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Abstract—Recently, several advanced phase-locked loop (PLL)
techniques have been proposed for single-phase applications.
Among these, the Park-PLL and the second-order-generalized-
integrator-based PLL are very attractive, owing to their simple
digital implementation, low computational burden, and desired
performance under frequency-varying and harmonically distorted
grid conditions. Despite the wide acceptance and use of these two
advanced PLLs, no comprehensive design guidelines to fine-tune
their parameters have been reported yet. Through a detailed
mathematical analysis, it is shown that these two PLL structures
are equivalent to each other, from the control point of view. Then,
a linearized model is developed which is valid for both PLLs. The
derived model significantly simplifies the stability analysis and the
parameter design. To fine-tune the PLL parameters, a systematic
design approach is suggested afterward, which guarantees a fast
dynamic response, a high disturbance rejection ability, and a ro-
bust performance. Finally, the simulation and experimental results
are presented to support the theoretical analysis.

Index Terms—Frequency estimation, orthogonal signal gen-
erator (OSG), phase estimation, phase-locked loop (PLL),
second-order generalized integrator (SOGI), single phase, small-
signal modeling.

I. INTRODUCTION

SYNCHRONIZATION with the utility grid is one of the
most important aspects in the control of an increasing

number of single-phase grid-tied power conditioning systems
such as active power filters [1], dynamic voltage restorers [2],
[3], uninterruptible power supplies [4], and distributed power
generation and storage systems [5].

Various synchronization techniques have been proposed in
recent years. Zero-crossing-detection-based methods [6], [7],
Kalman filtering [8], digital Fourier transform and its modifi-
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Fig. 1. Basic scheme of the single-phase PLL.

cations [9], [10], recursive weighted least squares estimation
algorithms [11], artificial neural networks [12], the methods
based on the concept of adaptive notch filter [13], [14], and
phase-locked loop (PLL)-based algorithms [3]–[5], [15]–[23]
are among the existing synchronization techniques.

Among the various synchronization techniques, PLLs have
found much attention, mainly due to their simplicity, robust-
ness, and effectiveness. A PLL is a closed-loop feedback con-
trol system, which synchronizes its output signal in frequency,
as well as in phase, with an input signal. Commonly, all PLL
techniques are composed of three building blocks, as shown
in Fig. 1: 1) phase detector (PD); 2) loop filter (LF); and
3) voltage-controlled oscillator (VCO). The main difference
among different PLLs typically lies in how the PD block is
implemented.

Mixers or product-type PD systems have a long history of
use, particularly in the field of communications [24]. A product-
type PD accepts two signals at two different frequencies (i.e.,
the reference and estimated frequencies) and generates a signal
at the difference and sum of the two input frequencies. De-
spite the simplicity, a product-type PD suffers from a major
drawback, i.e., generating a high-amplitude double-frequency
term at its output in steady-state conditions [4]. Depending on
the PLL’s bandwidth, this undesired term can cause steady-
state oscillations in the estimated phase/frequency. To over-
come this drawback, an effective solution, referred to as the
modified mixer PD, has been proposed by Thacker et al. [20].
In this method, the low-frequency oscillations in the estimated
phase/frequency are significantly suppressed by placing a peak
voltage detection scheme at the input of PLL and adding
another trigonometric term to the standard mixer PD.

Transformation-based PDs (T-PDs) are very popular in three-
phase systems, due to their simplicity and effectiveness [21].
However, for single-phase applications, because of the lack
of multiple independent input signals, their implementation is
more complicated [22], [23]. Thus, some techniques to create
an orthogonal signal from the original single-phase input signal
have been proposed. The earliest, and probably the simplest, or-
thogonal signal generator (OSG) is a transfer delay block [25].
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This technique gives satisfactory results if the grid frequency is
at its rated value. However, when the grid voltage undergoes
frequency variations, the output signal of the OSG will not
be exactly orthogonal, which results in errors in the estimated
phase/frequency by the PLL [26]. Another drawback of this
approach is its no filtering capability [26]. In [27], the orthog-
onal signal is generated by differentiating the original signal.
The noise amplification caused by derivative function is the
main drawback of this approach. A Hilbert-transform-based
OSG is presented in [28]. While this method provides satis-
factory performance under ideal operation conditions, it suffers
from two main drawbacks: poor performance under frequency-
varying conditions [29] and high computational burden [30]. In
[31], a Kalman-filter-based OSG is proposed, which provides a
desired performance even under frequency-varying conditions.
This approach suffers from high complexity [32]. An all-pass-
filter-based OSG is suggested by Kim et al. [33]. This technique
does not provide any filtering capability. Thus, it may not
be a proper choice under distorted grid conditions. A simple
and practical solution to generate the orthogonal signal is that
proposed by Ciobotaru et al. [34], in which a second-order
generalized integrator (SOGI) is utilized. Frequency adaptive
performance, low computational burden, and relatively high
filtering capability are the advantages of this method, which
make it a successful solution for harmonically distorted and
frequency-varying conditions. Another successful approach of
creating the orthogonal signal, as reported in [30] and [35], uses
the inverse Park transformation. This approach has the same
unique features as the SOGI-based OSG. It is worth noting that
a successful implementation of a T-PD, which does not require
the generation of an orthogonal signal, can be found in [36].

In recent years, the PLLs based on SOGI and inverse Park
OSGs (typically, referred to as the SOGI-PLL and the Park-
PLL, respectively) have received much attention, owing to
their simple digital implementation, low computational bur-
den, and desired performance under frequency-varying and
harmonically distorted grid conditions. Despite the wide accep-
tance and use of these PLLs in a variety of applications [4],
[37]–[40], no comprehensive design guidelines to fine-tune
their parameters have been reported, until now. For sure, some
design instructions can be found in the literature [4], [26], [34],
which do some simplifying assumptions such as neglecting
the interaction between the OSG block and the LF and VCO
blocks. Evidently, these simplified and suboptimal approaches
are not able to extract the maximum benefits out of the PLL
potentialities.

Through a detailed mathematical analysis, it is shown in
this paper that the SOGI-PLL and Park-PLL are equivalent
to each other, from the control point of view. Then, a small-
signal linearized model for both PLL structures is derived.
The derived model significantly simplifies the stability analysis
and the parameter design. The parameter design guidelines are
suggested afterward, ensuring a fast transient response, a high
disturbance rejection capability, and a robust performance.

The rest of this paper is organized as follows. Section II
introduces two PLL structures. The equivalence of the two PLL
structures is also demonstrated in this section. A linearized
model for both PLLs is then derived in Section III. A systematic

Fig. 2. SOGI-PLL. (a) Basic structure. (b) SOGI block.

design method for tuning of the PLL parameters is presented
in Section IV. Evaluation results are presented in Section V.
Finally, Section VI concludes this paper.

II. OVERVIEW OF THE TWO PLL STRUCTURES

In this section, a brief overview of the SOGI-PLL and the
Park-PLL is presented. In each case, the general structure
is presented, and its principle of operation is explained. The
equivalence of the two PLL structures is also demonstrated.

A. SOGI-PLL

Fig. 2(a) shows the general structure of the SOGI-PLL
proposed by Ciobotaru et al. [34], in which vi is the input
voltage, ω̂ and θ̂ (= ω̂t+ φ̂) are the estimated frequency and
angle, respectively, and ωff is the nominal frequency. The
implementation of the SOGI block is shown in Fig. 2(b), and
the Park (αβ → dq) transformation is defined as follows:

T =

[
cos θ̂ sin θ̂
− sin θ̂ cos θ̂

]
. (1)

From Fig. 2(b), the characteristic transfer functions of the
SOGI block can be derived as

Gα(s) =
vα(s)

vi(s)
=

kω̂s

s2 + kω̂s+ ω̂2
(2)

Gβ(s) =
vβ(s)

vi(s)
=

kω̂2

s2 + kω̂s+ ω̂2
(3)

where k (commonly referred to as the damping factor) is a
constant term.

Fig. 3(a) and (b) shows the Bode plots of transfer functions
(2) and (3), respectively, for three different values of the damp-
ing factor k and for ω̂ = 2π50 rad/s. Based on these plots, the
following can be concluded.

1) The transfer function Gα exhibits a bandpass filtering
behavior with a center frequency of ω̂. The width of the
passband is determined by the damping factor k and is
independent of ω̂. The lower k leads to a narrower band-
width and, hence, better filtering capability. If, somehow,
it is provided that ω̂ = ω (i.e., the estimated frequency is
equal to the real one), then vα will match in amplitude as
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Fig. 3. Bode plots of the characteristic transfer functions of the SOGI block
for different values of k: (a) Gα = vα/vi and (b) Gβ = vβ/vi.

well as in phase with the fundamental component of the
input voltage vi.

2) The transfer function Gβ exhibits a low-pass filtering
characteristic. Again, if ω̂ = ω, then vβ will match in
amplitude but with a 90◦ difference with the fundamental
component of the input voltage vi.

Let us assume that vi = V cos(ωt+ φ), where V , ω, and φ
are the input voltage amplitude, frequency, and phase, respec-
tively. Then, under frequency-locked condition (i.e., ω = ω̂)
and for k < 2, the mathematical expressions for vα and vβ ,
when the input voltage is suddenly applied, are

vα(t) =V cos(ωt+ φ)

+Aα cos

⎛
⎝ω

√
1−
(
k

2

)2

t+ φα

⎞
⎠ e−

kω
2 t (4)

vβ(t) =V sin(ωt+ φ)

+Aβ sin

⎛
⎝ω

√
1−
(
k

2

)2

t+ φβ

⎞
⎠ e−

kω
2 t (5)

where Aα, Aβ , φα, and φβ are functions of V , φ, and k.

Fig. 4. Park-PLL.

As expected, in steady state, vα and vβ are in phase and
quadrature phase with the input voltage, respectively. Applying
the transformation matrix (1) to (4) and (5) yields vd and vq
signals as expressed in

vd(t) =V cos(φ− φ̂)

+

⎡
⎣Aα cos

⎛
⎝ω

√
1−
(
k

2

)2

t+ φα

⎞
⎠ cos(ωt+ φ̂)

+Aβ sin

⎛
⎝ω

√
1−
(
k

2

)2

t+ φβ

⎞
⎠ sin(ωt+ φ̂)

⎤
⎦

× e−
kω
2 t (6)

vq(t) =V sin(φ− φ̂)

−

⎡
⎣Aα cos

⎛
⎝ω

√
1−
(
k

2

)2

t+ φα

⎞
⎠ sin(ωt+ φ̂)

−Aβ sin

⎛
⎝ω

√
1−
(
k

2

)2

t+ φβ

⎞
⎠ cos(ωt+ φ̂)

⎤
⎦

× e−
kω
2 t (7)

respectively. Note that the second terms on the right-hand side
of (6) and (7) decay to zero in steady state. Hence, for a small
phase difference φ− φ̂, vd yields an estimation of the input
voltage amplitude, and vq gives the phase error information.

To further attenuate the high-frequency noises, the PD
output signal, i.e., vq, is passed through the LF (here, a
proportional–integral controller). The nominal value of the
fundamental frequency (i.e., ωff ) is then added to the LF output
signal, to reduce the control effort and expedite the initial lock-
in process. The resulting signal (i.e., ω̂) is integrated afterward,
to generate the estimated angle θ̂.

B. Park-PLL

Fig. 4 shows the general structure of the Park-PLL [30], [35].
In this PLL, the required orthogonal signal (i.e., vβ) is generated
by applying the inverse Park transformation to the filtered direct
and quadrature signals, i.e., v′d and v′q, respectively. The PD
dynamics mainly depends on the characteristics of the low-pass
filters (LPFs) used to filter out the possible harmonics/noises
from vd and vq. The LPFs are of first order, as follows:

LPF (s) =
ωp

s+ ωp
(8)

where ωp is the cutoff frequency of the LPF.
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Fig. 5. Park-PLL. (a) Modified structure. (b) OSG block.

It is demonstrated in the next section that the Park-PLL and
SOGI-PLL are equivalent to each other. Thus, a more detailed
examination of the Park-PLL sounds unnecessary.

C. Equivalence of Two PLL Structures

To simplify the analysis, let us redraw the Park-PLL structure
as shown in Fig. 5(a), where the OSG block is shown in
Fig. 5(b). By making an analogy with SOGI-PLL [Fig. 2(a)],
one can see that the only difference between the two PLL struc-
tures lies in the PD block. In the following, it is demonstrated
that the OSG block in Fig. 5(b) is equivalent to the SOGI block
in Fig. 2(b).

In control system terms, the OSG block shown in Fig. 5(b)
is a single-input two-output system, which can be described in
time domain as expressed in[
v′α(t)
v′β(t)

]
=

[
cos θ̂ − sin θ̂
sin θ̂ cos θ̂

]
αβ←dq

×
{[

LPF (t) 0
0 LPF (t)

]
∗
{[

cos θ̂ sin θ̂
− sin θ̂ cos θ̂

] [
vα(t)
vβ(t)

]}}
low-pass filter dq←αβ

(9)

where ∗ is the convolution operator. Taking the Laplace trans-
form of both sides of (9) and performing some mathematical
manipulations, we can derive (10), shown at the bottom of the
page [41]. Substituting the LPF transfer function (8) into (10),
and performing some mathematical simplifications, gives[
v′α(s)
v′β(s)

]
=

[ ωp(s+ωp)
s2+2ωps+ω2

p+ω̂2

−ω̂ωp

s2+2ωps+ω2
p+ω̂2

ω̂ωp

s2+2ωps+ω2
p+ω̂2

ωp(s+ωp)
s2+2ωps+ω2

p+ω̂2

] [
vα(s)
vβ(s)

]
.

(11)

Substituting vα = vi and vβ = v′β into (11) yields the charac-
teristic transfer functions of the OSG block as given in

G′
α(S) =

v′α(s)

vi(s)
=

ωps

s2 + ωps+ ω̂2
(12)

G′
β(S) =

v′β(s)

vi(s)
=

ωpω̂

s2 + ωps+ ω̂2
. (13)

Comparing (12) and (13) with (2) and (3), respectively, one
can see that, for ωp = kω̂, the characteristic transfer functions
of the OSG block are the same as those of the SOGI block,
resulting in the same properties for the two PLL strategies.

It is worth remarking that, due to the variations of the input
frequency (and, hence, the estimated frequency), the equivalent
condition (i.e., ωp = kω̂) may not be exactly satisfied. How-
ever, since the grid frequency is typically allowed to change in
a narrow band (e.g., 47 Hz < ω < 52 Hz, as defined in [42]),
selecting ωp = kωff gives rise to similar properties for both
PLL techniques, as it will be shown later in Section V.

III. LINEARIZED MODEL

In this section, a linearized model for SOGI-PLL is pre-
sented, which is also valid for Park-PLL, due to the equivalence
of the two PLL structures. To derive the linearized model, the
following are assumed.

1) The estimated frequency is almost equal to the real one
(i.e., ω ∼= ω̂).

2) There is a small difference between the real and estimated
phase angles; thus, sin(φ− φ̂) ∼= φ− φ̂, and cos(φ−
φ̂) ∼= 1.

3) The input voltage is polluted with harmonics and is
represented by

vi = V cos(ωt+ φ) +
∑

h=3,5,7,...

Vh cos(hωt+ φh) (14)

where Vh and φh are the amplitude and phase angle of the
hth harmonic component, respectively.

First, let us neglect the harmonic components and consider
a pure sine wave as the input voltage. In this case, the PD
output signal (i.e., vq) is as expressed in (7). Note that, in (7),
the fluctuating terms decay to zero with a time constant of
2/kω and vq converges to V (φ− φ̂). Thus, for a step phase
change, the PD output signal can be approximated in Laplace
domain as

vq(s) ∼=
V

τps+ 1
φe(s) (15)

where φe = φ− φ̂ and τp = 2/kω.
Once the PD response to a pure sine wave is determined, the

next step is to take into account the harmonic components. Note

[
v′α(s)
v′β(s)

]
=

1

2

[
LPF (s+ jω̂) + LPF (s− jω̂) −jLPF (s+ jω̂) + jLPF (s− jω̂)
jLPF (s+ jω̂)− jLPF (s− jω̂) LPF (s+ jω̂) + LPF (s− jω̂)

] [
vα(s)
vβ(s)

]
(10)
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Fig. 6. Linearized model valid for both PLL structures.

that we are only concerned with the steady-state effect of the
input harmonics on the estimated variables by the PLL.

In steady-state condition, an input harmonic component (of
order h) leads to two different components (of orders h± 1)
after the PD. This can be mathematically expressed as

qh(t) =
(h+ 1)

2
Vh |Gβ(jhω)|

× cos
[
(h− 1)ωt+ φh − φ̂+ �Gβ(jhω)

]
− (h− 1)

2
Vh |Gβ(jhω)|

× cos
[
(h+ 1)ωt+ φh + φ̂+ �Gβ(jhω)

]
(16)

in which |Gβ(jhω)| and �Gβ(jhω) denote the magnitude and
the phase angle of the transfer function Gβ(s), respectively, for
s = jhω. Thus, to consider the input voltage harmonics as well,
the PD output signal must be rewritten as follows:

vq(s) ∼=
V

τps+ 1
φe(s) +D(s) (17)

where D(s) = L
∑

h=3,5,7,... qh(t), in which L denotes the
Laplace operator.

Based on the aforementioned analysis, the linearized model
of the SOGI-PLL can be obtained as shown in Fig. 6, where kp
and ki are the proportional and integral gains, respectively. This
model is also valid for Park-PLL, if the time constant τp is set
to 2/ωp. Note that D(s) appears as a disturbance input to the
PLL linearized model. It is worthwhile mentioning here that
the derived linearized model is highly accurate for a k within
the range of (0, 2) [or an ωp within the range of (0, 2ωff)].
Obviously, beyond this range, the accuracy of the model starts
to decrease.

IV. DESIGN GUIDELINES

In this section, a systematic design method to fine-tune the
PLL parameters is proposed. For the sake of simplicity, in
the PLL linearized model, the input voltage amplitude V is
assumed to be unity. This assumption can be simply realized
by dividing the PD output signal by an estimation of the input
voltage amplitude before it was fed into the LF. In this case, the
disturbance input to the linearized model [i.e., D(s)] must be
replaced by D′(s), as shown in Fig. 7, where D′(s) = D(s)/V .

A. Stability

The main focus of this section is to establish a criterion,
based on the extended symmetrical optimum method [43],
[44], so that the maximum possible stability margin for the

Fig. 7. Modified linearized model.

Fig. 8. Logarithmic plot of the open-loop transfer function.

PLLs is achieved. Application of this method to the PLL-based
frequency synthesizers can be found in [44].

From Fig. 7, considering kp/ki = τz , the open-loop transfer
function can be derived as

Gol(s) =
φ̂(s)

φe(s)

∣∣∣∣∣
D′(s)=0

=
ki(τzs+ 1)

s2(τps+ 1)
. (18)

From (18), the phase margin (PM) can be simply obtained as

PM = tan−1(τzωc)︸ ︷︷ ︸
φz

− tan−1(τpωc)︸ ︷︷ ︸
φp

(19)

where ωc is the crossover frequency and is determined by

ωc = kp
cos(φp)

sin(φz)
. (20)

Taking the derivative of (19) with respect to ωc, and equating
the result to zero, gives [44]

ωc =
1

√
τzτp

. (21)

Substituting (21) into (20) yields

ωc = kp. (22)

From (21) and (22), it can be concluded that, for given values
of τz and τp, the PLL PM is maximized, if the crossover
frequency ωc is equal to the proportional gain kp. This is
graphically shown in Fig. 8.

From (21), supposing that τz = b2τp, where b is a constant
term, we can obtain {

τzωc = b
τpωc =

1
b .

(23)
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Fig. 9. PM as a function of b.

Substituting (23) into (19) and after some mathematical
manipulations, we derive

PM = tan−1 b2 − 1

2b
. (24)

Fig. 9 shows the PM as a function of b. It can be seen that
a higher b results in a higher PM and, hence, a more stable
operation.

Typically, a PM within the range of 30◦–60◦ is recommended
[45]. To achieve this, we require that 1.732 < b < 3.732.

B. Transient Performance

The main focus of this section is to minimize the PLL settling
time in response to the phase and frequency step changes.

Substituting (22) and (23) into (18), the open-loop transfer
function Gol(s) can be rewritten as

Gol(s) =
bω2

cs+ ω3
c

s2(s+ bωc)
. (25)

Notice that the open-loop transfer function in (25) describes a
type-2 system (i.e., there are two poles at the origin). Hence, the
PLL tracks both phase jump (step input) and frequency jump
(ramp input) with zero steady-state error [24].

From Fig. 7, the phase error transfer function relating the
phase error φe to the phase input φ can be obtained as

Ge(s) =
φe(s)

φ(s)

∣∣∣∣∣
D′(s)=0

=
1

1 +Gol(s)
. (26)

Substituting (25) into (26) and after some mathematical
manipulations, we have

Ge(s) =
s2(s+ bωc)

(s+ ωc) (s2 + (b− 1)ωcs+ ω2
c )
. (27)

Supposing that ωc = ωn and ζ = (b− 1)/2, (27) can be
rewritten as

Ge(s) =
s2 (s+ (2ζ + 1)ωn)

(s+ ωn) (s2 + 2ζωns+ ω2
n)

(28)

where ωn is the natural frequency and ζ is the damping factor.
Using (28), the Laplace transforms of the phase error in

response to the phase and frequency jumps can be simply
obtained as expressed in (29) and (30), respectively

φΔφ
e (s) =

Δφ

s
Ge(s) =

s (s+ (2ζ + 1)ωn)Δφ

(s+ ωn) (s2 + 2ζωns+ ω2
n)

(29)

φΔω
e (s) =

Δω

s2
Ge(s) =

(s+ (2ζ + 1)ωn)Δω

(s+ ωn) (s2 + 2ζωns+ ω2
n)

. (30)

Taking the inverse Laplace transform from (29) and (30)
yields (31) and (32), respectively, shown at the bottom of
the page [44].

From (31) and (32), it is clear that, for both phase and
frequency jumps and for all values of ζ, the PLL transient-
response speed is proportional to the natural frequency ωn.
Thus, to achieve a faster transient response, ωn must be chosen
as high as possible. However, a high value of ωn degrades the
disturbance rejection ability of the PLL. Hence, one has to find
a satisfactory compromise.

It was shown in the previous section that the proper operation
of the PLL in terms of stability requires 1.732 < b < 3.732
and, hence, 0.366 < ζ < 1.366. It can be shown simply that,
for this range of variations, ζ has a relatively little effect on the
disturbance rejection ability of the PLL. Therefore, ωn must be
chosen to meet the disturbance rejection requirements of the
PLL, and ζ must be chosen to provide a fast transient response
as well as a stable operation.

Fig. 10 shows the normalized simulated settling time as a
function of ζ, for both phase jump (solid line) and frequency
jump (dotted line). The normalizing factor is the natural fre-
quency ωn. Clearly, for underdamped situations (i.e., ζ < 1),
almost identical settling times can be observed for both phase

φΔφ
e (t) =

⎧⎪⎪⎨
⎪⎪⎩

Δφ
ζ−1

[
ζe−ωnt − e−ζωnt cos(ωnt

√
1− ζ2)

]
, ζ < 1

Δφe−ωnt
(
1 + ωnt− ω2

nt
2
)
, ζ = 1

Δφ
ζ−1

[
ζe−ωnt − 1

2e
−(ζ−

√
ζ2−1)ωnt − 1

2e
−(ζ+

√
ζ2−1)ωnt

]
, ζ > 1

(31)

φΔω
e (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δω
(1−ζ)ωn

[
ζe−ωnt + e−ζωnt

{
−ζ cos(ωnt

√
1− ζ2) +

√
1− ζ2 sin(ωnt

√
1− ζ2)

}]
, ζ < 1

Δω
ωn

e−ωnt
(
ωnt+ ω2

nt
2
)
, ζ = 1

Δω
(1−ζ)ωn

[
ζe−ωnt − ζ+

√
ζ2−1

2 e−(ζ−
√

ζ2−1)ωnt − ζ−
√

ζ2−1

2 e−(ζ+
√

ζ2−1)ωnt

]
, ζ > 1

(32)
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Fig. 10. Normalized simulated settling time as a function of ζ for both (solid
line) phase jump and (dotted line) frequency jump.

and frequency jumps. However, for overdamped situations (i.e.,
ζ > 1), a longer settling time is observed for the frequency
jump. The minimum settling time for both phase and frequency
jumps happens approximately at ζ = 0.7. Thus, in terms of
settling time, ζ = 0.7 is optimum.

To make sure that ζ = 0.7 is also a good choice in terms of
stability, let us determine the PM for this value of ζ. Substitut-
ing b = 2.4 (which corresponds to ζ = 0.7) into (24) gives

PM |b=2.4 = 44.76◦ (33)

which can be interpreted as a perfect stability.

C. Disturbance Rejection

The aim of this section is to select the natural frequency
ωn in such a way that a desired attenuation in all disturbance
frequencies (i.e., 2ω, 4ω, 6ω, . . .) is achieved.

Due to the low-pass filtering characteristics of the PLL,
providing a sufficient attenuation at the lowest disturbance
frequency (here, 2ω) guarantees a high attenuation at the rest
of them. The proper attenuation at 2ω (which depends on the
input voltage distortion level and also the application where the
PLL is used) is selected to be 20 dB, in this paper.

From (16) and remembering that D′(s) = D(s)/V , the
amplitude of the double-frequency disturbance input to the PLL
linearized model can be obtained as

Vd2 =2
V3

V
|Gβ(j3ω)| = 2

V3

V

∣∣∣∣ kω2

s2 + kωs+ ω2

∣∣∣∣
s=j3ω

=2
V3

V

∣∣∣∣ k

−8 + j3k

∣∣∣∣ . (34)

Substituting k = 2/τpω = 2bωn/ω into (34) gives

Vd2 =

∣∣∣∣ 2bωn

−4ω + j3bωn

∣∣∣∣ V3

V
. (35)

Once Vd2 is determined, the next step is to derive the distur-
bance transfer function, relating the estimated phase φ̂(s) to the

Fig. 11. PLL attenuation at 2ω as a function of ωn.

disturbance input D′(s). From Fig. 7, it can be simply obtained
as follows:

Gd(s) =
φ̂(s)

D′(s)

∣∣∣∣∣
φ(s)=0

=
(kps+ ki)(τps+ 1)

τps3 + s2 + kps+ ki
. (36)

Substituting (22) and (23) into (36) and after some ar-
rangements, the disturbance transfer function Gd(s) can be
rewritten as

Gd(s) = ωn
(s+ ωn/(2ζ + 1)) (s+ ωn(2ζ + 1))

(s+ ωn) (s2 + 2ζωns+ ω2
n)

. (37)

Based on (35) and (37), the attenuation provided by the PLL
at 2ω can be obtained as

Atten@2ω =

∣∣∣∣ 2bωn

−4ω + j3bωn

∣∣∣∣ |Gd(j2ω)| . (38)

Fig. 11 shows (38) as a function of ωn for ζ = 0.7 (b = 2.4).
As highlighted, to achieve 20-dB attenuation at 2ω, we require
that ωn = 2π21.88 rad/s.

Considering that b = 2.4 and ωc = 2π21.88 rad/s, the PLL
parameters can be obtained as⎧⎪⎪⎨

⎪⎪⎩
kp = ωc = 137.5

ki =
ω2

c

b = 7878

τp = 1
bωc

= 3.03e− 3 s.

(39)

From the designed time constant τp, we can simply determine
k and ωp, as given in (40) and (41), respectively

k =
2

τpωff
= 2.1 (40)

ωp =
2

τp
= 660 rad/s = 105 Hz. (41)

One important issue that needs to be addressed here is the
presence of a dc component in the input signal, which can be
generated due to the digital quantization/rounding errors [36],
[46], measurement devices [47], and temporary system faults
[48]. Using a simple mathematical analysis, it can be shown
that, in the presence of such a component, the loop suffers
from a disturbance input at the fundamental frequency. In this
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Fig. 12. Experimental setup.

Fig. 13. Simulation results for SOGI-PLL and Park-PLL when the in-
put voltage undergoes frequency step changes: (a) Estimated frequency and
(b) phase error.

case, the previously suggested crossover frequency for PLLs
may not be suitable. Here, one can simply consider the lowest
disturbance frequency at the fundamental frequency and select
ωc in accordance with the required attenuation in this frequency.
For example, providing an attenuation of 15 dB (or 20 dB) at
the fundamental frequency requires a crossover frequency of
9.3 Hz (or 7 Hz). As one can see, at the presence of a dc
component, it may be hard to meet a well-balanced tradeoff
between the degree of dc rejection and system dynamics.

Some other techniques to deal with the problem of a dc
component in the input signal can be found in [36], [46], [49],
and [50].

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the proposed design procedure has been
evaluated through extensive simulations and experimental tests.
Simulations are carried out in Matlab/Simulink environment,
and experiments are based on a TMS320F28335 floating-point
150-MHz digital signal processor (DSP) from Texas Instru-
ments. The sampling frequency has been fixed to 10 kHz, and
the nominal frequency has been set to 50 Hz. To ensure the
discrete accuracy, the trapezoidal method has been used for
discretizing the continuous system.

Fig. 14. Experimental results for SOGI-PLL and Park-PLL when the input
voltage undergoes frequency step changes: Ch1 and Ch2 denote the estimated
frequency (3 Hz/div), and Ch3 and Ch4 denote the phase error (6◦/div).

Fig. 15. Simulation results for SOGI-PLL and Park-PLL when the input
voltage undergoes a phase jump of 40◦: (a) Estimated frequency and (b) phase
error.

The block diagram of the experimental setup is shown in
Fig. 12. In experimental verifications, the desired input signal
is generated internally in the DSP. It is then sent to the external
digital-to-analog (D/A) converter AD7808 via the serial periph-
eral interface to generate the analog test signal. This waveform
is then acquired by the DSP to perform the PLL algorithm. The
selected waveforms are also sent to the octal D/A converter to
be displayed by the digital oscilloscope.

A. Frequency Variation

Figs. 13 and 14 show the simulation and experimental results,
respectively, for both Park-PLL and SOGI-PLL, when the input
voltage undergoes frequency step changes (alternating between
47 and 52 Hz). A similar performance for both PLLs can
be observed in simulated as well as experimental waveforms.
The frequency settling time is about 45 ms, i.e., less than
2.5 cycles of the fundamental frequency.
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Fig. 16. Experimental results for SOGI-PLL and Park-PLL when the input
voltage undergoes a phase jump of 40◦: Ch1 and Ch2 denote the estimated
frequency (5 Hz/div), and Ch3 and Ch4 denote the phase error (25◦/div).

Fig. 17. Simulation results for SOGI-PLL and Park-PLL under distorted grid
conditions: (a) Input voltage and (b) phase error.

B. Phase Jump

Figs. 15 and 16 show the simulation and experimental results,
respectively, when the input voltage undergoes a phase jump of
40◦. The responses obtained for the two PLLs are again close.
The phase error decays to zero in about 47 ms (i.e., less than
2.5 cycles).

C. Harmonic Distortion

The performance of the two PLLs in distorted grid condi-
tions is investigated in this section. A 70% clipped sine wave
(13.76% total harmonic distortion) is considered as the input
signal in this study. Figs. 17 and 18 show the steady-state
simulated and experimental waveforms, respectively. It can
be seen that the two PLLs exhibit well-matched responses in
steady state. A peak-to-peak phase error of 1.3◦ is observed,
which is because of the presence of harmonics in the input
voltage.

Fig. 18. Experimental results for SOGI-PLL and Park-PLL under distorted
grid condition: Ch1 denotes the input voltage (460 mV/div), and Ch3 and Ch4
denote the phase error (1◦/div).

VI. CONCLUSION

Two advanced single-phase PLL structures, known as
Park-PLL and SOGI-PLL, have been deeply analyzed in this
paper. Through a detailed mathematical analysis, it has been
shown that these two PLLs are equivalent to each other, from
the control point of view. Then, a linearized model for both
PLLs has been developed. A systematic design approach for
tuning of the PLL parameters has been proposed afterward,
which provides a fast transient response, a high disturbance
rejection capability, and a robust performance. Theoretical eval-
uations have been finally verified through extensive simulation
and experimental studies.
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