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Abstract.

On decreasing the temperature T , the correlation time τ of supercooled water

displays a dynamic crossover from non-Arrhenius dynamics (with T -dependent

activation energy) at high T to Arrhenius dynamics (with constant activation energy)

at low T . Simulations for water models show that this crossover occurs at the locus

of maximum isobaric specific heat in the pressure-temperature (P -T ) plane. Results

of simulations show also that at this locus there is a sharp change of local structure:

more tetrahedral below the locus, and less tetrahedral above it. Furthermore, in water

solutions with proteins or DNA, simulations show that in correspondence with this

locus there is a crossover in the dynamics of the biomolecules, a phenomena commonly

known as protein glass transition.

To clarify the relation of the dynamic crossover with the thermodynamics of water,

we study the dynamics of a cell model of water which can be tuned to exhibit:

•A first order phase transition line that separates the liquids of high and low

densities at low temperatures. This phase transition line terminates at a liquid-

liquid critical point (LLCP), from which departs the Widom line TW (P ), i.e. the

line of maximum isobaric specific heat in the P -T plane;

•The singularity free (SF) scenario, under which the system exhibit water like

anomalies but with no finite temperature liquid-liquid critical point.

We find that the dynamic crossover is present in both the LLCP and the SF cases.

Moreover, based on the study of the probability pB of forming a bond, we propose

and verify a relation between dynamics and thermodynamics that is able to show how

the crossover is a consequence of a local relaxation process associated with breaking a

bond and reorienting the molecule. We further find a distinct difference in the pressure

dependence of the crossover in LLCP and SF scenario, which may help in resolving

which of the scenarios correctly explain the anomalous behavior of water.
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Figure 1. Schematic representation of response functions (a) CP (b) KT and (c) αP

of liquid water as a function of temperature T . The behavior of a normal liquid is

shown as dashed curve.

1. Introduction

Our life depends on water, yet many unique properties of water still present a puzzle

for which different interpretations have been proposed in the past. Water has more

than sixty anomalies, such as the increase of density upon increasing temperature or

its extraordinary large capacity of absorbing heat, essential for regulating our body

temperature. Its heat capacity, contrarily to most of the liquids, increases at low

temperatures, where other anomalies appear. For example, water can stay liquid at

very low temperature in a metastable supercooled state: down to -47oC in plants and

-92oC in laboratory at a pressure of 2 kbars [1].

In the following we briefly summarize few of the thermodynamic and dynamic

anomalies of water.

1.1. Thermodynamic Anomalies of Liquid Water

Density Anomaly — Density anomaly is perhaps the oldest known puzzling behavior of

water [2]. Unlike other simple liquids which expand upon heating, water expand upon

cooling below 277 K at ambient pressure. It is for this anomaly that ice floats on water

and fishes can survive in warm waters below a layer of ice at temperatures well below

0◦ C. The temperature of maximum density, TMD, decreases as the pressure is increased

and disappears above ≈ 200 MPa. In the (T, P ) plane, the region below the locus of

TMD is where the density anomaly occurs. Computer simulations of different models

of water [3] find the TMD as in experiments. Recent experiments on water confined in

nanopores [4, 5] show that below approximately 210 K the supercooled liquid exhibits

a density minimum and recovers a normal behavior in density.

Specific Heat — A schematic isobaric heat capacity CP for liquid water at atmospheric

pressure is shown in Fig. 1(a). CP is a measure of how enthalpy H changes with T , at

constant P , and is related to entropy fluctuations 〈(∆S)2〉 [6, 7] as:

CP ≡

(

dH

dT

)

P

= T

(

∂S

∂T

)

P

=
〈(∆S)2〉

kB
(1)
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where S is the entropy and kB is the Boltzmann constant. Since any thermal fluctuation

should decrease with decreasing temperature, one would expect the same behavior for

CP . Instead, for the case of water it increases sharply as the temperature is decreased

below approximately 330 K. CP seems to diverge as a power-law at about 228 K [8].

Isothermal Compressibility — A schematic isothermal compressibility KT for water is

shown in Fig. 1(b). KT is the measure of volume fluctuations 〈(∆V )2〉:

KT ≡ −
1

V

(

∂V

∂P

)

T

=
〈(∆V )2〉

kBTV
(2)

Intuitively KT should decrease upon decreasing the temperature. In the case of water,

instead, it increases like CP and seems to diverge with a power-law at about 228 K [8].

Coefficient of Thermal Expansion — Coefficient of thermal expansion αP is the measure

of cross fluctuations of volume and entropy 〈∆V ∆S〉:

αP ≡
1

V

(

∂V

∂T

)

P

=
P

kB
2T

〈∆V ∆S〉. (3)

αP is positive for normal liquids [Figure 1(c)]. Instead, in the case of water it becomes

negative at the temperature of maximum density TMD, indicating that for T < TMD

the entropy decreases when the volume increases. In experiments, like other response

functions, αP also seems to diverge with a power-law at about 228 K [8]. Dashed curves

in Figure 1(a),(b) and (c) are the schematic representations of the behavior of normal

liquids for a comparison.

Diffusion Anomaly — Dynamics of simple liquids becomes slower upon pressurizing.

Instead, the dynamics of water becomes faster as the pressure is increased reaching a

maximum at a constant temperature [9]. The region of this dynamic anomaly includes

the region of density anomaly in the (T, P ) plane [10]. Computer simulations of different

models of water recover the experimental results [11, 12, 13]. They show that the

diffusion constant D decreases for decreasing P , until it reaches a minimum value at some

negative pressure below which the normal behavior is recovered [13, 14, 15, 16, 17]. The

anomalous increase of diffusion upon pressurizing is attributed to breaking of hydrogen

bonds. As the pressure is increased more and more hydrogen bonds are broken, making

the water molecules diffuse free from their neighbors and hence the increase of diffusion.

Non-Arrhenius to Arrhenius Dynamic Crossover at Low Temperatures — Liquids with

relaxation times that are an exponential function of 1/T are said to have an Arrhenius

(or activated) behavior, while those whose relaxation times follow a different function

of 1/T are said to have a non-Arrhenius behavior. If, instead of the relaxation time of

some specific degree of freedom, the viscosity is used to characterize the dynamics, then

the variation of viscosity as an exponential function of 1/T is called “strong” behavior,

while a different function of 1/T is called “fragile” behavior [18].

Normal liquids show only one of the two behaviors: they are or Arrhenius or non-

Arrhenius, as well as they are strong or fragile. Water, instead, is anomalous also in
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Figure 2. Non-Arrhenius to Arrhenius crossover in the dynamics of TIP5P model of

water. The diffusion constant D as a function of 1/T [34]. At high T , the temperature

dependence of D can be fit with a power law and, at low T , D becomes Arrhenius.

Inset: D behaves as a power low of TMCT , where TMCT is a fitting parameter (Mode

Coupling Theory temperature).

this respect, because it shows a crossover from a non-Arrhenius behavior at high T to

an Arrhenius behavior at low T in the relaxations times, as well as a (high-T ) fragile to

(low-T ) strong crossover [18].

The investigation on this anomaly has received a recent boost thanks to the

experiments on water confined in nanostructures [19, 20, 21], water hydrating

biomolecules [22], and computer simulations [19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

Both experiments and simulations show a non-Arrhenius to Arrhenius crossover in

relaxation times and diffusion constant D (Fig. 2) [34] whose relation with the bulk-

water behavior is under investigation [18].

One possible interpretation of the anomalous properties of water is the presence

of a hypothesized liquid-liquid critical point (LLCP) C ′ [35] in the supercooled phase.

However, as we discuss in the next sections, this is not the only possible interpretation.

1.2. Interpretations of the Anomalies of Water

Many of the anomalies of water can be reproduced by several mechanisms. For example,

it has been shown that isotropic interactions of models with a LLCP can display

the anomalies we described above [36, 37, 38], with the same hierarchy observed in

water [39, 40, 41]. However, it has been shown also that not any isotropic potential

with a LLCP displays water anomalies [42], questioning which details of the interaction

are relevant to get the complete picture. Usually all these results are analyzed
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in the framework of two main interpretations, although other hypothesis are under

discussion [18].

The liquid-liquid critical point (LLCP) scenario — The experimental results

discussed in the previous section can be interpreted in a consistent way by hypothesizing

the presence of a critical point between two metastable fluid phases for supercooled

water. This critical point is the terminus of a phase transition line that separates a

low-density liquid (LDL) and a high-density liquid (HDL). This liquid-liquid critical

point (LLCP) gives rise to the Widom line TW (P ) in the supercritical liquid region,

defined as the locus where different response functions, such CP , KT or αP , have a

maximum [34, 43]. The correlation length increases on approaching C ′ along the Widom

line and diverges at C ′.

Since the experiments on bulk liquid water can not be performed below the

homogeneous nucleation temperature T bulk
H ≈ −38◦, where the crystal formation is

inevitable, it is not possible to test whether the seeming divergence of response functions

at low temperatures is indeed a divergence or something else. Xu et. al. [34] studied

different models of water and found that CP , KT , and αP indeed increase sharply as

the temperature is increased, however instead of diverging at low temperatures they

have an extremum. They further found that the maxima of these response functions

increase as the pressure is increased and ultimately diverge [34]. This behavior of the

response functions is consistent with hypothesis of a negatively sloped liquid-liquid phase

coexistence line ending at a critical point [34, 22, 44].

The singularity-free (SF) scenario — Another thermodynamically consistent

interpretation of the water anomalies is known as “singularity-free” scenario (SF) [45].

Using a cell model of water, it was proposed that the rise in response functions

upon cooling can be described entirely by the anticorrelation in volume and entropy

fluctuations with no singularity, differently from the case of LLCP scenario. The SF

scenario predicts, as well as the LLCP scenario [34, 44, 46], a maximum in the response

functions such as KT , αP or CP , but, differently from the LLCP, only the maxima

of KT and αP increase upon increasing P , while the maxima of CP do not change in

height [47, 46].

Until recently [46], this was the only difference, between the SF and the LLCP

scenario, that was predicted above T bulk
H , the temperature of the inaccessible region

possibly hiding the critical point of the LLCP scenario. In the attempt to explore the

region below T bulk
H , and clarify the low-T phase diagram of water, many investigations

have been done recently on confined water and in water hydrating macromolecules [4,

5, 19, 20, 22, 21, 48]. In these cases, indeed, the crystallization can be, at least

partially, avoided even for T < T bulk
H . However, the interpretation of the results can

be controversial [34, 21]. For this reason simulations on confined and bulk water can

help in clarifying the experimental data.
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Figure 3. Mean square fluctuation of (a) lysozyme, and (b) DNA showing that there

is a transition around Tp ≈ 242 ± 10 K for lysozyme and around Tp ≈ 247 ± 10 K

for DNA. For very low T one would expect a linear increase of 〈x2〉 with T , as a

consequence of harmonic approximation for the motion of residues. At high T, the

motion becomes non-harmonic and we fit the data by a polynomial. The dynamic

crossover temperature Tp is determined from the crossing of the linear fit for low T

and the polynomial fit for high T. The error bars is estimated by changing the number

of data points in the two fitting ranges.

1.3. Low Temperature Dynamics of Hydrated Biomolecules

Recently it has been hypothesized, on the base of molecular dynamics (MD) simulations

[43], that a dynamic crossover observed in biomolecules, and called biomolecules glass

transition [22, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], is related to the

liquid-liquid phase transition. Specifically, Kumar et al. [43] studied the dynamic and

thermodynamic behavior of TIP5P water hydrating (i) an orthorhombic form of hen

egg-white lysozyme [63] and (ii) a Dickerson dodecamer DNA [64] at constant pressure

P = 1 atm, several constant temperatures T , and constant number of water molecules

N . They calculated the mean square fluctuations 〈x2〉 of the biomolecules from the

equilibrated configurations, averaged over 1 ns. They found that the temperature

dependence of 〈x2〉 shows a crossover at Tp ≈ 245 K, for both lysozyme [Figure 3(a)]

and DNA [Figure 3(b)].

Kumar et al. next calculated CP by numerical differentiation of the total enthalpy

of the system (protein and water) by fitting the simulation data for enthalpy with a

fifth order polynomial, and then taking the derivative with respect to T . Figures 4(a)

and 4(b) display maxima of CP (T ) at TW ≈ 250 ± 10 K, as well as 4(c) and 4(d)

show maxima of the derivative |dQ/dT | of the local tetrahedral order parameter Q with

respect to temperature at the same TW, while 4(e) and 4(f) display a dynamic crossover

at T× for the diffusion constant of hydration water for both biomolecules.

The fact that at TW both CP and |dQ/dT | have a maximum is consistent with

the observation that crossing the Widom line corresponds to a continuous but rapid
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Figure 4. The specific heat of the combined system (a) lysozyme and water, and (b)

DNA and water, display maxima at TW ≈ 250 ± 10 K and 250 ± 12 K respectively.

Derivative |dQ/dT | of the tetrahedral order parameter for (c) lysozyme and (d) DNA

hydration water, shows a maximum at TW (Widom line temperature) suggesting

that the rate of change of local tetrahedrality of hydration water has a maximum

at TW. Diffusion constant of hydration water surrounding (e) lysozyme, and (f) DNA

shows a dynamic transition from a power law behavior to an Arrhenius behavior at

T× ≈ 245 ± 10 K for lysozyme and T× ≈ 250 ± 10 K for DNA, around the same

temperatures Tp, where the behavior of 〈x2〉 has a crossover, and TW, where CP and

|dQ/dT | have maxima.
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transition of the properties of water from those resembling the properties of a local HDL

structure for T > TW(P ) to those resembling the properties of a local LDL structure

for T < TW(P ) [34, 20, 43]. A consequence is the expectation that the fluctuations of

the protein residues in predominantly LDL-like water (more ordered and more rigid)

just below the Widom line should be smaller than the fluctuations in predominantly

HDL-like water (less ordered and less rigid) just above the Widom line.

This is, indeed, the case with Tp ≈ TW suggesting the correlation between the

changes in protein fluctuations and the hydration water thermodynamics. Furthermore,

the fact that Tp ≈ T× suggests that it is indeed the changes in the properties of

hydration water that are responsible for the changes in dynamics of the protein and

DNA biomolecules.

1.4. Possible Interpretation of the Hydration Water Results and the Use of a Tunable

Cell Model for Bulk Water

These results are in qualitative agreement with recent experiments on hydrated protein

and DNA [22] which found the crossover in side-chain fluctuations at Tp ≈ 225 K and

are all consistent with the possibility that the protein glass transition is related to the

Widom line and to the hypothesized LLCP [65]. However, another possibility is that

the dynamic crossover in experiments, occurring at the maximum in CP , is due to the

SF mechanism, with no increase and divergence of the correlation length as predicted in

the LLCP interpretation. For this reason we have analyzed the two hypothesis by means

of a cell model that can reproduce both scenarios, the LLCP and the SF, depending on

the value of a single parameter [66]. We looked for differences between the two cases,

with the aim of clarifying which scenario is more suitable to describe the experiments.

One of advantages of this approach with respect to direct simulations of less

schematic models, is that in the cell model the relation between the dynamics and

the thermodynamics can be explicitly calculated and not only inferred by the numerical

evidences, as in MD simulations. Another advantage is that, by tuning the cell model

between the two scenarios, we understand which differences in the dynamics are related

to the different thermodynamics of the two interpretations.

To reduce the complexity of the analysis we considered the case of bulk water [46].

We calculated the relation between dynamics and thermodynamics, showing that the

dynamic crossover is a direct consequence of the structural change at the temperature of

maximum CP . We expressed the relevant free energy barrier for the local rearrangement

of the molecules in terms of the probability pB of forming bonds. By mean field

calculations and Monte Carlo (MC) simulations we found that the variation of pB is

the largest at the locus of the maximum CP , in both scenarios [46].

Nevertheless, we found a difference between the two scenarios. We studied the ratio

between the activation energy in the Arrhenius regime and the crossover temperature

and we found that this index increases upon increasing pressure in the LLCP scenario,

while stays constant in the SF case [46]. Since this index can be measured in the
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supercooled phase of liquid water, it could provide the first observable quantity that

allows to distinguish which scenario holds for the low temperature phase diagram of

water.

2. Hamiltonian model for Water

We consider a cell model that reproduces the fluid phase diagram of water and other

tetrahedral network-forming liquids [66]. For sake of clarity, we focus on water to explain

the motivation of the model. The model is based on the experimental observations that

on decreasing P at constant T , or on decreasing T at constant P , (i) water displays an

increasing local tetrahedrality [67], (ii) the volume per molecule increases at sufficiently

low P or T , and (iii) the O-O-O angular correlation increases [68], as in simulations [69].

The system is divided into cells i ∈ [1, . . . , N ] on a regular square lattice, each

containing a molecule with volume v ≡ V/N , where V ≥ Nv0 is the total volume

of the system, and v0 is the hard-core volume of one molecule. The cell volume v is

a continuous variable that gives the mean distance r ≡ v1/d between molecules in d

dimensions. The van der Waals attraction between the molecules is represented by a

truncated Lennard-Jones potential with characteristic energy ǫ > 0

U(r) ≡

{

∞ for r ≤ R0

ǫ
[

(

R0

r

)12
−

(

R0

r

)6
]

for r > R0 ,
(4)

where R0 ≡ v
1/d
0 is the hard-core distance [66].

Each molecule i has four bond indices σij ∈ [1, . . . , q], corresponding to the nearest-

neighbor cells j. When two nearest-neighbor molecules have the facing σij and σji in

the same relative orientation, they decrease the energy by a constant J , with 0 < J < ǫ,

and form a bond, e.g. a (non-bifurcated) hydrogen bond for water, or a ionic bond for

SiO2. The choice J < ǫ guarantees that bonds are formed only in the liquid phase. The

bond interaction is accounted for by a term in the Hamiltonian

HB ≡ −J
∑

〈i,j〉

δσijσji
, (5)

where the sum is over nearest-neighbor cells, and δa,b = 1 if a = b and δa,b = 0 otherwise.

The model assumes that the tetrahedral coordination number is preserved for all P

and T . For water at high P and T a more dense, collapsed and distorted, local structure

with bifurcated hydrogen bonds (HB) is consistent with the experiments. Bifurcated

HBs decrease the strength of the network and favor the HB breaking and re-formation.

The model simplifies the situation by assuming that (a) only non-bifurcated, i.e. normal,

HBs decrease the energy of the system and (b) the local density changes as function

of the number of normal HBs, consistent with the observation [68] that at low P and

T there is a better separation between the first neighbors and the second neighbors,

favoring normal HBs and the tetrahedral order.

The density decrease for the temperature of maximum density T < TMD(P ) is

represented by an average increase of the molar volume due to a more structured
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network. The total volume increases by an amount vB > 0 for each bond formed

[45, 66], and hence

v = v′ + 2pBvB, (6)

where v′ is the molar volume without taking into account the bond. The increase of the

intramolecular angular correlation is modeled by introducing an intramolecular (IM)

interaction of energy 0 < Jσ < J ,

HIM ≡ −Jσ

∑

i

∑

(k,ℓ)i

δσikσiℓ
, (7)

where
∑

(k,ℓ)i
denotes the sum over the bond indices of the molecule i.

The total energy of the system is the sum of Eqs. (4), (5) and (7). We perform

mean field calculations and MC simulations in the NPT ensemble [70, 66] for a system

with J/ǫ = 0.5, Jσ/ǫ = 0.05 and Jσ = 0, vB/v0 = 0.5, q = 6. We find that the model

displays a critical point C ′ between two liquids at different density, as in the LLCP

scenario. We study two square lattices with 900 and 3600 cells, and find no appreciable

size effects.

For Jσ → 0, mean field calculations and MC simulations show that C ′ disappears

at T = 0 [71]. For Jσ = 0, the model coincides with the one studied by Sastry et al. in

Ref. [45], giving rise to the SF scenario.

3. Liquid-Liquid Critical Point (LLCP) Scenario

Below the TMD line, in the supercooled region, the model displays a first-order phase

transition between a LDL at low P and T and a HDL at high P and T along a line

terminating in the liquid-liquid critical point C ′ [66] [Fig. 5(a)].

3.1. Fluctuations in the supercritical region

For P < PC′, the pressure of C ′, we find that the constant pressure specific heat CP (T )

and thermal expansion coefficient |αP | have maxima that move to lower T as P is

increased [Figs. 7(a) and 5(c)]. The loci of the maxima of CP (T ) and |αP (T )| merge close

to C ′. The amplitudes of these maxima increase on approaching C ′. This is consistent

with the expected divergence of the correlation length at C ′. The size of |αP |
max increases

rapidly as C ′ is approached, while Cmax
P increases less rapidly [Fig. 7(a)]. The Widom

line TW (P ) coincides with the loci of Cmax
P and |αP |

max close to C ′ [34, 70]. We choose

TW (P ) to be the mid-point between Cmax
P and |αP |

max, with an error equal to the sum

of the CP and |αP | errors.

We find that pB increases on decreasing T [Fig. 5(c)], with pB ≃ 0.8 at TW (P ).

The value of pB(TW ) weakly decreases for increasing P and polynomial extrapolations

to C ′ up to the fifth order lead to a value of pB(PC′) = 0.55 ± 0.15. Hence, close to

PC′, on crossing TW (P ) there is a large variation from pB ≈ 1/2, to pB = 1. The mean

field [70] calculation of pB [Fig. 5(c)] compares well with simulations for T > TW (P )
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Figure 5. (a) The phase diagram below TMD line for the water model with Jσ > 0:

C′ is the HDL-LDL critical point, end of first-order phase transition line (thick line)

[66]; symbols are maxima for N = 3600 of |αP |
max (©), Cmax

P (2), |dpB/dT |max (3),

and (δ2NB)max (△); our results show that |dpB/dT |max coincides with the Widom line

TW (P ) (solid line) within error bars; upper and lower dashed line are quadratic fits of

|αP |
max and Cmax

P , respectively, merging at Pmax
W ; dotted line is crossing the symbols

for (δ2NB)max is a guide for the eyes; |αP |
max and Cmax

P are consistent within error

bars. Maxima are estimated from panels (b), (c) and 7(a), where each quantity is

shown as functions of T for different P . (b) The thermal expansion coefficient of αP

as a function of the temperature show a maximum for each pressure; lines are guides

for the eyes. (c) The probability pB of forming a bond (small symbols) increases for

decreasing T , saturating to one at low T , with a larger increase at higher P ; the value

of pB at TW (P ) is shown as a large open circle; the symbol has the size of the error

on the TW (P ) estimate; dashed lines are the mean field calculations for pB [70] and

compare well with simulations for T > TW (P ) and T ≪ TW (P ) with a discrepancy at

T ≃ TW (P ) that is higher at higher P . (d) |dpB/dT |max is the numerical derivative of

pB from simulations. In all the panels the errors, if not shown, are of the size of the

symbols.

and for T ≪ TW (P ), with increasing discrepancy at TW for increasing P . Both mean

field and simulations show that |dpB/dT | displays a maximum that moves to lower T

for increasing P [Fig. 5(d)]. The temperature of this maximum coincides, within error

bars, with TW (P ), consistent with the relation

αP =
v′

v
α′

P + 2
(vB

v

)

(

dpB

dT

)

P

, (8)

where α′
P is the contribution arising from the fluctuations without taking into account

the fluctuations due to the bonds. Moreover, |dpB/dT | is related to the change of the
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local structure of the liquid, because it is proportional to the fluctuation of the number

of bonds NB,

δ2NB ≡ 〈N2
B〉 − 〈NB〉

2 =
2NkBT 2

J − PvB

∣

∣

∣

∣

dpB

dT

∣

∣

∣

∣

. (9)

Since the proportionality factor between |dpB/dT | and NB depends on T and P , the

locus of |dpB/dT |max does not coincides with the locus of maximum fluctuations of

(δ2NB)max, but the two loci approach each other for increasing P and converge to C ′

[Fig. 5(a)]. This result for the maximum fluctuation in the number of bonds, i. e. in

the local structure, of bulk water in the vicinity of the Widom line on approaching C ′ is

reminiscent of the observation of a maximum in structural fluctuations on crossing the

Widom line in simulations for protein hydration water [43].

We find that |dpB/dT |max increases on approaching C ′ in the same fashion as the

response functions. Hence, for P < PC′, at T > TW (P ) the liquid has fewer bonds than

for T < TW (P ), i.e., is less structured and more HDL-like, consistent with trends seen

both in experiments [67] and in simulations [43, 72]. For Jσ > 0 the large fluctuations of

pB at C ′ shows that the LDL-HDL phase transition is a consequence of the cooperativity

of the bonds due to the non-zero IM interaction [71].

3.2. Dynamics in the supercritical region

To study the dynamics, we calculate the relaxation time τ as the time for the spin

autocorrelation function Cσσ(t) ≡ 〈Si(t)Si(0)〉 to decay to 1/e, where Si ≡
∑

j σij/4

quantifies the degree of total bond ordering for site i. The behavior of non-Arrhenius

liquids can be represented by a Vogel-Fulcher-Tamman (VFT) function

τVFT = τVFT
0 exp

[

T1

T − T0

]

, (10)

where τVFT
0 , T1 and T0 are all fitting parameters. Our results show that the liquid

becomes more non-Arrhenius upon increasing P [Fig. 6(a)].

For P = 0, we show in Fig. 6(b) that upon decreasing T there is a crossover from

Arrhenius to VFT at intermediate temperatures, and then from VFT back to Arrhenius

at lower T . The Arrhenius activation energy at low T is higher than that at high T ,

consistent with experiments at ambient P for both bulk water [73, 74] and confined

water [75, 20].

We find that for all P the crossover occurs at TW (P ) within the error bars [Fig. 7(b)],

confirming the idea proposed on the base of simulations of detailed models for water

[34, 43]. We observe that the low-T behavior is characterized by an activation energy—

the slope in Fig. 7(b)—that decreases for increasing P , as in experiments for confined

water [20].

Finally, we observe that the crossover is isochronic, i.e. the value of the crossover

time τC is approximately independent of pressure. We find τC ≃ 103/2 MC steps ≃ 15 ps

[17] [Fig. 7(b)]. This means that the time needed to reach the maximum correlation

length is almost independent of the position along TW (P ).



Dynamics and Thermodynamics of Water 13

0.2 0.4 0.6 0.8 1
Tg/T

0

1

2

3

4

5

6

lo
g 

τ 
[M

C
 s

te
ps

]

0.00   0.040
0.60   0.042

Pv
0
/ε k

B
Tg/ε

(a)

0.14 0.16 0.18 0.2 0.22 0.24 0.26
Tg/T

0.8

1

1.2

1.4

1.6

lo
g 

τ 
[M

C
 s

te
ps

] P=0.00   k
B
Tg/ε=0.040

(b)

Figure 6. Angell’s plot of the relaxation time τ at different pressures. Tg is a

reference temperature at which the relaxation time is τ = 106 MC steps, arbitrarily

used to rescale the temperatures. (a) At P = 0 the behavior of the relaxation is

apparently Arrhenius over all the range of explored temperatures; its behavior becomes

increasingly non-Arrhenius upon increasing pressure, as shown for Pv0/ǫ = 0.6. (b)

A closer look of the relaxation time at P = 0 shows that it is non-Arrhenius at

intermediate T , as in real water [73, 74, 75, 20].
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Figure 7. (a) Temperature dependence of specific heat CP for the LLCP scenario.

CP has a maximum, the size of which increases with increasing pressure and diverges

as P → PC′ . (b) Dynamic crossover in the LLCP case in the orientational relaxation

time τ for a range of different pressures. The crossover occurs at temperature TW (P )

marked by large hatched circles of a radius approximately equal to the error bar on

the estimate of TW (P ). Solid and dashed lines represent Arrhenius and VFT fits,

respectively. The dynamic crossover occurs at approximately the same value of τ for

all seven values of pressure studied.

4. Singularity Free (SF) Scenario

To further test whether the observed crossover is only a consequence of the liquid-liquid

critical point, we also studied the dynamics in the Jσ = 0 (SF) case.

4.1. Fluctuations

In the SF scenario the behavior of probability of forming bonds pB is similar to that

observed in the LLCP case, but pB saturates to one at low T at a lower rate with

respect to the LLCP case [45, 71]. Along the locus of maximum compressibility Kmax
T ,
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Figure 8. (a) Temperature dependence of specific heat CP for the SF scenario. CP

has a maximum, but its size does not increase with increasing pressure, consistent with

the findings of the mean field calculations of Ref. [45]. (b) Dynamic crossover in the

SF scenario, with crossover temperature at T (Cmax
P ). Symbols are as in Fig. 7. Also

in the SF scenario The dynamic crossover is isochronic.

pB = 0.795 [45] is approximately equal to pB(TW ) observed along the Widom line in the

LLCP scenario. This suggests that the structural behavior along the locus of maxima of

the response functions, such as the compressibility or the specific heat, is independent

on the presence of the LLCP C ′.

Both KT and αP have maxima that increase along a line with negative slope in the

T–P phase diagram. This line coincides within the error bars to the locus of maxima of

CP . However, the CP maximum does not increase upon increasing pressure, but remains

a constant [Fig. 8(a)], differently from the LLCP case.

4.2. Dynamics

We study the relaxation time τ of Cσσ(t) also for the SF scenario and we find that τ

has a dynamic crossover similar to that seen in the LLCP case [Fig. 8(b)]. As in the

LLCP case, the dynamic crossover is isochronic with the crossover occurring at the same

characteristic time τC ≃ 103/2 MC steps [Fig. 8(b)].

Therefore, the presence of the dynamic crossover is consistent with both the SF

and the LLCP scenario, leaving unclear if it is possible to distinguish between the two

scenarios on the base of dynamic measurements. To clarify this point, we investigate

possible differences in the crossover for both scenarios [46].

5. Difference in the Pressure Dependence of the Dynamic Crossover in

LLCP and SF scenarios

To see if there are any distinct differences in the pressure dependence of the dynamic

crossover in the LLCP and SF case, we next calculate the Arrhenius activation energy

EA(P ) from the low-T slope of log τ vs. 1/T [Fig. 9(a)].
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Figure 9. Effect of pressure on the activation energy EA. (a) Demonstration that

EA decreases linearly for increasing P for both the LLCP and the SF scenarios. The

lines are linear fits to the simulation results (symbols). (b) TA, defined such that

τ(TA) = 1014 MC steps > 100 sec [17], decreases linearly with P for both scenarios.

(c) P dependence of the quantity EA/(kBTA) is different in the two scenarios. In

the LLCP scenario, EA/(kBTA) increases with increasing P , and it is approximately

constant in the SF scenario. The lines are guides to the eyes. (d) Demonstration that

the same behavior is found using the mean field approximation. In all the panels,

where not shown, the error bars are smaller than the symbol sizes.

5.1. Monte Carlo simulations

We extrapolate the temperature TA(P ) at which τ reaches a fixed macroscopic time

τA ≥ τC. We choose τA = 1014 MC steps > 100 sec, based on the observation that

1 MC step > τα ∼ 10 ps, the α-relaxation time in supercooled water, as results from

the comparison with, e. g., Ref. [17]. [Fig. 9(b)]. We find that EA(P ) and TA(P )

decrease upon increasing P in both scenarios, providing no distinction between the

two interpretations. Instead, we find a dramatic difference in the P dependence of

the quantity EA/(kBTA) in the two scenarios, increasing for the LLCP scenario and

approximately constant for the SF scenario [Fig. 9(c)].

5.2. Mean field analysis

We can better understand our findings by developing an expression for τ in terms of

thermodynamic quantities, which will then allow us to explicitly calculate EA/(kBTA)

for both scenarios. For any activated process, in which the relaxation from an initial

state to a final state passes through an excited transition state, the relaxation time τ is
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related to the activation energy ∆(U +PV −TS), given by the difference in free energy

between the transition state and the initial state, by the expression

ln
τ

τ0
=

∆(U + PV − TS)

kBT
, (11)

where τ0 ≡ τ0(P ) is the relaxation time for T → ∞.

Consistent with results from simulations and experiments [76, 77], we propose that

at low T the mechanism to relax from a less structured state (lower tetrahedral order)

to a more structured state (higher tetrahedral order) corresponds to the breaking of a

bond and the simultaneous molecular reorientation for the formation of a new bond. The

transition state is represented by the molecule with a broken bond and more tetrahedral

IM order. Hence,

∆(U + PV − TS) = JpB − JσpIM − PvB − T∆S, (12)

where pB and pIM, the probability of a satisfied IM interaction, can be directly calculated.

To estimate ∆S, the increase of entropy due to the breaking of a bond, we use the mean

field expression

∆S = kB[ln(2NpB) − ln(1 + 2N(1 − pB))]p̄B, (13)

where p̄B is the average value of pB above and below TW (P ).

We next test if the expression of ln(τ/τ0), in terms of ∆S and Eq.(12),

ln
τ

τ0
=

JpB − JσpIM − PvB

kBT
− p̄B ln

2NpB

1 + 2N(1 − pB)
(14)

describes the simulations well. Here τ0 is a free fitting parameter. We find that Eq.(14)

holds over all the simulation range for the SF scenario and needs only minor corrections

at high T and P for the LLCP case [Fig. 10]. The corrections are expected since we are

considering a relaxation process that has larger probability at low T and P .

In the SF case τ0 = 1 MC step for any P , while in the LLCP case τ0 increases with

P . This is consistent with the fact that at high pressure and temperatures, when there

are no hydrogen bonds, water behaves like a normal liquid, which has larger relaxation

times for higher densities.

From Eq.(14) we find that the ratio EA/(kBTA) calculated at low T increases with

P for Jσ/ǫ = 0.05, while it is constant for Jσ = 0, as from our simulations [Fig. 9(d)].

Therefore, the mean field analysis is able to rationalize our simulation results.

6. Summary

Simulations of bulk supercooled water, as those for protein hydration water, show a

crossover from non-Arrhenius to Arrhenius dynamics of relaxation time of the hydrogen

bonds. Our study show that:

• The dynamic crossover is consistent with both the LLCP and the SF scenarios. The

crossover occurs at a temperature close to T (Cmax
P ), which decreases for increasing

P .
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Figure 10. Comparison between mean field (lines) and Monte Carlo (symbols)

calculations for the relaxation time τ for the LLCP (a) and SF (b) scenario. In (a) the

fitting parameter Log τ0 for each pressure is given in the figures; dashed lines are the

corrections at high T for the Eq.(14); τ0 increases upon increasing P . In (b) Log τ0 = 0

and the Eq.(14) holds for all the pressures.

• Our mean field analysis allows us to rationalize the dynamic crossover as a

consequence of a local breaking and reorientation of the bonds for the formation of

new and more tetrahedrally oriented bonds. Above T (Cmax
P ), when T decreases, the

number of hydrogen bonds increases, giving rise to an increasing activation energy

EA and to a non-Arrhenius dynamics. As T decreases, entropy must decrease. A

major contributor to entropy is the orientational disorder, that is a function of the

probability pB of forming bonds, as described by the mean field expression for ∆S

Eq.(13).

• We find that, as T decreases, pB — hence the orientational order — increases. We

find that the rate of increase has a maximum at T (Cmax
P ), and as T continues to

decrease this rate drops rapidly to zero — meaning that for T < T (Cmax
P ), the local

orientational order rapidly becomes temperature-independent and the activation

energy EA also becomes approximately temperature-independent, for the Eq.(12).

Corresponding to this fact the dynamics becomes approximately Arrhenius.

• We find that the crossover is approximately isochronic (independent of the pressure)

consistent with our calculations of an almost constant number of bonds at T (Cmax
P ).

• We observe that in both scenarios the Arrhenius activation energy EA and the

temperature TA, at which the relaxation time is macroscopic, decrease upon

increasing P . Instead, the P dependence of the quantity EA/(kBTA) has a

dramatically different behavior in the two scenarios. For the LLCP scenario it

increases as P → PC′, while it is approximately constant in the SF scenario.

Therefore, the quantity EA/(kBTA) offers a means to distinguish between the two

interpretations by dynamic measurements.
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