0 (9)
ds

Both statie and time dependent solutions may be constructed from the solutions
af (9). We discuss first the limiting forme of soclutions:
A. SBmnall amplitunde, 1"|:EI Lo ¢ o

Solutions of N" + 1j = 0 are of the forn

=0 8in (5 + @) (10}

where @ is amplitude and @ = phase, Substituting physical variablas
x - vt
Uu=dqgu sin[—+ﬂ] (11)
o " E

which is simply a phononr with wave number g = g‘l, frequency (v/{), and phase

velocity v {(which is g dependent) that satisfies the equation
vzqg-czqz—mzwz {12}

which is also a disperzion relation, Of course, since A is negative, the ire-

qUENCY u.lq will only be real for finite q > {Ihffrlcuz}&. These phonons are smoall

anplitude oscillations about u = un.
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Another set of small amplitude oscilleticons can occur if all particles are
displaced and lowered 1in energy to the hottow of one of the wells., Then
=1+ Y%, where ¥ 1s a smell dimensionless displacement. To terms linear in

Y, the equation of motion is

Y -2y + 0y =0

¥With a2 =light revizsion in the definition (8a) the solutions ars small oscilla-

tions about + u, of the form

Wedu +Qu gin {qx =~ wqt + 0) (13)

with the dispersion relaticn

c 2 q2 + EIEL = It 2 {14}
o m 1

ingtead of (12). The frequencies are real for (all) q > 0. It should be
noted that for N purticles, this state iz wvery much lower in energy (HA#KiB)
than the configuraticn vibrating about w = 0.

In the cases above, the nonlinear term TF has been omitted or linearized
about M = 1. Thus, the modes found can be superimposed in lowesti order calcula-
tion of the partition function, Eut, of course, as soon A2 the nonlinear terms
are constdered, the phonon modes are coupled to each other; and the thermodynam=-
ica is quite pnontrivial. For the most part, Green's function decoupling ap=-
proximations, or perturbation methods, have been the only methods applied to the
interacting phnnén syetem. However, we proceed somewhat beyond those formula-
tiens in the prasent case.

To do so, we now leok at the solutions of (9) in another regime, which we
cali the large amplitwe strong snharmonic regime.

B. Large amplitude regime, 'rpa =n=+1.
The aquation (9) iz forwmally identical ®o that govsrning the order param-

eter in Ginzburg-Landau theory for a 1-D superconductor. One type of solution,




-8 -

for which N is net small, is T = +1 or -1 for =1l 5. This is mostly an uniﬁ-

terésting solution, the order parameter constant throughout the system; but it
i the lowest energy state since all particles are at rest at the botton of a

potonfial well. The small oscillations in the second case above are one Kind

of low epergy excitation above this lowest energy siate,

But there are other, intrinsically nonlinear, field patterss which are aiso
important in the low lying excitation spectrum. More important, they cannot be
represeated by any reasonahle order of perturbation theory hased on phonoms,
Such field patterns are well known in type II superconductors. For example,
one simple particular solution of (9) is

1 = tanh (_?; ) (15)

This corresponds to a family of solutions in physical variahles

W= tuh_(ﬁ ) L | (16)

vhere £ is defined in (8a). In this pattern, the displacement is constant at
-u , over nearly all the ;ami—infinite rﬂgion.{x - wt) < 0; it is +u for
{x «~ vt} > 0. The traﬁsitian takes place through a "domain wall"” of approximate
thickneszs 2{2_5, and the wall moves with a velocity v. From the definition
{8a) E = {uflﬁ.l}i (eoz - v'?'}i it iz seen thsat <, is the wpper limit on tha
drift velocity {perhaps more precisely that £ pust not be less thﬁn & lattice
cohstant}). -

The excitation energy required to produce this pattarn.is localized in the
domain wall; it will be calculated in detail 1im Section I¥. But it is apparent
that this= kind.of excltation 1s quite the converse ﬂf‘phnnnn excltations where

the energy is distributed thronghout the lattice. 1In one sense, phonrens are

independent in g=space while these domain walls are Independent 1n respace,
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tﬁeir 1ﬂteractiﬂn falling Eii exponentially when separated by mﬁré than a wall
thickness. There 15, however, the all important difference thsat the small
amplitude saolutions above were approximate solutions of (9}, while (15) is an
axact solutlion,

This last observation prompted us to see whether we conld conneat the two
types of solutions. This has been partly pessible, as follows, in terms of
elliptic functtons. Equation {9) may be converted by guadrature into an im-

plicit integral relation between 7 and s, Let ¢ = (s4/2) and

g )
a - d
= 1 + [ 1 = an {17}
g 2y}
then
(g-g = a® -~ H? - 1) , (18)

and ¢ 1s found from the elliptic integral

M .
o Va® - v - vy

the notation belng standard.l2 This is an elliptic integral of the first kind,

and generates the family of scolutiomms
7 = a sn{bJ) (20}

where sn{bd)} is the "elliptic sine function”. For O = 0, i.e., & = E—%—EE = 0,

=0, and sn 1s an odd function of its argument., With a modest amount of
algebra, 1t is easy to find the "small ampiitude” and "large amplitude” limits.

Equation {20) may be written out in further detail:

n=[1-\f1--2(5-2 TFOan[(1+\/1--z(§—;|2 )%f—] (21)

rO0° 2
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The elliptic sine is periodic in 4K where K 1s the complete elliptic integral

of modulus k

1 - 1-2(.@
ds
o

km=—= )fF (22)
)

- dj
1+ 1 E(ds

bt

0 .

The amnall amplitude solutions are found in the limit {dnfds}TFo <% 1, where

k =0, and 4K = 2. We recover (10)
n™a sin s.

But for large amplitude, K = 1 then K = w and the period of the solution he-

3

fact, 1f {dryﬂs}fhn = {2)° then one finds that {(21) approaches

comes very lang {(and not related to ony rencrmalized fundamental period). In
| N = tanh (=/2)
I

and we recover the domain wall solution sbove, In all of the above, the phase 8,
a cholee of origin, has not heen explicitly written in; but because the
Hamiltonian is translationally invariant, it is clear that this freedom exists,
Also, since 3 = E—%—EE, a whole family of stationary and wmoving fislds iz in-
cluded in {Eli.

It would be pice, now piven varions dyoamic solutfons of the eguation of
notion, to proceed to express the Hamiltonian using them as a basis, theu do the
statistical mechanics., This is what is wsually done with phonons, because a
harmnonic Hamiltuni;ﬁ separates in mode space, Unforfunately, as is obvious
from the nature of nonlinear systems, it is absclutely impossible fto do the

game superposition by simply adding two solutions for the displacement field.

Indesd, the whole subject of nonlinear oscillations in extended systems is




aktr&m&iy complex; and we ;ust admit to bhaving heen unable to thry forward a
rigorous programs to connect these exact soclutions of the equstion of motion
to an evaluation of such thermodynamic quantities as the partition function,
On the other hand, we believe that the analysie sbove suggests certain
Teatureg which should ba included in a proper phenmenological discussion of
the statistical mechanies ~ at lesst in the low temperature region wherse low
enargy excitattons dominate, Specifically, we believe that one will see two
different patterns in the displacement field; one, smsll smplitude oscillation

motions abhout the potentisl minima v = + u and then the other, occasional

af \
"domain walls" where the displacement £lips from one minimum to the opposite
over a reglon of length = 3/2 £,

There will be a thermal mixture of these two kinds of excitation. It is
apparent that phonons (extended) and walls (localized) interact weakly; and if
the density of walls i low, they interact weakly with each other. Can one
gor Iromone language €0 the other in a systemafic wayT Again, the complex
physics of nonlinear oscillations in extended systems (e.g., laser oscjllations)
often seens to allow the punplng of energy from a nmumber of weakly excited ex-
tended modes, via the nonlineartty, into a2 local pulse or shock; end ocur con-—
€]lusion is that this happens here.

To test these ideas,’one must resort either o experiment or o sone re-
lated theoretical calculation which can be carried out exactly. It 1= not
possible to find a real system which s accurately represented in nature by our

25,6

mode]l Hamiltonian, Computer simulations are of considerable use in a

quantitative way, ahd we will comment oo them in the concluding discussion.
However, a formally exact solution for the thermodynamic quantities would bhe
much more useful for calibration purposes. Fortunastely, using functional in-

10,13

tegral methods it iz poasible to evaluate the partitien function for this

cne-dimensional model exacily - conditisnal on a knowledge of sclutions of a
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uﬁa-diuénsiunal anharmonte odeillator Schrﬁdinger—like equation = which can
be: ;olved nuwerically if necessary.

We carry out that exact calculation in the next section (III), and thean
compere it in Section IV with the phenomenological thermodynamic behavior de-

duced from a mixture of phonons and demzain walls.

111, Equilibrium Thermodynamics of the One-Dimensional Model: “Exact"”
The classical partition function follows from the Hamiltonian (2) as a

functional integral ia the field variablez u{x), pix)

z = [ [5(w) 5(p)] exp [-B H{p, u}] (23)

Scalapino, Sears, and I"\&r::ﬁlrll.,mI and Eac and thiandla have shown how this ex-

préession may be evaluated in terpms of the eigenfunctions of transfer integral
operztors. We have followed SSF generally, except in two respects: (1) We do
not put an explicit temperature dependence into A, #.g., a(T = Tn}’ which in a
sense puts in the phase transition "by hand”, but tske A = -|&I constant; (2)
Instead of solving the anharmonic oscillator Schrodinger equetion numerically
to determine the £igenvalues of the transfer opsrator, we s3tgdied the Jowest
states in a formal (WEB approximation) way; this preserves subtle interpretive
features that can b @a3ily lost in nuymerical stwlies,

In the olassical approimation, for the given Hamiltenisn, the momentum
amd field digplacement integrations for Z factor compleiely. Z = Zp Zu, with
Zp = (2T KET}]U2 as usual for N particles. We are left with the poitential
energy ferm 2, [¥({u})] to compute. Dividing x into stations x

"

ohe writes the partition funetion, for nearest neighbor interactions, ac

i separated by £,

2 = I? [ du, o B vy, “1-1}] (24)

where f{ui, “1—1} is that part of the potential depending on ui and u

i-1
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Il
. 1.
The integral may be evaluated exactly in the limit of a large system using the

elgenfunctions and eigenvalues of the transfer integral operator

- fu,, u, ) -B ¢
it Ti-1 _ n
[au, ;e Yo d=e CY @) (25)
The Yn are distribution functions for the flield amplitude u, which zre not only
useful to compute Z, but also to compute expectition values of varfious quantj=
ties, assuming that i{heir properties are such that the Th form a complete set,
1!Ei'

*
H(n ~ v) = E Tn (u) Th (v) (26)

Thy=, supposing at first that at xl, u1 = ¥, then the integral Zu can bhe
rewritten
-B f(n, v, _.)
i i-1
z =LY @ In au e ¥ ) (27a)
A S §
¥ (MY }(11: eiﬁ e“) (27b)
n T o n+l i=1
Hext, integrating over all possible initial and final displacements v, Yyiit
and replacing N by (174} yields
-.%.ﬁ Eu
2z, - Ze {28)
n
Gbviously, as L ~ =, Zu iz dominated by the lowest eigenvalue En
_.% B Ed .
2 ™e {25)

This procedure and calculations of moments or cerrelation functions are dis-

eussed further in the references cited.




: Thwe burden is now transferred to finding solutions of the transfer apera

ator equation. These are found'C fram the solutions of an equation which is
Schrodinger-like (of course, quantum mechanics is not really involved). Ap-

plying the method of 25F, we fimd the effective oscillator aguation, in which

2 2
A 2 B 4 ) d ]
[s =y =y - = ¥ (wy=¢ ¥ {(u) {30}
2 4 232 mca? du2 n n n

where B, is 4 zero of energy from normalizing certain integrals and plays little
role in the thermodynamics., Note one important difference between (30) end
B8F (2.23); we maintain the sztrong temperature dependence of an sffective maszs

*
m on tenperature, as defined by

32 dz 1 2
T TTx

252 m:o2 du2 2m  du

4

]
or nf = n{c zfjgxézig}t -

o
A verlety of resuwlts were obtalined by S5F from numerical evaluation of the

solutions of their wversion of (30). More insight can be gained, at least for
the low tenperature region, by an interpretive examination of the low energy
solutions of (30), as a function of temperature. The potential is shown in
Fipures la, 1lb, 1c, with an indication of the way in which the energy levels
might be distributed for low, intermediate, and high temperatoye, For low
tenperature, the effective mase m* ig large and the eigenvalues bagin near the
the bottons of the wells, split into paire by "tunneling” - in the sense of this
effective Schrodinger equation. At hiph temperature, m* may become so small
that the lowest esigenstate Eo lies well above tha potential hump. This does
not provide an exact criterion for obtaining a true phase transition, but it

does suggest that below some intermediate temparature the thermal distribution
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is such as to find the displacement pretty much near + v _, while well above
th£§ temperature the displacemsnts range over the whole region in the lowest
sigenfunction fo {u}.

An examination of computer solutions would provide further detail, if
done with high precision. Howewer, in the lower tenmperature regime, approxi-
mate solutions can be constructed, as for standard guantum mechanjcal double
wegll problems. To a first approximation we have harmonic oscillator states in

each vell, for which the (doubly degenerzte) spectrum

E =~ +3 (En[%l- )é (3la)
LET

~ . —2 (2aly (31b)
a

The potential near the minima is Vh ='{2|ﬂ|)(u - uﬂ}zle Thiz double degen-
4]
eracy 1z gplit by tunnsling

E

= az
N, E +t (32)

&
] n
2]

where tn is the matrix element conhecting the nth statee in opposite wells.

Taking the lowest states, n = 0, as lying on ¢ither side of a potential hump

of height {Aafdﬁ} and average width v » 8 VKB approximation yields

u 2 me 2
.= a o " A? “f
E KTVEB 2 E - olf o
~ 0 8 28 _ ¢ 2B
taT T ° =7 ° %)

Thus, the two loweat levels have eigenvalues {(from (3la) with a = 0}
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F -nu f A2 m*
1%'5:&(?)&(1-&9 "V a8 )

(34}
-uu Azrt*
24 \} 2B )
Eu.a=i(_*) (1+§&
™
with
¥ sz-:!—['fo{u-un}i’fn{u+u0}] (35)

%a Sz

whara ‘fu fu) 18 the n = 0 harmonic oscillator state.

For low temperature, but finite, the "tunneling” splitting of the lowest
cscillator level as given by (32) may be very amall, but upon taking the
thernodynamic limit (L/A4) = N = = only the lower of the pair of states survives,

We havée the series of eguatioms wsing (203, (3lk), (32),

Eu =—8Xp [—% E~{5n + Eo - tn} ]

F = -k T/n [zp z ]: F,+F, (34}
N T
FF = -3 in{2m M X T {35}
_ 2 2]A| 2 fo t ]
Fy = HKBT[EJG_Q (B P = (36

Upor substituting and coliecting terms after some algebra

F= Fosc * lﬂiﬂmm (37

F__ = NK T[in(%-&l-)é+lug(*§;-ox—fi)] (38a)

asc B 2c
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IR PIY:
Ftunn = _HKBT 4co ( m ) “ (38m)

The terms in {38a) are shown Iin Appendix I to be the free energy of the
phonans specified by (13) and (14). What is Ftunn? We show in the next
gection that it 18 just equal to the Ifree enexgy of a1 thermodynamic distribu-
tion of domaln wslls, topether with the phonons., Thue, this detajiled func—
t1onal integraL caleculation shows that two gualitefively distinet low energy

}

axcltations are present, particularly ef low temperature,

I1¥. Statistical Mechanics of Domain Wells

Let ne assume the viewpoint that the domain walls can ba considersd as
weakly interacting elementary excitations if, say at low temperature, thay are
distributed at random in low concentration along the one-dimensional modael
gyetom. Mo . then coapute the thermodynamic properties, and compare the rezult
with the exact caleulation in the preceding cection, to see whether thisos view
is plausible.

The point is that if separated by much more than a wall thickness, the
strain and kinetic energy fields do not interfere bhetween domain walls,
Actually, there are some interesting kinematic restrictions, in that domain
walls of the same sign cannot be adjacent to each other nor pass through each
other while walls of opposite sign can pass throwgh each other and annihilate.
For the present, we assume that the density of walls i5 so0 low that these finer
de;atls wlll contribute only an "ezcluded volume” type of correction to an
othervige dilute gas.

To proceed, we need the excitaticon energy assoclated with the wall, which
from (1) comprises kinetic and potential energy terms. These are (o bhe £valu-

ated for the field given by {15) and (16). The potential energy, relative to




the lowest energy where n = + un is givern by

2
Epp = I %E { % @’ - uazl + 5'{u4 - unqj * :;E_ ( %& )2 } (39)

and the kinetic energy by

e = J {5} (40)

with u = u tanh [(x - vt)//2 5]. These integrals could be evaluated numeri-
eally; but for interpretive reasons, we approximate so that they can be avalu-
ated formally, as follows: <{a) replace tanh ¥y by y ii |y] <1, and by + 1
otherwise, {b) considerang only low energy excitations, we assume that the slow

2 2
moving walls, v << L dominate; then £ = gu independent of v. With these

approximations
g 2
e A ( 7 )
Enpq'z"rzz s L1~ %5 (41)
2 ¥
E mﬂ(ﬁ)( %o )v2=iqv2 (42)
DX 2 E 2 E 2 D 2 D
o

The factor (7/60) from inteprations will be neglected. Each of these expres-
gions is easily interpreted, defining A = 2/2 gﬂ a8 the thicknessz of a domain
wall. The number of particles in 2 wall is (2/2 Eufi), with mean poténtial
anerpy approximately (AEXEE} {relative to the ground state). Similarly, the
kinetic energy may be asscciated with a kinetic effective mass of the domain

wall m; given by

‘ 2/2 ¢ 2
m;=“( £0)(2u;2) (43}
0

The statistical problem is then that of a "gas" of "quasi particles” having the

above potential and kinetic energy, distributed in a one-dimenszional volume.
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]
The partition fuhetion is that found for placing these particles on a
line. 8o that they may be considered distinguishsable, we divide the line inte
n, segments having thickneas of a damain wall A= 2/2 &, then n, = (L/4)., The

partition function 1z then

dv - n!t -ann
zn'[f (.HE? : )nw,.';(n:_nwne °F ] (44)
w

where B is an appropriate phase space norpalization. In the approximation that
- H E

2 iz dominated by the most probable Ry which 1f e oP << ] i3 also the
- 8E
BVerags “w = ns & DP. then the expression can be evaluzted to yleld
Zﬂ'K T + E; .
[—] (=] i
2y = Tpy Opp ( )T - {45)

The same result can be obtained more elegantly using a grand canonical distri-
L

bution. From {45) the frea enargy is

- 211 KBT
ety oLt e (%))

D (48)

ET'K T -——.
) )

FD=-HI{T(2I:§ )(1+blcg

4]

We now compare this with the "tunneling contribution to free ehergy found from
the exact functional integral calculation as given by (38b). Inserting the

definitions for § , E

pp Irom (41} [but neglecting {7/60) compared to unity],

and u,, e #ind that (3Bb) may be rewritten

4 T KT
Ftu:nn = -H...KET( e - ) € B (48)
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Remarkably, except for a prefactor of the order of unity, Fh = Ftunn' Thus; a
quaiitatively important pa;t of the exact free energy is associated with the
excitation of domain walls.

¥e take this agreement betwesn the phenonenological statistical mechanical
model and the sxact calculation as confirmaticn of the proposal in Section 1 |
that when nonlinearity plays an important role, both phonon and localized do-
main wall excitations ar; to be found in the thermodynamic behavior, oOf
course, the phonon free energy varies slowly {linearly} with T in.this classiecal
approximation, While the free energy and concentration of demain walls drops
rapidly {exponentially)} with decreasing temperature. However, as we will zee

in the next section, a number of experimental guantities can depend strangly on

thﬂlpresence of domain walls.

V. Applieations of the Phenomenological Model
A. Equal-Time Correlation Functions - Low Temperaturs
As discussed by éSF;Tﬂ the two point equal-time corralation function may
be written
~ Ble - € )(x/2)

<ufo) u(x) »=Te |< o Ju| n 5|2  {49)
. ' n .

where ugain the En and states fn > are those of the eigenfuhcticn; of the
transfer integral eperator defined for the functional integral in Secticem 111,
If we include high;r oscillator states in the sum, we can find the cprrelation
Ffunctieon charscteristiec of phonons about . But a much larger displacement
is ‘associated with a jump from ., to e at low temperature, the sum (49) is
then dominated by the lowest palr of tunneling states, It is .straightforward

using {33) and (35) to find then that
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]

2 -2B toixftl
< ufo} uix} » = u, ®

- i- (50)
= u 2 - ¢
o - i
where the correlation length is Tound from (33) to be
EDP
" KT
ht = /2 §n e (51)

in the low temperature region where the tunneling appruiimatinn hulqs.t At
higher temperature, when the lowest eigenststes of (30) are above the szaddle
point between wells, one axpaéts an algghreic dépandence of lb on tanpargtur&.
Thus, below scme internediate temperature, the correlation length beglns to
inerease dramatically (exponentially); but, of course, does.not ever becone
infinite for any finite temperature, for s one-dimensional systenm.

Sa much for the Punctional integral result for the equal time displaéemﬂnt-
.displa¢3meﬂ£ correlation function.

Can the phenomenclogical domain well nodel he used to calculate thizs cor-
reléﬁion function? Cons%ﬁer the fellnw;ng medel: At x =0, u™ L except
for small phenon oscillations, but.hetweén X =0 and a finite value of x,

. there may he ;w(x} domain walls. At each wall u = + u flips to + u - Thus,

the correlation function

bi |
u(x) uio) = u: (-1) "2 | | (52)

At low density of domain walls, a Poisson distribution should apply, and
. . " h
w
{n_) -n

w w
Pt_'(nw(x}) = = e : | : (_53}

W

. - ﬁ EDP

where E;{x} = (x/h) & from {(44). The everame wvalue of the correlation

1
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functioh is

a n, (%)
< wix) ufo) » = " < {-1) = {54)
and
n,(x} - 1, _ - n,
< (-1} »= (1) . e o + {-1) n, e
n.2 =-q
+{_112{23 -] w‘l‘ R
n (x} =2 n
<(-1})" »=e T (55)
whence, where A = 2/2 ﬁﬂ-
- A E
< ulx) ulo) == uﬂ? exp [ - %; e Lp ] (56)
_X
2
< ulx) u(o) » = u,~ e (57)

*with lc being identically the same correlation length given hy (51) Irom the
funetional integral caleulztion.

Thie result is one nore indication thzt.the domain wall model is hoth
formally and practically valid for obtaining information sbout thermodynamic
averages in th:e low temperature regime.

B. Dynamic Carrelation Functions

Por acattering experiments in which some probe excites a displacement

u(?, o} which in turn induces emission propertional to uix, t)}, 8 relevant

gquantify is

< uio, o} ulx, t} > (58)

and its Fourler transform S{q, m)




1
s, w = g T ﬂ dx at 200~ W) e, o) ulx, t) > (59)

This correlation function description is an idealized model of rezal photon
or neutron scattering.

We have not yet been able to make an exact celcoulation of thie dynamic quan-
tity in the apirit of the functional integral for equilibyium quantities, There-
fore, we now rely completely on the domain wall model (again for low temperature).

Considering a particular point x, then the phenomenclogical
picture we have is that for a while ulx, t} is approximately +u, + 0, cos u.rut,
then ﬁlﬂng comes a domafn wall flipping the displacement to -uﬂ + ' cos uht,
and 50 on. Here, @ cos uht is & small amplitude oscillation with uh o {2|A|fm}§.
These donsin walls have randoe spacings and randon velocities, according to the
digtribution discussed in Section IV. Some important featuresg of the frequency

spectrum can be found as follows: Assume that over a cocrrelation length lﬂ, We

can approximate < u{o, o) uf{x, t) » by < uf{o, o) ui{o, t) >, then

Gl_{q}

S(q, W) & —— Idt e M < uo, o) uio, £) > (60)

-

with Ul{q} an .approximate spatial transform over a correlation lenpth, But by
the convolution theorem, the wW-transform of the correlation function iz just

the power specetrum < uf{o, gl u*{u, w) >, where

o
* ufo, w} = %F I.dt a iwt ufo, t) {61)

Thi= Fourier transform in our model becomes



- it - iw(t - t,)
i 1+1 i
uf{o, w) =T A f+u b e -1
1 { 2n —_ O [ =1ip ]
- 1w - woJ{ti+1 - t.)

@, - ifw - mo}ti [ﬁ

i | Y ]
& =5 {W + Ulu}

@ AW w7 1w+ @), _1
Ten € [ -+ W) ]} (ez)

where the ti are the random arrival times of the domain walls. As usual, the

average of the sunm of random phased terms in u{o, ®) is negligible, but not so

*
for < u{o, #) u (o, w} > = X(w) which is found to be

z
u, [=tn 1.1.:\1:1::l - ti-t-l}]

TT2 wz D.¥.

2

2
o, [sin (W - wo}(ti -t 3]
o= D.w,
1':2 l';w - w{:}

2 .
o, [=ia (w+ wi(t, = t, _}]
, o 1 1+1 - (63)

n (w + wnlz o.W.

ba) -

The average is to be carried ont over the distribution of arrival intervals

(t,

14l ti} domain walls. This distribution ie calculated a=z follows: K

{1} At x = 0, walls move in from right and left.
£2) The number reaching x = ¢ from one side hetwszen o and t amd having velocity
v is the nunber lying in the interval £ = vt, Thus

L=

N> (t) = _r vt (v} dv (6d)
v )
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where ;;(v} is the average number of walls per unit length havipg veleclty v.

From Section IV

ﬂ.m* v;
- y - BBy -
nw(v}=—ﬂe -

The nunber arriving from both sides between o and t is

¥ 2
® By, v
-ﬂE -
H{t}:iﬁe DPI?E z dv =
o

where

+ 1 2 op

=2 —
D Bﬂﬂ;

r

p

(65}

{66)

(67)

{3) The probability P{t) that no domain wall has yet reached x = { up to tine t

obeys
dp __dn __ 1
dg dt tD
whence
-t
t
P{t}:t—e b

D

(68)

and this is the probability distribution to be used for the Aintervels in {63).

¥e then must cglculate quantities 1ike

w L

.rdt k sin” ut 1 3

o
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From (63), in the spirit of (60), we find

-

S8(q, w) o

20, {q} t
I\ {uz D
L+ ]

t t
] . SR S—
1+ 4(w- :.uo} t’n 1+ 4w + mu}tn

Here E? is a mean square thermal amplitude of the phonons with frequency W,
{as specified by q).

Wa seae that the spectral function contains not only the sxpected peaks at
the phonoty frequency mb, but also a "central paak" whose helght increases ex-
ponentially with inverse temporature as tD fnereases, This central peak is a
manifestation of the strongly nonlinear domain wall type of displacement field,
not of coupling to entropy or hydrodynamic modes,

It is tempting to =ay that this "central peak" is that seen in computer

' or in real neutron scattering experiments. However,

simulatiocn experiments,
we can ohly say that 1t is provocative, for at least two reasons: First, this
is 2 one—-dimensional madel and a real phase transition cannot oocour; ss&odnd,
the snalysis here would feally only apply in the low temperaturée regime where
it would be difficult to separate from any Bragp peak at the same g the extent
to which the features would survive at and above a transition is uncertain.

Wa hope to extend the model to a two=dimensional system, =0 that cleser

comparizon with computer experiments and real transiticns can be carried out.

Vi. Summery apd Discussion
¥We have studied thermodynamic and some dynamic properties of a one-
dinensjonal model sysiem whose displacement field Hamiltonian is strongly an-

harmonic, and 1s representative of those used to study displacive phase
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transitions. Dy studying the classical equations of moticm, we find important
soiutiuns {domain walls) which cannot be represented effectively by the wswval
phonon perturbation expansions. The thermodynamic properties of this system
can be calculated exactly by functional integral methods. Noe Hartree or de-
coupling approzimations are made nor is a temperature depepdence of the
Hamiltonian introduced artifically. At low temperature, the thermodynamic be=
havior agrees with that found from a phenomenological model in which both
phonots and domain walls are included as elementary excitations, We then show
that &qual time correlation functions calculated by both functional integral
arnd phenomenological methods agrea, and that the dynamic correlation functions
{calenlated only phenoménologicslly) exhibit a spectrum with both phonon pesks
and a central peak due to domain wall motion.

Puch remainsg to be done to examine the extent to which the idezs discussad
here apply to real systems, and how they relate to or are in contradiction with
conventional theories, Nome the lega, it seems that such features zs clusters
{i.e., regions bounded by domain walls) which appear in computer simulations of
model systems, the "central peak', and the consistency of exact and phenomenological
thermodynamic calculations is encouraging. Howewer, we algo must note that the
lack of any general mathadnlngy for discussing the finite temperaturs behavior
of extended nonlitear systems presents a formidable obstacle to the possible
extension to higher dimensional systems, or to do exact dynamics at finite
temperature,

Finally, we record a few speculative fdess, which may be worth further
de;elupment. First, if these domain walls are present in the low temperature
phases of psuedo one-dimensicnel crystals which have undergone Peierls transi-
tions, the Pelerls epergy gap in those walls could go to zerc, the material
becoming locally metallic. One could then have a distribution

of conducting sheets (walls) in an insulating matrix; the low freguency
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Eiectrihal properties and optical properties would not be simply related, as
in a homogenecus mediom, Second, there 13 the question of whether a soft mode
going to Zero frequency isfthe exact condition for a structural phase transi=
tion. This question cannot be answered properly until adequate dynamic exten-
gions of the analysis here can be made, On the other hand, the funcitiomal
integral analysis is suggestive that there is n tenperature range in which the
ecollective dynamic behavior will change from that of oscillation= in either of
two wells to that of 2 single nonlinear oscillator, whose period becomes very
leng in the transition region. In our model, this would cccur in the regicn
of Figure 1{b}, when the effective mass m* = m{cuzfﬂzKBETg} iz such that the
lowest eigenvaluye of (30) lies near the saddle point of the potential, Thus,
while it is not certain that a phase transition will ccowr exactly at the
tenperature where the soft mode frequency goes to zero, it 1s wery likely to be
nearhky.

¥e—appreciate the advice and comments of colleagues, particularly
T, Lubensky apd F. W. Wilkins. One of us (JAK) gratefully acknowledges the
hospitality of the University of Pennsylvania during a sabbatic visit 1n 1973,
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Appendix |

Phornoh Frae Energy for Vibrations in Well

The dispersion relation (14} is

z2_ 2 2 [a] _
uh =c, a4+ 2 o (A.l)

The density of states in g-space is (L/1), whence the density of states in w is

dan

_ L
:ﬁ;-ﬂmo - (4.2)
w - Elhl
1 n
It may be rewritten in terms of N = {L/€), and a Debye normalization
Yaax
dn ) _
.r dw ( e =N {A.3)
“nin = (2|A[ )§
Aon
leads to
dn £ W ’
VT, S (A.4)
@ W - 2|A|
n
arul
2
T ¢
2_z2lal [~ % (A.5)
max m £2
hw
KT

The free energy per oscillator is F(w) = KBT log [1 ~e " 1 =~ KBT log {hufKBT} in

the classical limlt KT >» hp. The total free energy is then

Raax

Fvih=KBTI dm(g-‘%)mg(%) (A.6)
ulnin
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Substituting from above, nfter some tediocus algebra, we find

2 2

Fvih““BT[(%iL)é(ﬁ%)s“-I(1*5!%)& ﬁ
. "2c2 ;
?J-&.L 4] .
+1°g(h(m ) (7 ))] 4.7)

]{BTE

In the limit £ — 0, which 15 in the spirit of the functlonal integral method

LLI
2lA -
used, ( 2 )2 e and sec . E0
2 . ) | 2

me

Frib = NKBT[gTi(E%L)b"l‘“‘E_(% m’? ] (A.8)

The first term identifies with the lowest oscillator level in the functional

integral. While the logarithmic term is given by (35) and the s, term of (34)

W‘Il&n_h = __]..,.

L
o
_}’?T [log ZP - N8 ﬂ'u] = H'KBT log (M_KBTE ) . (A.9)



Figure Captions
Figure 1: Eigenvalue spectrum (schematic} of the transfer operator, from
equation {30), for tenperature dependent effective mass

2,2 2.2

* .
m = m{co SE HE T ): {a) low temperature, m* large, [(b) inter-

¥
medinte temperature, {(e¢) high temperature, m snall.
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