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ABSTRACT 15 

 16 

Evolutionary adaptation to a constant environment is driven by the accumulation of mutations 17 

which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic 18 

consequences of adaptation can influence the emergence of specialists or generalists, and are 19 

critical for evolution in temporally or spatially fluctuating environments. While many 20 

experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few 21 

have observed the dynamics by which these effects emerge and evolve. Here, we propagated 22 

hundreds of diploid and haploid laboratory budding yeast populations in each of three 23 

environments, and then assayed their fitness in multiple environments over 1000 generations of 24 

evolution. We find that replicate populations evolved in the same condition share common 25 

patterns of pleiotropic effects across other environments, which emerge within the first several 26 

hundred generations of evolution. However, we also find dynamic and environment-specific 27 

variability within these trends: variability in pleiotropic effects tends to increase over time, with 28 

the extent of variability depending on the evolution environment. These results suggest shifting 29 

and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, 30 

which could influence evolutionary trajectories in complex environments that fluctuate across 31 

space and time.   32 
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3 

INTRODUCTION 33 

 34 

As a population adapts to a given environment, it accumulates mutations that are beneficial in 35 

that environment, along with neutral and mildly deleterious ‘hitchhiker’ mutations. Because 36 

these mutations can also affect fitness in other environments, adaptation will tend to lead to 37 

pleiotropic fitness changes in other conditions. These pleiotropic consequences of adaptation 38 

need not be negative: evolution in one condition can lead to correlated fitness increases in similar 39 

environments as well as fitness declines in more dissimilar conditions. It is also natural to expect 40 

these consequences to vary over shorter or longer evolutionary timescales. For example, after a 41 

sufficiently long time adapting to a single condition, we might expect a population to 42 

increasingly specialize to that condition at the expense of its fitness elsewhere.  43 

 44 

Numerous laboratory evolution experiments (Jerison et al. 2020; Ostrowski, Rozen, and Lenski 45 

2005; Leiby and Marx 2014; Kinsler, Geiler-Samerotte, and Petrov 2020; Jasmin, Dillon, and 46 

Zeyl 2012; Novak et al. 2006; Meyer et al. 2010; V. S. Cooper and Lenski 2000; Bailey and 47 

Kassen 2012; Schick, Bailey, and Kassen 2015; Anderson et al. 2011; Li, Petrov, and Sherlock 48 

2019; Dillon et al. 2016) as well as empirical studies of natural variation in diverse model 49 

systems (Geiler-Samerotte et al. 2020; Wang et al. 2015; M. C. Hall, Basten, and Willis 2006; 50 

Mackay and Huang 2018) have analyzed the pleiotropic consequences of adaptation. These 51 

studies have found examples of specialization, as well as cases of correlated adaptation and the 52 

evolution of more generalist phenotypes (Meyer et al. 2016; A. R. Hall, Scanlan, and Buckling 53 

2011; Duffy, Turner, and Burch 2006; Duffy, Burch, and Turner 2007; Jerison et al. 2020; Li, 54 

Petrov, and Sherlock 2019; Leiby and Marx 2014). Pleiotropic fitness tradeoffs, such as those 55 

underlying specialization, can arise from either antagonistic pleiotropy (i.e., direct tradeoffs 56 

between the fitness effects of individual mutations across conditions), mutation accumulation 57 

(i.e., accumulation of mutations that are neutral in the evolution environment but impose fitness 58 

costs in other conditions), or some combination of these phenomena. More complex patterns of 59 

correlated fitness changes across conditions, such as those that underlie more generalist 60 

phenotypes, can result from more general relationships between fitness effects in different 61 

environments. Recent experimental and theoretical work has also analyzed how these 62 

distributions of mutational effects across environments can lead to an interplay between chance 63 

and contingency in determining both the typical pleiotropic consequences of adaptation and the 64 

predictability of these effects (Jerison et al. 2020; Ardell and Kryazhimskiy 2020). 65 

 66 

The way in which these pleiotropic consequences of adaptation change as populations evolve is 67 

less well understood. That is, as a population adapts to a given environment, how steadily and 68 

consistently does its fitness change in alternate environments? Do these pleiotropic effects 69 

change systematically with time? For example, do fitness tradeoffs tend to become stronger the 70 

longer a population adapts to its home environment? And do the pleiotropic consequences of 71 

adaptation between replicate lines become more or less similar over time? These questions are 72 

critical both for understanding the nature of pleiotropic tradeoffs and for predicting the dynamics 73 

and outcomes of evolution in environments that fluctuate across time or space. 74 

 75 
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Previous studies have shed some light on these questions. For example, Meyer et al. (2010) 76 

reported on changes in phage susceptibility over 45,000 generations of Escherichia coli 77 

evolution, finding variable yet somewhat consistent trends across 6 evolved lines. Studying lines 78 

from the same evolution experiment, Leiby and Marx (2014) found a patchwork of pleiotropic 79 

patterns across 12 populations assayed for growth rate in 29 environments at two timepoints. 80 

While fitness changed predictably across replicates in some environments, changes were much 81 

more variable in others, with mutation rate modifying these patterns. However, these and other 82 

studies of the evolutionary dynamics of pleiotropy have been limited to a small number of 83 

timepoints, replicate populations, or evolution and assay environments (V. S. Cooper and Lenski 84 

2000; Novak et al. 2006; Bailey and Kassen 2012). These limitations constrain the degree to 85 

which we can make useful inferences about how chance and contingency influence the 86 

pleiotropic consequences of adaptation, and how these consequences change over time.  87 

 88 

To overcome these limitations, we experimentally evolved hundreds of uniquely barcoded 89 

haploid and diploid yeast populations in three environments for 1000 generations. Using 90 

sequencing-based bulk fitness assays, we assayed the fitness of each evolving population in five 91 

environments at 200-generation intervals spanning the 1000 generations of evolution. We then 92 

used the resulting data to quantify how the pleiotropic consequences of adaptation unfold in 93 

different evolution environments, along with the extent of variation among replicate populations. 94 

Our results allow us to investigate differential roles for chance and contingency over 95 

evolutionary time, with implications for the outcomes of adaptation in more complex fluctuating 96 

environments. 97 

 98 

RESULTS 99 

 100 

To study the dynamics of the pleiotropic consequences of adaptation, we experimentally evolved 101 

152 diploid yeast populations for about 1000 generations in one of three different environments 102 

(48 populations in YPD at 30°C, 54 populations in YPD + 0.2% acetic acid at 30°C, and 50 103 

populations in YPD at 37°C). We chose these environments to facilitate comparisons with 104 

previous experimental evolution studies in yeast, which have used YPD at 30°C as a rich 105 

environment and acetic acid and high temperature to apply distinct types of stress (Nguyen Ba et 106 

al. 2019; Jerison et al. 2020). In addition, we evolved 20 haploid (MATα) yeast populations in 107 

YPD at 37°C; these are a subset of populations that did not autodiploidize from a larger haploid 108 

evolution experiment (see Methods for details).  109 

 110 

Each haploid population was founded by a single clone of a putatively isogenic laboratory strain, 111 

labeled with a unique DNA barcode at a neutral locus prior to the evolution experiment (Fig. 112 

1A). Diploid populations were founded by mating uniquely barcoded haploids and selecting for 113 

diploids. We then propagated each population for 1000 generations in batch culture, with a 1:210 114 

dilution every 24 hours; this corresponds to an effective population size of ~2 x 105 (Fig. 1A; see 115 

Methods for details). We froze an aliquot from each population at 50-generation intervals at  116 

-80°C in 8% glycerol for long-term storage.  117 

 118 
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After completing the evolution, we revived populations from generation 0, 200, 400, 600, 800, 119 

and 1000. We then conducted parallel bulk fitness assays (2 technical replicates) to measure the 120 

fitness of each population at each timepoint across five environments (the three evolution 121 

environments plus YPD + 0.4M NaCl at 30°C (transfers every 24 hours) and YPD at 21°C 122 

(transfers every 48 hours), environments which exposed the populations to unique osmotic and 123 

temperature stresses). In each bulk fitness assay, we pooled all populations from a given 124 

generation along with a small number of common reference clones and propagated them for 50 125 

generations (Fig 1B). We then sequenced the barcode locus at generation 10, 30, and 50, and we 126 

inferred the fitness of each population from the change in log frequency of each corresponding 127 

barcode. By exploiting the fact that each population is uniquely barcoded, these bulk fitness 128 

assays allowed us to estimate the fitness of all 172 populations at each of the five 200-generation 129 

intervals in each of the five environments with minimal cost and effort (see Methods for details).  130 

  131 

Based on the measured fitness of the generation 0 ancestral populations, we found that some 132 

diploid populations had substantially higher ancestral fitness in certain assay environments, 133 

likely because they acquired mutations prior to the start of the evolution. To clarify our 134 

downstream analyses, we excluded 19 outlier diploid populations whose ancestors differed from 135 

the mean ancestral fitness by at least 4% in at least one environment, leaving us with 133 diploid 136 

populations (43 YPD at 30°C, 48 YPD + acetic acid, and 42 YPD at 37°C) and 20 haploid 137 

populations (153 populations total). However, we note that the results of all our analyses are very 138 

similar when we consider the entire dataset with outliers included (see Figure Supplements). 139 

  140 

Adaptation to the home environment leads to consistent fitness gains and pleiotropic effects 141 

While there is modest variability between replicate populations, adaptation in each environment 142 

leads to a consistent increase in fitness in that “home” environment (Fig. 2, subplots with bold 143 

black borders). As observed in earlier experiments, this fitness increase is largely predictable, 144 

and follows a characteristic pattern of declining adaptability: early rapid fitness gains that slow 145 

down over time (Couce and Tenaillon 2015). This declining adaptability trend is less obvious 146 

among populations evolved at 37°C, possibly because the fitness gains in this environment were 147 

generally minimal, but we do observe declining adaptability in the handful of diploid populations 148 

at 37°C that experienced larger-than-average fitness gains. 149 

  150 

Adaptation in each evolution environment also led to fitness changes in most other environments 151 

(Fig. 2). In general, these fitness changes tend to have a consistent direction over time for each 152 

environment pair. For example, populations adapted to YPD + acetic acid and YPD at 37°C 153 

steadily gained fitness in the YPD at 30°C and YPD + 0.4M NaCl environments over time, with 154 

the average fitness across populations largely following the same trend seen at home: initial rapid 155 

fitness gains followed by slower increases over time. In other instances, fitness gains at home 156 

correspond to fitness declines in away environments. For example, populations evolved in YPD 157 

+ acetic acid tend to lose fitness in YPD at 21°C. However, pleiotropic effects are less 158 

predictable than the fitness gains in the home environment: we see more variability among 159 

replicate lines in away environments, both in the shapes of their fitness trajectories and in their 160 

ultimate evolutionary outcomes (e.g. some populations evolved in YPD + acetic acid in fact gain 161 

fitness in YPD at 21°C) (see analysis below).  162 
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 163 

To visualize how these pleiotropic effects change over time, we plot these fitness trajectories 164 

across pairs of environments (Fig. 3). This representation of the data shows clear but sometimes 165 

subtle differences in patterns of pleiotropy depending on evolution environment and ploidy. For 166 

instance, while almost all populations gained fitness in both YPD at 30°C and YPD + NaCl, the 167 

dynamics of fitness change differed based on evolution environment: populations evolved at 168 

37°C (orange lines in Fig. 3) initially made substantial fitness gains in YPD + NaCl sometimes 169 

followed by more significant gains in YPD at 30°C, whereas the populations evolved in YPD at 170 

30°C (cyan lines) and YPD + acetic acid (green lines) only gained substantial fitness in YPD + 171 

NaCl after initial fitness increases in YPD at 30°C (Supplementary File 1).  Separately, plotting 172 

fitness in YPD + acetic acid against fitness in YPD at 21°C reveals trajectories that segregate not 173 

only by evolution environment, but also by ploidy (Supplementary File 1). 174 

  175 

Characteristic environment- and ploidy-specific pleiotropic profiles emerge over time 176 

To understand the diversity of fitness trajectories across environments, we treated the fitness of 177 

each population across all five assay environments as a single “pleiotropic profile.” We then 178 

conducted principal component analysis across all these pleiotropic profiles to characterize 179 

variation between replicate populations, across different evolution environments, and over time. 180 

 181 

In Fig. 4A, we plot the first two principal components of each pleiotropic profile (which together 182 

consistently explain well over half the variance in the data (Fig. 4 -- figure supplement 2)) for 183 

populations from each of the six measured timepoints. We see that the populations separate over 184 

time into somewhat distinct clusters based on their evolution environment and ploidy. These 185 

clusters suggest that evolution in each environment leads to the formation of a characteristic 186 

environment- and ploidy-specific pleiotropic profile. 187 

 188 

Characteristic pleiotropic profiles can also be observed when running principal component 189 

analysis on the complete concatenated (but unordered) fitness data (i.e., with the pleiotropic 190 

profile of each population now defined as its fitness across all five assay environments at all six 191 

200-generation timepoints, a total of 30 measurements) and plotting data according to the first 192 

two components, which explain 30% and 22% of total variance, respectively (Fig. 4B). To 193 

provide an intuition for the meaning of distance and location in this principal component space, 194 

we show home and away environment fitness trajectories for select populations indicated in 195 

Figure 4B (Fig. 4C). The extent of evolution condition-specific clustering in this two-196 

dimensional PCA is indicative of characteristic pleiotropic profiles (Fig. 4C), and it appears 197 

comparable to that observed in analyses conducted independently for generations 600, 800, and 198 

1000. This is unsurprising given the outsized weighting of later generations in each principal 199 

component (Fig. 4 -- figure supplement 3). 200 

 201 

To more formally quantify the emergence of characteristic pleiotropic profiles over time in 202 

Figures 4A and B, we developed a simple clustering metric, which counts how many of a given 203 

population’s five nearest neighbors belong to the same evolution condition on average. We see 204 

that the degree of clustering in this two-dimensional space rises appreciably until the 600-205 

generation mark, at which point it plateaus (Fig. 4D). The observed clustering from generation 206 
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200 onward is much greater than expected by chance, as is clustering for the total-data PCA 207 

shown in Figure 4B (compared to a null expectation constructed by randomly permuting the 208 

evolution condition assigned to each population; p < 0.001). Note that this trend is consistent 209 

when the number of neighbors in the analysis is lowered to 3 or elevated to 10 (Figure 4—figure 210 

supplement 4). Thus, we observe the rapid emergence and later stabilization of general 211 

pleiotropic profiles characteristic to each evolution condition. 212 

 213 

General trends contain significant variation, which varies with ploidy, environment, and 214 

time 215 

Our principal component analysis shows that replicate populations in each evolution condition 216 

tend to follow similar trends in fitness changes across environments, leading to characteristic 217 

environment-specific pleiotropic profiles. However, it is apparent from Fig. 2 and Fig. 3 that 218 

there remains significant stochastic variability in the pleiotropic effects of adaptation among 219 

populations evolved in the same environment. For instance, populations evolved in the acetic 220 

acid environment splay out into all four quadrants when plotting fitness at 37°C against fitness at 221 

21°C (Fig 3; Supplementary File 1). This variability can also be seen in the wide dispersion of 222 

populations within clusters in Fig. 4B, particularly among diploids evolved in the acetic acid 223 

environment and at 37°C.  224 

 225 

We find that these patterns of variability are structured, with specific evolution conditions 226 

fostering more variable outcomes in certain assay environments (Fig. 5). For example, 227 

populations evolved in YPD + acetic acid exhibit generally wider variation in home and away 228 

environments than populations evolved in other environments. While it is tempting to link this 229 

pattern to the large fitness gains these populations make in their home environment, we note that 230 

populations evolved in YPD at 30°C also make significant correlated gains in YPD + acetic acid 231 

without generating such variable results across other assay environments. This suggests that, 232 

with respect to the distribution of pleiotropic effects of fixed driver or hitchhiking mutations, 233 

paths to higher fitness in YPD + acetic acid are qualitatively different for the populations 234 

evolved in YPD at 30°C. In another example, while diploid and haploid populations evolved at 235 

37°C show similar variability in 37°C, 30°C, and YPD + NaCl across the experiment, they 236 

experience more variable outcomes in YPD + acetic acid and 21°C, respectively. Together, these 237 

results suggest that the role for chance in the pleiotropic trajectories of evolving populations is 238 

contingent on the condition to which the population is adapted. 239 

 240 

In addition, the variation in outcomes is a function of evolutionary time. While variation in 241 

fitness at home tends to remain relatively low over the course of 1000 generations (Fig. 5A, bold 242 

black boxes; Fig 5B, thick solid lines), variation in away environments generally (if haltingly) 243 

increases over time, with a few exceptions. In other words, selection appears to suppress 244 

variation among trajectories in the home environment, at least on the timescales studied. To 245 

assess the statistical significance of these differences in variance, we used a one-tailed variant of 246 

a Brown-Forsythe test to perform pairwise comparisons of home and away fitness variance 247 

among replicate lines evolved in a given condition at each evolution timepoint. Of the 80 non-248 

ancestral pairwise comparisons, over half (48) indicated significantly greater variance in the 249 
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away environment (at a threshold of p < 0.05) and only 6 showed significantly greater variance 250 

at home (Figure 5—figure supplement 2).  251 

 252 

The role of stochasticity and temporal shifts in pleiotropic dynamics also can be seen in the 253 

relative non-monotonicity of fitness trajectories in away environments compared to home 254 

environments. To assess non-monotonicity, we interpolated fitness at 500 generations for each 255 

population in each assay environment and compared the 0-to-500-generation and 500-to-1000-256 

generation fitness changes. Trajectories were considered non-monotonic if fitness changes in 257 

these intervals were in opposite directions (Fig. 6A, see shaded quadrants), reflecting pleiotropic 258 

effects that change in sign over time. We find that populations rarely possess clearly non-259 

monotonic trajectories in their home environment (4/153 trajectories, or 2.6%), whereas they 260 

much more commonly (p < 0.0001, χ2 test) possess clearly non-monotonic trajectories in away 261 

environments (102/612 trajectories, or 16.7%) (Fig. 6B). Many but not all of these monotonic 262 

trajectories (72/102, or 71%) reflect initially positive pleiotropic effects that become negative in 263 

the second half of the experiment, as we might expect if a population increasingly specializes to 264 

its home environment over time. 265 

  266 

DISCUSSION 267 

 268 

To characterize the dynamics of pleiotropy during adaptation, we evolved hundreds of diploid 269 

and haploid yeast populations in three environments for 1000 generations, and assayed their 270 

fitness in these and two other environments at 200-generation intervals. Our results offer insight 271 

into how pleiotropic effects emerge and change on an evolutionary timescale. Consistent with 272 

earlier work, we observe repeatable fitness trajectories across many replicate populations in their 273 

home environments, which follow a pattern of initial rapid fitness gains followed by declining 274 

adaptability over time. Replicate populations also tend to follow consistent fitness trajectories in 275 

away environments, whether gaining or losing fitness on average. Looking across populations 276 

and environments, characteristic patterns of pleiotropy specific to each evolution condition 277 

emerge rapidly and stabilize within about 600 generations.  278 

 279 

Despite these characteristic patterns, we also observe ample variability within these trends. 280 

Examining the fitness trajectories of populations individually, we find that about 17% of away-281 

environment trajectories are non-monotonic, compared to just 3% of home-environment 282 

trajectories. This non-monotonicity is indicative of the sequential establishment of mutations 283 

with opposing pleiotropic effects in these populations. Meanwhile, across replicate populations, 284 

there is substantial variability in the pleiotropic consequences of evolution in each condition. 285 

Consistent with past work, we observe more variability in away than in home environments at 286 

the end of the experiment (Travisano and Lenski 1996; Ostrowski, Rozen, and Lenski 2005). 287 

However, our results also reveal how populations can follow very different trajectories in 288 

arriving at these endpoint fitnesses. Diverse away-environment trajectories manifest as changes 289 

in the variance among replicate populations over time, with a general tendency for variance to 290 

increase over the course of the experiment. 291 

 292 
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Together, patterns of pleiotropy along with variability among replicate populations suggest an 293 

important and dynamic role for chance and contingency in the fates of populations evolving in 294 

environments that fluctuate in space and time. Whether populations trend toward specialist or 295 

generalist phenotypes will not simply reflect physiological constraints (Bono et al. 2017; Jerison 296 

et al. 2020). Rather, as we observe, mutational opportunities to move toward higher or lower 297 

fitness in alternate environments may be accessible at all times. Thus, the emergence of 298 

specialism or generalism will be a product of both the distribution of pleiotropic effects of 299 

mutations that establish and dynamical factors that influence the timescale, sequence, and 300 

likelihood of their fixation (e.g., epistasis, ploidy, clonal interference, mutation rate, population 301 

size). 302 

 303 

Furthermore, the timescale over which pleiotropic effects emerge and change will interact with 304 

patterns of environmental fluctuations to determine evolutionary outcomes. In the conditions 305 

studied here, we observe that pleiotropic profiles generally emerge early and stabilize by 600 306 

generations. Independent of other dynamical consequences of the rate of environmental change 307 

(Cvijović et al. 2015), it is therefore likely that fluctuations on longer timescales (e.g., longer 308 

than 600 generations in this system) will lead to qualitatively different outcomes than 309 

fluctuations on shorter timescales. Our data show that both the average and variance in these 310 

outcomes will also depend critically on the specific sequence of environments experienced by a 311 

population. 312 

 313 

These results underscore the need for further empirical and theoretical work to understand 314 

patterns of pleiotropic effects over time and their effects on evolutionary trajectories. Additional 315 

experiments will be required to describe how general pleiotropic trends and variability within 316 

these trends arise and shift across a wider array of environments, as well as in different model 317 

systems. Likewise, studies of pleiotropy in populations evolved for longer periods, such as those 318 

described by Johnson et al. (2021), may provide a richer perspective on the repeatability, 319 

diversity, and stability of pleiotropic trajectories. Finally, this work motivates further theoretical 320 

inquiry into how the dynamics and variability of pleiotropic effects will interact with other 321 

important parameters -- such as patterns of environmental fluctuation, mutation rate, sexual 322 

recombination, and the underlying distributions of fitness effects -- to influence evolutionary 323 

outcomes. Integrating empirical datasets like the one presented here with such theoretical insight 324 

will enable better prediction of adaptation in complex environments.  325 

 326 

MATERIALS AND METHODS 327 

 328 

Strain generation 329 

Strains in this study are derived from YAN404 and YAN407 (Nguyen Ba et al. 2019), which were 330 

constructed on the BY4742 background (S288C: MATα, his3∆1, ura3∆0, leu2∆0, lys2∆0) to add 331 

the RME1pr::ins-308A mutation, meant to improve transformation efficiency in both the MATa 332 

and MATα cell types. Several additional modifications were made to enable proper barcoding, 333 

mating, and selection, as stated in Supplementary File 2. Ultimately, YCB140B and YCB137A 334 
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(and YCB140B x YCB137A mated diploids) were used to found the populations evolved in this 335 

experiment.  336 

Barcode plasmid design and integration 337 

Our barcoding system uses two different landing pad types, hereafter referred to as type 1 and type 338 

2. Both plasmids had a pUC origin and ampicillin resistance cassette in the vector backbone. The 339 

inserts into this 1998bp backbone were 6728bp and 6384bp, respectively, with ~450bp homology 340 

to the regions flanking the CgTrp1 in the HO locus on either side. Between these flanking regions 341 

were modified versions of the KanMX and CAN1 genes, as well as a ccdB gene that is toxic to 342 

sensitive E. coli strains. Many other components, including lox sites, artificial introns, and 343 

unexpressed TRP1 genes, were also present in these plasmids, and the entirety of the annotated 344 

plasmids can be viewed in Supplementary Files 3 and 4. These extraneous elements – both in the 345 

plasmids and in our strain backgrounds – were included to enable capabilities that ultimately were 346 

not harnessed for the purposes of this study, such as mating, sporulation, and the inducible and 347 

selectable Cre-driven recombination of barcodes. 348 

To generate diversely barcoded plasmid libraries, we cloned oligonucleotides containing random 349 

nucleotides into the type 1 and type 2 plasmids via a Golden Gate reaction (Engler, Kandzia, and 350 

Marillonnet 2008). This reaction replaced the ccdB gene in the plasmid. The barcoded plasmids 351 

were transformed via electroporation into ccdB-sensitive E. coli. Barcoded plasmids were then 352 

purified from these transformants using the Geneaid PrestoTM Mini Plasmid Kit (Cat. No. 353 

PDH300). 354 

To barcode ancestral YCB137A and YCB140B strains, we took advantage of PmeI restriction 355 

endonuclease sites on either side of the HO homology regions of the plasmid, cutting and 356 

transforming (Gietz 2015) into the HO locus and replacing the CgTRP1 gene. 357 

To select for successful haploid yeast transformants, we used 200 µg/mL G418 (GoldBio, G-418), 358 

following up with a screen in SD-Trp (1.71 g/L Yeast Nitrogen Base Without Amino Acids and 359 

Ammonium Sulphate (Sigma-Aldrich, Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich, A4418), 360 

20 g/L dextrose (VWR #90000-904), 0.1 g/L L-glutamic acid (Sigma-Aldrich, G1251), 0.05 g/L 361 

L-phenylalanine (Sigma-Aldrich, P2126), 0.375 g/L L-serine (Sigma-Aldrich, S4500), 0.2 g/L L-362 

threonine (Sigma-Aldrich, T8625), 0.01 g/L myo-Inositol (Sigma-Aldrich, I5125), 0.08 g/L 363 

adenine hemisulfate salt (Sigma-Aldrich, A9126), 0.035 g/L L-histidine (Sigma-Aldrich, H6034), 364 

0.11 g/L L-leucine (Sigma-Aldrich, L8000), 0.12 g/L L-lysine monohydrate (Acros Organics, 365 

CAS[39665-12-8]), 0.04 g/L L-methionine (Sigma-Aldrich, M9625), 0.04 g/L uracil (Sigma-366 

Aldrich, U1128)). After ~25 generations of selection in liquid media, strains auxotrophic for 367 

tryptophan and resistant to G418 were arrayed into plates for experimental evolution. 368 

Other successful transformants (of the same landing pad type) were mated to form diploids, which 369 

were selected for resistance to 300 µg/mL hygromycin B (GoldBio, H-270), 100 µg/mL 370 

nourseothricin sulfate (GoldBio, N-500), 200 µg/mL G418, and 1 mg/mL 5-fluoroorotic acid 371 

monohydrate (5-FOA) (Matrix Scientific,  CAS[220141-70-8]) in S/MSG D media (1.71 g/L Yeast 372 

Nitrogen Base Without Amino Acids and Ammonium Sulphate, L-glutamic acid monosodium salt 373 

hydrate (Sigma-Aldrich, G1626), 20 g/L dextrose, 0.1 g/L L-glutamic acid, 0.05 g/L L-374 

phenylalanine, 0.375 g/L L-serine, 0.2 g/L L-threonine, 0.01 g/L myo-Inositol, 0.08 g/L adenine 375 
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hemisulfate salt, 0.035 g/L L-histidine, 0.11 g/L L-leucine, 0.12 g/L L-lysine monohydrate, 0.04 376 

g/L L-methionine, 0.04 g/L uracil, 0.08 g/L L-tryptophan (Sigma-Aldrich, T0254)) for ~25 377 

generations prior to arraying into 96-well plates alongside haploids for experimental evolution. 378 

Experimental evolution 379 

Barcoded yeast were used to found 192 MATa, 192 MATα, and 162 diploid populations for 380 

evolution, respectively (though most haploid populations were excluded from further analysis due 381 

to the fixation of autodiploids). Each population was founded by a uniquely barcoded single colony 382 

or uniquely barcoded colonies that were then mated to form a diploid (see “Strain generation” 383 

section above), and was subsequently propagated in a well of an unshaken flat-bottom 384 

polypropylene 96-well plate in one of three conditions: YPD (1% Bacto yeast extract (VWR 385 

#90000–726), 2% Bacto peptone (VWR #90000–368), 2% dextrose) at 30°C, YPD at 37°C, and 386 

YPD+0.2% acetic acid (Sigma Aldrich #A6283) at 30°C (128 µL/well). Each 96-well plate 387 

contained diploid and haploid populations of both mating types (with each mating type occupying 388 

one side of the plate) and 5 empty wells to monitor for potential cross contamination. With the 389 

exception of the YPD at 37°C condition, the evolution conditions were arranged in a checkered 390 

pattern on each 96-well plate to minimize potential plate effects. Daily 1:210 dilutions (bottleneck 391 

~ 104 cells) were performed using a Biomek-FX pipetting robot (Beckman-Coulter) after thorough 392 

resuspension by shaking on a Titramax 100 orbital plate shaker at 1,200 r.p.m. for at least 1 min. 393 

Populations underwent daily transfers for ~1000 generations (~10 generations/day); every 50 394 

generations, populations were mixed with glycerol to a final concentration of 8% for long-term 395 

storage at -80°C. No contamination of blank wells was observed over the course of the evolution 396 

experiment. One of the 96-well plates was dropped at generation 170 and evolution was resumed 397 

by thawing and reviving populations from the generation 150 archive; thus, all future archives of 398 

populations on this plate lagged 40 generations behind the populations on all other plates. 399 

Nucleic acid staining for ploidy 400 

Populations frozen at generation 1000 of the evolution experiment were thawed and revived by 401 

diluting 1:25 in YPD. The following day, saturated cultures were diluted 1:10 into 120 µL of sterile 402 

water in round-bottom polystyrene 96-well plates. Plates were centrifuged at 3,000xg for 3 403 

minutes, the supernatant was removed, and cultures were resuspended in 50 µL sterile water. 100 404 

µL of ethanol was added to each well, the cultures were mixed thoroughly and placed at 4°C 405 

overnight. The following day, the cultures were centrifuged, the ethanol solution was removed, 406 

and 65 µL RNase A (VWR #97062-172) solution (2 mg/mL RNase A in 10 mM Tris-HCl, pH 8.0 407 

+ 15 mM NaCl) was added to each well and the cultures were incubated at 37°C for 2 h. Then 65 408 

µL of 300 nM SYTOX green (Thermo Fisher Scientific, S-34860) was added to each well and the 409 

cultures were mixed and incubated at room temperature in the dark for 30 min. Fluorescence was 410 

measured by flow cytometry on a BD LSRFortessa using the FITC channel (488 nm). Ploidy was 411 

assessed by comparing the fluorescence distributions of evolved populations to known haploid and 412 

diploid controls of the same strain. By generation 1000, all 192 MATa populations had 413 

autodiploidized, and 172 of the MATα populations had autodiploidized, as judged by the absence 414 

of a clear haploid peak. Only the remaining 20 haploid MATα populations were included in the 415 

bulk fitness assays described below. 416 

 417 
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Bulk fitness assays 418 

Populations frozen at generations 0, 200, 400, 600, 800, and 1000 of the evolution experiment 419 

were thawed by diluting 1:25 in YPD. The following day, once these cultures had grown to 420 

saturation, equivalent volumes of each population were pooled by ploidy for each generation (12 421 

pools total). For the haploid populations, evolved populations were only pooled if they were 422 

verified to be haploid at the end of the evolution experiment (see “Nucleic acid staining for ploidy” 423 

section above). Each of the haploid pools was spiked with 5 uniquely barcoded ancestral reference 424 

strains of the same mating type at 4X the volume of each evolved population; each of the diploid 425 

pools was spiked with 10 reference strains at 4X the volume of each evolved population. The 426 

resulting pools comprised time point zero for the bulk fitness assay (BFA) and were diluted 1:210 427 

in the appropriate media (described below) and divided between 16 wells (128 µL/well) of flat-428 

bottom polypropylene 96-well plates. The BFA was performed in each of the three evolution 429 

environments (YPD at 30°C, YPD at 37°C, and YPD+0.2% acetic acid at 30°C), in addition to 430 

two novel environments (YPD at 21°C and YPD+0.4M NaCl at 30°C). The 16 wells of each pool 431 

comprised two technical replicates of 8 wells. Every 24 hours (or every 48 hours in the case of the 432 

YPD 21°C environment) the populations were resuspended by shaking on a Titramax 100 orbital 433 

plate shaker at 1,200 r.p.m. for at least 1 min and the contents of the 8 wells constituting each 434 

replicate were combined, mixed, and diluted 1:210 into 8 new wells using a Biomek-FX pipetting 435 

robot (Beckman-Coulter). This split-pool strategy was designed to mimic the evolution conditions 436 

while maintaining sufficient diversity for bulk fitness measurements. At BFA timepoints 0, 10, 30, 437 

and 50 generations, 1 mL of the diploid pool was combined with 200 µL of the haploid pool for 438 

each generation, this culture was centrifuged at 21,000 x g for 1 minute, the supernatant was 439 

removed, and the pellet was stored at -20°C for downstream DNA extraction and sequencing. 440 

Sequencing library preparation 441 

Genomic DNA was extracted from cell pellets using zymolyase-mediated cell lysis (5 mg/mL 442 

Zymolyase 20T (Nacalai Tesque), 1 M sorbitol, 100 mM sodium phosphate pH 7.4, 10 mM EDTA, 443 

0.5% 3-(N,N-Dimethylmyristylammonio)propanesulfonate (Sigma T7763), 200 µg/mL RNase A, 444 

20 mM DTT), binding on silica columns (IBI scientific, IB47207) with 4 volumes of guanidine 445 

thiocyanate (4.125 M guanidine thiocyanate, 100 mM MES pH 5, 25% isopropanol, 10 mM 446 

EDTA), washing with wash buffer 1 (10% guanidine thiocyanate, 25% isopropyl alcohol, 10 mM 447 

EDTA) and wash buffer 2 (20mM Tris-HCl pH 7.5, 80% ethanol), and eluting in 50 µL 10 mM 448 

Tris pH 8.5, as previously described (Nguyen Ba et al. 2019). Two rounds of PCR were performed 449 

to generate amplicon sequencing libraries for sequencing the barcode locus. In the first round of 450 

PCR, the barcode locus was amplified with primers containing unique molecular identifiers (UMI), 451 

generation-specific inline indices, and partial Illumina adapters (see Supplementary File 5 for 452 

primer sequences). This 20 µL 10-cycle PCR reaction was performed using Q5 polymerase (NEB 453 

M0491L) following the manufacturer’s guidelines, using 10 µL (~250 ng) of gDNA as template, 454 

annealing at 54°C, and extending for 45 seconds. The first-round PCR products were then purified 455 

using one equivalent volume of DNA-binding beads (Aline Biosciences PCRCleanDX C-1003-5) 456 

and eluting in 33 µL 10 mM Tris pH 8.5. In the second-round PCR, the remainder of the Illumina 457 

adapters and sample-specific Illumina indices were appended to the first-round PCR products (see 458 

Supplementary Table 5 for primer sequences). The second round PCR was performed using Kapa 459 

HiFi HotStart polymerase (Kapa Bio KK2502) following the manufacturer’s guidelines for a 25 460 
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µL reaction, using 17.25 µL of first round PCR product, annealing at 63°C and extending for 30 461 

seconds for 26 cycles. The second-round PCR products were then purified using one equivalent 462 

volume of DNA-binding beads and eluting in 33 µL 10 mM Tris pH 8.5. Following bead cleanup, 463 

the concentration of the PCR products was quantified using the Accugreen High Sensitivity 464 

dsDNA Quantitation Kit (Biotium 31068). Sequencing libraries were then pooled equally and 465 

sequenced on a NextSeq500 Mid flow cell (150 bp single-end reads). 466 

BFA barcode enumeration and fitness inference 467 

Lineage fitnesses were inferred from the concatenated sequencing data yielded by two separate 468 

NextSeq500 Mid flow cells (150bp single-end reads). The second of these two runs allowed for 469 

deeper sequencing of specific BFA timepoints to enable superior determination of barcode 470 

frequencies associated with less fit lineages in certain environments. The second run also 471 

allowed sequencing of libraries that were omitted from the first run. 472 

Once fastq files were concatenated, barcode information was extracted as described below. 473 

However, in addition to subjecting the barcode regions to error-tolerant ‘fuzzy’ matching based 474 

on regular expressions, we allowed for fuzzy matching of the epoch-specific inline indices. For 475 

the indices, we applied a list of decreasingly strict regular expressions, looking for exact 476 

matches, then 1 mismatch, then 2 mismatches. For the indices associated with epochs 6, 8, and 477 

10, which were longer than the indices associated with epochs 0, 2, and 4, we allowed up to 3 478 

mismatches. 479 

Then, as with the barcode association mapping, we used a previously described “deletion-error-480 

correction” algorithm (Johnson et al. 2019) to correct errors in barcode sequences induced by 481 

library preparation and sequencing. 482 

To check for cross-contamination between wells during library preparation and index-hopping 483 

during sequencing, we searched for reads where the inline index was inconsistent with the 484 

associated pairs of Illumina indices. In almost all cases, we found little evidence of cross 485 

contamination (<< 1%). In one case, corresponding to landing pad type 2 of the 30°C replicate 2 486 

BFA 10-generation timepoint for generation-1000 populations, we found that 11,484 of the 487 

258,462 reads (4.4%) included the inline index associated with the generation-200 populations. 488 

We removed all apparently cross-contaminating reads from our analysis. 489 

Then, we summed reads associated with all barcodes in a given population, since some 490 

populations contained more than one unique barcode (or, in the case of diploids, more than two 491 

unique barcodes). In addition, some barcodes were present in the BFAs that could not be 492 

confidently assigned to a single well, representing 0.3% of all reads. These were summed 493 

together and retained in the dataset. 494 

To determine the fitness of each population over time and across environments and technical 495 

replicates, we measured the log-frequency slope for each population in two intervals: between 496 

assay timepoints 10 and 30 and between timepoints 30 and 50 generations. Frequencies were 497 

calculated separately for each landing pad type. We scaled these values of fitness (s) by 498 

subtracting out the corresponding median log-frequency slope of a set of between 2 and 5 499 

reference ancestral populations of each ploidy and landing pad type, which were included in 500 
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every BFA to allow comparisons of fitness across the evolutionary time course. The source data 501 

file indicates these reference populations. For a given BFA and interval, s values only were 502 

calculated this way if the mean number of reads for the reference populations was greater than 5. 503 

If not, these intervals were excluded from subsequent analysis. 504 

To determine s values for each population in each environment at each generation, interval-505 

specific s estimates were averaged. Then, s estimates from each of the two technical replicates 506 

were averaged, producing a final s estimate. The standard error of this final s estimate was 507 

calculated from the two technical replicate s estimates. 508 

To clarify our downstream analyses, we excluded 19 outlier diploid populations whose ancestors 509 

differed from the mean ancestral fitness by at least 4% in at least one environment. We believe 510 

we see such divergent ancestral fitness values due mutations that emerged during the process of 511 

selecting colonies, mating, and performing purifying selection for ~50 generations on barcoded 512 

transformants immediately prior to evolution. 513 

To account for the offset in plate 2 progress through evolution, plate 2 population fitness 514 

estimates for 200, 400, 600, and 800 generations were linearly interpolated from fitnesses on 515 

either side, e.g., gen 200 fitness inferred from gen 160 and gen 360 fitnesses. Fitness estimates 516 

for gen 1000 were extrapolated linearly from gen 760 and gen 960 fitnesses. The standard error 517 

of the s estimate for gen 160 was used for gen 200 fitness, the standard error of s for gen 360 was 518 

used for gen 400 fitness, and so on. 519 

Barcode association 520 

To map barcodes to wells of the evolution experiment, we pooled ancestral strains in equal 521 

volumes from across the eight evolution plates, creating three sets of pools: column-specific 522 

pools (n=12), row-specific pools (n=8), and plate-specific pools (n=8). We then lysed portions of 523 

these pools by diluting in yeast lysis buffer (1mg/mL Zymolyase 20T, 0.1M Sodium phosphate 524 

buffer pH 7.4, 1M sorbitol, 10 mg/mL SB3-14 (3-(N,N-525 

Dimethylmyristylammonio)propanesulfonate (Sigma T7763)) at 37°C for 1hr and 95°C for 526 

10min. Two rounds of PCR were then performed to generate amplicon sequencing libraries for 527 

sequencing the barcode locus (both landing pad versions). In the first round, the barcode locus 528 

was amplified via a 10-cycle PCR reaction with Kapa HiFi HotStart polymerase (Kapa Bio 529 

KK2502), annealing at 58°C for 30 s and extending at 72°C for 30 s, with a final 10 min 530 

extension. PCR products were then purified using one equivalent volume of DNA-binding beads 531 

and eluting in 20 µL water. Following bead purification, a second-round PCR reaction was 532 

performed using 1.5 µL of each of a unique pair of Illumina indices (see Supplementary File 5 533 

for primer sequences) with Kapa HiFi Hotstart ReadyMix (2X) in a 15 µL reaction, with 4.5 µL 534 

of first-round PCR product as template, annealing at 61°C and extending for 30 seconds for 30 535 

cycles. The second-round PCR products were then purified using 0.8x DNA-binding beads 536 

(Aline Biosciences PCRClean DX C-1003-5), washed 2x with 80% ethanol and eluted in 50 μL 537 

of molecular biology-grade water. Following bead cleanup, the concentration of the second 538 

round PCR products was quantified using the Accugreen High Sensitivity dsDNA Quantitation 539 

Kit (Biotium 31068). These libraries were then normalized, pooled, and sequenced on a 540 

NextSeq500 High flow cell (150 bp paired-end reads). 541 
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To extract barcode information from sequencing reads, we followed Johnson et al. (2019), using 542 

a list of decreasingly strict regular expressions (using the python regex module 543 

https://pypi.org/project/regex/). For landing pad 1, this was: 544 

'(TCTGCC)(\D{22})(CGCTGA)', 545 

'(TCTGCC)(\D{20,24})(CGCTGA)', 546 

'(TCTGCC){e<=1}(\D{22})(CGCTGA){e<=1}', 547 

'(TCTGCC){e<=1}(\D{20,24})(CGCTGA){e<=1}' 548 

For landing pad 2, this was: 549 

'(TCTCTG)(\D{22})(AGTAGA)', 550 

'(TCTCTG)(\D{20,24})(AGTAGA)', 551 

'(TCTCTG){e<=1}(\D{22})(AGTAGA){e<=1}', 552 

'(TCTCTG){e<=1}(\D{20,24})(AGTAGA){e<=1}' 553 

Then, after parsing and tallying barcodes in each sequencing library, we used the “deletion-error-554 

correction” algorithm described by Johnson et al. (2019) to correct errors in barcode sequences 555 

induced by library preparation and sequencing. 556 

To triangulate the position of each barcode across the eight plates, for each error-corrected 557 

barcode that appeared in the sequencing data, we tabulated which barcodes were present in 558 

which libraries, and how many reads were associated with each barcode in each library. These 559 

data allowed us to determine the wells in which barcodes belonged.  560 

IQR variability analysis 561 

Fitness variability was examined by plotting box-and-whisker plots of population mean fitness 562 

values, where the line, box, and whiskers represent the median, quartiles, and data within 1.5xIQR 563 

of each quartile, respectively, and outlier populations beyond whiskers are shown as points (Fig. 564 

5A). To compare the resulting IQR for various evolution conditions and fitness assay 565 

environments, 95% confidence intervals of the IQR were calculated from bootstrapped interval-566 

specific replicate s measurements (Fig. 5B). 567 

To evaluate whether home environment fitness variance was less than away environment fitness 568 

variances at each evolution timepoint, we applied a Brown-Forsythe test (Brown and Forsythe 569 

1974). Since this test is typically a two-tailed test, and we wanted instead to employ a one-tailed 570 

test, we used the z scores from the Brown-Forsythe test to arrive at a two-tailed t-statistic. We 571 

could then obtain a one-tailed p-value with this t-statistic, evaluated at N - 1 degrees of freedom, 572 

where N is the number of populations in consideration. 573 

Principal components analysis 574 

All principal components analysis excluded ancestral reference populations. To minimize the 575 

influence of varying scales of data features on the analysis, fitness values for each field – 576 

corresponding to fitness in a given assay environment, possibly at a specific evolutionary 577 
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timepoint – were standardized to have a mean of 0 and standard deviation of 1 using the scikit-578 

learn StandardScaler function. We then used the scikit-learn PCA() function. 579 

Clustering metric 580 

To quantify the degree of clustering by evolution condition in the 2-dimensional principal 581 

component analyses, the NearestNeighbors algorithm in the scikit-learn python package was 582 

implemented to identify the five nearest neighbors for each population in the 2-dimensional PC1 583 

versus PC2 plots (Figs. 4A,B). The clustering metric plotted in Fig. 4D is the number of five 584 

nearest neighbors that belong to the same evolution condition as the focal population, averaged for 585 

each evolution condition. Error bars represent 95% confidence intervals of the mean clustering 586 

metric, which were calculated by performing the PCA and clustering analysis on bootstrapped 587 

interval-specific replicate s measurements. The null expectation for populations to cluster by 588 

evolution condition was computed by permuting the evolution condition 1000 times and 589 

performing the clustering analysis as described above. The permuted clustering metrics were then 590 

compared to the true mean clustering metric by a two-sided Student’s t-test (using the Scipy.stats 591 

ttest_ind_from_stats function). 592 

Non-monotonicity analysis 593 

To assess non-monotonicity, we linearly interpolated fitness at 500 generations for each 594 

population in each assay environment. We achieved the interpolated standard errors in fitness by 595 

taking the square root of the sum of the squares of the errors associated with the fitnesses used in 596 

the interpolation and dividing by two. For evolution plate 2 populations, which were offset from 597 

the others by 40 generations, we took a weighted average for the interpolation (500 generation 598 

fitness estimate) and extrapolation (1000 generation fitness estimate) steps. For the 500 599 

generation fitness standard error estimate, we adapted this weighting approach for the standard 600 

error propagation as described for the other populations. For the 1000 generation fitness standard 601 

error estimate, we used the error assigned to the generation 960 fitness estimate. Then, we 602 

calculated the change in fitness (∆s) between 0 and 500 generations and between 500 and 1000 603 

generations for each population in each environment. The standard errors of these ∆s were the 604 

square root of the sum of the squares of the two fitnesses used in the calculation. Finally, we 605 

plotted these ∆s values as x-y coordinates. If a point and its error bars were completely within the 606 

top-left or lower-right quadrant -- corresponding to an increase followed by a decrease, or a 607 

decrease followed by an increase, over the 1000-generation experiment -- these were considered 608 

to be “clearly non-monotonic.” We applied a χ2 test to evaluate the significance in the difference 609 

in the frequency of non-monotonicity in home versus away trajectories. 610 
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Figure 1. Evolution experiment and bulk fitness assay. (A) Yeast cells were 

uniquely barcoded to generate founder clones. Uniquely barcoded founder clones 

were used to seed individual populations in 96-well plates. Populations were evolved 

for 1,000 generations in three distinct environments: rich media (YPD), rich media at 

elevated temperature (YPD, 37˚C), and rich media with 0.2% acetic acid (YPD + 
AA), and frozen at 50-generation intervals. Fitness assays were performed at 200-

generation intervals. (B) Bulk fitness assay of barcoded adapted populations by 

competitive growth in each evolution environment and two additional environments 

(YPD, 21˚C and YPD + 0.4 M NaCl). Relative fitness of each population was 
evaluated from the log frequency of the respective barcode sequence over time 

compared to that of ancestral references, based on assay generations 10, 30, and 50.  

Figure 1–figure supplement 1. Bulk fitness assay technical replicate fitness 

correlations. 
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FIGURE 2 

 

  

Figure 2. Fitness changes over 1000 generations of evolution. Replicate populations for each evolution condition 
are shown in each column. Environments in which these populations’ fitnesses were assayed are shown in the rows. 

Plots for which evolution and assay environment are the same are indicated by a bold outer border. The black line in 

each plot indicates the median fitness. Error bars indicate standard error of the mean. 

Figure 2–figure supplement 1. Fitness changes over 1000 generations of evolution for unfiltered data. 

Figure 2 – source data 1. Bulk fitness assay read counts and measured fitnesses. 
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FIGURE 3 

 

 

  

Figure 3. ExE evolutionary trajectories over 1000 generations of evolution in a constant 

environment. Axes correspond to fitness in the indicated assay environments. Colors correspond to 
evolution condition. Grey vertical and horizontal lines indicate zero fitness relative to an ancestral 

reference in each environment. 

Figure 3–figure supplement 1. ExE evolutionary trajectories over 1000 generations of evolution in a 

constant environment for unfiltered data. 
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FIGURE 4 
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Figure 4. Principal component analysis of pleiotropy. (A) Principal component analysis of evolving 

populations, performed independently each 200 generations. The first two PCs are plotted. Populations 
are colored according to evolution condition. (B) Principal component analysis of all populations using 

all fitness data from across the 1000 generations. The first two PCs are plotted and explain 30% and 22% 
of the variance, respectively. (C) Plots of fitness trajectories in all 5 assay environments for 8 example 

populations (a-h, identified as points in (B)). (D) Population clustering in PCA by evolution condition 
over time. Clustering of each population was quantified as the number of five nearest neighbors that 

share the same evolution condition, for each 200-generation interval, and across all intervals. Clustering 
metrics were averaged for each evolution condition to calculate point estimates; error bars represent 95% 
confidence intervals of the mean clustering metric, estimated by performing PCA on bootstrapped 
replicate fitness measurements. 

Figure 4–figure supplement 1. Principal component analysis of pleiotropy for unfiltered data. 

Figure 4 – figure supplement 2. Variance explained by principal components in (A) and the 

corresponding panel of figure supplement 1. 

Figure 4 – figure supplement 3. Relative contributions of each interval to principal components in (B) 
and the corresponding panel of figure supplement 1. 

Figure 4 – figure supplement 4. Population clustering in PCA as in (D) quantified for three and ten 
nearest neighbors. 

Figure 4 – source data 1. Principal component analyses presented in Figure 4A. 
Figure 4 – source data 2. Principal component analysis presented in Figure 4B. 
Figure 4 – source data 3. Principal component analyses presented in Figure 4 – figure supplement 1A. 

Figure 4 – source data 4. Principal component analysis presented in Figure 4 – figure supplement 1B. 
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FIGURE 5 

 
Figure 5. Variability in fitness over 

time. (A) Box plots summarizing 

population mean fitness over time for 

each evolution condition (columns) 

in each assay environment (rows). 

Line, box, and whiskers represent the 

median, quartiles, and data within 

1.5xIQR of each quartile, 
respectively; outlier populations 

beyond whiskers are shown as points. 

(B) IQR from box plots in (A) are 
plotted as a function of time for each 

evolution condition and assay 

environment. IQR for fitness 
measured in home and away 

environments are represented by 

solid and dashed lines, respectively. 

Error bars represent 95% confidence 
intervals of IQR calculated from 
bootstrapped replicate fitness 

measurements. 

Figure 5–figure supplement 1. 

Variability in fitness over time for 

unfiltered data. 

Figure 5–figure supplement 2. 

Brown-Forsythe significance test 

results for differences between 

variance at home and away. 
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FIGURE 6 

  

Figure 6. Non-monotonicity in evolutionary trajectories. (A) Each panel shows, for each of the 5 

assay environments, the change in fitness over the first 500 (x-axis) and second 500 (y-axis) 

generations of evolution of each population in a given evolution environment. Populations that fall 

in shaded quadrants have trajectories that are non-monotonic. Points corresponding to fitness in the 

home environment are colored more opaquely than points corresponding to fitness in away 

environments, and panel borders have been colored to match the home environment. Fitness at 

generation 500 has been interpolated. (B) Each panel corresponds to a given evolution environment 

and shows the proportion of populations evolved in that environment that exhibit clearly non-

monotonic fitness trajectories in (A). “Clearly non-monotonic” trajectories are those populations 

(points) in (A) that fall in the grey quadrants and whose error bars (1 standard error in either 

direction) do not span either the x- or y-axis. As in (A), bars corresponding to the home environment 

are colored more opaquely than bars corresponding to away environments. 

Figure 6–figure supplement 1. Non-monotonicity in evolutionary trajectories for unfiltered data. 
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FIGURE 1–FIGURE SUPPLEMENT 1 

 

  Figure 1–figure supplement 1. Comparison of 

technical replicate fitness measurements. Each 

dot corresponds to the fitness of a population at a 

given evolution timepoint in the environment 

indicated. Point color corresponds to the relative 

density of points, as determined by distance to five 

nearest points. The black line in each plot indicates 

x=y. 
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FIGURE 2–FIGURE SUPPLEMENT 1 

 

  

Figure 2–figure supplement 1. Fitness changes over 1000 generations of evolution for unfiltered data. Replicate 
populations for each evolution condition are shown in each column. Environments in which these populations’ 

fitnesses were assayed are shown in the rows. Plots for which evolution and assay environment are the same are 

indicated by a bold outer border. The black line in each plot indicates the median fitness. Error bars indicate standard 

error of the mean. 
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FIGURE 3–FIGURE SUPPLEMENT 1 

 

  

Figure 3–figure supplement 1. ExE evolutionary trajectories over 1000 generations of evolution 

in a constant environment for unfiltered data. Axes correspond to fitness in the indicated assay 

environments. Colors correspond to evolution condition. Grey vertical and horizontal lines indicate zero 

fitness relative to an ancestral reference in each environment.  
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FIGURE 4–FIGURE SUPPLEMENT 1 

 

  

Figure 4–figure supplement 1. Principal component analysis of pleiotropy. (A-D) correspond to the 

same panels of Figure 4, except with analyses performed on the whole dataset including outlier 

populations. (C) is identical to Figure 4C. 
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FIGURE 4–FIGURE SUPPLEMENT 2 

 

 

  Figure 4 – figure supplement 2. 

Variation explained by principal 

components. (A) Variance explained 

by five principal components 

corresponding to the PCAs conducted 
for each generation interval in Figure 

4A. (B) Variance explained by five 

principal components corresponding to 

the PCAs conducted for each generation 

interval in Figure 4 – figure supplement 

1A. 
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FIGURE 4–FIGURE SUPPLEMENT 3 

 

 

 

  Figure 4 – figure supplement 3. 

Contributions of generation intervals 

to principal components. (A) Summed 

magnitudes of contributions of assay 

environments at each interval to the two 

principal components presented in Figure 

4B. (B) Summed magnitudes of 

contributions of assay environments at 

each interval to the two principal 

components presented in Figure 4 – 

figure supplement 1B. 
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FIGURE 4—FIGURE SUPPLEMENT 4 

  

Figure 4 – figure supplement 4. Population clustering in PCA as in 
Figure 4D quantified for (A) ten and (B) three nearest neighbors. 

Clustering metrics were averaged for each evolution condition to 
calculate point estimates; error bars represent 95% confidence 
intervals of the mean clustering metric, estimated by performing PCA 
on bootstrapped replicate fitness measurements. 
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FIGURE 5–FIGURE SUPPLEMENT 1 

 

  
Figure 5–figure supplement 1. 

Variability in fitness over time for 

unfiltered data. (A) Box plots 

summarizing population mean fitness 

over time for each evolution condition 

(columns) in each assay environment 

(rows). Line, box, and whiskers 

represent the median, quartiles, and 

data within 1.5xIQR of each quartile, 
respectively; outlier populations 

beyond whiskers are shown as points. 

(B) IQR from box plots in (A) are 
plotted as a function of time for each 

evolution condition and assay 

environment. IQR for fitness measured 
in home and away environments are 

represented by solid and dashed lines, 

respectively. Error bars represent 95% 
confidence intervals of IQR calculated 
from bootstrapped replicate fitness 

measurements. 
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FIGURE 5 – FIGURE SUPPLEMENT 2 

 

  Figure 5–figure supplement 2. Statistical test of difference in variance between home, away 

environments. Brown-Forsythe test p values for paired comparisons of fitness variance in home 

environment and away environment for populations evolved in each evolution condition (columns). 

White boxes correspond to invalid self-comparisons. p values represent a one-sided test in which the 

alternative hypothesis is that home variance is less than away variance. 0 < p < 0.05 (blue) indicates 

home variance significantly less than away variance. 0.95 ≤ p < 1 (red) indicates home variance 

significantly greater than away variance. (A) Excluding outliers. (B) Including outliers. 
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FIGURE 6–FIGURE SUPPLEMENT 1 

Figure 6–figure supplement 1. Non-monotonicity in evolutionary trajectories for unfiltered data 

(outliers included). (A) Each panel shows—for each of the 5 assay environments—the change in fitness 

over the first 500 (x-axis) and second 500 (y-axis) generations of evolution of each population in a given 

evolution environment. Populations that fall in shaded quadrants have trajectories that are non-

monotonic. Points corresponding to fitness in the home environment are colored more opaquely than 

points corresponding to fitness in away environments, and panel borders have been colored to match the 

home environment. Fitness at generation 500 has been interpolated. (B) Each panel corresponds to a 

given evolution environment and shows the proportion of populations evolved in that environment that 

exhibit clearly non-monotonic fitness trajectories in (A). “Clearly non-monotonic” trajectories are those 

populations (points) in (A) that fall in the grey quadrants and whose error bars (1 standard error in either 

direction) do not span either the x- or y-axis. As in (A), bars corresponding to the home environment are 

colored more opaquely than bars corresponding to away environments. As with the outliers-excluded 

data, populations exhibit clearly non-monotonic trajectories in away environments much more 

commonly than in home environments (p < 0.0001), with most of these reflecting initially positive 

pleiotropic effects. 
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