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We investigate the dynamical properties of low-dimensional systems, driven by external noise sources.

Specifically we consider a resistively shunted Josephson junction and a one-dimensional quantum liquid in

a commensurate lattice potential, subject to 1/f noise. In absence of nonlinear coupling, we have shown

previously that these systems establish a nonequilibrium critical steady state [Dalla Torre, Demler, Giamarchi,

and Altman, Nat. Phys. 6, 806 (2010)]. Here, we use this state as the basis for a controlled renormalization

group analysis using the Keldysh path integral formulation to treat the nonlinearities: the Josephson coupling

and the commensurate lattice. The analysis to first order in the coupling constant indicates transitions between

superconducting and localized regimes that are smoothly connected to the respective equilibrium transitions.

However, at second order, the back action of the mode coupling on the critical state leads to renormalization of

dissipation and emergence of an effective temperature. In the Josephson junction, the temperature is parametrically

small allowing to observe a universal crossover between the superconducting and insulating regimes. The I-V

characteristics of the junction displays algebraic behavior controlled by the underlying critical state over a wide

range. In the noisy one-dimensional liquid, the generated dissipation and effective temperature are not small

as in the junction. We find a crossover between a quasilocalized regime dominated by dissipation and another

dominated by temperature. However, since in the thermal regime the thermalization rate is parametrically small,

signatures of the nonequilibrium critical state may be seen in transient dynamics.

DOI: 10.1103/PhysRevB.85.184302 PACS number(s): 05.70.Ln, 37.10.Jk, 71.10.Pm, 03.75.Kk

I. INTRODUCTION

Advances in the fabrication and coherent manipulation of

quantum many-body systems, such as mesoscopic devices,

superconducting circuits,1–3 and ultracold atomic gases,4 allow

to investigate new regimes of many-body physics and open the

way to interesting technological applications. A recurring issue

with these systems is that they are often being driven out of

equilibrium, either purposely as part of the preparation scheme,

or due to their sensitivity to external noise sources. Such studies

provide a strong motivation for understanding the properties of

quantum many-body systems under nonequilibrium conditions

(see, e.g., Refs. 5 and 6). Since a full microscopic description of

such complex systems is, in general, hopeless, it is important to

identify regimes where the complexity of the dynamics gives

rise to robust emergent behavior that is independent on the

microscopic details.

In this paper, we describe universal quantum phenomena

that occur in many-body systems subject to external noise

sources that are not in thermal contact with the system. We

have previously identified a class of quantum-critical steady

states that arise under these conditions.7 Specifically, we

considered quadratic model systems, such as quantum RC

circuits and Luttinger liquids at zero temperature subject

to 1/f noise. Clearly, the correlation and response of the

systems are modified by the noise and show manifestly

nonequilibrium phenomena. But, as we showed, the scale

invariance and hence the algebraic decay of the correla-

tions is not destroyed. Nonlinear perturbations such as a

Josephson junction in the RC circuit or a commensurate

periodic potential in the Luttinger liquid were considered

using simple scaling arguments. This analysis showed that the

perturbations can be tuned from being relevant to irrelevant by

varying the noise power, suggesting a possible nonequilibrium

phase transition. The key issue that was not addressed by

the simple scaling arguments is the back action of the

nonlinear perturbations on the quadratic elements of the

system.

Here, we extend our previous analysis and use the critical

steady states as a starting point for a perturbative real-time

renormalization-group (RG) approach. This method was used

in Ref. 8 to describe a quench of a Luttinger liquid in a

commensurate periodic potential. In the quench problem,8,9

the mode-coupling induced by the lattice potential led to the

generation of finite dissipation and temperature. In the present

paper, we generalize the RG scheme and extend it to our case of

interest, namely, the steady-state regime of quantum systems

subjected to 1/f noise. This allows us to study the effects

of small perturbations around the “nonequilibrium quantum

critical points” in a controlled way. The first-order expansion

agrees with the predictions made in Ref. 7 by means of

the scaling argument. However, the second order shows the

appearance of new physics, which was hidden by the trivial

scaling analysis.

We highlight the new effects in the example of a “zero-

dimensional” noisy Josephson junction for which we obtain the

full dynamical phase diagram. For such a system, temperature

and friction are generated by the combination of the out of

equilibrium noise and the mode coupling terms. The emergent

effective temperature acts to smear out the quantum phase tran-

sition predicted in Ref. 7. However, unlike the case of equilib-

rium thermal noise, the universal crossover is governed by the

nonequilibrium quantum critical line. At distances smaller than

the effective thermal length, the critical correlations explic-

itly violate the equilibrium fluctuations-dissipation theorem

(FDT).
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By the present method, we also analyze the noisy one-

dimensional system of interacting particles. Interestingly,

although the microscopic starting point is quite different from

the case of quenched systems, the initial steps of the flow are

similar to Refs. 8 and 9.

The plan of the paper is as follows: the paper starts in Sec. II

with a definition of the models that we consider, namely, the

noisy Josephson junction and the noisy 1D Luttinger liquid.

Section III, offers a self-contained description of our general

RG framework. This section can be safely skipped by the

reader mostly interested in the results and not in the actual

method used to obtain them. Such results are discussed in

the next two sections. Section IV discusses the case of the

noisy Josephson junction. In particular, the dynamical phase

diagram and its physical implications have been regrouped in

Secs. IV C and IV D. In a similar way, the noisy 1D chain

is examined in Sec. V, with the physical results in Sec. V B.

Section VI closes the article with a summary of our results and

an outline of future research directions.

II. MODELS

Below we describe the specific models of the noisy

Josephson junction and the noisy Luttinger liquid considered

in this paper. Both systems consist of three key elements:

(i) a quantum system of interacting particles, described by

a many-body Hamiltonian Hsys, (ii) a deterministic noise

source, described by a stochastic time-dependent Hamiltonian

Hnoise(t), and (iii) a dissipative quantum bath Hbath. In

what follows, we will assume that the dissipative bath is

initially prepared at equilibrium, and due to its large size,

does not significantly deviate from this state throughout the

whole experiment. Considering only noise averaged quantities,

we then obtain a steady state in which correlation and

response functions depend only on the time difference. Due

to the constant flow of energy through the system, from the

noise source to the zero temperature bath, these correlations

and the response function explicitly violate the equilibrium

fluctuation-dissipation theorem (FDT) and are derived in the

framework of a nonequilibrium Keldysh action that will be

described below. For a classical analogue to this problem see

for example Ref. 10 Bonart et al.

A. Noisy shunted Josephson junction

The first system that we consider here is the resistively

shunted Josephson junction driven by 1/f charge noise. This

model is defined by the time-dependent Hamiltonian

H (t) = EJ cos(θ ) + Ec

[

n − Q(t)

2e

]2

+ Hbath(n). (1)

Here, θ is the phase difference across the junction and n its

canonical conjugate (the charge). Ec = 2e2/C and EJ = h̄g

are, respectively, the charging energy and the Josephson

coupling of the junction. Q(t) describes the stochastic time-

dependent fluctuations of the off-set charge of the junction

(charge noise).11–14 Hbath models the resistor in terms of an

infinite set of harmonic oscillators.15,16 The model can also

be represented by the electric circuit of Fig. 1 in which the

charge noise is generated by a fluctuating voltage source

Vn(t) = CQ(t).

~

RJ C

VN(t)

RJ C

(a) (b)

FIG. 1. Electric circuit of a resistively shunted Josephson junction

(1). (a) The junction is at equilibrium. (b) The junction is driven out

of the equilibrium by time-dependent charge noise, modeled by a

stochastic voltage source Vn(t) = CQ(t).

Assuming a Gaussian distribution, we average over the

noise and obtain an effective action7 that can be written in

the Keldysh form:

S = Sbath + Snoise + Sg,

Sbath =
∫

dω

2π
(θ∗

ωθ̂∗
ω)G−1

bath

(

θω

θ̂ω

)

,

Snoise =
∫

dω

2π
(θ∗

ωθ̂∗
ω)G−1

noise

(

θω

θ̂ω

)

,

Sg = g

∫

dt sin(θ ) sin(θ̂ ). (2)

Here, θ and θ̂ are the symmetric and antisymmetric combina-

tions of the forward (θ+) and backward (θ−) paths: θ± = θ ± θ̂ .

An introduction to Keldysh path integrals see, for example,

Ref. 17. The two fields θ and θ̂ are, respectively, referred to as

the “classical” and “quantum” fields.

The inverse Green’s function of the bath is

G−1
bath =

(

0 RQCω2 − i
RQ

R
ω

RQCω2 + i
RQ

R
ω −2i

RQ

R
ω coth

(

ω
2T

)

)

. (3)

Here, R/RQ = R[(2e)2/h] and T are, respectively, the nor-

malized resistance and the temperature. For 1/f charge noise,

〈Q∗
ωQω〉 = (2e)2F/|ω| and

G−1
noise =

(

0 0

0 −4πiF |ω|
)

. (4)

For later convenience, we define a scaled noise parameter

F̄ ≡ 2π (R/RQ)F. (5)

Note that the noise contributes only to the quantum-quantum

part of the action; it introduces only fluctuations in the system,

without any dissipation, and therefore explicitly violates the

equilibrium fluctuation-dissipation theorem (FDT).

As shown in Ref. 7, 1/f noise preserves the scale invariance

of the quadratic model. As a result, physical correlations decay

as power laws in time. Of particular interest are the correlation

K(t) and response function R(t) of the cooper pair creation

operator eiθ . These are easily calculated within the quadratic

theory to be7

K(t − t ′) ≡ 1

2
〈eiθ+(t ′)(eiθ+(t) + eiθ−(t))〉

≈
(

RC

|t − t ′|

)2(1+F̄ )R/RQ

, (6)
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R(t − t ′) ≡ i

2
〈eiθ+(t ′)(eiθ+(t) − eiθ−(t))〉

≈ �(t) sin

(

π
R

RQ

)

K(t − t ′). (7)

An important goal of this work is to investigate the effect of

the nonlinear coupling introduced by the Josephson junction

on the steady state of the system. We shall study these effects

in Sec. IV using a real-time RG within the Keldysh framework.

The general RG scheme is described below in Sec. III.

B. Noisy Luttinger liquid

The second example that we consider consists of interacting

particles in one dimension coupled to a quantum bath and to a

source of time-dependent noise. The many-body Hamiltonian

describing the system, the bath, and the noise is

H (t) = 1

2π

∫

dx

u

{

K[uπ∂xθ (x)]2

+ 1

K
[u∂xφ(x)]2 − g(x) cos(2φ)

}

+Hbath(φ) − 1

π

∫

dx

u
f (x,t)∂xφ(x). (8)

The first two terms are the standard Luttinger liquid Hamil-

tonian with Luttinger parameter K and sound velocity

u. The fields θ (x) and −(1/π )φ(x) are, respectively, the

phase of the bosons and their long-wavelength density

fluctuations.18–21 They satisfy the canonical commutation

relation: [− 1
π
∂xφ(x),θ (x)] = iδ(x − x ′). The cosine term

describes an external static potential. In particular, g(x) =
guδ(x) models a local impurity,22 while g(x) = g models

a periodic potential at commensurate filling.23 The last two

terms of Eq. (8) describe, respectively, a dissipative bath and

a stochastic time-dependent noise, linearly coupled to the

long-wavelength fluctuations of the density. In Ref. 7, we have

discussed specific examples, such as one-dimensional systems

of ultracold polar molecules and chains of trapped ions for

which this model is expected to be relevant.

After averaging over the noise, we obtain the following

real-time action:

S =
∫

udq

2π

dω

2π
(φ∗φ̂∗)G−1

1d

(

φ

φ̂

)

+
∫

dtdxg(x) cos(2φ).

(9)

Here,

G−1
1d =

(

0 1
πK

(ω2 − u2q2) + iηω

1
πK

(ω2 − u2q2) − iηω −2iη
(

|ω| + F
η

q2

|ω|
)

)

.

(10)

Here, we assumed a noise spectrum F (q,ω) =
〈f ∗(q,w)f (q,w)〉 = F/|ω|, implying that the noise couples

to smooth density fluctuations but is uncorrelated at long

scales. This behavior of the noise spectrum is consistent with

recent measurements of 1/f noise on cold trapped ions.25,26

The parameter η describes the coupling strength to the bath,

which is assumed to be linear, ohmic, and at zero temperature.

(For the physical motivations of these assumptions, see

Supplementary Material of Ref. 7.) For later convenience, we

also define the dimensionless noise strength

F̄ = F

u2π2η
. (11)

The model (9) is analogous to the zero-dimensional case

presented above, see Eq. (2), with one important difference.

In Eq. (2), the coupling to the thermal bath R/RQ was a

dimensionless parameter. Here, on the other hand, the coupling

η has units of momentum and is therefore relevant in an

RG sense. To access the quantum critical point, we restrict

ourselves to the case of a weak coupling between the system

and the bath by considering the limit of η → 0 (while keeping

a fixed F̄ ). Our results are therefore valid only for length scales

smaller than 1/η. In fact, this limitation is often less restrictive

than other infrared cutoffs already existing in the system, such

as the finite size of the sample.

In the absence of an external potential [g(x) ≡ 0], the

action is quadratic and one can easily compute any physical

observable. Consider for instance the crystalline order param-

eter O(x) = cos[2φ(x)], which measures the closeness of the

system to a perfect crystal. [O(x) = 1 in a perfect crystal

and O(x) = 0 in a noninteracting gas.] At equilibrium, this

order parameter decays algebraically signaling a quasi-long-

range ordered crystal. In the presence of the noise, we have

previously shown7 that the crystalline order is still algebraic

but with a modified exponent. Specifically, the correlation and

response functions of the crystalline order are respectively

given by

K(x − x ′,t − t ′) ≡ 1

2
〈eiφ+(x ′,t ′)(eiφ+(x,t) + eiφ−(x,t))〉

≈
[

a2

(x − x ′)2 − u2(t − t ′)2

]K(1+F̄ )

, (12)

R(x − x ′,t − t ′) ≡ i

2
〈eiφ+(x ′,t ′)(eiφ+(x,t) − eiφ−(x,t))〉

≈ sin(πK)�[u(t − t ′) − |x − x ′|]K(t − t ′).

(13)

Here, a the interparticle distance (i.e., the natural UV cutoff). If

F̄ 	= 0, we obtain a scale invariant state that explicitly violates

the equilibrium fluctuation-dissipation theorem: a nonequilib-

rium quantum critical state. This situation is encountered, for

example, at the edges of quantum Hall states23 where, due

to the chirality of the modes, back scattering is forbidden.

Nonequilibrium scaling of interacting particles in 1D is also

described in Refs. 27 and 28.

The static potential introduces a nonlinear mode coupling

term and our goal is to understand its effect on the critical

steady state described above. Let us first discuss the case of

a local impurity potential, i.e., g(x) = guδ(x). This can be

thought of as a modified Kane-Fisher problem22 where the

Luttinger liquid lead is subject to local 1/f noise. Similarly to

the equilibrium case, this problem can be mapped exactly to the

Josephson junction model described above. To explicitly see

the mapping, we integrate out the Luttinger liquid and obtain an

effective action for the field φω(x = 0) on the impurity site. The
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quadratic part of the action is then simply the inverse Green’s

function of this field calculated in the quadratic theory (10):

GK (ω,x = 0) = i〈φ⋆
ω(0)φω(0)〉

= i lim
η→0

K

2π

∫

(udq)
η|ω| + Fq2

|ω|
|u2q2 − ω2 − iηω|2

= i lim
η→0

K

2

(

1+ F

π2η

q2

ω2

) ∫

(udq)δ(u2q2−ω2)

= i
K

4
(1 + F̄ )

1

|ω| , (14)

GR(ω,x = 0) = i〈φ̂⋆
ω(0)φω(0)〉

= i lim
η→0

K

2π

∫

udq
1

u2q2 − ω2 − iηω
= K

4iω
.

(15)

Inverting the two-by-two Green’s function matrix, we obtain

an action that is formally equivalent to the noisy Josephson

junction (2) with R/RQ = K and C = 0. However, we note

that the fields appearing in the impurity action have a different

physical meaning. In Sec. IV E, we will show how to adapt the

results derived for the Josephson junction in order to obtain

the current-voltage characteristics of the Luttinger liquid with a

single impurity. The case of a commensurate periodic potential

[i.e., g(x) = g constant] is treated in Sec. V.

III. RG FRAMEWORK

In both models described above, the action of the system

can be written as a sum of a quadratic and a nonquadratic term.

As noted above and in Ref. 7, the quadratic part of the action

is scale invariant and gives rise to a critical steady state. This

provides the basis for treating the nonquadratic terms using

a perturbative renormalization group (RG) method controlled

by the proximity to the scale invariant steady state.

The philosophy of the RG scheme is similar to the

equilibrium case. As usual, we envision measuring the system

with probes of decreasing frequency resolution �. We should

be able to compute the measured dynamic correlations using

an effective Keldysh action S� that has � as its upper cutoff

in frequency instead of the larger physical cutoff �0. The

effective action must be modified in such a way that all

dynamical correlations at scales ω � � are the same as

would be computed using the original action. The flow of

the coefficients of the different terms in the action with the

decreasing frequency scale � reveals the physical mechanisms

that play a dominant role at each scale.

If the bare action was just the scale-invariant quadratic

action, then the lower energy effective action S� would of

course be the same as the original action after a trivial rescaling

of the coordinates and fields. By contrast, the nonlinear

term g couples modes of different frequencies. Therefore the

elimination of the fast modes will necessitate a change of the

effective action to mimic the effect of the lost high-frequency

modes on the slow modes through the mode coupling term.

As long as the coupling term g is small, this change is

concomitantly small and can be computed by the perturbation

theory in g at each stage as we gradually eliminate shells of

modes at decreasing frequency.

We now wish to make an important technical note on the

implementation of the cutoff within a real-time approach.

Within the imaginary time equilibrium formalism, � is often

introduced as a sharp cutoff. This has the advantage of

making a clear separation between fast and slow modes at

each step of the RG. However this approach cannot be used

for time-dependent problems because it violates causality.29

Instead, following Refs. 31 and 30, we implement the cutoff

� by convolving the free Green’s function in the quadratic part

of the action G0(r) with a smooth cutoff function Ŵ� = Ŵ(�r).

As we will show, a convenient choice of the cutoff function can

significantly simplify the calculations. The challenge is how

to perform the integration over fast modes when there is no

sharp separation between fast and slow modes in the frequency

space. This is done using a technique due to Nozieres

and Gallet,30 which we adapt below in the nonequilibrium

Keldysh framework. The derivation takes similar lines as in

Refs. 8 and 9 by Mitra and one of us. Here, we generalize

the scheme somewhat in order to allow application to both

the one-dimensional system and to the Josephson junction.

The main results of this section are summarized by Eqs. (24)

and (37). These two equations give the general forms of the

scaling equations to first and second orders in the strength of

the cosine potential.

A. RG of a quadratic action

As a warm up, let us start by considering a quadratic action

S0 =
∫

dDr1d
Dr2φ(r1)G−1

0 (r1 − r2)φ(r2). (16)

Here, ri = (
xi,ti) is a D = d + 1 dimensional Keldysh co-

ordinate, running on the forward and backward paths. For

a quadratic action, the RG approach is just equivalent to

rescaling the coordinates by ri → (1 + dl)ri . The scaling

equations of each parameter appearing in G−1
0 are determined

by their respective engineering dimension. For example,

unitless parameters are scale invariant and define the critical

fixed points of the RG flow. Energy scales, like a finite

temperature, are always relevant in an RG sense and grow

along the RG flow.

At each step of the RG procedure, we need to effectively

reduce the cutoff � by a small amount d� = dl�. For this

purpose, we express the path-integral weight eiS0[φ] as the

integral over an auxiliary field δφ:

eiφG−1
� φ =

∫

D(δφ)ei(φ−δφ)(G�−dG�)−1(φ−δφ)+iδφ(dG�)−1δφ .

(17)

Here, G� = G0 ∗ Ŵ� and we used a shortened notation in

which the integration over the coordinates is substituted by

products of matrices. The function dG� implements the

change of the cutoff and, for an infinitesimal shift d�, it equals

to d�∂�G� = dl�∂�G�. We now define a rescaled field φ′ =
φ − δφ and rewrite the RHS of Eq. (17) as eiS[φ′,δφ], where

S0[φ′,δφ] =
∫

dDr1d
Dr2[φ′(G� − dG�)−1φ′

+ δφ(dG�)−1δφ]. (18)

The RG procedure consists of integrating out the “fast”

degrees of freedom δφ. If the action is quadratic, the resulting
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action for φ′ is just equivalent to the original one, up to a small

shift of the cutoff, G� − dG� = G�−d�. If, on the other

hand, the action contains nonquadratic terms, the integration

out of the fast degrees of freedom can have more important

effects, which are the focus of our study.

B. Perturbative RG of a nonquadratic action

Consider now an action made by the sum of two terms: a

quadratic term S0[φ] and a small nonquadratic term Sg[φ]. We

assume that the cutoff is implemented in the quadratic part

and transform the nonquadratic part using the definition φ =
φ′ + δφ. Next, we expand the path integral weight ei(S0+Sg ) in

powers of Sg , integrate out the fast degrees of freedom δφ, and

re-exponentiate the resulting terms. This procedure generates a

renormalized action for the “slow” fields φ′. Finally, we rescale

the coordinates by r → (1 + dl)r to match the original cutoff

and derive closed scaling equations for the parameters of S0

and Sg .

In what follows, we will apply this scheme to a generic

homogeneous nonlinear coupling of the form

Sg[φ] = g

∫

dDrF [φ(r)]. (19)

Here, F = F (φ) is some nonquadratic function of the field φ

and D = d + 1 (D = 1 in the Josephson junction problem and

D = 2 for the Luttinger liquid).

1. First order in g

The first-order expansion of the Keldysh weight eiS =
eiS0(�)+iSg gives (1 + iSg)eiS0(�). Substituting φ = φ′ + δφ

and integrating out δφ, we obtain

1+ i〈Sg〉δφ = 1+ ig

∫

dDr

∫

D(δφ)F (φ′+ δφ)ei(δφ)(dG�)−1(δφ).

(20)

For simplicity, we now assume F (φ) to be analytic and expand

it in power series of φ:

1 + i〈Sg〉δφ = 1 + ig

∫

dDr

∫

D(δφ)

×
∑

n

cn(φ′+δφ)nei(δφ)(dG�)−1(δφ)

= 1 + iSg[φ′] + ig

∫

dDr
∑

n

n(n − 1)

2
cn(φ′)n−2

×
∫

D(δφ)(δφ)2ei(δφ)(dG�)−1(δφ)

= 1 + iSg[φ′] + g

2
dG�(0)

∫

dDr∂2
φF (φ′). (21)

Here, we expanded the binomial (φ′ + δφ)n, and we kept only

the two lowest-order terms in dG� ∼ d�.

Finally, re-exponentiate the resulting term and rescale the

coordinates by r → (1 + dl)r . We obtain that the renormal-

ized action of φ′ differs from the original one by

dS(1) = DdlSg(φ′) + g

2
dl�

∂

∂�
〈φ2〉�

∫

dDr∂2
φF (φ′). (22)

The first contribution of Eq. (22) corresponds to the normal

scaling of the coupling, dictated by its engineering dimensions.

The second “anomalous” contribution can lead to the genera-

tion of new couplings in the action as well as to an anomalous

scaling of the existing one.

As expected, if F (φ) is a quadratic function of φ, ∂φ2F is

independent of the fields and the anomalous contributions in

Eq. (22) vanishes (due to cancellation of forward and backward

paths). If, on the other hand, F (φ) is a periodic function of

φ, the anomalous contribution can have the same functional

dependence as the normal one. In the case of a cosine term,

for instance, F (φ) = cos(φ) ⇒ ∂2
φF = − cos(φ) and

dS(1)

dl
= DSg[φ′] − �

1

2

∂

∂�
〈φ2〉�Sg[φ′]

=
[

D − �

2

∂

∂�
G�(0)

]

Sg[φ′]. (23)

The resulting scaling equation is

dg

dl
= g

(

D − �

2

∂

∂�
〈φ2〉�

)

, (24)

In general, G�(0) = 〈φ2〉� is an increasing function of �. As

a consequence, the second term in the RHS of Eq. (24) tends to

counterbalance the first one, eventually making it irrelevant.

This is the origin of both quantum phase transitions to be

described in the next two sections.

2. Second order in g

The first-order scaling equations do not include the back

action of the interaction term on the quadratic terms. To

account for such back action, we go on to compute the flow

equations to second order in the perturbation g:

eiS0,�[φ]+iSg [φ] ≈
(

1 + iSg[φ] − 1
2
S2

g[φ]
)

eiS0,�[φ]. (25)

As before, we express the field φ as φ′ + δφ and average over

the “fast” degrees of freedom, δφ. Next, we re-exponentiate

together the first and second orders, by using

1 + i〈Sg〉δφ − 1
2
〈S2

g〉δφ ≈ exp
(

i〈Sg〉δφ − 1
2
S2

g + 1
2
〈Sg〉2

δφ

)

.

(26)

Here, the average denotes integration over the fast degrees of

freedom δφ, 〈. . .〉 = 〈. . .〉δφ =
∫

d(δφ) . . . eiS0�[φ′,δφ]. Hence

the second-order correction to the effective action in terms of

φ′ is

dS(2)[φ′] = i

2

〈

S2
g

〉

δφ
− i

2
〈Sg〉2

δφ
. (27)

As usual, following the integration out of the high-frequency

modes, we restore the cutoff to its original value by rescaling

the coordinates r → (1 + dl)r , and then rename the fields, by

φ′ → φ.

In the specific case of F [φ] = cos(φ), we have

Sg[φ] = g

∫

dDr{cos[φ+(r,t)] − cos[φ−(r,t)]}

= g
∑

ǫ1,ǫ2=±

∫

dDrǫ1ǫ2e
iǫ1φ(x,t)+iǫ2φ̂(x,t). (28)
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Squaring this action, we obtain

S2
g =

∑

ǫi

ǫ1ǫ2ǫ3ǫ4

∫

dDr1

∫

dDr2e
i�1234 . (29)

Here, again r stands for the D = d + 1 space time coordinate

and we have defined �1234 = ǫ1φ1 + ǫ2φ̂1 + ǫ3φ2 + ǫ4φ̂2,

where φi = φ(ri) = φ(xi,ti).

The integration over the fast degrees of freedom and

rescaling of the coordinates then gives

〈

S2
g

〉

dφ
= ≡ 1

4
g2

∑

ǫi

ǫ1ǫ2ǫ3ǫ4(1 + dl)2D

×
∫

dDr1

∫

dDr2e
i�1234

(

1 − dl�
∂
〈

�2
1234

〉

∂�

)

.

(30)

Using Eq. (26), we then find

dS(2)

dl
= i

8
�g2

4
∏

i=1

∑

ǫi=±1

ǫ1ǫ2ǫ3ǫ4

∫

dr1

∫

dr2e
i�1234

× ∂

∂�

(〈

�2
1234

〉

0
− 2

〈

φ2
〉

0

)

. (31)

This correction to the action includes a renormalization

to the quadratic terms of the action that we can find by

expanding the exponential factor in small fluctuations around

its reference expectation value in the quadratic theory.19,30 Let

us define δ�2 = �2 − 〈�2〉0 and expand

cos � =
∞

∑

n=0

(−1)n

(2n)!
(〈�2〉0 + δ�2)n

=
∞

∑

n=0

(−1)n

(2n)!

(

〈�2〉n0 + n〈�2〉n−1

0 δ�2
)

+ O(δ�4)

= e− 1
2
〈�2〉0 (1 + �2 − 〈�2〉0) + O(δ�4). (32)

The second term in the brackets renormalizes the quadratic

action. The other two terms are constant contributions that

can be dropped (in fact, these terms even cancel out due to

the sum over the ǫis). We can now substitute the definition

of �1234 and plug back into Eq. (31). In doing so, we note

that the contribution of terms with ǫ1 = ǫ3 vanishes. This is

because the exponential e− 1
2
〈�2〉0 includes in this case the factor

〈(φ1 + φ2)2〉0 → ∞. This leads to a restricted sum only over

ǫ1, ǫ2, and ǫ3, which gives

dS(2)

dl
= �

i

4
g2

∫

dr1dr2

∑

ǫ1,ǫ2,ǫ3

ǫ2ǫ3[ǫ1(φ1 − φ2) + ǫ2φ̂1 + ǫ3φ̂2]2e
− 1

2
〈(φ1−φ2)2〉0− 1

2
ǫ1ǫ2〈φ̂1φ2〉

0

∂

∂�
(−〈φ1φ2〉0 + 2ǫ1ǫ2〈φ̂1φ2〉0).

(33)

We now explicitly perform the summation over ǫi indexes and obtain

dS(2)

dl
= −1

4
g2

∫ ∞

−∞
dDR

∫

dDrφ̂

(

R + r

2

)

φ̂

(

R − r

2

)

�

{

cos[GR,�(r)]
∂GK,�(r)

∂�
+ i sin[GR,�(r)]

∂GR,�(r)

∂�

}

+
[

φ

(

R + r

2

)

− φ

(

R − r

2

)]

φ̂

(

R − r

2

)

�

{

sin[GR,�(r)]
∂GK,�(r)

∂�
− i cos[GR,�(r)]

∂GR,�(r)

∂�

}

ei(GK,�(r)−GK,�(0)),

(34)

where we defined R = (r1 + r2)/2 and r = r1 − r2. GK,� =
i〈φ(t)φ(0)〉 and GR,� = i〈φ(t)φ̂(0)〉 are the Keldysh and

retarded components of the Green’s function’s in the quadratic

action with a cutoff �.

Equation (34) amounts to a renormalization of the quadratic

action (2). The first row gives the RG transformation of the

Keldish component, while the second row determines the

renormalization of the retarded and advanced components.

These second-order contributions can be rewritten as

dG−1
K (r)

dl
= i

4
g2�

(

∂

∂�
+ ∂〈φ2〉

∂�

)

× cos[GR,�(r)]ei(GK,�(r)−GK,�(0)), (35)

dG−1
R (r)

dl
= i

4
g2�

∫

dr ′[(δ(r − r ′) − δ(r)]

(

∂

∂�
+ ∂〈φ2〉

∂�

)

× sin[GR,�(r ′)]ei(GK,�(r)−GK,�(0)). (36)

Here, we used GK (0) = i〈φ2〉. After a Fourier transform, they

assume the more compact form

d

dl

(

0 G−1
R (ω)

G−1
A (ω) G−1

K (ω)

)

= −�

2
g2

(

∂

∂�
+ ∂〈φ2〉

∂�

)

(

0 R(ω) − R(0)

R∗(ω) − R∗(0) iK(ω)

)

.

(37)

Here, ω is the Fourier conjugate to r and K(r) and R(r)

are, respectively, the correlation and response function of the

operator eiφ in the quadratic action S0, already defined in

Eqs. (6) and (7).

IV. THE NOISY JOSEPHSON JUNCTION

We now analyze the model of the noisy Josephson junction

defined by Eq. (2). We first derive the RG equations of the

Josephson junction valid up to second order in the Josephson
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coupling g. We shall then analyze the flow in order to obtain

a dynamical phase diagram and predict the expected current-

voltage characteristics of the junction in the different regimes.

We will show that there are wide regimes in which the junction

exhibits manifestly nonequilibrium but nevertheless universal

behavior that is controlled by the nonequilibrium critical state

of the noisy RC circuit.

A. Derivation of the RG equations

Here, we give a detailed derivation of the RG equations

valid to second order in the Josephson coupling constant

g. Readers that are uninterested in the technical details can

skip directly to the summary of the RG flow given by

Eqs. (47)–(50).

Consider first the quadratic action of the RC circuit without

the Josephson coupling (g = 0). In this case, the scaling

dimension of each term of the action is just given by their

engineering dimensions. The dimensionless resistance R/RQ

and the dimensionless noise strength F are scale invariant

and define a nonequilibrium critical fixed point. However, if

the resistor is kept at a nonvanishing temperature, then the

temperature scales like energy and is always relevant in the RG

sense, driving the system away from the above nonequilibrium

critical state. The capacitance C is irrelevant in an RG sense

and determines the ultraviolet cutoff of the theory: � = 1/RC.

In what follows, we will neglect this term, and substitute it by

a generic cutoff function Ŵ�.

1. RG flow to first order in g

We now treat the effects of a weak Josephson coupling

(g ≪ �), through the perturbative RG approach presented in

the previous section. The first-order scaling equation of the

coupling g is given by Eq. (24) derived in Sec. III B for a

generic model.

We focus at first on the zero temperature case in which the

pure RC circuit would be critical. In this case, the anomalous

contribution to the scaling dimension can be easily computed

by inverting Eq. (3)

∂

∂�
〈φ2(t)〉 = 2

R

RQ

(1 + F̄ )
∂

∂�

∫ ∞

−∞
dω

1

|ω|Ŵ
( |ω|

�

)

= −2
R

RQ

(1 + F̄ )
1

�

∫ ∞

0

dω
∂

∂ω
Ŵ

(

ω

�

)

= 2

�

R

RQ

(1 + F̄ ). (38)

In the last identity, we used the defining properties of the cutoff

function, namely that Ŵ(x) → 1 for x → 0 and Ŵ(x) → 0 for

x → ∞. As expected the final result is independent on the

precise form of the cutoff function. Substituting Eq. (38) into

Eq. (24), we obtain the scaling equation of the Josephson

coupling, valid to first order in g:

dg

dl
= g

[

1 − R

RQ

(1 + F̄ )

]

. (39)

This result agrees with the simple scaling arguments given in

Ref. 7.

Let us now reintroduce the finite temperature of the bath.

As we already noted, a finite temperature is a relevant

perturbation, leading at tree level to the scaling equation

dT /dl = T . Besides this, the most important effect of a

finite temperature is on the first-order renormalization of the

coupling g. If we take T > 0, the integral in Eq. (38) is

substituted by

K1 = ∂

∂�

∫ ∞

0

dω
1

ω
[Ŵ�(ω) + Ŵ�(−ω)]coth

(

ω

2T

)

. (40)

If, for instance, we choose a cutoff of the type ŴL(ω) =
exp(−|ω|/�), we obtain

K1 = 2
1

�2

∫ ∞

0

dωe−ω/�coth

(

ω

2T

)

= 2
T

�

[

ψ

(

T

2�

)

− ψ

(

T + �

2�

)]

− 2. (41)

Here, ψ(x) is the Digamma function. For small temperatures

T ≪ �, K1 ≈ 2, and we retrieve the zero temperature limit

(38). For high temperatures, on the other hand, the integral

is proportional to K1 ≈ T
�

. The precise form of the scaling

function is clearly cutoff dependent, while its asymptotic

behavior is general and gives K1 = 2(1 + T
2�

).

2. RG flow to second order in g

As shown in Sec. III B, the second-order contributions

renormalize the quadratic part of the action, according to

Eq. (37). To extract the explicit scaling equations of the

different couplings, we take the low-frequency expansion of

Eq. (37). The zero-frequency contribution of the Keldysh part

is

dG−1
K (ω = 0)

dl
=

∫

dt
dG−1

K (t)

dl
≡ −i

g2

�
I0(R/RQ,F̄ ). (42)

Here, the dimensionless factor I0 equals to

I0 = �2

∫

dt

{

∂

∂�
+

[

∂GK,�(0)

∂�

]}

K(t)

= �2

∫

dt

{

t

�
∂t +

[

∂GK,�(0)

∂�

]}

K(t)

= (1 − Dg)�

∫

dtK(t), (43)

where Dg = d ln g/dl = 1 − R/RQ(1 + F̄ ) is the scaling

dimension of the junction Sg in the scale invariant steady

state of the quadratic action with 1/f noise and the resistor

at zero temperature. In writing Eq. (43), we used the fact that

under these conditions, the only scale is provided by the cutoff

� and therefore K(t) is a scaling function of �t . We then

integrated by parts and used Eq. (24) to obtain the result (43).

In Appendix A1, we compute I0 for a specific choice of the

cutoff (A8). Here, we just note that I0 vanishes when the noise

parameter F̄ tends to zero and is positive for any F̄ 	= 0.

The zero-frequency component of the Keldysh action

G−1
K (ω = 0) can be associated with an effective tempera-

ture that is generated in the RG flow. This connection is

established by comparing to the low-frequency expansion of

the Keldysh component of a quadratic action at equilibrium

ηω coth(ω/2T ) = ηT + O(ω2), where η is the dissipation

(in our case, η = RQ/R). Hence we have the mapping

G−1
K (ω = 0) ↔ ηT . The next term in the low-frequency
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DALLA TORRE, DEMLER, GIAMARCHI, AND ALTMAN PHYSICAL REVIEW B 85, 184302 (2012)

expansion of Eq. (35) is proportional to ω2. Comparing the

coefficient of this term with the low-frequency expansion

of the equilibrium form will not, in general, give the same

effective temperature as inferred from the comparison of the

leading term. This reflects the fact that the system is not

truly at equilibrium. However, in the RG sense, the ω2 and

higher-order terms are irrelevant. Therefore the asymptotic

low-frequency behavior is that of an effective equilibrium

system.

Note that the corresponding correction was computed using

the bare action. As the flow proceeds one should, in principle,

compute this correction with the full renormalized action,

and thus, in particular, with a finite temperature. This is

however very complicated, in particular given the frequency

dependence of the generated Keldysh term. We will thus stick

to the correction computed at T = 0, keeping in mind that

at some scale, the flow will be cut by the generated finite

temperature. Note that if the system is really in equilibrium

(F̄ = 0) then I0 = 0 as it must be. This ensures that a

zero-temperature system will not generate a finite temperature

in the course of renormalization.

We turn to consider the renormalization of the off-diagonal

components of the Keldysh action given by Eq. (36). The

lowest-order term in the low-frequency expansion is propor-

tional to iω:

dG
(−1)
R

dl
= −iω

∫

dt t
dG−1

R (t)

dl
≡ −iω

g2

�
I1(F̄ ,R/RQ). (44)

The coefficient I1 is given by

I1 = �3

∫

dt t

{

∂

∂�
+

[

∂C�(0)

∂�

]}

R(t)

= −Dgdl�2

∫

dt tK(t). (45)

This integral is calculated explicitly in Appendix A1. By

comparing Eq. (44) with the original action (2), we find

that I1 is associated with renormalization of the dissipation.

Specifically, we can rewrite Eq. (44) as dη/dl = I1g
2/�2,

where η ≡ RQ/R. We note that at equilibrium (F̄ = 0) I1

vanishes, implying that then there is no renormalization of the

dissipation. This is in agreement with Refs. 22,32, and 33.

The renormalization of the dissipative part in the off

diagonal component of the action implies a similar renor-

malization of the external noise term. Recall that the |ω|
term in the Keldysh component was −2iη|ω| − 4πiF |ω| and,

as we saw above, it is not renormalized to second order in

g. We can rewrite this term as −2i(η + dη)|ω| − 4πi[F −
dη/(2π )]|ω|. In this way, the renormalization of the resistor

in the off-diagonal term is complemented by the required

renormalization in the diagonal term so as to maintain the

same form as the original action (2). The price is having a

renormalization of the noise term, which can be written as

dF̄

dl
= − g2

�2

R

RQ

(1 + F̄ )I1. (46)

The constant I1 is always positive, meaning that the second-

order contribution acts to reduce the nonequilibrium noise.

Accordingly, the renormalization of the dissipation is accom-

panied by a corresponding negative renormalization of the

temperature.

3. RG equations and physical consequences

The above results can be summarized by the following

scaling equations:

dg

dl
= g

[

1 − R

RQ

(

1 + T

2�0

+ F̄

)]

, (47)

dT

dl
= T + R

RQ

g2

�0

I0 − T
R

RQ

g2

�2
0

I1, (48)

dR

dl
= − R2

RQ

g2

�2
0

I1, (49)

dF̄

dl
= (α − 1)F̄ − R

RQ

(1 + F̄ )
g2

�2
0

I1. (50)

Here, �0 ≈ 1/(RC) is the bare cutoff of the junction. The

unitless coefficients I0 and I1 are defined in Eqs. (42) and

(44). As shown in Appendix A1, it is possible to obtain analytic

expressions for both coefficients, by an appropriate choice of

the cutoff.

Let us now review the different features of the equa-

tions (47)–(50) that describe the RG flow of the noisy shunted

Josephson junction (2) up to second order in g/�. The flow of

the Josephson coupling term given by Eq. (47) is completely

analogous to the equilibrium case. The first term in the brackets

reflects the engineering dimension of the Josephson coupling,

which has units of energy while the remaining terms imply

an anomalous scaling dimension. At equilibrium and zero

temperature (T = 0, F̄ = 0), this equation reduces to the well

known result of Refs. 34,35 with the anomalous contribution

to the scaling dimension being −R/RQ. Both the temperature

and the noise decrease the anomalous dimension, making the

Josephson coupling less relevant. At this level, the picture

is identical to that given in Ref. 7, using a simple scaling

argument.

New physics enters in the renormalization of the circuit

at second order in g/�. In particular, Eq. (48) implies that

a finite effective temperature of order g2/� is generated in

the course of renormalization even if the temperature of the

resistor is zero at the outset. Physically this can be understood

as follows. In absence of a mode coupling term, the energy

imparted on the system by the noise is distributed exactly as

dictated by the noise spectrum. For example, the spectrum

of fluctuations induced by 1/f noise is proportional to |ω|,
which is very different from a thermal distribution. The effect

of mode coupling is to redistribute the mode occupation

and, in particular, it generates a constant contribution (i.e.,

frequency independent) to the distribution of fluctuations in

the zero-frequency limit. The spectral weight of fluctuations

at low frequencies and hence the effective temperature, can be

estimated using Fermi’s golden rule. First, it is proportional to

g2/�, which is related to the matrix elements for transitions

from occupied modes at high energies to the low energies.

Second, the generated effective temperature is proportional to

I0, as defined in Eq. (42), which is related to the nonequilibrium

population of high-frequency modes. As required, I0 tends

to zero at equilibrium F̄ = 0. The value of the effective
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temperature is set by the ratio between the fluctuations in

the zero-frequency limit and the dissipation RQ/R.

There is also a reciprocal process due to the mode coupling

term that acts to renormalize the dissipation as described by

Eq. (49). It is worthwhile to write this equation directly in

terms of the dissipation parameter η = RQ/R as

dη

dl
= g2

�2
I1. (51)

Physically, when there is a nonequilibrium population of

high-frequency modes, they can absorb energy from the low-

frequency modes by changing their population and thereby

serve as an effective dissipative bath. The added dissipation

is proportional to the coupling between the modes (g/�)2

and to the coefficient I1, which is a measure of the deviation

from equilibrium (I1 = 0 for F̄ = 0). Note that, as shown

in Appendix A, I1 diverges for (1 + F̄ )R/RQ < 1/2. In this

regime, the above low-frequency expansion becomes invalid.

We expect that, in this regime, a nonanalytic term ∼ωμ

with μ < 1 is generated, which corresponds to sub-Ohmic

dissipation. The physical implications of this transition deserve

further study, which is postponed to future work.

The last equation (50) describes the scaling of the external

noise. 1/f noise is marginal at the level of the quadratic action,

but it becomes weakly irrelevant at second order in the mode

coupling term. This is consistent with the system flowing

toward an effective equilibrium state with a finite effective

temperature.

B. RG equations at strong coupling: Duality transformation

So far we have treated the case of a weak Josephson

coupling in a perturbative RG scheme to second order in the

coupling g. The limit of a strong junction can be addressed

by means of a well-known duality transformation,33,34 which

is carried out in detail within the Keldysh framework in

Appendix B. In the strong coupling limit, the phase across

the junction is essentially locked except in rare occasions

when a quantum fluctuation induces a phase slip, which can

be formally described as a tunneling event of a dual particle

across a weak dual junction. The current of dual particles is the

rate of phase slips that gives the voltage drop on the original

Josephson junction.

We can thus regard the dual junction as embedded in a

complete dual circuit that is identical in structure to the original

circuit with the transformations

g → gdual,

R → R−1,
(52)

F → (R/RQ)2F,

T → T .

The prefactor of the dual cosine, gdual, can be evaluated

using WKB approximation as34 gdual ≈ � exp(−√
g/�). In

particular, if g ≫ �, then gdual is small, facilitating the

perturbative RG approach in gdual. The RG equations are

exactly the same as Eqs. (47)–(50) with the replacements

dictated by the duality transformation (52).

C. Dynamical phase diagram

The RG flow equations derived above for the weak

and strong coupling limits can serve to identify the dif-

ferent steady-state regimes of the system. We will show

in this section that the entire parameter space is divided

into three distinct regimes, which can be best described

as (i) nonequilibrium superconducting, (ii) nonequilibrium

insulating, and (iii) thermal metal. We shall identify the

characteristic scales that define the different regimes and

derive analytic expressions for the crossover lines that separate

them.

We start the analysis of the dynamical regimes from the

weak coupling limit, that is, when the (bare) Josephson

coupling is much smaller than the cutoff �0 = 1/(RC). A

rough separation into a superconducting and an insulating

regimes can be made using the first-order flow of the coupling

g determined by Eq. (47) with T = 0

dg

dl
= g

[

1 − R

RQ

(1 + F̄ )

]

. (53)

At this order, we would identify the insulating phase

as the region R/RQ < (1 + F̄ )−1, where the Joseph-

son coupling is irrelevant and the superconducting phase

as the complementary region where g flows to strong

coupling.

The picture becomes somewhat more involved when we

consider the second-order correction to the flow. Most impor-

tantly, Eq. (48) shows that in presence of external noise, the

Josephson coupling acts to generate an effective temperature.

There is always a scale �T below which the temperature

becomes the dominant term and where the junction will exhibit

metallic behavior. But that scale may be so small that g(�)

meanwhile changes by orders of magnitude from its bare value.

If g(�) flows to strong coupling, i.e., exceeds the cutoff �0,

at a scale �S larger than the thermal scale �T then there is a

wide range of frequency scales over which the junction exhibits

universal superconducting behavior. Similarly in the insulating

side of Eq. (53), if g(�) decreases by an order of magnitude

at a scale �I larger than the thermal scale then there is a wide

frequency range over which the Junction exhibits insulating

behavior.

Let us now estimate the scales �I , �S , and �T . To this end,

we first solve Eq. (53) to obtain g(l) = g0 exp[(1 − R̃)l], where

we have defined R̃ ≡ (1 + F̄ )R/RQ. When g is irrelevant

(R̃ > 1), we get the typical (logarithmic) scale lI = (R̃ − 1)−1

and therefore �I = �0 exp[−(R̃ − 1)−1]. If on the other hand,

g is relevant (R̃ < 1) it reaches the cutoff at the scale �S =
�0(g0/�0)1/(1−R̃). Now to find the thermal scale, we substitute

g(l) into the flow equation (48) for the temperature. We then

solve for T (l) with the initial condition of zero temperature

T (0) = 0 to obtain

T (l) = g2
0

�0

I0R/RQ

2R̃ − 1
[1 − e(1−2R̃)l]el ≈ g2

0

�0

I0R/RQ

2R̃ − 1
el . (54)

The last equality is for large l and R̃ > 1/2, which is the regime

of interest in any case. From here, we immediately obtain the

thermal scale

�T = I0

(

R/RQ

2R̃ − 1

)

g2
0

�0

≡ Teff . (55)
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FIG. 2. (Color online) Phase diagram of the noisy Josephson junction as a function of the bare resistance R/RQ and the bare Josephson

coupling g0/�0 for different values of the noise: (a) F̄ = 0.01, (b) F̄ = 0.1, and (c) F̄ = 2.0. The blue lines (lower half of each panel) are

obtained from the weak coupling analysis and correspond to Eqs. (56) and (57). The red lines (upper half of each panel) are obtained through

the duality transformation. The crosses (+) indicate the points used for the numerical solution of the RG equations shown in Fig. 3.

The crossover between the superconducting and the thermal

regimes in the system parameter space R/RQ, F̄ , and g0/�0

is defined by the surface �T = �S , which is given by

g0

�0

=
[

I0R/RQ

2(1 + F̄ )R/RQ − 1

]

1−(1+F̄ )R/RQ

2(1+F̄ )R/RQ−1

. (56)

At larger values of g0, the junction flows to strong coupling

and displays superconducting behavior over a wide frequency

range.

We can find the crossover between the thermal and the

insulating regimes as the surface on which the thermal scale

�T equals �I . This crossover is given by

g2
0

�2
0

= 2(1 + F̄ )R/RQ − 1

I0R/RQ

e[1−(1+F̄ )R/RQ]−1

. (57)

For smaller values of g0, the junction displays an insulating

behavior controlled by the weak coupling critical point. For

larger g0, the effective temperature smears out the insulating

behavior.

If the bare Josephson coupling is large with respect to

the cutoff scale �0, one can apply the duality transformation

described above and obtain an effective description of the

junction in terms of a small phase-slip fugacity. In the dual

picture, the roles of the insulating and superconducting regimes

are exchanged. Therefore the dual version of Eq. (56) describes

the crossover between the insulating and thermal regimes,

and that of Eq. (57) the crossover between the thermal and

superconducting regimes.

The phase diagram derived in this way is shown in Fig. 2

for both the weak coupling and strong coupling regimes, for

different values of the noise power. We see that the noise

has two main effects on the phase diagram: first, it shifts

the transition from superconductor to insulator away from

the universal value Rc = RQ. The shift is in the opposite

directions for the weak and strong coupling regimes. Second,

increasing noise leads to a growing crossover region that

exhibits effective thermal equilibrium behavior between the

two states. In the next section, we shall derive the universal

transport characteristic expected in each of the three regimes.

To confirm the phase diagram obtained from the approx-

imate solution of the RG equations, we solve Eqs. (47)–

(50) numerically for various values of the bare parameters.

Figure 3 shows an example of the RG flow for the following
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FIG. 3. (Color online) Example for RG flows of the Josephson coupling g(l) and of the effective temperature T (l) in the different

dynamical regimes. We used the parameters g0/�0 = 0.3, R/RQ = 0.7, T0 = 0, and different noise parameters. (a) F̄ = 0.001, happens to

be in the superconducting regime. The Josephson coupling reaches the cutoff scale �0 and runs off to strong coupling before any appreciable

temperature is generated. (b) F̄ = 0.1 is in the thermal metal regime. The Josephson coupling may grow initially, but the effective temperature

is first to reach the cutoff scale. At lower frequency scales, the Josephson coupling is strongly suppressed by the effect of temperature.

(c) F̄ = 2.0 is in the insulating regime. The Josephson coupling is irrelevant and it has a chance to decrease significantly from its bare value

before the temperature reaches the cutoff scale.
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set of parameters g0/�0 = 0.1, R0/RQ = 0.7, T0 = 0, and

F̄ = 0.01,0.1,1.0. These points where chosen to demonstrate

a noise-driven transition and are located, respectively, in

the superconducting, thermal, and insulating regimes. We

see that in the superconducting regime (a) the Josephson

coupling grows rapidly and reaches the cutoff scale (�)

before the temperature does. In the thermal regime (b), the

temperature grows more rapidly than the Josephson coupling,

preventing the latter from reaching the cutoff scale. Finally,

in the insulating regime (c), the Josephson coupling decreases

significantly, before the temperature becomes dominant.

D. Current-voltage characteristics of the junction

The different dynamical regimes determined from the RG

flow are characterized by distinct transport properties. Here,

we derive the I-V characteristics of the junction. We find

a simple universal behavior in the different regimes that

nevertheless betrays the nonequilibrium nature of the system.

1. Insulating regime

The insulating state occurs in the regime where the

Josephson coupling is irrelevant. We therefore expect the

transport properties to be well described by a perturbative

analysis in the weak coupling limit. The standard expression

for the current through a voltage-biased shunted Joseph-

son junction, to second order in the Josephson coupling

g is

I = In + Is = V

R
+ g2ImR(ω = eV). (58)

Here, In and Is are, respectively, the normal current and the

super-current through the junction. R(ω) is the response func-

tion of the operator eiθ(t) in the steady state of the RC circuit

unperturbed by the Josephson junction: it corresponds to the

Fourier transform of Eq. (7). This perturbative calculation is

sometimes referred to as the P (E) approach in the context of

Josephson junctions.36 For voltages significantly higher than

the thermal scale �T , we can use the zero-temperature result

(44) to obtain

Is(V ) = g2

�2
I1V. (59)

Here, I1 = I1(R/RQ,F ) is a unitless constant whose explicit

expression is given in Eq. (A9).

The above perturbative result can be improved by the RG

approach. Instead of using perturbation theory on the bare

model, we apply it to the renormalized model at the scale

� = V at which point the RG flow must be terminated. If

we neglect the temperature, this gives exactly the expres-

sion (59), only with � → V and renormalized values of

parameters:

Is(V ) = I1(lV )
g2(lV )

V
. (60)

In(V ) = V

R(lV )
. (61)

Here, I1(l) = I1[R(l)/RQ,F̄ (l)] and lV = log(�/V ). We see

from this that the I -V curve is a power law only at voltages

higher than the thermal scale; at smaller voltages, the Joseph-

son coupling is suppressed by thermal fluctuations and the con-

tribution of cooper pair tunneling to the total current becomes

negligible. In addition, the RG flow shows that the algebraic

decay is actually controlled by the renormalized resistance

R[l = log(V/�)] and noise F̄ [l = log(V/�)], rather than by

their bare values. This correction is especially important if the

bare Josephson coupling is large, g0 ≫ �, and the insulating

regime is reached only as a consequence of a long RG flow.

If, on the other hand, the bare Josephson coupling is small,

g0 ≪ �, both the corrections to R and to F̄ are negligible and

the perturbative result coincides with the RG result.

2. Superconducting regime

In the superconducting regime, the Josephson coupling

runs off to strong coupling well before reaching the gener-

ated thermal scale. Therefore a perturbative analysis of the

superconducting regime can be made from the dual standpoint

in which the phase slip fugacity is the small parameter.

We start from a direct perturbative analysis applied to

the bare dual circuit. To understand the connectivity of the

dual circuit, note that a voltage bias of the original circuit

corresponds to a constant current Idual = V/e of flux (dual

particles) that flows perpendicular to the original circuit; first,

across the junction and then across the resistor. The current

through the original circuit corresponds, on the other hand, to

the sum of the dual voltages on the junction and on the resistor.

Hence, in the dual picture, we have a resistor Rdual = R2
Q/R

connected in series with a Josephson junction gdual ≪ �0.

This is sketched in Fig. 4. (See also Appendix B for a detailed

derivation of this result.)

We can now apply the weak coupling result (59) to obtain

Idual versus Vs,dual on the dual Josephson element alone.

Then using Idual = V and Vs,dual = I and substituting the dual

junction and noise parameters, we can translate the result to

~

g F0

I

G

~

g’

I

G F0

dG

(a)

(b)

gdual

F0

Idual=V/RQ

~

Idual=V/RQ

(c)

(d)

Gdual

g’dual F0

GdualdGdual

~

FIG. 4. (Color online) Sketch of the effective circuits used for

calculating I-V characteristics. (a) Bare physical circuit. Panel (b)

shows the renormalized circuit including the effective conductance

δG that is generated in the course of renormalization. Panel (c)

shows the bare circuit corresponding to the dual theory and (d) is

the renormalized dual circuit. Note that the dual current Idual can be

thought of as the current of flux quanta trasversing perpendicular to

the junction and the resistor in panel (a).
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physical voltage versus cooper pair current on the original

Josephson junction:

V = I1

(

RQ

R
,F̄

)

g2
dual

�

(

RQIs

�

)2
RQ

R (1+F̄)−1

. (62)

Before applying the RG approach to compute I-V relations,

we should understand how the connectivity of the dual

circuit changes in the course of renormalization. Under the

renormalization, we generate an effective dissipation, which

can be regarded as the added conductance in the circuit.

The (dual) current that went through the bare Josephson

junction, now splits between the junction and the conductance

added in the renormalization process. This implies that the

added effective dissipation is connected in parallel to the dual

Josephson junction and both are connected in series to the

resistor Rdual(0) of the bare circuit as depicted in Fig. 4(b).

Now to compute the I -V relation, we take the voltage on

the dual circuit as the cutoff to the RG flow �∗ = Vdual. The

total (dual) current is then given by

Idual = δGdual(l∗)Vdual + I1(l∗)
gdual(l∗)2

Vdual

, (63)

where δG(l) is the renormalized conductance in parallel to the

JJ at the scale l. The last relation can be immediately translated

to one between the physical voltage and current:

V = δGdual(l∗)I + I1(l∗)
gdual(l∗)2

RQI
. (64)

Note that δGdual is proportional to I1g
2
dual/�, hence both

contributions to the voltage on the Josephson junction are

of order g2
dual as might have been expected. The first term in

Eq. (64) constitutes a small linear resistance that accompanies

the emergence of effective temperature and dominates the

transport at very low currents (I/2e < Teff). In the other limit,

when the current is much higher than the effective temperature,

the second term in Eq. (64) dominates and leads to essentially

the same result as bare perturbation theory, Eq. (62).

E. Impurity in a Luttinger liquid

As we have seen in Sec. II B, the nonequilibrium action of

a local impurity in a one-dimensional system driven by 1/f

noise can be mapped exactly to the action (2) considered here.

This mapping allows us to use the results from the previous

section to determine the nonequilibrium phase diagram and

the current-voltage characteristics as well. In the 1D model,

it is possible to induce a constant flow of particles by

the transformation φ(x,t) → φ(x,t) + πI t . [Recall20 that the

displacement field φ(x0,t) jumps by π each time that a particles

crosses the point x = x0.] The flow of particles (passing

through both the one-dimensional system and the impurity)

is therefore equivalent to a voltage over the shunted Josephson

junction (acting on both the junction and the transistor). To

introduce a constant voltage in the 1D system, we need to add

the following term to the Hamiltonian:

V

∫ x0

−∞
dxρ(x0) = V

2π
2φ(x0). (65)

Here, ρ(x) ≈ (−1/φ)∂xφ(x) is the density of particles at

position x. Equation (65) shows that the voltage of the 1D

system (given by the sum of the voltage over the 1D lattice and

the voltage over the single impurity) corresponds to the current

through the noisy Josephson circuit (given by the sum of the

current through the resistor and the super-current through the

junction). Using this mapping, we find that current-voltage

(I-V) characteristic of the noisy 1D system with a local

impurity is precisely identical to the voltage-current (V-I) curve

of a noisy shunted Josephson junction that we computed in

Sec. IV D.

V. ONE-DIMENSIONAL SYSTEM

We turn to discuss the model of interacting particles in one

dimension in a commensurate periodic potential subject to 1/f

noise. The model was introduced in Ref. 7 and reviewed in

Sec. II B. We have pointed out that, in absence of the periodic

potential, the system exhibits algebraic crystalline correlations

and response functions that may be very different from the

equilibrium ones. The power-law decay of the correlations

depends on the dimensionless ratio between the noise strength

and the coupling to the bath, F̄ = π−2F/(uη). Recall that we

are considering the limit where both η and F tend to zero but

the ratio between them F̄ may be arbitrary.

Having found a scale invariant state in the quadratic model,

we should ask how the nonlinear coupling of Eq. (9) behaves

under the same scaling transformation. In Ref. 7, we read off

the anomalous scaling dimension of the cosine term from the

power-law decay exponent of the crystalline correlations (12),

which gives dg/dl = g[2 − K(1 + F̄ )]. This result suggests

a possible noise-tuned phase transition in which the periodic

potential g changes from being irrelevant to being relevant. In

equilibrium (F̄ = 0), such a quantum pinning transition indeed

occurs, and as can be seen from the scaling of g, it occurs at

the universal value of K = 2.

The purpose of this article is to go beyond the simple scaling

argument and account for the back action of the periodic

potential on the steady-state correlations. This will be done

using the general RG framework laid out in Sec. III. As

mentioned above, the resulting RG equations are identical to

one describing the steady state following a sudden change

of the Luttinger parameter in the Sine-Gordon model. The

latter problem was investigated by Mitra and one of us in

Refs. 8 and 9. Without the periodic potential, the steady state

following the quench exhibits algebraic correlations, as in our

case, with a modified exponent that depends on the strength

of the quench.37 Indeed, the correlations and the response

in this state are fully described by a Keldysh action almost

identical to Eq. (9) except for the substitution (F̄ q2/|ω|) →
(Kf /Ki − 1)|ω|, where Ki and Kf are, respectively, the

Luttinger parameter before and after the quench. When

building the RG equations around the Gaussian action, the

different dependence on frequency and momentum (q2/|ω|
versus |q|) turns out to be unimportant: in the limit η → 0,

the Luttinger liquid is relativistic invariant and responds only

to modes with ω = cq. Since the flow will take the system

away from this fixed point, some of the physics of these two

problems could, however, correspond to two different fixed

points.
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A. RG equations

The general framework that has been laid out in Sec. III B

can be directly applied to the one-dimensional system. First,

we derive from the general formula (24) an explicit scaling

equation for the coupling g valid to first order in the coupling.

Then we use the general formula (37) for the scaling to second

order in g. We carry out an expansion of this result in small

frequency ω and wave vector q in order to recast the functional

equation (37) as scaling equations for the set of parameters in

the action (9). Readers uninterested in the technical details

of the derivation can skip directly to Eqs. (71)–(76) that

summarize the result.

One technical note we should make before proceeding is

that for the derivation in Sec. III B, we assumed a cosine

coupling of the form cos[φ(x,t)], while we are now interested

in the coupling cos[2φ(x,t)] appearing in the action (9). We

should therefore make the substitution φ → 2φ in the formulas

appearing in Sec. III B when considering this problem.

To find the first-order flow of g explicitly, we need to

compute the variation of the fluctuation 〈φ2〉 within the

quadratic theory changing cutoff scale. Neglecting the effect

of the dissipation η, we get

∂

∂�
〈φ2〉

= ∂

∂�
lim
η→0

∫

(udq)dωe−u|q|/� ηωcotgh
(

βω

2

)

+ q2 F
ω

∣

∣

1
πK

(ω2−u2q2) + iηω
∣

∣

2

= K

∫

(udq)dωu|q|e−u|q|/�

×
[

cotgh

(

βω

2

)

+ F

π2 q2

ω2 η

]

δ[ω2 − (uq)2]

≈ K

(

1 + T

�
+ F̄

)

. (66)

Here, we used an exponential cutoff function Ŵ�(q,ω) =
exp(−u|q|/�) and F̄ is defined in Eq. (11). Substituting this

result in Eq. (24) leads to the scaling equation given in Eq. (71)

below.

We now turn to derive the flow equations to second order

in g through an expansion of the functional equation (37) in

small q and ω. A contribution with both q = 0 and ω = 0 is

found only in the Keldysh component dG−1
K (q,ω) and is given

by

dG−1
K (ω = 0)

dl
= i

2g2

�2

(

�
∂〈φ2〉
∂�

−1

) ∫

d(x/u)

∫

dtK(x,t)

= i
2g2

�2
(2 − 2Dg)

∫

d(x/u)

∫

dtK(x,t)

≡ −2i
g2

�2
IT (F̄ ,K). (67)

Here, Dg is the scaling dimension of the commensurate poten-

tial found from the first-order flow for vanishing temperature

and dissipation, Dg = 2 − K(1 + F̄ ).K(x,t) is the correlation

function of the operator ei2φ taken in the quadratic action

with T = 0 and η = 0. We used the fact that under these

conditions the correlation is a scaling function of �ut and �x,

K = K(�x/u,�t). As discussed already below Eq. (43), this

contribution to the Keldysh component can be associated with

an effective temperature in the low-frequency limit through

G−1
K (0,0) ↔ ηT . The identification is made by comparing to

the low-frequency expansion of the Keldysh component at

equilibrium ηω coth(ω/2T ) = ηT + O(ω2).

By inversion and time-reversal symmetry, dG−1
K (x,t) does

not contain terms proportional to q or ω, and its next

nonvanishing terms are proportional to q2 and ω2. These terms

are less relevant than the bare quadratic action, and therefore

they do not affect the correlation and response functions at

long times.

In contrast to the Keldysh component, the renormalization

of the off-diagonal component of the action dGR(q,ω) does

not have a zero-frequency component. The lowest-order term

in the gradient expansion of this term in Eq. (37) is

dG−1
R (ω)

dl
≈ iω

g2

�3

(

2
d

dl
〈φ2〉 − 3

) ∫

dx

∫

dttR(x,t)

= i
g2

�2
(1 − 2Dg)

∫

d(x/u)

∫

dtR(x,t)

≡ iω
g2

�3
Iη(F̄ ,K). (68)

This contribution amounts to renormalization of the dissipation

as dη/dl = ig2/�4Iη(F̄ ,K).

The next order in the gradient expansion of dG−1
R gives

terms proportional to q2 and ω2. These terms renormalize the

bare term (uK)ω2 − (u/K)q2. The independent renormaliza-

tion of K and u are then given by

dK−1

dl
= −2dl

g2

�4
Dg

∫

d(x/u)

∫

dt[(x/u)2 + t2]R(x,t)

≡ dl
g2

u2�4
IK (F̄ ,K), (69)

du

dl
= −2dl

g2

�4
Dg

∫

d(x/u)

∫

dt[(x/u)2 − t2]R(x,t)

≡ dl
g2

u2�4
Iu(F̄ ,K). (70)

The above results are summarized in the following RG

scaling equations:

dg

dl
= g

[

2 − K

(

1 + T

�0

+ F

π2η

)]

, (71)

dη

dl
= η + g2

�3
0

Iη, (72)

d(ηF̄ )

dl
= − g2

�3
0

Iη(1 + F̄ ), (73)

d(ηT )

dl
= 2ηT + g2

�2
0

IT , (74)

dK−1

dl
= g2

�4
0

IK , (75)

du

dl
= g2

�4
0

Iu. (76)

The coefficients IT , Iη, IK , and Iu are defined in Eqs. (67)–

(70). Analytic formulas for these coefficients as functions of

184302-13



DALLA TORRE, DEMLER, GIAMARCHI, AND ALTMAN PHYSICAL REVIEW B 85, 184302 (2012)

K and F̄ are derived in Appendix A2. It should be noted that

precisely the same scaling equations were obtained in Ref. 9

in the context of a quench of a one-dimensional system in the

presence of a commensurate potential. (See also Sec. II B.)

Let us briefly point to the key properties of the above scaling

equations. The first-order flow of the coupling g described

by Eq. (71) is very similar to the equilibrium situation but

with a negative contribution of the noise through F̄ to the

anomalous scaling dimension. It is important to note that at this

order in the RG the noise, although weakening the correlation

functions, is not acting as a temperature, since it preserves the

power-law behavior of the correlations. One might thus expect

some change in the dynamics of the particles from delocalized

to localized when the noise is tuned to change g from being

irrelevant to relevant. At this level, the physics is identical to

that described by the simple scaling argument in Ref. 7.

As in the case of the Josephson junction, new physics is

introduced by effects that are second order in the coupling

g. Equation (72), for example, leads to the emergence of a

finite dissipation ηeff ∼ Iηg
2/�3

0 in the steady state although

the bare dissipation [η(0)] was infinitesimal. The analytic

expression given in Eq. (A13) shows that the coefficient

Iη vanishes identically at equilibrium F̄ = 0, but also that

in presence of the noise, the effective dissipation diverges

for K̃ ≡ K(1 + F̄ ) < 2 that is exactly where g becomes

relevant. We can interpret this result as the emergence of

sub-Ohmic dissipation that is not captured by the perturbative

RG scheme. In what follows, we restrict ourselves to the

regime K̃ > 2, where ηeff can be made as small as we want by

taking a sufficiently weak lattice. The renormalization of the

dissipation generates also an effective renormalization of the

noise (73), introduced to conserve constant the Keldysh part

of the action.

The emergence of dissipation is accompanied by the gen-

eration of an effective temperature described by Eq. (74). We

can estimate this temperature from the effective fluctuation-

dissipation relation between the Keldysh and retarded parts of

the action:

Teff ≈ IT g2/(ηeff�
2) = �0IT /Iη ∼ �0(K̃ − 2). (77)

This is a rather surprising result as it implies that the

temperature generated in the steady state may be large

even for arbitrarily small nonlinear coupling g and noise

F̄ . Furthermore, if we track the generated temperature as

a function of the flow parameter, we see that the effective

temperature reaches its large value immediately at the begin-

ning of the flow. That is, after one infinitesimal RG iteration,

we have T (l = 0+) = Teff . From this point of view, it looks

like the nonequilibrium critical state that exists in the purely

quadratic model g = 0, is an extremely singular limit. We

shall discuss below the implications of this result and argue

that the critical state of the quadratic model does nevertheless,

in practice, govern the physics of the system with a weak

nonlinearity.

Note that in the case of the Josephson junction discussed

earlier, the effective temperature was parametrically small

in both the noise strength and the nonlinear coupling. The

difference between the two cases stems from the different

nature of the dissipation. While the effective dissipation in the

one-dimensional system is small, of order g2, in the Josephson

junction model, the bare dissipation is of order 1.

The scaling equations (75) and (76) for the dimensionless

couplings K and u are controlled by the integrals IK and

Iu, defined in Eqs. (A14) and (A15). Though we do not

have analytical expressions for these coefficients, numerical

evaluation of the integrals shows that both are finite for any

K̃ > 2. Moreover, the factors IK and Iu do not vanish in

the equilibrium case F̄ = 0. This is expected given that K

should also have a nontrivial flow near the Kosterlitz-Thouless

transition of the Sine-Gordon model at equilibrium (see, for

example, Ref. 19).

B. Nonequilibrium phase diagram

Analysis of the RG equations (71)–(76) suggests that there

are at least two distinct dynamical regimes, as shown in

Fig. 7. First, for K̃ = K(1 + F̄ ) < 2, the dissipation η diverges

through the divergence of the coefficient Iη. This probably

indicates generation of local sub-Ohmic dissipation, which

is beyond the present RG scheme. For K̃ > 2, an effective

temperature Teff ∼ (K̃ − 2)�0 is generated immediately at the

outset of the flow. We will now consider each regime separately

and then move to the crossover region between them.

1. Critical thermal regime

To understand the nature of the thermal regime, recall that

the source of thermalization in the system is the mode-coupling

term g, which scatters the nonequilibrium population of high-

frequency modes toward lower frequencies. The rate by which

this scattering occurs is the generated dissipation rate ηeff ≈
Iηg

2/�. This rate sets the time scale for the system to achieve

the steady state if the nonlinearity were turned on at some point

in time. But, once the system reaches steady state, its effective

temperature Teff depends only on the energy density in the

initial critical steady state and not on g. Thus the singularity

of the state at g = 0 is resolved by the time span over which

the experiment takes place. In order to see the true steady state

with temperature T ∼ (K̃ − 2)�0, we would need to conduct

an experiment over a time that diverges as τ ∼ 1/g2 as g → 0.

As a consequence, if we restrict to time scales shorter than

1/ηeff , the system is governed by the quadratic part of the action

(9) with negligible T . This is a quasisteady state, with scale

invariant correlations and response given by Eqs. (12) and (13).

2. Local dissipation

As the effective Luttinger parameter decreases and ap-

proaches K̃ = 2, the renormalization of the dissipation di-

verges and the dissipation constant inevitably becomes the

first to reach the cutoff. The scale at which this happens is

the generated effective dissipation. Clearly, at that scale, the

dissipation is the largest scale in the system and we can neglect

the original kinetic term K−1ω2 compared to it. Therefore the

effective action we should work with, below the dissipations

scale �η = ηeff is

S�η
(q,ω)

=
(

0 − u2

Kπ
q2 + i�ηω

− u2

Kπ
q2 − i�ηω −2iη0|ω| + F

q2

|ω| + T (�η)

)

+Sg.

(78)
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This describes the thermal regime of a critical theory with

dynamical critical exponent z = 2. It is interesting to note that

in this theory, the noise becomes a relevant perturbation with

scaling dimension DF = 1, exactly like the temperature.

3. Crossover regime

We have identified above two dynamical regimes. For

K < 2, the renormalization of the dissipation diverges, which

leads to a thermal state with short-range spatial correlations

already at initial stages of the flow, that is, even at frequency

scales. On the other hand, for K ≫ 2, there is a wide range of

frequency scales in which the dissipation is still small. If the

finite time of the experiment does not allow for equilibration

to the high effective temperature of the steady state, then the

physics will be governed by the nonequilibrium critical state

of the Luttinger liquid.

Of course at sufficiently small frequencies, the generated

dissipation being a relevant perturbation will eventually

dominate. So, the transition between the two regimes is not

perfectly sharp but rather a smooth crossover. Nevertheless,

we can chart the line of the crossover in the space of K̃

versus the nonlinearity g by invoking similar arguments we

used above for the Josephson junction. Namely, we should

find the regime in K̃-g space, where a critical flow of g

down by an order of magnitude can be observed before the

dissipation reaches the cutoff scale where g changes by an

order of magnitude.

The typical scale at which g is reduced by 1/e in absence

of dissipation is found by solving the scaling equation

for g, assuming no renormalization of the dissipation zero

temperature and. The solution

g(l) = g0e
(2−K̃)l (79)

gives the frequency scale �g = �e(2−K̃)−1

. Now to determine

the typical scale where dissipation enters significantly, we

solve the scaling equation for η, see Eq. (74), while substituting

the above solution for g. This gives

η(l) = Iη

g2

�3
[1 − e2(2−K̃)l − 1]el, (80)

�η = g2
0

2�3

Iη

K̃ − 2
. (81)

Here, we assumed Iη to be constant, neglecting the renormal-

ization of the Luttinger parameter and of the sound velocity.

Recalling that Iη ∝ (K̃ − 2)−1, we find that as we move away

from the transition point K̃ = 2, the effective dissipation �η

decays like (K̃ − 2)−2.

Comparing �η and �g , we obtain an analytic expression

for the crossover line between the dissipative regime and the

critical regime:

g2

�4
= 2K̃ − 4

Iη

e(2−K̃)−1

. (82)

For smaller values of g, the dissipation scale is smaller than

the scale for g in the critical state and it is possible to observe

the critical regime. At K̃ → 2, the transition line goes to zero:

any infinitesimal amount of nonlinearity is enough to generate

an extremely strong dissipation. At large K̃ , the effective

dissipation is small, but, as will see below, the effective

temperature becomes large.

VI. SUMMARY AND DISCUSSION

In this paper, we investigated the physics of low-

dimensional systems driven out of equilibrium by external

noise sources. We considered two specific models that in

equilibrium undergo interesting phase transitions: (1) a resis-

tively shunted Josephson junction and (2) a one-dimensional

quantum liquid in a commensurate lattice potential. The basic

question underlying our study is whether nonequilibrium

systems can exhibit universal physics. We have recently

shown7 that such systems, in the absence of nonlinear coupling

between the modes, establish a critical steady state when driven

by 1/f noise. Here, we used this scale invariant steady state as

a starting point for a controlled renormalization group analysis

to treat the effect of the nonlinear couplings and thereby

identify universal aspects of the nonequilibrium behavior. The

perturbative RG scheme is formulated within the Keldysh path

integral framework.

The scaling equation at the first order in the coupling

constant indicates a transition between different regimes where

the scaling dimension of a relevant operator controlling the

physics of the system (Josephson coupling for the noisy

Josephson junction, periodic potential of the lattice for the

1D quantum liquid) changes sign. This occurs as a direct

extension of the quantum phase transitions that would exist in

the corresponding system in equilibrium. Here, however, the

scaling dimension can be tuned by varying the external noise

strength and not only intrinsic parameters (i.e., shunt resistance

or Luttinger parameter). At this level, the RG analysis is

consistent with the scaling argument we gave in Ref. 7. It

is important to note that at this order, although the noise is

weakening the various correlation functions of the system,

it is acting in a very different way than a temperature, and,

in particular, preserves the power-law decay of the various

correlations in the system.

The back action of the nonlinear coupling on the steady-

state correlations is only given by the RG equations at

the second order in the coupling. We find that generically

this leads to the emergence of an effective temperature and

effective dissipation in the steady state. In the case of the

Josephson junction, both effects are perturbatively small,

allowing the observation of a universal crossover between

insulating and superconducting regimes, controlled by the

above nonequilibrium quantum critical state. Using the RG

approach, we obtain analytic expressions for the shape of the

crossover, summarized graphically in Fig. 2. The RG approach

allows us to compute the physical properties of each regime,

such as the I-V characteristic of the junction shown in Figs. 5

and 6. In general, the I-V curves show an algebraic behavior,

determined by the underlying critical state, followed by a

thermal Ohmic behavior at voltages lower than the effective

temperature.

In the one-dimensional case, we considered two types of

perturbations around the critical state. The first type, a local

impurity, can be mapped into the noisy shunted Josephson

junction described above: the one-dimensional system plays

the role of the resistor and the impurity plays the role of
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FIG. 5. (Color online) I-V characteristic of the Josephson junction

in the insulating regime of the phase diagram Fig. 2, calculated from

the RG flow using Eq. (61). The bare parameters of the junction are

the same as the one chosen for Fig. 3(c): g/� = 0.3, R/RQ = 0.7,

and F̄ = 2.0. If the junction was a perfect insulator, all the current

would flow through the resistor and the curve would be the dotted

line V = RI . In reality, the junction carries a nonvanishing current Is

leading to a power-law deviation from the linear curve. Inset: double

logarithmic plot of the supercurrent Is . The dotted line corresponds

to an ideal power law with exponent R(lT )/RQ[1 + F̄ (lT )]. The

actual Is follows the power law down to the effective temperature

Teff = �e−lT .

the Josephson coupling. The second type of perturbation,

a commensurate lattice, leads to new physics. Despite the

different initial setup, the RG flow is equivalent to the

one-dimensional quench considered in Ref. 8. The resulting

nonequilibrium phase diagram shows two distinct regimes: a

thermal and a dissipative regime. In the thermal regime, the

lattice is irrelevant at first order. However at second order

in g, the coupling of modes at all scales induced by the

lattice acts to generate fluctuations and effective dissipation,

both proportional to g2. This implies a fluctuation dissipation

relation with an effective temperature of the order of the

cutoff, from which the coupling g drops out. This seemingly

paradoxical result is coming from an inversion of two limits,

namely, the fact that the coupling to the noise can be

small and the fact that one observes the steady state of the

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

I/Λ

V
/Λ

0 0.05
0
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I/Λ

V
/Λ

FIG. 6. (Color online) I-V characteristic of a noisy Josephson

junction in the superconducting regime for gdual/�0 = 0.3, RQ/R =
0.7, F = 2.0. In the regime Teff ≪ I/2e ≪ �g,dual, we see the

algebraic behavior, predicted by the perturbation theory in the strong

coupling limit, Eq. (62). In the regime I/2e ≪ Teff , highlighted in

the inset, the junction follows Ohm’s law with an effective resistance

δR = δGdual, perturbatively smaller than the bare resistance R

(dashed line).

system at infinitely long time, allowing a large amount of

energy to be pumped into the system under the form of a

temperature. However, as the effective dissipation is small, the

thermalization rate of the system is vary small, thus allowing

to observe transient nonequilibrium phenomena for relatively

long times. The complete study of the dynamics of the system,

in particular at transient times, goes beyond the scope of this

paper and of the perturbative RG analysis, and deserves further

study.
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APPENDIX A: EXPLICIT CALCULATION

OF THE RG FLOW COEFFICIENTS

In this appendix, we show how to define a proper cutoff and

use it to compute the dimensionless prefactors appearing in the

scaling equations (48)–(50) and (72)–(76). Specifically, we

need to obtain explicit expressions for the correlation K(x,t)

and response R(x,t) of the exponential operator eiφ and then

use these expressions in order to compute the integrals in

Eqs. (43)–(45), (68), and (70).

1. Noisy Josephson junction

The simplest choice for the cutoff would be a step function

in frequency, Ŵ(ω/�) = 1 − �(w/�). However, as we noted

earlier, this choice is not valid because it violates the causality

of the retarded Green’s function GR,�(ω) = GR,�0
(ω)Ŵ�(ω).

Instead, we choose the following cutoff function:

Ŵ

(

ω

�

)

= 1

π

∫

dν
−iω

(ν − ω − i0+)(ν + ω + i0+)
e−|ν|/�

= e−|ω|/� + 2i

π

[

−CoshIntegral

(

ω

�

)

Sinh

(

ω

�

)

+ SinhIntegral

(

ω

�

)

Cosh

(

ω

�

)]

. (A1)

Equation (A1) explicitly preserves causality and, as shown in

Fig. 8, satisfies the defining conditions of a cutoff Ŵ�(0) = 1

and Ŵ(∞) = 0.

This specific choice allows us to obtain simple expres-

sions for the Green’s functions, GK,�(t) = 〈φ(t)φ(0)〉 and

GR,�(t) = 〈φ̂(0)φ(t)〉. For convenience, we first compute the

derivatives of these functions with respect to �. Assuming

zero temperature (T = 0), we obtain

∂GK,�(t)

∂�
= i

R

RQ

(1+F̄ )
∂

∂�

∫

dωeiωt 1

ω

[

Ŵ

(

ω

�

)

+Ŵ

(

− ω

�

)]

= i
R

RQ

(1 + F̄ )
1

�2

∫ ∞

−∞
dνe−|ν|/�(eiνt + e−iνt )

= 2i
R

RQ

(1 + F̄ )
−2/�

1 + �2t2
, (A2)

∂GR,�(t)

∂�
= R

RQ

∂

∂�

∫

dωeiωtŴ

(

ω

�

)

1

iωt

= R

RQ

1

�2

∫ ∞

−∞
(udq)e−u|q|/�(eiqt − e−iqt )

= 2
R

RQ

�(t)(1 + F̄ )
−2t

1 + �2t2
. (A3)

Here, �(t) is the Heaviside step function. We can now integrate

with respect to � and obtain

GK,�(t) = GK,�(0) + 2i
R

RQ

(1 + F̄ ) ln(1 + �2t2), (A4)

GR,�(t) = 2�(t)
R

RQ

arctan

(

t

�

)

. (A5)

The correlation and response functions of the exponential

operator eiθ are, in turn, simple functions of the Green’s

functions GK,� and GR,L:

K(t) = 〈eiθ(t)+iθ̂ (t)[e−iθ(0)−iθ̂ (0) + eiθ(0)−iθ̂ (0)]〉
= e− 1

2
〈[θ(t)+θ̂ (t)−θ(0)−θ̂ (0)]2〉 + e− 1

2
〈[θ(t)+θ̂ (t)−θ(0)−θ̂ (0)]2〉

= 2 cos[GR,�(t ′)]ei[GK,�(t)−GK,�(0)], (A6)

R(t) = 〈eiθ(t)+iθ̂ (t)[e−iθ(0)−iθ̂ (0) − eiθ(0)−iθ̂ (0)]〉
= 2 sin[GR,�(t ′)]ei[GK,�(t)−GK,�(0)]. (A7)

Here, we used GK = i〈θθ〉, GR = i〈θ̂ θ〉, and 〈θ̂ θ̂〉 = 0.

We now use these expressions together with the first-order

result (38) to derive the I0 and I1, defined in Eqs. (43) and

(45),

I0 =
[

2
R

RQ

(1 + F̄ ) − 1

] ∫ ∞

−∞
dt cos

[

2
R

RQ

artg(�t)

](

1

1 + �2t2

)
R

RQ
(1+F̄ )

=
[

2
R

RQ

(1 + F̄ ) − 1

] ∫ π/2

−π/2

dy cos

(

2
R

RQ

y

)

(cos y)
2 R

RQ
(1+F̄ )−2 = 4π

22R/RQ(1+F̄ )

1

B
[

R
RQ

F̄ , R
RQ

(2 + F̄ )
] , (A8)

I1 =
[

2
R

RQ

(1 + F̄ ) − 2

] ∫ ∞

−∞
dtt sin

[

2
R

RQ

artg

(

�t

)](

1

1 + �2t2

)
R

RQ
(1+F̄ )

= 2

[

2
R

RQ

(1 + F̄ ) − 2

] ∫ π/2

0

dy sin

(

2
R

RQ

y

)

(cos y)
2 R

RQ
(1+F̄ )−2

tan(y)
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= 4
R

RQ

∫ π/2

0

dy cos

(

2
R

RQ

y

)

(cos y)
2 R

RQ
(1+F̄ )−2

= 4πR/RQ

22R/RQ(1+F̄ )
[

2 R
RQ

(1 + F̄ ) − 1
]

B
[

R
RQ

F̄ , R
RQ

(2 + F̄ )
] . (A9)

Here, B(x,y) = Ŵ(x + y)/Ŵ(x)Ŵ(y) is the Bigamma func-

tion. This function diverges if x = 0 and y 	= 0, implying that

both I0 and I1 vanish at equilibrium (F̄ = 0). In addition, we

note that Eq. (A9) is valid only for 2 R
RQ

(1 + F̄ ) > 1, while for

2 R
RQ

(1 + F̄ ) < 1 the integral diverges.

2. One-dimensional system

We now move to the one-dimensional system. Here,

the natural choice of the cutoff is Ŵ(q,ω) = e−u|q|/�. The

correlation and response function of φ are then given by

GK (x,t) − GK (0,0) = i
1

2
〈[(φ(x,t) − φ(0,0)]2〉

= i
K

4

∫

(udq)dω(1−eiqδx−iωδt )e−u|q|/�

×
(

1 + F

π2η

q2

ω2

)

δ(ω2 − u2q2)

= i
K

4
(1 + F̄ ){ln[|1 + �(x/u − t)|]

+ ln[|1 + �(x/u + t)|]}, (A10)

GR(x,t) = i〈φ̂(x,t)φ(0,0)〉
= lim

η→0

∫

(udq)dωeiqx−iωte−u|q|/� 1

ω2 − u2q2 − iηω

= K

2
�(t) {artg[�(x/u + t)] + artg[�(x/u − t)]} .

(A11)

Here, we have neglected the effects of both the dissipation and

the temperature (η = T = 0+) and F̄ is defined in Eq. (11).

Substituting these expressions in Eqs. (67)–(70), we find

IT = (2K̃ − 2)

∫ ∞

−∞
dx

∫ ∞

−∞
dt cos[Kartan(x + t)

−Kartan(x−t)]

[

1

1+(x + t)2

]K̃/2[
1

1 + (x−t)2

]K̃/2

= 4(K̃ − 1)

∫ ∞

0

du cos [Kartan(u)]

(

1

1 + u2

)K̃/2

×
∫ ∞

0

dv cos [(Kartan(v)]

(

1

1 + v2

)K̃/2

= (K̃ − 1)

[

4π

2K̃

1

(K̃ − 1)B
(

K̃+K
2

, K̃−K
2

)

]2

, (A12)

Iη = (2K̃ − 3)

∫ ∞

−∞
dx

∫ ∞

0

dt t sin[Kartan(x + t)

−Kartan(x − t)]

[

1

1 + (x+t)2

]K̃/2[
1

1 + (x − t)2

]K̃/2

= 4

(

K̃ − 3

2

)∫ ∞

0

du cos[Kartan(u)]

(

1

1 + u2

)K̃/2

×
∫ ∞

0

dv v sin[Kartan(v)]

(

1

1 + v2

)K̃/2

= 4

(

K̃ − 3

2

)

cos[Kartan(u)]

(

1

1 + u2

)K̃/2∫ ∞

0

K

K̃/2−1

×
∫ ∞

0

dv cos[Kartan(v)]

(

1

1 + v2

)K̃/2

=
(

K̃ − 3
2

)

2(K̃ − 1)(K̃ − 2)
IT , (A13)

IK = (2K̃ − 4)

∫ ∞

−∞
dx

∫ ∞

0

dt{x2 + t2 sin[K arctan(x + t)

−K arctan(x − t)]}
[

1

1 + (x + t)2

1

1 + (x − t)2

]
K̃
2

,

(A14)

Iu = (2K̃ − 4)

∫ ∞

−∞
dx

∫ ∞

0

dt{x2 − t2 sin[K arctan(x + t)

−K arctan(x−t)]}
[

1

1 + (x+t)2

]K̃/2[
1

1 + (x−t)2

]K̃/2

.

(A15)

In the absence of the noise (F/η = 0 ⇒ K̃ = K), both

IT and Iη go to zero. As expected at equilibrium, the

nonlinear coupling does not lead to a renormalization of the

temperature or of the dissipation. Also note that, for any

finite noise strength, Iη diverges at K̃ = 2, while IT remains

finite at this point. This observation will have dramatical

consequences on the properties of the expected nonequilibrium

phase transition,7 located precisely at K̃ = 2.

For the integrals IK and Iu, we were not able to find an

analytic solution. However, we have numerically computed

them and found that, in agreement with the known equilibrium

results,19 both integrals do not vanish even in the absence of

the noise. In addition, we found that both IK and Iu are finite

for any K̃ > 2. For details about their behavior around the

K̃ = 2 point, the reader is referred to Ref. 9.

APPENDIX B: DUALITY TRANSFORMATION

In this Appendix, we review how the duality

transformation33,34,38 works within the real-time Keldysh

framework. Our starting point is the nonequilibrium Keldysh

action (2), which we split into a unitary part and a dissipative

or nonlocal part S = Su + Sdis. The unitary part of the action
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includes the capacitor C and the Josephson coupling g, while

the nonlocal terms include the resistor and the external noise.

In the strong coupling limit (g ≫ �), the unitary action is

large justifying the use of a saddle point approximation for the

phase dynamics of the field θ . This leads to two independent

equations of motion for the fields φ±(t) on the forward and

backward branches of the Keldysh contour:

δSRe

δφ±
= (RC)∂2

t φ±(t) − g sin[φ±(t)] = 0. (B1)

Equation (B1) has instanton solutions φ(t) = 2πǫsf (t − t0),

where ǫs = ±1 and f (t) is a step function broadened by a

short time scale τ = √
C/g. The instanton solution describes

a jump of the phase (phase slip) by ±2π between minima of

the cosine potential. A more general saddle point solution can

include any number n+ of instantons in the forward and n−
instantons in the backward branches of the Keldysh contour.

Furthermore, in the strong coupling limit phase, slips are rare,

in the sense that the average time between them is much larger

than the instanton time τ . In this case, we can take a general

saddle point solution to be a sum of independent instantons

and at the same time regard each instanton as a step function,

φ±(t) =
n±
∑

i=1

ǫ±,i�(t − t±,i). (B2)

Here, t±,i is the time of the instanton. Plugging these solutions

into the Keldysh action, the path integral is converted to a sum

over all possible instanton configurations on the two branches:

∫

Dφ+Dφ−eiS[φ+,φ−] =
∑

α=±

∑

cα

1

nα!
exp(iαnαSins

+ iSdis[c+,c−]). (B3)

Here, c± = {n±,ǫ±,i,t±,i} denotes an instanton configuration

on the forward/backward branch and Sins is the action of a

single instanton.

The nonlocal part of the action Sdis[c+,c−] can be written

explicitly in terms of the instanton coordinates ti,α and ǫi,α = ±
by plugging the instanton solutions into the the quadratic form

of the original action action,

Sdis =
∑

α,β=±

∫

dt

∫

dt ′φα(t)
(

G−1
dis

)

αβ
(t − t ′)φβ(t ′)

=
∑

α,β

n±
∑

i,j=1

ǫα,iǫβ,j

∫ tα,i

−∞
dt1

∫ tβ,j

−∞
dt2

(

G−1
Im

)

αβ
(t1 − t2).

(B4)

This part of the action contributes a pairwise interaction

between instantons at different times.

We now introduce the dual field θα(t) through the identity

eiSdis[ǫi ,ti ] =
∫

Dθ exp

[

i
∑

α,β

αβ

∫

dωω2θα(−ω)Gdis(ω)αβθβ(ω)

+
∑

α

nα
∑

i=1

αǫα,iθα(ti)

]

. (B5)

Substituting this back into Eq. (B3), we can perform the

summation over nα as follows:

∑

nα

1

nα!
exp

[

inαSsol + i

nα
∑

i=1

ǫα,iθα(ti)

]

=
∑

n

1

(n)!

[

∑

ǫ,t

eiSsol+iǫθα(t)

]n

= exp

{

∑

t

eiSsol cos[θα(t)]

}

≡ exp

(

igdual

∫

dt {cos[θα(t)]}
)

. (B6)

Here, we used the time scale RC to transform the sum

over times into an integral. The phase slip fugacity gdual =
(1/RC)eiSsol can be estimated using the WKB approximation34

to be gdual ≈ (1/RC)e−√
gRC .

Finally, putting Eq. (B6) together with Eq. (B5), we obtain

the dual action

S =
∑

α,β

∫

dωθα(−ω)
(

G−1
dual

)αβ
θβ(ω)

+ gdual

∫

dt cos(θ+) − cos(θ−). (B7)

Here we defined G−1
dual(ω)αβ = αβω2Gdis(ω)α,β .

To compare the dual model (B7) with the original one (2), it

is useful to express G−1
dual in terms of its classical and quantum

components:
(

0 G
−1,R
dual

G
−1,A
dual G

−1,K
dual

)

= ω2

(

0 GA
Im

GR
Im −GK

Im

)

. (B8)

Using Eq. (2), we obtain

G−1
dual =

(

0 i R
RQ

ω

−i R
RQ

ω −2i R2

R2
Q

[RQ

R
ωcotgh(ω/2T) + Fω2−α

]

)

.

(B9)

By inspection we see that the dual action is identical to the

original one, up to the duality transformation R/RQ → RQ/R,

F → (R/RQ)2F , T → T , and g → gdual. In this sense, the

shunted Josephson junction is self dual even in the presence

of the external noise.

In the above derivation, we implicitly assumed that the

junction is disconnected from external sources apart from

the noise source. However, to derive the current-voltage

characteristics, we need to embed the junction in a circuit with

applied current or voltage bias and to generalize the duality

transformation to this case. The question is how the circuit

structure transforms under the duality transformation.

Consider the circuit shown in Fig. 4(a) in which the

noise-driven shunted Josephson junction is biased by a DC

current. The current can be enforced by adding the term

SI = I
∫

dtφ(t) to the Keldysh action (2), which transforms

the periodic cosine potential into a wash-board potential. If

the current is small compared to g, we can still substitute the

soliton solutions obtained above into the action. Doing this

for the new term SI we obtain SI = 2πI
∑

α=±
∑

i αǫiαtiα .

Introducing the dual field θ as before and summing over n, we
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get

S =
∑

α,β

∫

dω ω2θα(−ω)
(

G−1
dual

)

α,β
θβ(ω)

+ g

∫

dt cos[θ+(t) + 2πI t] − cos[θ−(t) + 2πI t]

(B10)

[here, we work in the units for which h̄ = 1 and RQ =
h/(2e)2 = 2π ]. Equation (B10) shows that a current I acts

in the dual circuit as a voltage bias Vdual = RQI , applied only

to the Josephson junction (and not to the resistor). In this sense,

the dual model corresponds to a circuit in which the Josephson

junction is connected in series to the resistor [see Fig. 4(c)].

We will now show that the duality transformation maps the

voltage across the original circuit into the current of the dual

circuit. The voltage can be obtained formally by taking the

derivative of the Keldysh path integral with respect to separate

current sources I+ and I− acting in the forward and backward

directions and setting I+ = I− = I in the end:

〈V (t)〉 = ∂t 〈θ (t)〉 = ∂t

∫

dθ

[

d

dI+(t)
− d

dI−(t)

]

eiS[I+,I−]

∣

∣

∣

∣

I±=I

≡ 2πgdual∂t

∫

tdθ [sin(θ++2πI t)

+ sin(θ− + 2πI t)]teiSdual . (B11)

As the junction is in a steady state, 〈V (t)〉 is independent on

t and we can take, for example, t = 0:

〈V 〉 = 2πgdual

∫

dθ [sin(θ+) + sin(θ−)] eiSdual ≡ 2π〈I s
dual〉.
(B12)

We see from the last expression that 〈V (t)〉 = RQI s
dual

by definition of the supercurrent trough the dual

junction.

Equations (B10) and (B12) can be used to evaluate the

I-V characterstic of the original circuit in the strong coupling

regime. (The calculation follows the same steps used to

compute the current across the junction in the weak coupling

regime.) In the strong coupling regime, g ≫ � ⇒ gdual ≪ �

and we can apply first-order perturbation theory in gdual to

find

〈V 〉 = ig2
dual

∫ 0

−∞
dt ′〈{cos[θ+(t ′) + 2πI t ′]

−cos[θ−(t ′) + 2πI t ′]}{sin(θ+(0)) + sin[θ−(0)]}〉0.

(B13)

Here, 〈. . .〉0 is the average with respect to the quadratic part

of the Keldysh action (B7). Finally, we exploit causality

to extend the integral from t ′ = 0 to t ′ = ∞ and rewrite

Eq. (B13) as

〈V 〉 = g2
dualIm

{ ∫ ∞

−∞
dt ′ei2πI t 〈[eiθ+(t ′) − eiθ−(t ′)]

× [eiθ+(0) + eiθ−(0)]〉0

}

≡ g2
dualIm[R(ω = 2πI )]. (B14)

Here, R(ω) is the Fourier transform of the response function

of the operator eiθ .
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