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Abstract— We present a model-predictive trajectory planning
algorithm for following a target boat by an autonomous
unmanned surface vehicle (USV) in an environment with static
obstacle regions and civilian boats. The planner developed in
this work is capable of making a balanced trade-off among
the following, possibly conflicting criteria: the risk of losing the
target boat, trajectory length, risk of collision with obstacles,
violation of the Coast Guard Collision Regulations (COLREGs),
also known as “rules of the road”, and execution of avoidance
maneuvers against vessels that do not follow the rules. The
planner addresses these criteria by combining a search for a
dynamically feasible trajectory to a suitable pose behind the
target boat in 4D state space, forming a time-extended lattice,
and reactive planning that tracks this trajectory using control
actions that respect the USV dynamics and are compliant
with COLREGs. The reactive part of the planner represents a
generalization of the velocity obstacles paradigm by computing
obstacles in the control space using a system-identified, dynamic
model of the USV as well as worst-case and probabilistic predic-
tive motion models of other vessels. We present simulation and
experimental results using an autonomous unmanned surface
vehicle platform and a human-driven vessel to demonstrate that
the planner is capable of fulfilling the above mentioned criteria.

I. INTRODUCTION

Target following in a marine environment with static and

dynamic obstacles such as vessels, docks, and other pro-

hibited regions presents non-trivial trajectory planning and

tracking challenges for an autonomous unmanned surface

vehicle (USV) [1]. The USV may have different dynamic

characteristics compared to the target boat as well as other

operating vessels, and it may not know their planned course

in advance. The dynamics and the current state (e.g., as de-

fined by the pose, and the surge, sway, and yaw speeds) of the

boats impose acceleration constraints that may significantly

influence their braking distance and minimum turning radius.

These constraints modify the set of allowable velocities, and

as such may force the USV to take a different trajectory

than the target boat during the follow task. In addition,

the use of USVs for civil applications, especially in areas
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with high traffic, entails following the Coast Guard Collision

Regulations (COLREGs) [2]. These regulations, also known

as the ”rules of the road”, define when and how to yield

to other boats in the scene. They are increasingly being

implemented into autonomous USV systems [3] as they are

aimed to ensure greater safety in marine environments.

In order to address these challenges, a balanced trade-

off needs to be made among the following criteria: the risk

of losing the target boat, trajectory length, risk of colli-

sion with obstacles, violation of COLREGs, and execution

of avoidance maneuvers against boats that do not follow

COLREGs. The criteria can be conflicting, e.g., aggressive

maneuvering shortens the trajectories but may increase the

risk of collision [4] or violate COLREGs. On the other hand,

overly conservative, long trajectories may cause losing the

target boat and are less fuel efficient in general.

We have developed an integrated, model-predictive tra-

jectory planning approach for the USV in the form of a

follow behavior that has the capability to provide this trade-

off. The planner developed in this work tightly integrates

deliberative and reactive trajectory planners as well as a

lower-level feedback controller to allow efficient, safe, and

COLREGs-compliant target boat following.

The deliberative planner (see Section V-A) addresses the

minimal trajectory length, the risk of losing the target boat,

and the risk of collision with obstacles criteria. It computes

a trajectory between the current pose of the USV and

a suitable pose represented as a motion goal behind the

target boat. The trajectory is dynamically feasible and thus

directly executable by the autonomous system. It attempts to

minimize the risk of collision at a higher level by searching in

a 4D state space forming a time-extended lattice that captures

the estimated, future motion of obstacles.

The reactive, COLREGs-compliant planner (see Section

V-D) fulfils the remaining criteria. It determines the desired

surge speed and heading control commands so that the

USV follows the nominal trajectory. It identifies a subset

of dynamically feasible control actions that may lead to

collisions with obstacles by forward-simulating a system-

identified, non-linear dynamic model of the USV (see Sec-

tion IV). It thus represents a generalization of the velocity

and acceleration based obstacle avoidance approaches [5]

to systems with non-linear dynamics and advanced motion

control methods. The control-imposed collision regions are

expanded to enforce COLREGs-compliant guidance. The

planner can be characterized as reciprocal [5], i.e., it utilizes

worst-case and probabilistic predictive motion models of
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obstacles to make assumptions about their future motion.

This leads to more optimal vehicle motion, i.e. by remov-

ing undesirable oscillations in the execution of its control

actions and by providing a way to reason about the mutual

responsibility of the boats in collision avoidance. We provide

a formalism for the characterization of these models. Finally,

the planner is capable of executing avoidance maneuvers to

avoid collision with aggressive vessels that do not follow

COLREGs.

We have carried out experiments in simulation as well as

with our autonomous unmanned surface vehicle platform and

a human-driven vessel (see Section VI).

II. RELATED WORK

A comprehensive survey of the state-of-the-art motion

control approaches for non-adversarial following of a moving

target boat is presented in [6]. This includes high-speed

tracking with precise maneuverability [7], the MESSIN sys-

tem [8] that combines target following with reactive obstacle

avoidance, cooperative control [9] approach for multiple

vehicles that is validated using DELFIMX and Aguas Vivas

platforms, master boat following with two physical USVs

[10], and formation control in the presence of ocean dis-

turbances [11]. In summary, the approaches consider one or

more autonomous boats following the trajectory of the target

boat in an environment without obstacles and assume that the

USV has the same motion characteristics as the target boat.

Current USV platforms utilize obstacle avoidance to move

between waypoints, e.g., as in the guidance system developed

by SPAWAR [12]. A recent survey of trajectory planning

under nonholonomic constraints can be found in [13]. This

includes trajectory planning using Maneuver Automaton

(MA) that was adapted in [14], [15], and [16] for computa-

tion of dynamically feasible trajectories for surface vehicles.

In this paper, we include time as an additional state variable

to capture the motion of dynamic obstacles. On the lower,

reactive level, Wilkie et al. [17] introduced a generalized

velocity obstacles (GVO) algorithm for obstacle avoidance

that accounts for vehicle kinematics.

A survey of trajectory planning techniques compliant with

COLREGs can be found in [3]. Here, we present only the

most significant contributions that closely resemble our plan-

ning approach. Benjamin’s interval programming (IP) based

behavior architecture was presented in [18] for weighted

blending of action outputs of behaviors implementing COL-

REGs. In this architecture, each behavior generates a single

objective function over the actuator’s space of the vehicle that

are combined to produce a single control action for execu-

tion. Larson et al. [19] combined the velocity obstacles (VO)

algorithm with a method for computing trapezoidal projected

regions which moving obstacles could occupy along their

future trajectories. The shape of the projected obstacle area

is skewed to comply with COLREGs. Similarly, Kuwata et

al. [20] also combined VO with COLREGs and incorporated

it into NASA JPL’s CARACaS control architecture. The

approach presents few extensions such as pre-collision check

using Closest Point of Approach (CPA), handling uncertain

obstacle motion by applying a safety buffer, and incorporat-

ing hysteresis into control action execution.

In contrast to the previous approaches, our planning al-

gorithm uses a system-identified, non-linear USV dynamic

model for COLREGs-compliant target following. The algo-

rithm is capable of predicting the future motion choices

of obstacles using worst-case and probabilistic predictive

motion models (i.e., we do not make simplifying assumptions

about the motion of obstacles). This is mostly useful when

operating in congested waters containing boats with different

dynamics and possibly conflicting intentions. Finally, the

algorithm combines the deliberative and reactive trajectory

planning to prevent getting trapped in a local minima.

III. PROBLEM FORMULATION

The task for the model-predictive planner is to determine

the minimum cost, collision-free control commands (i.e.,

desired surge speed u and heading ψ) for the USV to

approach the target boat. More formally, given,

(i.) the continuous state space X = Xη ×Xν ×T in which

each state x = [ηT , νT , t]T consists of the vehicle’s

pose η = [x, y, ψ]T ∈ Xη ⊆ R
2 × S

1, velocity

ν = [u, v, r]T ∈ Xν ⊆ R
3, and the time t. The pose

η consists of x and y position coordinates, and the

orientation ψ of the vehicle about the z-axis in the

North-East-Down (NED) coordinate system [21]. The

velocity vector ν consists of the surge u, sway v, and

angular r speed about the z axis in NED (i.e., we neglect

the heave, roll, and pitch motion components);

(ii.) the current state of the USV xU = [ηU
T , νU

T , t]T ∈ X
and the moving target xT = [ηT

T , νT
T , t]T ∈ X ;

(iii.) the continuous, state-dependent, control action space

Uc(x) ⊂ R
2 × S

1 of the USV in which each control

action uc = [ud, ψd]
T consists of the desired surge

speed ud and heading ψd in NED;

(iv.) 3 degrees of freedom dynamic model of the USV

ẋU = fU (xU,uh), where the thrust and moment are

produced by model actuators that take uh as the control

input. This control input is determined by the controller

hU (xU,uc, PU ), where PU is the set of controller

parameters;

(v.) The geometric region Os =
⋃K
k=1 os,k ⊆ R

2 occupied

by static obstacle;

(vi.) The dynamic obstacles and their estimated states

{xo,l|xo,l ∈ X}Ll=1, the geometric region occupied

by the obstacles Od =
⋃L
l=1 o(xo,l) ⊆ R

2, and

their worst-case Mw =
⋃L1

l1=1mw,l1 and probabilistic

Mp =
⋃L2

l2=1mp,l2 predictive motion models, where

L1 + L2 ≤ L. The models take the state xo,l(t) of the

obstacle l at the time t as the input and produces a set

of possible states Xo,t+∆t occupied by the obstacle at

the time t+∆t; and

(vii.) the required operating distance lG of the USV from the

target boat.

Compute,

(i.) a motion goal ηG = [xG, yG, ψG]
T ∈ Xη positioned lG

distance from the target boat;

3872



Fig. 1: USV14 body-fixed coordinate system.

(ii.) a collision-free, dynamically feasible trajectory τ :
[0, T ] → Xη,free such that τ(0) = ηU, τ(T ) = ηG and

the execution time T is minimized. Each state ηU(t) =
[xt, yt, ψt]

T along τ thus represents a geometric trans-

formation of the USV in the free state space Xη,free =
Xη\Xη,obs = {ηU(t) ∈ Xη|U(ηU(t))∩O(t) = ∅} (also

known as a free configuration space Cfree = Xη,free)
for t ∈ [0, T ], where O(t) = Os(t) ∪ Od(t) and

U(ηU(t)) ⊆ R
2 is a geometric region occupied by the

USV U in ηU(t);
(iii.) a desired, COLREGs-compliant control action u

∗
c for

the USV to track τ to advance towards ηG, while

avoiding dynamic obstacles.

The USV experiences uncertain ocean wave- and wind-

induced motion disturbances, which may cause it to drift

towards obstacles. Hence, the motion goal ηG, trajectory

τ , as well as the desired control action uc need to be

recomputed with a high frequency to keep track of the

moving target, and to handle dynamic obstacles and pose

errors. A Kalman filter is used to determine the vehicle state

from multiple sensors [22].

IV. DYNAMIC USV MODEL

The vessel utilized for testing of the planner is named the

WAM-V USV14. The physical characteristics of this vehicle

are given in Section VI-B. A three degree of freedom (surge

xB , sway yB and yaw ψ, see Fig. 1) dynamic simulation

of the USV14 was created. The origin of the body-fixed

coordinate system is fixed at the USV’s center of gravity.

With these assumptions, the equations of motion in the body-

fixed frame can be reduced as in [21]:

X = (m−Xu̇)u̇− (m− Yv̇)vr + Yṙr
2 −Xuu,

Y = (m− Yv̇)v̇ − Yṙ ṙ + (m−Xu̇)ur − Yvv − Yrr,
N = (Iz −Nṙ)ṙ − Yṙv̇ + (Xu̇ − Yv̇)uv − Yṙur

−Nvv −Nrr,
(1)

where (u,v,r) are the vehicle’s surge speed, sway speed,

and yaw rate, respectively, m is the vehicle’s mass, and

Iz is the mass moment of inertia about the z-axis. X and

Y are the control forces in the xB and yB directions,

respectively, and N is the control moment about the zB axis.

The uppercase values are drag and added mass coefficients

Fig. 2: Waypoint following simulation of the USV14 at a

nominal surge speed of 2 m/s.

that relate subscripted terms to the uppercase terms, e.g., Xu

is the drag coefficient in the xB direction due to the surge

velocity and Xu̇ is the hydrodynamic coefficient relating

the acceleration in the xB direction to the force in the xB
direction [21].

The USV14 is an under-actuated vehicle with control

forces and moments acting only in the surge and yaw

degrees of freedom. The USV relies on differential thrust

for steering. A benefit of this is that forward speed is not

required to execute turning maneuvers. However, heading

control cannot be decoupled from the surge speed, and the

maximum moment generated by the propellers is inversely

dependent on the thrust. Taking these factors into account,

the equations of motion in (1) can be expanded to include

the applied forces and moments,

X = Tp + Ts,
Y = 0,
N = (Tp − Ts)

l
2 ,

(2)

where Tp and Ts denote the thrust from the port and

starboard waterjets, respectively, and l is the separation

distance between the centerline of each hull. Using (1)

and (2), a dynamic simulation of the vehicle was created.

Building upon this model, a heading and speed controller

analogous to the one implemented on the vehicle was created

with a PD controller. This was expanded to include a line-

of-sight (LOS) guidance system. An example of the vehicle

following a trajectory can be found in Fig. 2.

V. FOLLOW BEHAVIOR

The developed algorithm for following a target boat

consists of deliberative trajectory planning, and reactive,

COLREGs-compliant obstacle avoidance components in our

guidance, navigation, and control (GNC) system architecture.

A. Deliberative Trajectory Planning

The trajectory planner searches for a collision-free, dy-

namically feasible trajectory τ : [0, t] → Xη,free × T
between ηU and ηG poses of the USV. The motion goal

ηG = [xT − lGcosψ, yT − lGsinψ, ψT ]
T is a projection of

the target’s position [xT , yT ]
T to a location behind the USV

at the distance lG.
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Fig. 3: An example of the control action set Uc,d for the

USV14 nominal surge speed of 2 m/s.

We discretize Xη×T into the state space S for trajectory

planning. Each discrete state sj = [xj , yj , ψj , tj ]
T thus

represents a 4D cube in S . We also define a discrete space

Uc,d(sj) ⊆ Uc(xj) of dynamically feasible control action

primitives (see Fig. 3). A discrete control action primitive

uc,d,k ∈ Uc,d is represented as a sequence {ηi}
Lk

i=1 of USV

poses in Xη×T and is determined using the dynamic model

of the USV (see Section IV). The model is used to determine

neighboring states that can be reached by the vehicle for a

given time and constant speed.

The search is carried out over a 4D lattice structure L :
sj,uc,d,k → sj,k that maps states sj ∈ S to their neighboring

states sj,k using discrete control action primitives uc,d,k ∈
Uc,d(sj) for j = 1, 2, . . . , |S|, and k = 1, 2, . . . , |Uc,d(sj)|.
Each layer in L thus represents a specific 2D planning

space with the fixed heading ψ of the USV and time t.
The final state sj,k of the primitive (in the body frame of

the USV) is conveniently selected to be in the center of its

corresponding cube (i.e., to preserve the continuity of τ ).

The lattice representation reduces the computational demand

of the search, while explicitly considering the differential

constraints of the vehicle. It is up to the user of the planner

to determine the resolution of the state space, the number of

control action primitives, and their shape.

The lattice is constructed incrementally while searching

for the trajectory. The states are expanded in the least-

cost, heuristic, weighted A* fashion [13] according to the

cost function f(s) = g(s) + ǫh(s) in which g(s) is the

optimal cost-to-come from sU (a discrete pose of the USV)

to s, h(s) is the heuristic cost-to-go between s and sG

(a discrete motion goal), and ǫ is the inflation factor. The

cost-to-come is computed as g(s) =
∑K
k=1 l(uc,d,k) over

K planning stages, where l(uc,d,k) is the actual execution

time of uc,d,k (we assume that the USV will execute the

trajectory with its maximum allowable speed). It is set to

∞ if the primitive makes the USV transition to the obstacle

region Sobs ⊆ S . The heuristic h(s) is expressed as the

required time to reach sG along a straight line from s. The

heuristic increases the speed of the search by focusing on

the most promising regions of the state space, while still

allowing resolution-optimal planning. The inflation factor

ǫ ≥ 1 permits delicate balance between the computational

Fig. 4: Heading controller of the USV14 (WAM-V).

demand of the planner and the optimality of the trajectory

to be achieved. The computed trajectory τ is translated into

a sequence of waypoints {wi|wi = [x, y]T }Ni=1 serving as

local motion goals for the reactive planner.

B. Waypoint Following

The vehicle utilizes a LOS guidance system driven by a

proportional heading controller for trajectory following. Due

to the differential steering, the vehicle heading controller

differs from those that utilize rudder steering systems as

in [21]. Differential steering imposes a moment about the

vehicle that causes it to turn. With this configuration, the

controller manages vehicle direction by two separate pro-

portional control laws. Each of these controllers focuses on

a single motor, with the only difference being that the slope

of one line is the opposite of the other. To better handle real

world scenarios, a tolerance region is implemented where

the error is less than five degrees. This is to account for

natural vehicle variation in response to wind and wave forces.

Fig. 4 displays the proportional control law, wherein the port

and starboard thrust of the vehicle are controlled by separate

commands that denote a percentage of the full-scale value

of thrust. An offset is introduced into the motor command

output of the controller, corresponding to the desired speed

of the vehicle. This offset can fluctuate in response to the

speed error multiplied by a gain, constituting the speed p-

controller. The structure and implementation of the vehicle

controller is similar to that found in [23].

C. Predictive Motion Models of Dynamic Obstacles

The behavior of a dynamic obstacle is characterized by a

policy π(xo) : X → Θc that determines a desired control

action θc ∈ Θc(xo) for each obstacle’s state xo ∈ X ,

and is generally unknown to the USV. Hence, it is either

estimated from the sequence of the past observed obstacle’s

states {xo(t),xo(t−1), . . . ,xo(t−∆t)}, or through a priori

knowledge of the desired goal states (e.g., through direct

communication with the vessel). In both the cases, the set

of possible future states of the obstacle can be computed

using either worst-case or expected-case analysis, resulting

in corresponding models.

The worst-case model mw predicts possible future

obstacle states Xo,t+∆t(xo(t)) = {xo(t + ∆t) ∈
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X|∃θc(t) ∈ Θc(xo(t)) such that xo(t + ∆t) =

xo(t) +
∫ t+∆t

t
fo(xo(t

′), θh(t
′))dt′, and θh(t) =

ho(xo(t), θc(t), Po)} (e.g., simplified as a triangular

region for the vessel 1 in Fig. 5a)) that can be reached

by the obstacle at the time t + ∆t. We simplify the

notation by assuming that the obstacle will start executing

the control action θc(t) at the time t and will keep it

constant for the entire time interval (i.e., the obstacle does

not switch between different control actions within this

interval). By using this model, the USV does not have

any preferences about the obstacle’s future motion. It can

only estimate a set of its reachable future states given the

inferred obstacle’s dynamic model ẋo = fo(xo, θh) and

corresponding controller ho(xo, θc, Po).
The probabilistic model generalizes the worst-

case model by defining a probability distribution

P (xo(t + ∆t)|xo(t)) =
∑
θc(t)∈Θc(xo(t))

P (θc(t)|xo(t +

∆t) = xo(t) +
∫ t+∆t

t
fo(xo(t

′), θh(t
′))dt′, and θh(t

′) =
ho(xo(t

′), θc(t
′), Po)) over the obstacle’s possible future

states. This model is very general and can be used to

represent the obstacle’s intentions to satisfy COLREGs in

different states. By using this model, the USV has more

flexibility, i.e., it can balance between the time required to

reach its goal and the probability of collision.

D. COLREGs-Compliant Obstacle Avoidance

Here, we present a reactive, COLREGs-compliant plan-

ning algorithm for avoiding dynamic obstacles. The algo-

rithm determines a control action that respects the USV

dynamics, minimizes the probability of a collision, and

optimizes the time needed to reach a local waypoint. The

planner utilizes predictive motion models of obstacles (see

Section V-C) when evaluating candidate control actions.

In each planning step, the planner first determines a set

of control actions Uc,free(xU) = Uc(xU)\Uc,obst(xU) that

allow the USV to avoid collision zones. The set Uc,obst thus

defines obstacles in the control space and is determined by

sampling Uc, forward simulating the control actions using

ẋU = fU (xU,uh) up to the time horizon tmax, where

uh = hU (xU,uc, PU ), and checking for possible collisions.

Uc,obst thus generalizes the velocity obstacles paradigm [17].

More precisely, the set Uc,obst(xU) = {uc|dCPA(tmax) <
dCPA,col}, where dCPA(tmax) is the minimum distance

between the closest point of approach (CPA) (i.e., the lo-

cation from which the USV has the minimum distance from

obstacles) and obstacles when uc is executed from xU for

the time horizon tmax. The distance dCPA(tmax) is defined

as dCPA(tmax) = mint∈[0,tmax]‖U(ηU(t))−O(t))‖, where

U(ηU(t)) is the geometric region in R
2 occupied by the USV

at ηU(t), and O(t) is a region of time-projected obstacles.

The parameter dCPA,col defines the distance threshold from

an obstacle, and it can be adjusted to serve as a safety factor

to handle motion and sensing uncertainties.

It is important to note that the computation of dCPA is per-

formed with respect to the region occupied by the obstacles at

their possible future states, as defined by their worst-case or

probabilistic models. Hence, in case of the worst-case model,

the region occupied by a single obstacle at the time t+∆t
is o(t + ∆t) =

⋃
xo(t+∆t)∈Xo,t+∆t

o(xo(t + ∆t)), where

o(xo(t+∆t)) is the region occupied by the obstacle at the

state xo(t+∆t). The notation is similar for the probabilistic

model with the exception that o(xo(t + ∆t)) is the region

occupied by the obstacle at the state xo(t+∆t) ∈ Ro,t+∆t ⊆
Xo,t+∆t. The subset Ro,t+∆t specifies the states that will be

reached by the obstacle with the probability p ≥ pmin, where

pmin is the user-specified threshold.

As the next step of the algorithm, the planner de-

termines whether the USV, given its current pose, is

in a COLREGs situation with respect to all other

vessels. This is determined using dCPA(tmax) <
dCPA,min and tCPA(tmax) < tCPA,max condition, where

dCPA,min and tCPA,max are the user-specified distance and

time thresholds. The time to CPA tCPA(tmax) is defined

as tCPA(tmax) = argmint∈[0,tmax]
‖U(ηU(t)) − O(t)‖. The

variable dCPA(tmax) is computed for the control action

uc = [ud, 0]
T up to the maximum look-ahead time tmax,

where ud is the current surge speed of the USV.

If the above defined condition holds, the USV determines

which one of the following COLREGs situations, i.e., “head-

on”, “crossing”, and “overtaking” [2] is valid with respect to

all obstacles. This is useful for determining what constraints

to apply on Uc,free to make the USV act according to the

user’s needs in a particular COLREGs situation. Fig. 8 illus-

trates the COLREGs situations. Let bU,o = 2π+arctan(yU−
yo/xU − xo) − arctan(no,y/no,x) be the relative bearing of

the USV to the dynamic obstacle, where n̂o = [no,x, no,y]
T

is the unit vector in the direction of the obstacle’s heading

ψo. Let hU,o = 2π + arctan(nU,y/nU,x)− arctan(no,y/no,x)
be the relative heading of the USV to the obstacle, where n̂U

is the unit vector in the direction of the USV’s heading ψU .

Both the values are required to be within [0, 2π). The “head-

on” situation is activated if bU,o ∈ [bh,min, bh,max], hU,o ∈
[hh,min, hh,max], the relative, along-track x coordinate of

the obstacle in the body-fixed coordinate system of the

USV satisfies xo,U ≥ xh,min, and the relative, cross-track

y coordinate of the obstacle satisfies |yo,U | ≤ yh,max. The

“crossing” situation is activated if bU,o ∈ [bc,min, bc,max],
hU,o ∈ [hc,min, hc,max], and xo,U ≥ xc,min. The “over-

taking” situation is activated if hU,o ∈ [ho,min, ho,max],
xo,U ≥ xo,min, and |yo| ≤ yo,max.

If the USV is in a COLREGs situation with respect

to any of the obstacles, the collision-free control actions

Uc,free are divided into COLREGs-compliant control actions

Uc,COLREGs and control actions Uc,¬COLREGs that do not

respect COLREGs. The subset Uc,COLREGs is determined

based on the type of the current COLREGs situation and

the future-projected possible states of obstacles relative to

the current state of the USV. Let ηo(t) be the pose of

the obstacle at the projected time t. Let ηU(t0) and ηU(t)
be the poses of the USV at the current and the projected

time (after executing a control action uc), respectively. Let

n̂U,t0,t be the unit vector in the direction between ηU(t0)
and ηU(t). Let n̂U,o = [nU,o,x, nU,o,y]

T be the unit vector

in the direction between ηU(t0) and ηo(t). Then, the con-
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trol action uc is considered to be COLREGs-compliant if

([nU,o,y,−nU,o,x]
T · n̂U,t0,t) < 0, i.e., it leads the USV to

the right half-plane between its current pose and the future

projected pose of the obstacle.

The desired control action u
∗
c =

arg minuc=[ud,ψd]T∈Uc,free(xU) ωu((ud,max −
ud)/ud,max)+(1−ωu)(|ψwj

−ψd|/2π)+pCOLREGs is then

selected that directs the USV towards one of the trajectory

waypoints wj. Here, ud,max is the maximum surge speed of

the USV, ψwj
is the heading towards wj, and ωu is the user-

specified weight of the surge speed error with respect to the

heading error. The variable pCOLREGs =
ωCPA,t

tCPA
+

ωCPA,d

dCPA

represents additional penalty for a control action that is not

COLREGs-compliant (otherwise it is equal to zero), where

ωCPA,t and ωCPA,d are user-specified weights.

In general, the control actions are selected and evaluated

with respect to all surrounding obstacles. The control actions

that lead to COLREGs-compliant guidance are strictly pre-

ferred. However, the USV can still breach the rules if no

COLREGs-compliant action is available.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

We present a simulation result of the USV14 operating

in an environment with three civilian boats (see Fig. 5). The

waypoint for the USV (wU) is at the top of the experimental

scene and marked with a black empty circle. The waypoint

(w1,w2, and w3) for each obstacle vessel is marked as a red

circle with a cross inside it. The maximum surge speed of

the USV is 5 m/s. The speed of the vessel 1 is 4 m/s and the

speed of the vessels 2 and 3 is 1 m/s. During the operation,

the USV had to deal with the “head-on” and “crossing from

right” situations first by yielding to the vessels 1 and 2,

respectively, as shown in Fig. 5a) and b). After yielding to

the vessel 2, the USV was in an “overtaking” situation with

respect to the vessel 3 (see Fig. 5c)). It correctly avoided

crossing vessel 3 on its starboard as prescribed by COLREGs

and finally reached its goal (see Fig. 5d)).

In this experiment, the USV forward simulates its control

actions for the look-ahead time tmax = 20 s. This results

in a set of projected USV positions, where the positions

that correspond to the subset of control actions leading

to a collision region are marked using red crosses (see

Fig. 5a). The projected positions breaching COLREGs are

marked as blue plus signs. The green circles result from

the execution of control actions that do not lead the USV

to the collision region. Each control action has assigned a

cost as described in Section V-D and the USV selects the

one with the minimum value. The values of parameters for

the planner were selected as follows dCPA,col = 20 m,

dCPA,min = 100 m, tCPA,max = 30 s, ud,max = 5 m/s,

ωu = 0.55, ωCPA,t = 50, and ωCPA,d = 100.

The control action set consisted of 140 control actions with

10 levels of the desired surge speed between 0 and 5 m/s and

14 levels of heading angles starting from -105 to 105 degrees

in the body frame of the USV. The computational demand of

our C++ implementation for computing and evaluating this

(a) (b)

(c) (d)

Fig. 5: The result of a simulation experiment during which

the USV was required to resolve a “head-on” situation with

respect to the vessel 1 (see a)), “crossing from right” situation

with respect to the vessel 2 (see a) and b)), and “overtaking”

situation with respect to the vessel 3 (see c) and d)).

set was below 0.6 s on Intel(R) Core(TM) i7-2600 CPU @

3.4 GHz machine with 8 GB RAM. The computational ex-

pense scales linearly in the number of considered obstacles.

In this experiment, we only consider worst-case predictive

motion models for the obstacles. In this case, the USV

expects the vessel 1 to preserve its course with a small

maximum deviation of its heading angle of 5 degrees (the

region of the vessel’s time-projected positions is simplified

as a thin, red triangle in Fig. 5a). However, the USV has

lower confidence in the heading of the other two vessels. It

considers the maximum deviation in their heading angle to

be 30 degrees.

B. Experimental Results

We present an experimental result1 of the USV14 au-

tonomously following a manually driven target boat in an

environment with static obstacles. We also present results of

the USV14 avoiding a civilian vessel in accordance with

COLREGs in “head-on”, “crossing from right”, as well

as, “overtaking” situations. The experiments were carried

out with an assumption that the USV14 knows the GPS

coordinates of both the target boat and the civilian vessel.

The USV14 is a 14 foot (4.3 m) long catamaran unmanned

surface vehicle as shown in Fig. 6a). The vehicle is propelled

1The video demonstrating the simulation as well as experimental results
can be found at http://youtu.be/LTwZwjT8o58
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(a) (b)

Fig. 6: (a) The autonomous USV14; (b) The human-

controlled johnboat.

using two electrically-driven waterjets that are capable of

producing a combined total thrust of 205 N. The platform

was operated at a maximum speed of 1.7 m/s during the

experiments. The johnboat (see Fig. 6b) was used as the

target boat in the follow task experiment and the civilian boat

in the COLREGs-compliant obstacle avoidance experiments.

The boat is equipped with a 3.7 kW outboard motor that

provides the top speed of 3.5 m/s.

The state estimation for the USV14 and johnboat was

performed using MTi-G and MTi-G-700 sensing units, re-

spectively. The units incorporate a wide area augmenta-

tion system (WAAS) that enables global positioning using

GPS. The GPS coordinates are internally filtered to give

an accurate pose and speed of the vehicle. The USV14

receives the state information from the target or traffic vessel

using RF communication channels. We used the Lightweight

Communications and Marshalling (LCM) message passing

architecture [24] to facilitate data sharing between the dif-

ferent components of the autonomous system.

The experimental result of the follow task is shown in Fig.

7. In the experiment, the USV14 employed the deliberative

trajectory planner to compute a dynamically feasible trajec-

tory to a motion goal positioned 30 m directly behind the

target boat. The trajectory respected the target’s heading. The

vehicle was directed to maintain a minimum safety distance

of 30 m (shown as the red ring in Fig. 7) from the target boat.

As shown in Fig. 7a), the USV14 avoids a static obstacle

when approaching the target from its initial location. Fig.

7b) illustrates a situation in which the target boat increases

its speed, making the USV14 accelerate to its maximum

speed in order to maintain the required distance. In Fig. 7c-

e), the target boat quickly reduces its speed to a complete

stop, which forces the USV14 to respond appropriately by

quickly slowing down.

The results of the COLREGs-compliant obstacle avoid-

ance are shown in Fig. 8. In these experiments, the USV14

employed the reactive planner to determine a dynamically

feasible, COLREGs-compliant control action to approach a

local waypoint of the trajectory. Figs. 8a-b) depict the result

of COLREGs-compliant obstacle avoidance in the “head-

on” situation. Here, the USV14 (marked as green) headed

towards a virtual target vessel (marked as red) positioned in

the top left corner of the scene. The civilian boat headed to-

wards south-east. The boats were intentionally positioned to

be on a collision course. The USV14 successfully yielded to

(a) (b)

(c) (d)

(e) (f)

Fig. 7: The experimental result of the USV14 autonomously

following the target johnboat. We use virtual obstacles with

circular boundaries (shown as blue) marked by buoys to

simplify the experimental setup.

the civilian boat by slowing down and steering to the right to

avoid crossing from the port side of civilian vessel. Figs. 8c-

d) depict the result of COLREGs-compliant avoidance in

the “crossing from right” situation. In this experiment, the

civilian vessel headed towards east and its speed and initial

pose was set such that it was on a collision course with

the USV14. Again, the USV14 successfully yielded to the

civilian vessel and avoided crossing from the port side of

the civilian vessel. Finally, Figs. 8e-f) depict the result of

COLREGs-compliant avoidance in an “overtaking” situation.

In this experiment, both the boats headed north and the

speed of the civilian vessel was decreased to be between

0.5-1 m/s. The USV14 successfully carried out the required

maneuver. After execution of each avoidance maneuver, the

USV14 switched back to the deliberative trajectory planner

and proceeded towards the virtual target vessel.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a model-predictive tra-

jectory planning algorithm to realize dynamically feasible,

COLREGs-compliant target following among civilian vessels

and static obstacle regions. The combination of a discrete

search in 4D state lattice and reactive planning proved

capable of fulfilling the outlined task following criteria based
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: The experimental results of the USV14 autonomously

dealing with “head-on” (see a and b), “crossing from right”

(see c and d), and “overtaking” (see e and f) situations.

on the performed simulation and physical experiments.

Our future aims are: to develop an algorithm for estimating

the worst-case as well as probabilistic predictive motion

models of obstacles by analyzing their past trajectories and

reasoning about their possible motion goals; to incorpo-

rate machine learning for learning human-like, COLREGs-

compliant obstacle avoidance strategies; to improve the com-

putational efficiency of the planner by intelligently sampling

the control action space and adaptively adjusting the sim-

ulation fidelity; to consider wind and waves disturbances

directly in the planning process; and to evaluate the per-

formance of the planner in more complex scenarios.

ACKNOWLEDGMENT

This work was supported by the U.S. Office of Naval

Research under Grants N00014-11-1-0423 and N00014-12-

1-0502, managed by R. Brizzolara and K. Cooper.

REFERENCES

[1] S. Corfield and J. Young, “Unmanned surface vehicles–game changing
technology for naval operations,” Advances in unmanned marine

vehicles, pp. 311–328, 2006.
[2] U. Commandant, “International regulations for prevention of collisions

at sea, 1972 (’72 COLREGs),” US Department of Transportation, US

Coast Guard, COMMANDANT INSTRUCTION M, vol. 16672, 1999.
[3] S. Campbell, W. Naeem, and G. Irwin, “A review on improving the

autonomy of unmanned surface vehicles through intelligent collision
avoidance manoeuvres,” Annual Reviews in Control, 2012.
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