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Abstract 

We have studied thermodynamic and seme dynamic properties of a one-

dimensional model system whose displacement field Hamiltonian is strongly an-

harmonic, and is representative of those used to study displacive phase 

transitions. By studying the classical equations of motion, we find important 

solutions (domain walls) which cannot be represented effectively by the usual 

phonon perturbation expansions. The thermodynamic properties of this system 

can be calculated exactly by functional integral methods. No Hartree or de

coupling approximations are made nor is a temperature dependence of the 

Hamiltonian introduced artificially. At low temperature, the thermodynamic be

havior agrees with that found from a phenomenological model in which both 

phonons and domain walls-are included as elementary excitations. We then show 

that equal time correlation functions, calculated by both functional integral 

and phenomenological methods agree, and that the dynamic correlation functions 

(calculated only phenomenologically) exhibit a spectrum with both phonon peaks 

and a central peak due to domain wall motion. 
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I.' Introduction 

In recent years, there has been considerable interest in systems in which 

structural phase transitions apparently take place due to the instability of 

some lattice displacement pattern, which takes the system from some stable high 

temperature phase to a different low temperature lattice configuration. The 

dynamics of such systems is frequently characterized by a vibrational mode 

whose frequency decreases rapidly near the critical temperature, as though the 

restoring force for that displacement pattern softens, thus "soft modes". The 
1 2 3 history of this viewpoint is generally well known, ' ' particularly in the 

study of ferroelectrics, though many other systems show the behavior in some 

form or other. Peierls instabilities would share some of the features, al

though significant changes in the electronic properties occur simultaneously 

with the lattice distortion, and the coupled problem is more complex. 

While it is likely that such displacive transitions are at least accom

panied by soft modes, the theoretical interpretation is not altogether satis

factory since formal analyses to date are all based on anharmonic phonon 

perturbation theory, using some set of self-consistent high temperature lattice 

phonons as a basis. But at the transition temperature, the displacements rela

tive to that lattice become large and no perturbation scheme is expected to be 

satisfactory. 
4 5 6 Computer simulations ' ' have been carried out to shed light on these 

matters; and, indeed, are very informative. In addition to showing features 

which are expected as some order parameter develops a nonzero value, there are 

two other interesting features: the appearance of clusters of locally ordered 

regions, and the development of a "central peak" near m = 0 in the dynamic 

response function S(q , uu). The "central peak" which accompanies the soft mode 
2 2 7 8 

experimentally has received a variety of interpretations, ' ' which also re

main somewhat open to question. 
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We thought that it might serve a useful purpose to see whether one could 

approach these problems from other than a perturbation or mode-mode coupling 

point of view, and the work here is a first step in that direction. 

To date, the development has been restricted to a one-dimensional model, 

for which there cannot really be a phase transition for finite range interac

tions. On the other hand, we have been able to treat strong nonlinearity in 

some detail, making contact with an exact (in principle) calculation of the 

equilibrium statistical mechanics using functional integral methods. Several 

interesting features appear in the results, principally of an interpretive 

nature. The most important result potentially is that the Fourier (phonon) 

representation commonly used in perturbation calculations is inadequate to 

discuss one important type of excitation that can occur in highly nonlinear 

systems, and which we refer to as "domain walls". These were postulated by 
g Takahashi some time ago on phenomenological grounds, and now appear to us to 

be a natural consequence of strong anharmonicity in the statistical mechanics 

of this model system. 

The plan of the paper is as follows: In Section II, we present the model 

Hamiltonian, and discuss the solutions of the resulting equation of motion for 

the displacement field; from the small amplitude phonon modes to some limiting 

large displacement patterns, including time dependent solutions. In Section III, 

we use the functional integral method to calculate the partition function for 

this Hamiltonian, adapting and extending the work of Sears, Scalapino, and 

Ferrell, including the calculation of correlation functions. In Section IV, 

we do the statistical mechanics of a random array of domain walls on a back

ground of small amplitude phonons, and we can make a complete identification with 

the functional integral result in the low temperature regime. In Section V, we 

show that static correlation functions can be calculated either way, and that 

one is led to a model for dynamic correlations which can yield a "central peak" 
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in an appropriate scattering function - because of the motion of domains - not 

because of coupling to entropy fluctuations or hydrodynamic modes. Conclusions 

and discussion are contained in Section VI. 

II. Model and Excitations of the System 

A standard model Hamiltonian for a system which might undergo a displacive 
4 5 6 phase transition ' ' assumes that the Hamiltonian is of the form 

2 4 2 .2 
f t A u. B u. . (u. - u.) -. u. 

H = S { ( — + — ) + E C . — ^ — +Em. — (1) 
° i l \ 2 4 ' j 1J 2 J i 1 2 

Here i, j indicate lattice sites; A, B, C. . are potential coefficients; u., u. 
IJ 1 1 

are displacements and velocity of the displacing ion with respect to some heavy 

ion or reference lattice. Typically, A might be determined by attractive inter

actions of the mobile ion with the reference lattice, B by short range repulsion 

of those near ions, and C.. by interactions between the displacing atoms. In 

the situations where this is presumed to represent a lattice which is unstable 

against a displacive transition, A is negative; B, positive; and C.. are posi-

tive. This Hamiltonian is a tremendous oversimplification of any real three-

dimensional system, particularly of symmetry restrictions and long range forces, 

which are important in real ferroelectrics. None the less, we find that even 

in one dimension there are results which are interesting and nontrivial. 

Before proceeding with the analysis, we note two approximations which are 

often made in discussing the finite temperature behavior of the model system: 
2 2 2 2 2 ii (1) Hartree approximation: (u. ) = u. < u. > usually < u. > =* A (T/T ) l l l T ,. . l T ' ' o 

in the high temperature region. This yields a psuedo-harmonic Hamiltonian ' ' 

(also derivable by low order anharmonic phonon perturbation theory) with 

A = |A|(T/T - 1). This describes a stable lattice for T > T , and vice versa 

below T . Many studies have been made with this effective Hamiltonian as a 

point of departure, but the approximate nature of its basis should not be forgotten, 
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(2) Mean field approximation: Onedera has studied the statistical mechanics 
2 

of this system with the approximation u. = < u >„ in E C. (u.  u ) /2. This 
J T IJ l j 

suppresses all dynamic information which depends on the details of interion 

displacements, and amounts to a collection of anharmonic oscillators coupled 

only by their mean thermal displacements. Thus, no phonons are considered, 

and interparticle fluctuation effects are certainly omitted. 

We have tried to avoid either of these approximations; and particularly in 

contrast to the analysis in reference 10, we take A =  |A| to be independent 

of temperature, as in the original Hamiltonian, thus not putting in the critical 

behavior artificially. We do not attempt to employ renormalization methods to 

obtain an effective Hamiltonian. 

The one approximation we will make is to assume that the Hamiltonian (1) 

can be replaced by a continuum representation 

'-!?{*££ ♦ \ .<■>'♦!-«
4 ♦ + {§f} (2) 

where SL is the lattice spacing and x. = jJL = x locates an element (ion) in the 

continuum representation. This approximation limits us to displacement fields 

which do not change radically over a lattice spacing. In the above, c is the 

velocity of low amplitude sound waves (phonons) which would occur if A and B 

were negligible (i.e., only interaction between displacing ions are important). 

We now proceed with the analysis. 

Taking A =  |A|, B > 0, the "onsite" potential is a double well potential 

with minima at (see Figure 1) 

« = ± % = ± ( ̂  )* (3a) 
2 

v(+ U Q) = J LgL (3b) 
2 

| |2 (u + u ) 
v
<

u + u0) = * B~ + 2
'
A
I 2 ° + •'* (3C) 
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Two different physical regimes of the parameters occur under the names of 

"order-disorder" or "displacive" systems. If the depth of the wells is so 
2 2 great that an intersite energy mc (2u /£) , which is the interaction 

energy between nearest neighbors displaced to opposite wells, is not great 

enough to lift the particle over the barrier, then only large thermal fluctu

ations at individual sites can do it. Effectively, one has a collection of 

weakly coupled anharmonic oscillators, randomly displaced to u ̂ * + u , as one 
- o 

expects in a disordered system. This "order-disorder" regime occurs for 
• A 2 2 

I.12 4 mc u *v- » —V-2- (4) 
B i2 

In the opposite limit to this inequality, there is>strong intersite interaction 

and extended lattice modes determine the physics. Here the system is said to 

undergo "displacive" transitions and 
2 2 

I i2 4 mc u 

We will be concerned entirely with the displacive case, that being more relevant 

to the soft mode situation. 

Applications are generally at high temperature, and no essentially quantum 

effects are involved. Therefore, we first consider the classical equations of 

moticn and their solutions; then in the next section, the classical statistical 

mechanics of the system. 

The equation of motion for the displacement field u(x) which follows from 

(2) is 
' 3 2 m u + A u + B u - mc u" = 0 (6) o 

We note that quite generally, if u = f(x - vt), then f must obey 

m(v2 - c 2) f" + A f + B f3 = 0 (7) 
o 
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Introduce the dimensionless variables 

m ( C
o ~

 V } 2 
= § (length squared) (8a) 

^ = Ti (8b) 
o 

x  vt .„ . 
= s (8c) 

The dimensionless form of the equation is 

53 + Tl  TI3 = 0 (9) 
ds

2 

Both static and time dependent solutions may be constructed from the solutions 

of (9). We discuss first the limiting forms of solutions: 
3 

A. Small amplitude, r\ « T\ « 1. 

Solutions of r)" + r\ = 0 are of the form 

r\ = a sin (s + 0) (10) 

where a is amplitude and © = phase. Substituting physical variables 

u = a u sin 1 X + 0 I (11) 

which is simply a phonon with wave number q = § , frequency (v/§), and phase 

velocity v (which is q dependent) that satisfies the equation 

2 2 2 2 |A| 2 rnON 
v q = c q  1—L = UU (12) 

o m q 

which is also a dispersion relation. Of course, since A is negative, the fre
quency (W will only be real for finite q > ( A /mc )

2
. These phonons are small 

q — ■ o 
amplitude oscillations about u = u . 
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Another set of small amplitude oscillations can occur if all particles are 

displaced and lowered in energy to the bottom of one of the wells. Then 

T) = 1 + Y» where Y is a small dimensionless displacement. To terms linear in 

Y, the equation of motion is 

Y" - 2 Y + 0(Y2) = 0 

With a slight revision in the definition (8a) the solutions are small oscilla
tions about + u of the form 

— o 

u = + u + a u sin (qx - U> t + 9) (13) 
— o o q 

with the dispersion relation 

2 2 2 A 2 „„ x c q + —I—L = ID (14) o m q 

instead of (12). The frequencies are real for (all) q > 0. It should be 
2 noted that for N particles, this state is very much lower in energy (NA /4B) 

than the configuration vibrating about u ̂  0. 
3 In the cases above, the nonlinear term T] has been omitted or linearized 

about r\ = 1. Thus, the modes found can be superimposed in lowest order calcula

tion of the partition function. But, of course, as soon as the nonlinear terms 

are considered, the phonon modes are coupled to each other; and the thermodynam

ics is quite nontrivial. For the most part, Green's function decoupling ap

proximations, or perturbation methods, have been the only methods applied to the 

interacting phonon system. However, we proceed somewhat beyond those formula

tions in the present case. 

To do so, we now look at the solutions of (9) in another regime, which we 

call the large amplitude strong anharmonic regime. 
3 B. Large amplitude regime, r\ "" T) ̂  jf 1. 

The equation (9) is formally identical to that governing the order param

eter in Ginzburg-Landau theory for a 1-D superconductor. One type of solution, 
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for which T] is not small, is T] = +1 or 1 for all s. This is mostly an unin

teresting solution, the order parameter constant throughout the system; but it 

is the lowest energy state since all particles are at rest at the bottom of a 

potential well. The small oscillations in the second case above are one kind 

of low energy excitation above this lowest energy state. 

But there are other, intrinsically nonlinear, field patterss which are also 

important in the low lying excitation spectrum. More important, they cannot be 

represented by any reasonable order of perturbation theory based on phonons. 

Such field patterns are well known in type II superconductors. For example, 

one simple particular solution of (9) is 

n = tanh ( — ) (15) 
V2 ' 

This corresponds to a family of solutions in physical variables 

u = u tanh ( X " v t ) (16) 
\ / 2 , § ; 

where § is defined in (8a). In this pattern, the displacement is constant at 

u over nearly all the semiinfinite region (x  vt) < 0; it is +u for 

(x  vt) > 0. The transition takes place through a "domain wall" of approximate 

thickness 2/2 §, and the wall moves with a velocity v. From the definition 
i i **■ 2 2 h 

(8a) § = (m/|A|)2 (c  v ) it is seen that c is the upper limit on the 

drift velocity (perhaps more precisely that § must not be less than a lattice 

constant). 

The excitation energy required to produce this pattern is localized in the 

domain wall; it will be calculated in detail in Section IV. But it is apparent 

that this kind of excitation is quite the converse of phonon excitations where 

the energy is distributed throughout the lattice. In one sense, phonons are 

independent in qspace while these domain walls are independent in rspace, 



their interaction falling off exponentially when separated by more than a wall 

thickness. There is, however, the all important difference that the small 

amplitude solutions above were approximate solutions of (9), while (15) is an 

exact solution. 

This last observation prompted us to see whether we could connect the two 

types of solutions. This has been partly possible, as follows, in terms of 

elliptic functions. Equation (9) may be converted by quadrature into an im

plicit integral relation between T) and s. Let a = (s//2) and 

- > * [ > - ( t g y J 
2 

a 
K2 _ . _„ . 
b Tf=o 

then 

( dTI \2 .2 2. .2 2. , v 

^ d o f ; = ( a - T l ) ( b - T l ) (18) 

and a is found from the elliptic integral 

o=f «£ (19) 
1 L f~ 2 2 2 2 
° Via - y )<!> - y ) 

12 the notation being standard. This is an elliptic integral of the first kind, 

and generates the family of solutions 

Ti = a sn(ba) (20) 

where sn(ba) is the "elliptic sine function". For ba = 0, i.e., s = — = = 0, 

T) = 0, and sn is an odd function of its argument. With a modest amount of 

algebra, it is easy to find the "small amplitude" and "large amplitude" limits. 

Equation (20) may be written out in further detail: 
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The elliptic sine is periodic in 4K where K is the complete elliptic integral 

of modulus k 

" - S -
1 -

1 + 

-<S): 
Tf=Q 

-*(£): ? 
T>=0 

(22) 

The small amplitude solutions are found in the limit (dr/ds) « 1, where 

k =- 0, and 4K = 2TT. We recover (10) 

T\ =" a sin s. 

But for large amplitude, K -• 1 then K -* <= and the period of the solution be

comes very long (and not related to any renormalized fundamental period). In 

fact, if (dT|/ds) = (2) then one finds that (21) approaches 

T] = tanh (s/2) 

and we recover the domain wall solution above. In all of the above, the phase 9, 

a choice of origin, has not been explicitly written in; but because the 

Hamiltonian is translationally invariant, it is clear that this freedom exists. 
x - vt Also, since s = -, a whole family of stationary and moving fields is in

cluded in (21). 

It would be nice, now given various dynamic solutions of the equation of 

motion, to proceed to express the Hamiltonian using them as a basis, then do the 

statistical mechanics. This is what is usually done with phonons, because a 

harmonic Hamiltonian separates in mode space. Unfortunately, as is obvious 

from the nature of nonlinear systems, it is absolutely impossible to do the 

same superposition by simply adding two solutions for the displacement field. 

Indeed, the whole subject of nonlinear oscillations in extended systems is 
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extremely complex; and we must admit to having been unable to carry forward a 

rigorous program to connect these exact solutions of the equation of motion 

to an evaluation of such thermodynamic quantities as the partition function. 

On the other hand, we believe that the analysis above suggests certain 

features which should be included in a proper phenomenological discussion of 

the statistical mechanics - at least in the low temperature region where low 

energy excitations dominate. Specifically, we believe that one will see two 

different patterns in the displacement field; one, small amplitude oscillation 

motions about the potential minima u ̂ * + u ; and then the other, occasional 

"domain walls" where the displacement flips from one minimum to the opposite 

over a region of length ̂ * 2/2 Z). 

There will be a thermal mixture of these two kinds of excitation. It is 

apparent that phonons (extended) and walls (localized) interact weakly; and if 

the density of walls is low, they interact weakly with each other. Can one 

go from one language -to the other in a systematic way? Again, the complex 

physics of nonlinear oscillations in extended systems (e.g., laser oscillations) 

often seems to allow the pumping of energy from a number of weakly excited ex

tended modes, via the nonlinearity, into a local pulse or shock; and our con

clusion is that this happens here. 

To test these ideas, one must resort either to experiment or to some re

lated theoretical calculation which can be carried out exactly. It is not 

possible to find a real system which is accurately represented in nature by our 
4,5,6 model Hamiltonian. Computer simulations are of considerable use in a 

quantitative way, and we will comment on them in the concluding discussion. 

However, a formally exact solution for the thermodynamic quantities would be 

much more useful for calibration purposes. Fortunately, using functional in

tegral methods ' it is possible to evaluate the partition function for this 

one-dimensional model exactly - conditional on a knowledge of solutions of a 
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one-dimensional anharmonic oscillator Schrodinger-like equation - which can 

be solved numerically if necessary. 

We carry out that exact calculation in the next section (III), and then 

compare it in Section IV with the phenomenological thermodynamic behavior de

duced from a mixture of phonons and domain walls. 

III. Equilibrium Thermodynamics of the One-Dimensional Model: "Exact" 

The classical partition function follows from the Hamiltonian (2) as a 

functional integral in the field variables u(x), p(x) 

Z = J [6(u) 6(p)] exp [-0 H(p, u)] (23) 

10 13 
Scalapino, Sears, and Ferrell, and Kac and Helfand have shown how this ex

pression may be evaluated in terms of the eigenfunctions of transfer integral 

operators. We have followed SSF generally, except in two respects: (1) We do 

not put an explicit temperature dependence into A, e.g., a(T - T ), which in a 

sense puts in the phase transition "by hand", but take A = -|A| constant; (2) 

Instead of solving the anharmonic oscillator Schrodinger equation numerically 

to determine the eigenvalues of the transfer operator, we studied the lowest 

states in a formal (WKB approximation) way; this preserves subtle interpretive 

features that can be easily lost in numerical studies. 

In the classical approximation, for the given Hamiltonian, the momentum 

and field displacement integrations for Z factor completely. Z = Z Z , with 
N/2 Z = (2nm K_T) as usual for N particles. We are left with the potential p B 

energy ferm Z [V(£u$)] to compute. Dividing x into stations x. separated by i, 

one writes the partition function, for nearest neighbor interactions, as 

Zu = Jn[du.e-ef(V Vl>] (24) 
i 

where f(u., u ) is that part of the potential depending on u. and u. . 
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The integral may be evaluated exactly in the limit of a large system using the 

eigenfunctions and eigenvalues of the transfer integral operator 

p -3 f(u u ) -P e 
du e i 1 _ 1 Y (u ) = e n Y (u ) (25) 

«j l—l n l—l n I 

The Y are distribution functions for the field amplitude u, which are not only 

useful to compute Z, but also to compute expectition values of various quanti

ties, assuming that their properties are such that the Y form a complete set, 

6(u - v) = E Y (u) Y* (v) (26) n n n 

Thus, supposing at first that at x , u = v, then the integral Z can be 

rewritten 

-0 f(u., ui_1) 
Z = E Y (v) TT du. e x x x Y 0 0 u n J . I n 1 (27a) 

JI .1 

J N -0 e v 
E Y (v) Y (u .) ( TT e n ) (27b) 

n n n+1 \. , / 

Next, integrating over all possible initial and final displacements v, u , 

and replacing N by (L/X) yields 

Z = E e Z n (28) u n 

Obviously, as L -* », Z is dominated by the lowest eigenvalue e 

-7M-
Z ^ e ^ ° (29) 
u 

This procedure and calculations of moments or correlation functions are dis

cussed further in the references cited. 
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The burden is now transferred to finding solutions of the transfer oper

ator equation. These are found from the solutions of an equation which is 

Schrodinger-like (of course, quantum mechanics is not really involved). Ap

plying the method of SSF, we find the effective oscillator equation, in which 

h = 1, 

-2 .2 
r A 2 B 4 X d I w x x W r v 
L S o + 2 U + 4 U " —2 2 ~2 J \ (U) = £n *n (u) (30) 

28 mc du 
r o 

where s is a zero of energy from normalizing certain integrals and plays little 

role in the thermodynamics. Note one important difference between (30) and 

SSF (2.23); we maintain the strong temperature dependence of an effective mass 

m on temperature, as defined by 

X2 d2 1 d2 

2 2 2 * 2 28 mc du 2m du o 

* , 2 - 2 -2--2. or m = m(c /X Kg T ). 

A variety of results were obtained by SSF from numerical evaluation of the 

solutions of their version of (30). More insight can be gained, at least for 

the low temperature region, by an interpretive examination of the low energy 

solutions of (30), as a function of temperature. The potential is shown in 

Figures la, lb, lc, with an indication of the way in which the energy levels 

might be distributed for low, intermediate, and high temperature. For low 

temperature, the effective mass m is large and the eigenvalues begin near the 

the bottoms of the wells, split into pairs by "tunneling" - in the sense of this 

effective Schrodinger equation. At high temperature, m may become so small 

that the lowest eigenstate e lies well above the potential hump. This does 
o 

not provide an exact criterion for obtaining a true phase transition, but it 

does suggest that below some intermediate temperature the thermal distribution 
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is such as to find the displacement pretty much near + u , while well above 

this temperature the displacements range over the whole region in the lowest 

eigenfunction Y (u). 

An examination of computer solutions would provide further detail, if 

done with high precision. However, in the lower temperature regime, approxi

mate solutions can be constructed, as for standard quantum mechanical double 

well problems. To a first approximation we have harmonic oscillator states in 

each well, for which the (doubly degenerate) spectrum 

En - (n + J) ( iM f (31a) 
m 

X K„T u + i, l i l (MiL )i (S1W 
c \ m / 

The potential near the minima is V =" (2| A| ) (u - u ) /2'. This double degen-
o 

eracy is split by tunneling 

E a ̂  E + t (32) n. n — n ' s 

where t is the matrix element connecting the n states in opposite wells. n 
Taking the lowest states, n = 0, as lying on either side of a potential hump 

2 
of height (A /4B) and average width u , a WKB approximation yields 

n 2~ u o 
E ~ K T V B 

t Q - ^ e ~ = ^ e ' - (33) 

Thus, the two lowest levels have eigenvalues (from (31a) with n = 0) 

A 
H 

2 
mc o 
„ „2 E 2X o 

2 

u . - o l 
1 

1*1 / . 2 * 
/ A m ' — 2B 
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/ A
2 * 

- u / A m 

' . . . - » ( 3 M l - * °V2B ) 
m 

(34) 
/ A 2 * - u / A m 

t . - » ( ^ ) » ( 1 + i. ° V s ) 

(35) 

e 
°-

with 

Ŷ  s = — f Ŷ  (u - u ) + Ŷ  (u + u ) 1 o , a / 2 L o o - o o J 

where Y (u) is the n = 0 harmonic oscillator state. 
o 

For low temperature, but finite, the "tunneling" splitting of the lowest 

oscillator level as given by (33) may be very small, but upon taking the 

thermodynamic limit (L/X) = N ♦ » only the lower of the pair of states survives, 

We have the series of equations using (29), (31b), (32), 

Z =exp f — ^ ; fi <s + E  t ) J 
u L X o o o J 

F = K T/n fz Z 1 = F + F 
B L p u J p u (34) 

NK T 
F =  ln(2TT M K T) (35) 
P 2 

F = N K T f^L ( i|AL )* + folJo ] (36) 
u B L2c \ m / KT J 

Upon s u b s t i t u t i n g and c o l l e c t i n g t e r m s a f t e r some a l g e b r a 

F = F + F^ (37 ) 
o s c t u n n 

F = NK T M - f ^ f + log ( C° §) 1 (38a) 
o s c B I 2c \ m / B \ 2TT K„ T J 6 / J K J 

u o B 
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o A2 2 I 
2u / A m c .§ ^<u / /x ill u -2 

The terms in (38a) are shown in Appendix I to be the free energy of the 

phonons specified by (13) and (14). What is F^ ? We show in the next 
tunn 

section that it is just equal to the free energy of a thermodynamic distribu

tion of domain walls, together with the phonons. Thus, this detailed func

tional integral calculation shows that two qualitatively distinct low energy 
; 

excitations are present, particularly at low temperature. 

IV. Statistical Mechanics of Domain Walls 

Let us assume the viewpoint that the domain walls can be considered as 

weakly interacting elementary excitations if, say at low temperature, they are 

distributed at random in low concentration along the one-dimensional model 

system. -We .then compute the thermodynamic properties, and compare the result 

with the exact calculation in the preceding section, to see whether this view 

is plausible. 

The point is that if separated by much more than a wall thickness, the 

strain and kinetic energy fields do not interfere between domain walls. 

Actually, there are some interesting kinematic restrictions, in that domain 

walls of the same sign cannot be adjacent to each other nor pass through each 

other while walls of opposite sign can pass through each other and annihilate. 

For the present, we assume that the density of walls is so low that these finer 

details will contribute only an "excluded volume" type of correction to an 

otherwise dilute gas. 

To proceed, we need the excitation energy associated with the wall, which 

from (1) comprises kinetic and potential energy terms. These are to be evalu

ated for the field given by (15) and (16). The potential energy, relative to 
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the lowest energy where u = + u is given by 
2 

mc f dx f A , 2 2 , B , 4 4 , o / du \2 \ 
D P J X L 2 o 4 o 2 \ dx / J (39) 

and the kinetic energy by 

f dx f m '2 1 ,A^ 
EDK = J T \ 2 U J (40) 

with u = u tanh [(x - vt)//2 £]. These integrals could be evaluated numeri-o i 

cally; but for .interpretive reasons, we approximate so that they can be evalu

ated formally, as follows: (a) replace tanh y by y if |y| < 1, and by + 1 

otherwise, (b) considering only low energy excitations, we assume that the slow 
2 2 

moving walls, v « c , dominate; then ? ̂  § independent of v. With these 
approximations 

. ^ m / ̂  ?o W Uo 2 \ 2 % 2 EDK 2 { " I — ) \ 7 T ^ J VD = T VD (42) 
2 ^o 

The factor (7/60) from integrations will be neglected. Each of these expres

sions is easily interpreted, defining A = 2/2 § as the thickness of a domain 

wall. The number of particles in a wall is (2/2 § /X), with mean potential 
2 energy approximately (A /2B) (relative to the ground state). Similarly, the 

kinetic energy may be associated with a kinetic effective mass of the domain 

wall mT given by 
2 * , 2/2 § (^O(^) - D - - . - . . (43) 

The statistical problem is then that of a "gas" of "quasi particles" having thê  

above potential and kinetic energy, distributed in a one-dimensional volume. 
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The partition function is that found for placing these particles on a 

line. So that they may be considered distinguishable, we divide the line into 

n segments having thickness of a domain wall A = 2/2 §, then n = (L/A). The 

partition function is then 
g * 2 

7 r v / f% " -ir- VD \ nw V - P % EDP I ZD = L ? U — G ) n„I (n -n„)I e J (44) 
n - w " s w' 
0) 

where B is an appropriate phase space normalization. In the approximation that 
- B E M DP Z is dominated by the most probable n , which if e « 1 is also the - BE — DP average n = n e , then the expression can be evaluated to yield 

2n KBT ». + nw 

^ ~ ̂ K ̂ P ~ ( "J"* ) ̂  6 (45) 
B % 

The same result can be obtained more elegantly using a grand canonical distri-

bution. From (45) the free energy is 

r . 2TT K T ^ 
F = -KT log ZD = -KBT awLl + l log ( - g - - ) J 

B % 

I \ f 2TT K B T N " ^ 
FD = -NKT [ —Z JI ( 1 + J log 2 ^ J e KT (47) 

2/2 §Q B 11̂  

We now compare this with the "tunneling contribution" to free energy found from 

the exact functional integral calculation as given by (38b). Inserting the 

definitions for § , E from (41) [but neglecting (7/60) compared to unity], 

and u , we find that (38b) may be rewritten 

E DP 
F^ = -NK RT( — i ) e KB T (48) 
tunn , B \ ^ J 
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Remarkably, except for a prefactor of the order of unity, F = F . Thus, a 

qualitatively important part of the exact free energy is associated with the 

excitation of domain walls. 

We take this agreement between the phenomenological statistical mechanical 

model and the exact calculation as confirmation of the proposal in Section I 

that when nonlinearity plays an important role, both phonon and localized do

main wall excitations are to be found in the thermodynamic behavior. Of 

course, the phonon free energy varies slowly (linearly) with T in this classical 

approximation, while the free energy and concentration of domain walls drops 

rapidly (exponentially) with decreasing temperature. However, as we will see 

in the next section, a number of experimental quantities can depend strongly on 

the presence of domain walls. 

V. Applications of the Phenomenological Model 

A. Equal-Time Correlation Functions - Low Temperature 

As discussed by SSF, the two point equal-time correlation function may 

be written 

- B(e - e )(x/X) 
< u(o) u(x) > = E e . |< o |u| n >| (49) 

n 

where again the e and states n > are those of the eigenfunctions of the n ' 
transfer integral operator defined for the functional integral in Section III. 

If we include higher oscillator states in the sum, we can find the correlation 

function characteristic of phonons about + u . But a much larger displacement 

is associated with a jump from -u to +u ; at low temperature, the sum (49) is 

then dominated by the lowest pair of tunneling states. It is straightforward 

using (33) and (35) to find then that 
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2 -2p tQ(x/X) 
< u(o) u(x) > =- u e o 

x (50) 
2 ~K u e o 

where the correlation length is found from (33) to be 

E DP 
X = /2 I e K T (51) 
c o 

in the low temperature region where the tunneling approximation holds. At 

higher temperature, when the lowest eigenstates of (30) are above the saddle 

point between wells, one expects an algebraic dependence of A. on temperature. 

Thus, below some intermediate temperature, the correlation length begins to 

increase dramatically (exponentially); but, of course, does not ever become 

infinite for any finite temperature, for a one-dimensional system. 

So much for the functional integral result for the equal time displacement-

displacement correlation function. 

Can the phenomenological domain wall model be used to calculate this cor

relation function? Consider the following model: At x = 0, u ̂  u , except 

for small phonon oscillations, but between x = 0 and a finite value of x, 

there may be n (x) domain walls. At each wall u = + u flips to + u . Thus, J w - o o ' 
the correlation function 

u(x) u(o) ~ u ' 2 (-1) W ( X ) (52) 

At low density of domain walls, a Poisson distribution should apply, and 
_ nw (n ) - n w w Pr(n (x)) = - — p e (53) 
nw* . 

- B E — DP where n (x) = (x/A) e from (44). The average value of the correlation 
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function is 

and 

n
w( x) 

< u(x) u(o) > = u < (-1) > (54) 
o 

V x > o " "w _ - nw < (-1) > = (-1)° • e + (-1) i^ e 

2 ("w)2 " \ + (-1) -̂ -jf- e W + ... 

n (x) -2 n 
< (-1) W > = e W (55) 

whence, where A = 2/2 £ , 

< u(x) u(o) > = U Q
2 exp [ - ̂  e D P ] (56) 

x 
" T~ 

< u(x) u(o) > = u e ° (57) 
o 

with X. being identically the same correlation length given by (51) from the 

functional integral calculation. 

This result is one more indication that.the domain wall model is both 

formally and practically valid for obtaining information about thermodynamic 

averages in the low temperature regime. 

B. Dynamic Correlation Functions 

For scattering experiments in which some probe excites a displacement 

u(o, o) which in turn induces emission proportional to u(x, t), a relevant 

quantity is 

< u(o, o) u(x, t) > (58) 

and its Fourier transform S(q, UJ) 
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S(q, CO) = ( 2 n )2• JJ dx dt e i ( q X " Wt) < u(o, o) u(x, t) > (59) 

This correlation function description is an idealized model of real photon 

or neutron scattering. 

We have not yet been able to make an exact calculation of this dynamic quan

tity in the spirit of the functional integral for equilibrium quantities. There

fore, we now rely completely on the domain wall model (again for low temperature). 

Considering a particular point x, then the phenomenological 

picture we have is that for a while u(x, t) is approximately +u + a cos (JU t, 

then along comes a domain wall flipping the displacement to -u + a' cos uu t, 
o o I I 1 

and so on. Here, a cos 0) t is a small amplitude oscillation with 0) =" (2|A|/m)2. 
These domain walls have random spacings and random velocities, according to the 

distribution discussed in Section IV. Some important features of the frequency 

spectrum can be found as follows: Assume that over a correlation length X , we 

can approximate < u(o, o) u(x, t) > by < u(o, o) u(o, t) >, then 

°X(q) C - iuut 
S(q, U» a 2 n J dt e < u(o, o) u(o, t) > (60) 

with a, (q) an .approximate spatial transform over a correlation length. But by 

the convolution theorem, the ou-transform of the correlation function is just 

the power spectrum < u(o, tu) u (o, tu) >, where 

u(o, CJU) = -̂ — J. dt e X u(o, t) (61) 

This Fourier transform in our model becomes 
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- itUtJ - iW(tJ , - t . ) 
i r i+1 i 

^ • ^ ^ { V - ( ± V L £ Hi " J i 

a. -i(u.-a.)t. r - i(tw" V ( ti+i " V 
1 o " 

+ 2Tre 
:. r o i+1 i , -, 

L -i(LU + UU ) J 

o 

where the t. are the random arrival times of the domain walls. As usual, the l 

average of the sum of random phased terms in u(o, uu) is negligible, but not so 

for < u(o, uu) u (o, uu) > = X(uu) which is found to be 

2 2 
u [sin uu(t. - t. ,)] 

„y \ o „ 1 1+1 . 
X(UJ) = — < 2 >D.W. 

TT uu 
2 2 a." [sin (uu - uu )(t. - t. n)] _1 O 1 1+1 > + 2 2 D.W. 

TT (0) - UU ) 

2 2 
a. [sin (uu + uu )(t. - t. .,)] 

^ . 1 O 1 1 + 1 - /CD\ 
+ <~2 " ~2 >D.W. ( 6 3 ) 

TT (UU + UU ) 

The average is to be carried out over the distribution of arrival intervals 

(t - t.) domain walls. This distribution is calculated as follows: "» l+l l 
(1) At x = 0, walls move in from right and left. 

(2) The number reaching x = 0 from one side between o and t and having velocity 

v is the number lying in the interval X = vt. Thus 

CO 

N > (t) = J vt nw(v) dv (64) 
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where n'w(v) is the average number of walls per unit length having velocity v. 

From Section IV 
* 2 S m v 

- B E - — 
- , * 1 P DP 2 , „ B . 
n (v) = - e e (65) 

The number arriving from both sides between o and t is 
a * 2 

_ co _ 6 mp v 

N(t) = |t e D P J v e 2 dv = T~ (66) 

where 

- B E 
*0'1--Lr DP <«> 

(3) The probability P(t) that no domain wall has yet reached x = 0 up to time t 

obeys 

dp _ dri _ 1 
dt ~ ~ dt ~ ~ t D 

whence 
- *_ t 

P(t) = -i- e D (68) 
D 

and this is the probability distribution to be used for the intervals in (63). 

We then must calculate quantities like 

- t 
00 t 2 2 t dt D sin . uut D e J t 2 2 2 D UU 1 + 4UU t_ o D 
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From (63), in the spirit of (60), we find 

\t *n 2 V q ) / 2 *D 
S(q, u» a - g — { UQ _ _ 

TT l + 4uu t 

a 21:—TT2—XT 2 + -—~r —2 ] } <6 9> 
1 + 4(UU - UU ) " t " 1 + 4(d) + UU ) t „ 

o D o D 

—2 Here a is a mean square thermal amplitude of the phonons with frequency uu 

(as specified by q). 

We see that the spectral function contains not only the expected peaks at 

the phonon frequency uu , but also a "central peak" whose height increases ex

ponentially with inverse temperature as t increases. This central peak is a 

manifestation of the strongly nonlinear domain wall type of displacement field, 

not of coupling to entropy or hydrodynamic modes. 

It is tempting to say that this "central peak" is that seen in computer 
4.5 simulation experiments, or in real neutron scattering experiments. However, 

we can only say that it is provocative} for at least two reasons: First, this 

is a one-dimensional model and a real phase transition cannot occur; second, 

the analysis here would really only apply in the low temperature regime where 

it would be difficult to separate from any Bragg peak at the same q; the extent 

to which the features would survive at and above a transition is uncertain. 

We hope to extend the model to a two-dimensional system, so that closer 

comparison with computer experiments and real transitions can be carried out. 

VI. Summary and Discussion 

We have studied thermodynamic and some dynamic properties of a one-

dimensional model system whose displacement field Hamiltonian is strongly an

harmonic, and is representative of those used to study displacive phase 
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transitions. By studying the classical equations of motion, we find important 

solutions (domain walls) which cannot be represented effectively by the usual 

phonon perturbation expansions. The thermodynamic properties of this system 

can be calculated exactly by functional integral methods. No Hartree or de

coupling approximations are made nor is a temperature dependence of the 

Hamiltonian introduced artifically. At low temperature, the thermodynamic be

havior agrees with that found from a phenomenological model in which both 

phonons and domain walls are included as elementary excitations. We then show 

that equal time correlation functions calculated by both functional integral 

and phenomenological methods agree, and that the dynamic correlation functions 

(calculated only phenomenologically) exhibit a spectrum with both phonon peaks 

and a central peak due to domain wall motion. 

Much remains to be done to examine the extent to which the ideas discussed 

here apply to real systems, and how they relate to or are in contradiction with 

conventional theories. None the less, it seems that such features as clusters 

(i.e., regions bounded by domain walls) which appear in computer simulations of 

model systems, the "central peak", and the consistency of exact and phenomenological 

thermodynamic calculations is encouraging. However, we also must note that the 

lack of any general methodology for discussing the finite temperature behavior 

of extended nonlinear systems presents a formidable obstacle to the possible 

extension to higher dimensional systems, or to do exact dynamics at finite 

temperature. 

Finally, we record a few speculative ideas, which may be worth further 

development. First, if these domain walls are present in the low temperature 

phases of psuedo one-dimensional crystals which have undergone Peierls transi

tions, the Peierls energy gap in those walls could go to zero, the material 

becoming locally metallic. One could then have a distribution 

of conducting sheets (walls) in an insulating matrix; the low frequency 



- 28 -
i 

electrical properties and optical properties would not be simply related, as 

in a homogeneous medium. Second, there is the question of whether a soft mode 

going to zero frequency is the exact condition for a structural phase transi

tion. This question cannot be answered properly until adequate dynamic exten

sions of the analysis here can be made. On the other hand, the functional 

integral analysis is suggestive that there is a temperature range in which the 

collective dynamic behavior will change from that of oscillations in either of 

two wells to that of a single nonlinear oscillator, whose period becomes very 

long in the transition region. In our model, this would occur in the region 
* 2 2 2 2 of Figure 1(b), when the effective mass m = m(c /X K T ) is such that the 

lowest eigenvalue of (30) lies near the saddle point of the potential. Thus, 

while it is not certain that a phase transition will occur exactly at the 

temperature where the soft mode frequency goes to zero, it is very likely to be 

nearby. 
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Appendix 

Phonon Free Energy for Vibrations in Well 

The dispersion relation (14) is 

2 2 2 + 2 JA[ 
UU = c q + 2 1—L (A.l) 
q o

 M m 

The density of states in qspace is (L/TT) , whence the density of states in uu is 

dn _ L uu 
duu ~ TTC (A.2) 

Ju)
2  2|A| 

V m 

It may be rewritten in terms of N = (L/X), and a Debye normalization 

lead 

UU 
max 

J dtU 
UU . 

mm = 

s t o 

£ = » 

\ duu / 

/ 2 | A | 
\ m 

X 

= N 

y 

uu 

(A.3) 

y - 2M 
V m 

(A.4) 

and 

2 2|A| f ^ 
UU = -x—L + 5 (A.5) 
max m .2 

K T 
The free energy per oscillator is F(uu) = KgT log [1  e ] ♦ K T log (huu/K T) in 

the classical limit KT » huu. The total free energy is then 

UU 
max 

F K T f duj ( d£ \ / huu \ 
v i b B J \ duu / \ K_T / 

UU . 
m i n 

*B ' 
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Substituting from above, after some tedious algebra, we find 

, , . NK T [( 2l*L )i( -L j sec"1 ( 1 ♦ " ̂  "j )i 
vib B L\ m / \ TTC / \ ol.l a2 / 

o 2|A| X 
2 2 

TT C 
^(^)^))] (A.7) 

V e 

In the limit X * 0, which is in the spirit of the functional integral method 
A ( n C0 \2 ^ 2|A| 1 TT 

used, I ) » —'—L and sec • — so 
\ „ / • m 2 

W^td-^)* —(1 )̂] TT C 
( 

, . ̂  JSO 
o B 

The first term identifies with the lowest oscillator level in the functional 

integral. While the logarithmic term is given by (35) and the s term of (34) 

when ..h = J..., 

-V C l o g Z
P - NP so ] = % T l o g ( 2^n ) ( A ' 9 ) 
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Figure Captions 

Figure 1: Eigenvalue spectrum (schematic) of the transfer operator, from 

equation (30), for temperature dependent effective mass 
3|C O O O O £ 

m = m(c /X K T ): (a) low temperature, m large, (b) inter-
* mediate temperature, (c) high temperature, m small. 
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