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Abstract: A fundamental understanding of crystal growth
dynamics during directional solidification of multicrys-
talline Si (mc-Si) is crucial for the development of crystal
growth technology for mc-Si ingots for use in solar cells.
In situ observation of the crystal/melt interface is a way
to obtain direct evidence of phenomena that occur at
a moving crystal/melt interface during growth. In this
review, some of the phenomena occurring in the solidifi-
cation processes of mc-Si are introduced based on our
in situ observation experiments, after a brief introduction
of the history of the development of crystal growth tech-
nologies to obtain mc-Si ingots for solar cells.

Keywords: solidification, crystal/melt interface, semicon-
ductor, grain boundary

1 Introduction

To solve the problem of global warming, decarbonization
policies are being promoted all over the world, and it is
expected that the use of solar power generation will
further expand in the future. Recently, solar cells using
various materials such as perovskites are being actively
researched; but in practice, crystalline Si solar cells
accounted for about 95% of the total solar cell production
in 2019 [1]. Considering manufacturing cost, safety, reli-
ability, and abundance of resources, crystalline Si solar
cells are expected to continue to be the main product in
the future. Single-crystal Si (mono-Si) and multicrystal-
line Si (mc-Si) are used as substrate materials for crystal-
line Si solar cells, and recently the production of mono-Si

solar cells has been increasing owing to a decrease in
the production cost of mono-Si ingots grown by the
Czochralski (CZ) method [1]. However, comparing the
weight of the ingot, mc-Si ingots grown by directional
solidification in a crucible are four to five times larger
than mono-Si ingots grown by the CZ method [1]. There-
fore, in the future, if the quality of mc-Si ingots is
improved further, their use may increase again. Control
of the “grain structure” in mc-Si ingots, which contain
not only a distribution of grain sizes and grain orienta-
tions but also a distribution in the density of crystal
defects, is the key for improving their quality. For the
development of crystal growth technology for mc-Si ingots,
a fundamental understanding of the crystal growthmechan-
isms is crucial.

In this review, first, the history of the growth tech-
nology for mc-Si ingots is briefly described, and then
some of the phenomena that occur during the directional
solidification process will be explained based on the
results of our in situ observation experiments.

2 Growth of mc-Si ingots for solar
cells

The following is a brief introduction to the history of the
development of the growth technology for mc-Si ingots.
Research on the directional solidification of mc-Si ingots
for solar cells began in earnest in the late 1970s. Carbon
(graphite) or silica crucibles were used for the directional
solidification of mc-Si ingots [2–10]. Because a silicon
melt is very reactive toward the crucible materials, silicon
nitride powders were used to coat the inside wall of the
crucible as a mold release agent to prevent sticking and
cracking of the ingot [3]. Silicon nitride-coated crucibles
are commonly used for the growth of mc-Si ingots at
present. In earlier research, the purity of the Si feedstock
was not high, so the conversion efficiency of solar cells
based on mc-Si substrates was around 15% in the 1980s
[11]. The purity of Si feedstock has been improved [12,13],
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and a stable supply of high-purity feedstock is available
for the growth of mc-Si; thus, the energy conversion effi-
ciency of mc-Si solar cells has been improved.

Owing to numerous studies, it has been recognized
that various types of crystal defects in mc-Si ingots, such
as metallic impurities, dislocation clusters, and grain
boundaries, degrade the properties of solar cells [14–42]
because they act as recombination centers for photo-car-
riers. Therefore, a decrease in the defect density of mc-Si
ingots has been demanded, and new growth methods for
controlling the “grain structure” of mc-Si ingots have
been proposed and developed. Here, a few of them are
introduced. Commonly, in the growth of mc-Si ingots,
nucleation of crystal grains occurs on the bottom wall
of the crucible. The impingement of grains forms the
initial grain structure of the mc-Si ingot, and then the
ingot is directionally grown toward the upper side, as
schematically shown in Figure 1(a). In 2006, the “den-
dritic casting method” was proposed where dendrite
growth is promoted along the bottom wall of the crucible
in the early stage of directional solidification, as shown in
Figure 1(b) [43,44]. Because the growth rate of the den-
drite grains is much faster than that of normal crystal
grains [43,45,46], a grain structure with larger crystal
grains is formed at the bottom of the ingot. This structure
formed on the bottom wall of the crucible will act as a
“seed” for the following directional solidification. Around

the same time, BP Solar developed the “mono casting
method” where a single crystal seed is placed on the
bottom of the crucible in advance; thus, a mono-Si ingot
would be grown by directional solidification from the
seed, as shown in Figure 1(c) [47]. Methods that use sev-
eral seed set on the bottom of the crucible have been
developed [48–51], which were derived from the mono
casting method. Also, a method that involves seeding
from the top of the melt in the crucible has been studied
to promote crystallization inside the melt [52–54]. In the
dendritic-casting and seed-assisted growth methods, the
aim is to obtain a grain structure with larger crystal
grains to reduce the grain boundary density. However,
Lan’s group proposed mc-Si ingots with smaller crystal
grains and showed that the minority carrier lifetime was
improved compared with that of mc-Si with larger grains
[55,56]. This was mainly due to the reduction of disloca-
tion clusters in the grains; the large number of random
grain boundaries may have served as sinks for disloca-
tion clusters in the solidification of these mc-Si ingots.
The mc-Si ingots with smaller crystal grains are referred
to as “high performance (HP)mc-Si.” In the growth of HP
mc-Si ingots, tiny beads (Si, SiO2, or other materials) are
set on the bottom of the crucible to increase the nuclea-
tion sites at the beginning of solidification, which leads to
the formation of a grain structure with smaller grains, as
shown in Figure 1(d). At present, HP mc-Si is widely used

Figure 1: Directional solidification processes in various methods for producing mc-Si ingots for solar cells: (a) conventional directional
solidification method, (b) dendritic casting method, where dendrite growth is promoted along the bottom wall of the crucible to create a
grain structure with large grains, (c) mono casting method, where a single crystal is preset on the bottom wall of the crucible to grow a
single crystal ingot in the crucible, and (d) HP mc-Si growth, where tiny beads are preset on the bottom wall of the crucible to enhance
nucleation to obtain a grain structure with small grains.
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commercially. The energy conversion efficiency of solar
cells based on HP mc-Si has reached more than 19%
[57–59]. The development efforts for each growth method,
especially regarding the recent development of seed-assisted
growth, are reviewed well in ref. [60].

As outlined above, control of the grain structure in
the solidification process of mc-Si is the key for obtaining
high quality ingots. Usually, the bottom structure will not
be maintained at the top of the ingot, because the micro-
structure continuously changes during directional solidi-
fication. To control the microstructure during directional
solidification, it is crucial to understand the fundamental
phenomena that occur during the solidification processes.
In the next section, some of these phenomena will be
explained.

3 Crystal growth dynamics in
solidification processes of mc-Si
ingots

3.1 In situ observation system

In our earliest study on observing the solidification pro-
cesses of Si [61], we used a confocal scanning laser micro-
scope with an infrared image furnace, which had been
established for observing solidification processes in iron/
steel materials [62,63]. In that system, the available sample
size was limited in a few millimeters and a ceramic crucible
was used. So that we can observe various phenomena that
occur in the solidification processes of Si, we developed
an in situ observation system which consists of an optical
digital microscope and a growth furnace, as shown in

Figure 2 [64,65]. In this system, we usually use a silica cru-
cible with a size of 22mm × 12mm × 11mm. The upper sur-
face of the sample is observed through a silica window on
the upper part of the furnace. The temperature inside the
furnace is controlled by two carbon heaters, and the
temperature gradient can be controlled by controlling
the power output of the heaters. When we would like
to observe a crystal/melt interface during directional
solidification, crystal growth can be initiated from one
side of the crucible by controlling the temperatures of
the two carbon heaters.

Another method for observing the crystal/melt inter-
face of Si has been developed, the X-ray imaging method,
which is also a powerful tool for fundamental studies on
mc-Si [66–70].

3.2 Growth shape of crystal grains

At the beginning of directional solidification without any
seed crystals, nucleation and growth of the crystal grains
occur on the bottom wall of the crucible, as shown in
Figure 1(a). During grain growth of the nuclei, the shape
of the crystal is determined by the anisotropy of the
growth rate among crystallographic planes; that shape
is called the “growth shape,” whereas the “equilibrium
shape” of a crystal grain is determined by minimization of
the crystal/melt interfacial energy under constant volume
[71,72]. Observation of the equilibrium shape of Si in the
melt was attempted experimentally [73], and it has been
investigated using simulations [74–76]. Figure 3 shows the
typical growth shapes of Si crystal grains with different
upper orientations [73,77]. Because the growth rate of {111}
planes is the lowest, the growth shape is bounded by {111}
planes, as schematically shown in Figure 3. Therefore, the

Figure 2: In situ observation system consisting of a crystal growth furnace and a digital optical microscope: (left) picture of the system and
(right) schematic image of the inside of the furnace.
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observed shape of the crystals on the crucible wall is deter-
mined by the crystallographic orientation in the upper direc-
tion, as seen in Figure 3.

However, the dendritic growth often appears in Si
melts even at low undercooling [45,78]. When a Si crystal
(or nucleus) contains parallel twin boundaries [79], the
crystal grows in a dendritic shape, as shown in Figure 4.
This is a so-called “faceted dendrite.” The growth shape
and the growth mechanism of a faceted dendrite are very
different from the dendrites of metallic alloys. The Si-
faceted dendrite contains at least two parallel twin bound-
aries at the center and, preferentially, grows in the <112>
or <110> direction, which is determined by the growth
mechanism related to the formation of reentrant corners
at the growth front of the faceted dendrite. The details of
the growth mechanism of a faceted dendrite are given in
earlier studies [80,81].

Such faceted dendrite growthwas also directly observed
for the compound semiconductor GaSb, and it was found
that its growth mechanism is similar to that of Si [82]. The
growth rate of the faceted dendrites is much higher than that
of normal crystal grains, and thus the grain size becomes
larger when dendrite growth is promoted along the bottom
wall of the crucible in the early stage of directional solidifi-
cation, which is the basic idea behind the dendritic casting
method [43]. However, in HP mc-Si, the grain size must be
kept small and homogeneous. To realize that grain structure,
the nucleation frequency in the early stage of solidification
must be increased. To enhance the number of nucleation
events, tiny Si (or other materials) beads are preset on the
bottom wall of the crucible [55–59], as show in Figure 1(d).

3.3 Morphology of crystal/melt interface

During the directional growth process of the mc-Si ingot,
it is significant to control the entire interface shape, as
shown in Figure 5(a), because it influences on the distri-
bution of thermal stress and the defect density in an
entire ingot. To control the entire interface shape macro-
scopically, not only the temperature gradient in the
furnace and the growth rate but also the shape of the
crucible and the furnace design should be considered.
One can refer to other literature for details on control of
the macroscopic crystal/melt interface shape [83–89].

Here, we would prefer to consider the microscopic
(submillimeter scale) shape of the crystal/melt interface
for Si.

First, we consider the case of a crystal that does not
contain grain boundaries (single crystal) [81,90–92]. Even
if the interface looks macroscopically flat, it can have a flat
or zigzag shape on the microscopic scale, as schematically
shown in Figure 5(b). Also, it should be noted that even if
the interface shape looks microscopically flat, it may have
a rough interface or a smooth interface at the atomic level,
as schematically shown in Figure 5(c). In the case of Si,
according to Jackson’s criteria [93,94], planes other than
{111} planes are atomically rough, and only the {111} plane
is an atomically smooth “facet plane.”

When the plane of the crystal/melt interface is a
rough plane, the microscopic interface shape is kept flat
under the condition that the degree of undercooling of
the melt in front of the crystal/melt interface is smaller
than that at the crystal/melt interface. Generally, in the
directional solidification process of mc-Si ingots, the tem-
perature gradient in the furnace is positive to the direc-
tion of the solidification and the growth rate is low

Figure 3: Growth shape for a normal Si crystal with different upper
orientations. The shape is bounded by {111} planes because they
have the lowest growth rate [73,77].

Figure 4: Dendrites growing in the Si melt.
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enough, and thus a flat interface would be kept micro-
scopically. If the growth rate increases and the degree of
undercooling of the melt becomes larger than that at the
crystal/melt interface, the interface shape transforms
from flat to zigzag, as schematically shown in Figure 6(a).
However, in the case of a facet plane, the microscopic inter-
face shape remains flat even as the growth rate is increased,
as shown in Figure 6(b).

The transformation of a flat interface to a zigzag one
in a rough plane is known as the Mullins–Sekerka interface
instability [95]. This is explained as interface instability that
occurs when the temperature gradient in the melt at the
crystal/melt interface is negative in the growth direction,
as shown in Figure 7. It can be considered that the flat
interface is often perturbed during growth, and when per-
turbation is introduced to a planar interface, the degree of
undercooling at the top of the perturbed part is larger than
that at the bottom part under a negative temperature gra-
dient, as schematically shown in Figure 7(a). Therefore, the
growth rate at the top part is higher than that at the bottom
part, which leads to amplification of the perturbation. The

amplified perturbed part will be bounded by {111} planes
finally in the case of Si because these planes have the lowest
growth rate, which is similar to the evolution of the growth
shape of crystal grains (see Figure 3). Actually, this trans-
formation from a flat to a perturbed to a zigzag shape has
been directly observed, as shown in Figure 7(b). However,
when the temperature gradient is positive, the growth rate
at the top part of the perturbation is lower than that at the
bottom part; therefore, the bottom part will catch up with
the top part, and a flat interface is maintained. In the case
that the crystal/melt interface is a facet plane, which is the
{111} plane of Si, the flat interface is already bounded by the
plane with the lowest growth rate, and thus a change of the
interface shape does not occur even for a negative tempera-
ture gradient, as shown in Figure 6(b).

The critical growth rate where the temperature gradient
in the melt changes from positive to negative is dependent
on the temperature gradient in the furnace. Here, it should
be noted that when the temperature gradient in the furnace
is set to be positive, the temperature gradient in the melt
can be negative at a higher growth rate due to release of the

Figure 5: Schematic images of crystal/melt interface shapes on various scales: (a)macroscopic images of concave, flat, and convex-shaped
crystal/melt interfaces during directional solidification, (b) microscopic images of flat and zigzag-shaped crystal/melt interfaces, and
(c) atomic images of rough and smooth crystal/melt interfaces.
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Figure 6: Transformation of microscopic interface shape for atomically rough and smooth planes [90]: (a) the case of a rough plane. The flat
interface is transformed to a zigzag interface with increasing growth rate due to the interface instability and (b) the case of a smooth plane
(facet plane). The flat interface is maintained even at a higher growth rate.

Figure 7: Process of interface instability: (a) schematic image of the interface at the instability with a temperature gradient at the interface.
Under a negative temperature gradient, the perturbation introduced into the flat interface is amplified, and a zigzag interface is formed
finally and (b) actual images of the interface at the point of interface instability for a Si single crystal.
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latent heat of crystallization. In our experimental set-up, the
one-dimensional thermal field in the crystal and melt along
the crystal growth direction, Tc,m, can be calculated by
equation (1a–c) [90],

⎜ ⎟( ) ⎛
⎝

⎞
⎠

= − + + +T x A x
l

Gx
ρ C GVl l

k
Texp ,p

ic,m c,m
c,m

c,m q Si

q

c,m

(1a)

( )
=

/ − / + /

l
ρ C V k ρ C V k k k l l

2
8

,c
c Pc c c Pc c

2
q c q Si

(1b)

( )
=

/ + / + /

l
ρ C V k ρ C V k k k l l

2
8

,m
m Pm m m Pm m

2
q m q Si

(1c)

where ρc,m, CPc,m, kc,m, kq, lq, lSi, and V are the heat capa-
city of the Si crystal and melt, the thermal conductivity of
the Si crystal and melt, the thermal conductivity of the
quartz plate, the thickness of the quartz plate, the thick-
ness of the Si crystal, and the growth velocity, respec-
tively. G is the temperature gradient in the furnace, and
Ti is the furnace temperature at the interface position.
Ac,m is a constant determined by the boundary condi-
tions: these are energy conservation at the crystal-melt
interface described as ΔHV = kc(∂Tc/∂x)x=0 – km(∂Tm/
∂x)x=0, where ΔH is the latent heat of Si, and temperature
continuity at the crystal-melt interface, which is consid-
ered to be at the melting temperature Tmp, and thus is
described as (Tc)x=0 = (Tm)x=0 = Tmp. In the calculations,
the values of lq, lSi, and G are based on our experimental
values, and the other physical properties of Si used are
based on those reported in an earlier study [96]. The
temperature gradient at the crystal/melt interface (x = 0),
G0, is defined as follows:

=

∂

∂

= − +

=

G
T

x
A
l

G.
x

0
c,m

0

c,m

c,m
(2)

The critical growth rate Vcri is defined as the growth
rate where the temperature gradient in the melt at the
interface changes from positive to negative, which can
be calculated from the condition G0 = 0 using equation (2).
Figure 8 shows the calculated temperature field for various
growth rates [90]. It is shown that when the growth rate is
low, the temperature gradient in the melt remains positive,
whereas it becomes negative at a high growth rate. The
calculated critical growth rate is Vc = 109 µm·s−1 [90], and
the Vc obtained by our in situ observations was 100 µm·s−1 <
Vc < 150 µm·s−1 [90,92].

Next, we consider the interface instability for a crystal
containing grain boundaries. Figure 9 shows a crystal/melt
interface containing (a) a small-angle grain boundary and
(b) a Σ3 twin boundary [97]. It is clearly observed that the

instability started at portions of the grain boundary in both
cases, whereas the instability began over the entire inter-
face at the same time in the case of single-crystal Si, as
shown in Figure 7(b). The critical growth rate for initiation
of instability at the grain boundary was found to be
smaller than that in the case of a single crystal [97]. It
was also shown that the critical growth rate was different
depending on the characteristics of the grain boundary,
such that VR < VSAG < VΣ3, where VR, VSAG, and VΣ3 are
the critical growth rates at a random grain boundary,
small-angle grain boundary, and Σ3 twin boundary, respec-
tively [97].

Here, we consider the reasonwhy the interface instability
is initiated at a position on a grain boundary. As explained
above, the formation of a negative temperature gradient in the
melt at the interface causes interface instability. In case of
a single crystal, the instability occurs over the entire inter-
face at the same time due to the homogeneous thermal
field. However, when a grain boundary exists on the inter-
face, it is considered that the thermal field is locally dif-
ferent around the position of the grain boundary. Factors
that affect the thermal field at the crystal/melt interface are
the latent heat of crystallization, and diffusion of the gen-
erated latent heat from the crystal/melt interface into the
crystal and the melt when the temperature gradient in the
furnace is fixed. As considered that the crystal imperfec-
tions such as grain boundaries affect the electric conduc-
tion [98], we can imagine that the thermal conductivity at
a grain boundary is lower than that within the grain due to
the disordered atomic structure at the grain boundary, as
schematically shown in Figure 10. However, the thermal

Figure 8: Calculated thermal field in the growth direction at various
growth rates [90]. When the growth rate is low, the temperature
gradient in the melt at the interface is positive, whereas it becomes
negative at a high growth rate. The calculated critical growth rate
where the temperature gradient changes from positive to negative is
109 µm·s−1 under our experimental conditions.
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conductivity in the melt would not be changed even when
the crystal contains grain boundaries.

However, to our knowledge, the thermal conductivity
at grain boundaries at the melting temperature has not
been reported yet. Therefore, we estimated the thermal
conductivities at grain boundaries from our in situ experi-
ments [97]. As explained above, we can estimate the cri-
tical growth rate from equation (2)when all of the physical
properties in equation (1a–c) are known. Conversely, when
one physical value in equation (1a–c) is unknown and
the critical growth rate is obtained by experiment, the

unknown value can be calculated. Here, the thermal con-
ductivity at grain boundaries at the melting temperature is
unknown, but we can directly measure the critical growth
rate at the instability at the grain boundary position [97].
Therefore, it was possible to calculate the thermal conduc-
tivity at each grain boundary. However, it should be noted
that the width of the “grain boundary area” that affects
the thermal field is not known. Therefore, the obtained
thermal conductivity might be an “effective” thermal con-
ductivity in the area including a grain boundary. From the
in situ observations, the critical growth rates of a small-
angle grain boundary, Σ3 twin boundary, and random
grain boundary were found to be 110, 119, and 37 µm·s−1,
respectively [97]. In the case of a single crystal with no
grain boundaries, the critical growth rate was 139 µm·s−1
[97]. The temperature gradient at the interface G0 must be
zero at the critical growth rate. Therefore, the effective
thermal conductivity at each grain boundary is determined
so that the G0 = 0 at the critical growth rates by using
equation (2). The obtained effective thermal conductivities
at the melting temperature were 1.6 × 10−2, 1.9 × 10−2, and
2.7 × 10−3 W·K−1·mm−1 for small-angle, Σ3, and random
grain boundaries, respectively. The thermal conductivity
of a single crystal was obtained as 2.2 × 10−2 W·K−1·mm−1.
This shows that a negative temperature gradient is locally
formed at a portion of the grain boundary due to the lower

Figure 9: In situ observations of interface instability for Si crystals containing grain boundaries [97]: (a) crystal with a small-angle grain
boundary and (b) crystal with Σ3 twin boundaries. In both cases, the interface instability was initiated at the grain boundary position.

Figure 10: Schematic image of thermal diffusivity at a crystal/melt
interface with a grain boundary [97]. The thermal conductivity at the
grain boundary is lower than that within the grain due to the dis-
ordered atomic configuration.
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thermal conductivity, which promotes the instability at the
grain boundary position on the crystal/melt interface.

3.4 Twin boundary formation at the grain
boundary groove

In a solidified mc-Si ingot, it is often observed that Σ3{111}
twin boundaries are generated from a large-angle grain

boundary. Here, we consider the underlying mechanism
of twin boundary formation at a grain boundary at a
crystal/melt interface. Duffar and Nadri theoretically deter-
mined that a {111} facet may appear at the grain boundary
groove on the crystal/melt interface, and twin nuclea-
tion occurs on the {111} facet at the groove [99]. The
shape of the grain boundary groove was observed directly,
and a faceted groove was confirmed at grain boundaries
other than the Σ3{111} twin boundary, as shown in Figure 11
[100].

Figure 11: Shape of crystal/melt interfaces for various grain boundary characteristics [100]: (a) an interface with Σ3 twin boundaries. A grain
boundary groove is not observed, (b) an interface with a Σ27 grain boundary. A faceted grain boundary groove is observed, and (c) an
interface with a random grain boundary. A faceted groove is observed, similar to (b).

Figure 12: Process of twin boundary formation at a grain boundary groove. When the groove becomes deep enough, rapid growth occurs at
the groove, and then twin nucleation occurs on the {111} facet that formed the groove [102].
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Tsoutsouva et al. directly observed twin boundary
formation at a faceted grain boundary groove by using

an in situ X-ray imaging method [101], and we also
observed this phenomenon directly by our in situ obser-
vation system [102]. Figure 12 shows the process of twin
boundary formation. It is seen that the grain boundary
groove indicated by a red circle (t = 5.7 s) was gradually
deepened with crystal growth, and the melt inside the
groove was rapidly crystallized when the depth of the
groove became large enough (between t = 30 and t = 40 s).
During this rapid growth to fill the groove, twin nucleation
occured on the {111} facet in the groove.

The degree of the driving force (undercooling) for twin
nucleation has not been directly obtained experimentally.
Theoretical models indicate the probability of twin nuclea-
tion as a function of the degree of undercooling, but the
value is dependent on the model [99,103,104]. There-
fore, further studies are expected in the future.

3.5 Interaction of grain boundaries at the
crystal/melt interface

In order to understand the formation of the grain structure of
mc-Si during directional solidification, the dynamics of grain
boundaries at the crystal/melt interface should be clarified.

Figure 13: Schematic image of the impingement of two-grain
boundaries at a crystal/melt interface.

Figure 14: Observations of grain boundary impingement: (a) two Σ3 grain boundaries impinge at the interface, and a Σ9 grain boundary is
formed and (b) a Σ27 grain boundary and a Σ3 grain boundary produce a random grain boundary after the impingement, and a random grain
boundary and a Σ3 grain boundary produce a Σ27 grain boundary after the impingement.

40  Kozo Fujiwara et al.



In earlier works on grain growth at the crystal/melt
interface during directional solidification, the grain growth
behavior was discussed on the basis of the difference in
the crystal/melt interfacial energy between two adjacent
grains [65]. However, recent studies indicated that grain
growth at a crystal/melt interface is affected by the kinetics
at a grain boundary groove. The direction of extension for
the grain boundary has been investigated theoretically
[105] and by experiment [106,107], focusing on the shape
and growth rate at a grain boundary groove. Those studies
showed that the direction of extension for a grain boundary
is determined by the difference in the growth rates of two
facet planes forming a grain boundary groove. When two
facet planes grow with the same growth rate, the grain

boundary extends along the bisector line of the groove,
and when the growth rates of two facet planes are different,
the grain boundary extends in the direction of the sum of
the growth rate vectors [107].

Also, the formation of small-angle grain boundaries
(SAGB) was directly observed at a moving crystal/melt
interface due to the aggregation of dislocations during
directional solidification [108,109].

Further, in the directional solidification of mc-Si, two-
grain boundaries are often encountered at a crystal/melt
interface, as schematically shown in Figure 13.

Here, we introduce the interactions of grain bound-
aries at a crystal/melt interface. The mechanisms behind
the phenomena are not well understood yet, but we think

Figure 15: Observations of the impingement of a small-angle grain boundary and a Σ3 twin boundary [112]. The grain boundaries penetrate
each other and extend with growth.

Figure 16: Summary of the observed interactions of grain boundaries at a crystal/melt interface: (a) two-grain boundaries produce a single
grain boundary, (b) one grain boundary splits into two grain boundaries, (c) two grain boundaries penetrate each other, and (d) one grain
boundary is formed after the impingement of two grain boundaries, but it splits into two grain boundaries immediately.
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it is meaningful to show the observed phenomena for
future study. Figure 14(a) and (b) show snapshots of
the impingement of two-grain boundaries at the crystal/
melt interface during directional solidification. In both
cases, after the impingement of two large-angle grain
boundaries (LAGB), one new LAGB was formed and
extended with crystal growth. Such interactions of two-
grain boundaries are often observed in mc-Si ingots
[110,111]. Similarly, it was shown that the impingement
of two SAGB produces one new SAGB [112]. On the con-
trary, cases in which one grain boundary decomposes into
two-grain boundaries during growth were also observed
[110,111,113].

The interaction between a SAGB and a Σ3 twin boundary
was found to be different from those mentioned above
[112,114]. Figure 15 shows the impingement of a SAGB and
a Σ3 twin boundary [112]. At the impingement of these two
boundaries at the crystal/melt interface (middle picture in
Figure 15), they penetrate each other and continued to
extend as seen in the image on the right in Figure 15. Such
penetration of grain boundaries was not observed in the
cases of impingement of two LAGBs or two SAGBs.

It was also shown that the behavior after the impinge-
ment of a SAGB and a Σ3 twin boundary was dependent on
the misorientation angle of the SAGB before the impinge-
ment [114]. The patterns of grain boundary interactions
observed to date are summarized in Figure 16 [110–114].

As shown above, the interaction of grain boundaries
at a crystal/melt interface is complicated, and thus further
studies are required to deepen our understanding. Not
only experimental evidence but also theoretical and
computational studies remain limited; thus, study of
the dynamics of grain boundaries at the crystal/melt
interface is an open topic for future studies.

4 Summary

It has been expected that the energy conversion efficiency
of solar cells using mc-Si substrate will improve. For that
to happen, control of the microstructure in mc-Si ingots
in the directional solidification process is indispensable.
Many phenomena occur at the crystal/melt interface
whose mechanisms have not been clarified completely,
especially regarding the dynamics of crystal defects,
including grain boundaries, dislocations, and impurities.
Observation of the macrostructures and microstructures
of solidified mc-Si is of significance for indicating what
takes place during directional solidification processes. In
addition, global simulation and numerical analysis are
also important for understanding the defect distributions

in an entire ingot [115–123]. Transmission electron micro-
scope (TEM) observations and various computational
simulations have clarified the local distributions of defects
[124–133]. In situ observation is also a powerful tool for
obtaining direct evidence revealing phenomena at the
crystal/melt interface. However, for clarification of crystal
growth mechanisms, research from the theoretical side is
also crucial.
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