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Abstract An electromechanical system with flexible

arm is considered. The mechanical part is a linear flex-

ible beam and the electrical part is a nonlinear self-

sustained oscillator. Oscillatory solutions are obtained

using an averaging method. Chaotic behavior is stud-

ied via the Lyapunov exponent. The synchronization

of regular and chaotic states of two such devices is

discussed and the stability boundaries for the synchro-

nization process are derived using the Floquet theory.

We compare the results obtained from a finite differ-

ence simulation to those from the classical modal ap-

proach.
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1 Introduction

Recently, various studies have been devoted to nonlin-

ear electromechanical devices consisting of a nonlin-

ear electric circuit coupled magnetically or electrosta-

tically to rigid arm [1–9]. These devices are described

by two coupled nonlinear differential equations. The

particular interest to these devices is that they are in-

herently present in everyday life both at the domes-

tic and industrial levels for the automation of various

processes [4]. This is, for example, the case of multi-

frequency or chaotic industrial shaker.

Amongst these systems, self-sustained devices are

particularly interesting since they can run without ex-

ternal excitation. Reference [1] considers an electrical

implementation of a Van der Pol oscillator driving a

rigid arm, while the case of a Rayleigh electrical os-

cillator is studied in [2]. The case of a self-sustained

electromechanical system with flexible arm and non-

linear coupling is investigated in [3]. These studies

revealed that such devices can present complex phe-

nomena (chaos, hysteresis and jump phenomena). An

important problem with these nonlinear phenomena is

that two identical systems launched with initial condi-

tions belonging to different basins of attraction will

finally circulate on different orbits. For engineering

applications, it is sometimes of particular interest to

have various robot arms acting in a synchronized man-

ner. For instance, for industrial shakers and mixers,

the increase of the production rate and precision re-

quires a network of arms working in a synchronized
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way. Synchronization phenomenon in nonlinear sci-

ence has seen a growing interest this last decade.

The problem of frequency synchronization of two ex-

cited pendula with dissipative and elastic (linear) cou-

pling is considered in [10], an adaptive algorithm for

the synchronization of two different chaotic electro-

mechanical systems is presented in [11]. The question

of master-slave synchronization of two identical sys-

tems was one of the goals in [2], an extension to a ring

of such devices is investigated in [8]. The case of a sys-

tem with multiple outputs is studied in [7]. In [12, 13],

the case of delay (autonomous and nonautonomous)

systems is studied.

The aim of this paper is to extend the above stud-

ies to an electromechanical device with cantilever arm.

This constitutes a new mathematical and numerical

challenge. Moreover, this is a new interesting area of

applications since many industrial tasks are carried out

through flexible structures. The device under consid-

eration here consists of a Rayleigh–Duffing electrical

circuit coupled magnetically to a clamped-free flexible

beam.

The paper is organized as follows. Section 2 con-

sists of three parts. The first part presents the nonlinear

electromechanical device as well as the resulting par-

tial differential equations. The second part considers

the one-mode approximation of the beam dynamics to

derive a set of two nonlinear differential equations for

the amplitudes of the first mode and electric charge

of the capacitor. These equations constitute the basis

of the analytical and the semi-analytical investigation.

The third part of Sect. 2 deals with the presentation of

the finite difference algorithm for the direct numerical

simulation of the full equations of the electromechan-

ical device. In Sect. 3, the averaging method is used to

derive the approximate oscillatory states whose ampli-

tudes are compared to the results of the numerical sim-

ulation. Section 4 is devoted to the question of chaotic

behavior while Sect. 5 uses the unidirectional coupling

scheme to find the good parameters leading to the syn-

chronization of a second similar device (slave device)

to the motion of the first device called master. This

is done both in the case of periodic oscillatory and

chaotic behavior. The conclusion is given in Sect. 6.

2 Model, equations and numerical scheme

2.1 Model

The model shown in Fig. 1 is an electrical oscillator

coupled through a magnet to a clamped-free flexible

beam. The electrical part consists of a nonlinear re-

sistor (NLR), a nonlinear condenser (NLC), C and an

inductor L, all connected in series. Two types of non-

linear components are considered in the model. The

voltage of the condenser is a nonlinear function of the

instantaneous electrical charge and is expressed by

VC =
1

C0
q0 + a3q

3
0 (1)

where C0 is the linear value of C and a3 is a nonlin-

ear coefficient depending on the type of the capacitor

[14]. The current-voltage characteristics of the resistor

is defined as

VR = −R0i0

(

i

i0
−

1

3

(

i

i0

)3)

(2)

where R0 and i0 are, respectively, the characteristics

resistance and current; i is the current through the re-

sistor. This nonlinear resistor can be realized using a

block consisting of two transistors [15] or a series of

diodes [16]. With this resistor, the system has the prop-

erty to exhibit self-excited oscillations. The current-

voltage characteristics of the linear inductor is

VL = L
di

dτ
(3)

where τ is the time.

The mechanical part is a flexible beam of length

l0. The beam is presumed to be a slender, isotropic,

uniform rod. It is fixed at its top and free at the base.

The magnetic coupling between both parts is made at

a point X1. It creates the Laplace force in the mechani-

cal part and the Lenz electromotive voltage in the elec-

trical part. Using the electrical and mechanical laws, it

is found that the model is described by the following

equations

L
d2q0

dτ 2
− R0

(

1 −
1

3i2
0

(

dq0

dτ

)2)
dq0

dτ
+

q0

C0
+ a3q

3
0

= −Bf l
∂W

∂τ
δ(X − X1), (4)
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Fig. 1 An

electromechanical

transducer with

clamped-free flexible arm

ρS
∂2W

∂τ 2
+ λ

∂W

∂τ
+ EI

∂4W

∂X4

=
Bf l

l0

dq0

dτ
δ(X − X1). (5)

The beam boundary conditions are given as follows

W(0, τ ) = 0;
(

∂W

∂X

)

(0, τ ) = 0,

∀τ ∈ R+, at the clamped end, (6)

(

∂2W

∂X2

)

(l0, τ ) = 0,

(7)
(

∂3W

∂X3

)

(l0, τ ) = 0, ∀τ ∈ R+, at the free end.

E is the Young modulus of the beam, ρ is the beam

density, S and I are respectively the area and the mo-

ment of inertia of the beam cross section. W(X,τ) is

the transversal deflection of the beam, X is the spatial

coordinate, λ is the mechanical damping coefficient

which is assumed to be constant, Bf is the intensity

of the magnetic field and l is the length of the current

wire in the coupling domain. δ(.) stands for the Dirac

delta function; it expresses the fact that the coupling is

made at a point X1 of the flexible beam.

We introduce the dimensionless variables

t = ω1τ, v =
W

l0
, x =

X

l0
, q0 = Qq, (8)

where ω1 = (1.875)2 rad/s and Q = i0
ω1

√
3. Conse-

quently, (4) and (5) become

d2q

dt2
− ε1

(

1 −
(

dq

dt

)2)
dq

dt
+ w2

0q + bq3

= −f2
∂v

∂t
δ(x − x1), (9)

∂2v

∂t2
+ ε2

∂v

∂t
+ a2 ∂4v

∂x4
= f1

dq

dt
δ(x − x1), (10)

with

ε1 =
R0

Lω1
, ω2

0 =
1

LC0ω
2
1

, b =
a3Q

2

Lω12
,

f2 =
Bf l0l

Lω1Q
,

ε2 =
λ

ρSω1
, a2 =

EI

ρSl4
0ω2

1

, f1 =
Bf ll0

Lω1Q

and the boundary conditions (6) and (7) become

v(0, t) = 0,
∂v

∂x
(0, t) = 0,

∀t ∈ R+, at the clamped end, (11)

∂2v

∂x2
(1, t) = 0,

∂3v

∂x3
(1, t) = 0,

∀t ∈ R+, at the free end. (12)

2.2 Mode equations

For the analytical investigation, it is convenient to as-

sume an expansion of the deflection v(x, t) in terms of

the combination of linear free oscillation modes. Due
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to the complexity of the eigenfunctions of the beam

fixed at one end and free at the other, we will consider

in the analytical treatment only the first mode. Thus,

we can write

v(x, t) = y1(t)φ1(x) (13)

where

φ1(x) = cos(k1x) − cosh(k1x)

−
cos(k1) + cosh(k1)

sin(k1) + sinh(k1)

×
[

sin(k1x) − sinh(k1x)
]

. (14)

The expression of φ1(x) can be found in classic books

on beam dynamics such as [17]. The eigenvalue km

for the mode m is obtained from the transcendental

equation

cos(km) cosh(km) + 1 = 0. (15)

This equation gives k1 ≈ 1.875.

Inserting (13) into (9) and (10), multiplying (10)

by φ1(x), integrating over the nondimensional length

of the beam and using the orthogonality of eigenfunc-

tions, we obtain

d2q

dt2
− ε1

(

1 −
(

dq

dt

)2)
dq

dt
+ w2

0q + bq3

= −f21
dy1

dt
, (16)

d2y1

dt2
+ ε2

dy1

dt
+ w2

01y1 = f11
dq

dt
(17)

with

f11 = f1φ1(x1), f21 = f2φ1(x1),

w2
01 = w2

1a
2.

Thus, the one-mode dynamics is described by a

Rayleigh–Duffing oscillator coupled to a linear har-

monic oscillator equation. A linear stability analysis

of the fixed stationary point (q = 0,
dq
dt

= 0, y1 = 0,
dy1

dt
= 0) shows that it is stable for ε1 < ε2 <

f11f21

ε1
.

2.3 The finite difference algorithm

For obtaining a numerical solution of (9) and (10),

we use the finite difference scheme. In this respect,

we divide the nondimensional beam length in n inter-

vals of length hx , e.g., hx = 1
n

. Also, the time is dis-

cretized in units of length ht . Therefore, one can write

xi = (i − 1)hx and tj = jht where i and j are integer

variables. Consequently, (9) and (10) become

d2q

dt2
− ε1

dq

dt

(

1 −
(

dq

dt

)2)

+ w2
0q + bq3

= −f2

vi,j+1 − vi,j

ht

δi−1,ix1
, (18)

A1vi,j+1 + A2vi,j + A3vi,j−1 + A4(vi+2,j + vi−2,j )

+ A5(vi+1,j + vi−1,j ) = f1
dq

dt
δi−1,ix1

(19)

for i = 2, . . . , n + 1 and ∀j ∈ N, with

A1 =
1

h2
t

+
ε2

2ht

, A2 =
−2

h2
t

+
6a

h4
x

,

A3 =
1

h2
t

−
ε2

2ht

, A4 =
a2

h4
x

, A5 = 4A4.

The boundary conditions are (∀j ∈ N)

v1,j = 0, v0,j = v2,j , at the clamped end, (20)

vn+2,j = 2vn+1,j − vn,j ,

(21)

vn+3,j = vn−1,j + 2vn+2,j − 2vn,j , at the free end.

One can show that the discretization scheme is stable

if

8

h4
x

≤
1

h2
t

[

1 +

√

1 −
(ε2ht )2

4

]

(22)

with ε2ht ≤ 2.

3 Oscillatory states

Oscillatory solutions of (16) and (17) are obtained by

using the Krylov–Bogoliubov averaging method de-

scribed in [18, 19]. In this line, we set q = A sin(ω0t +
ϕ1), y1 = B sin(ω01t + ϕ2). The amplitudes A and B
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satisfy the following set of first order differential equa-

tions

dA

dt
=

ε1A

2

(

1 −
3

4
A2w2

0

)

−
f21Bw01

2w0
cos(ϕ), (23)

dB

dt
= −

ε2B

2
+

f11Aw0

2w01
cos(ϕ), (24)

dϕ

dt
= −

3bA2

8w0
+

[

f21Bw01

2Aw0
−

f11Aw0

2Bw01

]

sin(ϕ) (25)

with ϕ = ϕ1 − ϕ2. For the steady-states solutions, we

obtain

c6A
6 + c4A

4 + c2A
2 + c0 = 0 (26)

B2 = MA2
(

4 − 3A2w2
0

)

, (27)

where

c6 = 27µν2w6
0 + 3χw2

0,

c4 = 18χνw4
0(1 − 4η) − 4χ + 9ν2w4

0(1 − 4µ),

c2 = 6νw2
0(1 − 4ν)(1 − 4µ) + 3µw2

0(1 − 4ν)2,

c0 = (1 − 4µ)(1 − 4ν)2, ν =
ε1

4ε2
, (28)

µ =
ε1ε2

4f1nf2n

,

κ =
ε1

ε2f1nf2nw
2
0

, χ =
9b2κ

64
,

M =
ε1w

2
0f11

4ε2w
2
0nf21

.

Let us note that there is a trivial steady-state defined

by A0 = B0 = 0. Equations (26) and (27) are solved

using the Newton–Raphson algorithm.

Figures 2 and 3 show the amplitude curves of the

beam at its free end and the charge of condenser in

terms of the mechanical dissipative coefficient ε2 for

two different sets of values of parameters of the sys-

tem. The numerical simulation results of (16) and

(17) and those of (18) and (19) are also reported in

the same figures. The numerical results of (16) and

(17) are called semi-analytical ones. For Fig. 2, the

analytical and semi-analytical curves show a com-

plete quenching phenomena of oscillation in the re-

gion ε1 < ε2 <
f11f21

ε1
. This result was also obtained

in [1, 2] for a self-sustained oscillator coupled to a

rigid rod. With this choice of values, the numerical

(a)

(b)

Fig. 2 Amplitudes of the mechanical part (a) and electrical

part (b) as function of beam dissipation coefficient. Analytical

curve (lines); semi-analytical curve (points); numerical curve

(dash lines) with b = 0.1, a = 1, w01 = w0 = w1a, ε1 = 0.05,

f1 = 1.4, f2 = 0.1

curves (those from (18) and (19)) do not corroborate

this result. This is due to the fact that for the analyti-

cal and semi-analytical treatment, only one mode (the

first) was taken into account. We observe that the ef-

fects of other modes, in spite of the fact that we are

at the perfect resonance, cannot always be neglected.

Making another choice of values of the parameters,

we obtain quenching phenomena also with the partial

differential equation (Fig. 3) for 0.032 < ε2 < 0.53,

while with the semi-analytical treatment, this occurs

for 0.01 < ε2 < 0.73. This corresponds to the stability
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(a)

(b)

Fig. 3 Amplitudes of the mechanical part (a) and electrical

part (b) as function of beam dissipation coefficient. Analytical

curve (lines); semi-analytical curve (points); numerical curve

(dash lines) with b = 0.01; a = 1; w01 = w0 = w1a; ε1 = 0.01;

f1 = 0.2; f2 = 0.05

interval ε1 < ε2 <
f11

f21
of the stationary point (q = 0,

dq
dt

= 0, y1 = 0,
dy1

dt
= 0).

4 Chaotic behavior

In this section, we find how chaos arises in our de-

vice as its parameters evolve and compare the results

of the modal approach to those of the direct numerical

simulation of the partial differential equations. For this

aim, we use the Lyapunov exponent. The results here-

Fig. 4 Variation of the Lyapunov exponent as function of the

coupling coefficient f2 from the modal approach (lines) and

from the finite difference simulation (dash line) with b = 0.1;

a = 1

k2
1

; w01 = w0 = 1; ε1 = 2.466; f1 = 3.518

after are obtained by numerically solving (16) and (17)

and (18) and (19) with their corresponding variational

equations. In the case of finite difference simulation,

the Lyapunov exponent is defined by

lyan = lim
t→∞

ln(d1(t))

t
(29)

with

d1 =

√

√

√

√dq2 +
(

d

dt
dq

)2

+
n

∑

i=1

dv2
i +

n
∑

i=1

(

∂

∂t
dvi

)2

(30)

while for the ordinary differential equations (see (16)

and (17)), one has

lyas = lim
t→∞

ln(d2(t))

t
(31)

with

d2 =

√

dq2 +
(

d

dt
dq

)2

+ dy2
1 +

(

d

dt
dy1

)2

(32)

where dq , dvi and dy1 are the variation of q , vi and

y1, respectively.

Figure 4 shows the Lyapunov exponent as the

coupling coefficient f2 increases. One finds that for

f2 ∈ [1.85;2.3], there is a series of domain corre-

sponding to a chaotic dynamics with the modal ap-

proach while with the finite difference scheme, this
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(a)

(b)

Fig. 5 Phase portrait of the mechanical part (a) and electric part

(b) from the finite difference simulation with the parameters of

Fig. 4 and f2 = 2.2

occurs for f2 ∈ [1.6;2.08] ∪ [2.12;2.25]. For the two

approaches, we have plotted the phase portraits for a

value of f2 leading to chaos (see Figs. 5 and 6). The

results of Figs. 4–6 show an almost qualitative agree-

ment between the modal approach and the finite dif-

ference simulation. However, one finds that the chaotic

domains predicted by the first approach are different

to those of the second approach. An explanation of this

fact is that the modal approach has been restricted to

(a)

(b)

Fig. 6 Phase portrait of the mechanical part (a) and electric

part (b) from modal approach with the parameters of Fig. 4 and

f2 = 2.2

only one mode of vibration. Although at resonance,

the first mode possesses the main part of the energy of

the system, the effects of the neglected modes can be

perceptible on the sensitive behaviors as found in the

chaotic state.

The next section is devoted to the synchronization

of the regular and chaotic states of two electromechan-

ical devices.
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Fig. 7 The Master-slave

electromechanical devices

5 Synchronization of two self-sustained

electromechanical systems with flexible arm

As we noted in the introduction, synchronization is of

crucial importance in automation engineering where

devices working in an ordered way are required. The

work dynamics may be periodic or chaotic depending

on the goals and applications consisting, for instance

of cutting, drilling, shaking and mixing. The partic-

ularity of the devices analyzed here is that if they are

started with different initial conditions, they will circu-

late in the same orbit but with different phase (case of

periodic or limit cycle state) or on different complex

orbits (case of chaotic behavior). In this section, we

deal with the determination of synchronization con-

ditions for two such devices coupled in the master-

slave scheme. The analytical analysis, which is com-

plemented by numerical simulation, uses the Floquet

theory on the variational equations of the deviation of

the slave orbit from the orbit of the master device.

5.1 Model and equations of motion

In this section, we derive the characteristics of the

unidirectional synchronization of two self-sustained

electromechanical devices with flexible arm. The mas-

ter system is described by the components q and v,

while the slave system has the corresponding com-

ponents p and u. The enslavement is carried out by

an electric device consisting of operational amplifiers

(see Fig. 7). The equations of the slave are

d2p

dt2
− ε1

(

1 −
(

dp

dt

)2)
dp

dt
+ w2

0p + bp3

+ f2
∂u

∂t
δ(x − x1)

+ K(p − q)H(t − T0) = 0, (33)

∂2u

∂t2
+ ε2

∂u

∂t
+ a

∂4u

∂x4
− f1

dp

dt
δ(x − x1) = 0. (34)
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In the modal approach, they transform themselves to

d2p

dt2
− ε1

(

1 −
(

dp

dt

)2)
dp

dt
+ w2

0p + bp3 + f21
dΥ1

dt

+ K(p − q)H(t − T0) = 0, (35)

d2Υ1

dt2
+ ε2

dΥ1

dt
+ w2

01Υ1 − f11
dp

dt
= 0 (36)

where K = C1
C2(C1+C2)Lω1

(with C0 ≫ C2), is the di-

mensionless feedback coupling coefficient or strength,

H(x) the Heaviside function defined as H(x) = 0 for

x < 0 and H(x) = 1 for x > 0, and T0 the onset time

of synchronization.

5.2 The formalism for optimal synchronization

When the synchronization process is launched, the

slave configuration changes and one would like to de-

termine the range of K for the synchronization to be

achieved, and for the dynamics of the slave to remain

stable. To carry out such an investigation, let us intro-

duce the following variables ζ = p − q and z = u − v

which measure the nearness of the slave to the master.

Introducing these variables in (35) and (36) and taking

z(x, t) = η1(t)φ1(x), we obtain that ζ and η1 satisfy

the variational equations

d2ς

dt2
− ε1

(

1 − 3

(

dq

dt

)2)
dς

dt

+ Ω2ς + f21
dη1

dt
= 0, (37)

d2η1

dt2
+ ε2

dη1

dt
+ ω2

01η1 − f11
dς

dt
= 0 (38)

where Ω2 = w2
0 + 3bq2 + K

The synchronization process is achieved when ζ

and z go to zero as t increases or, practically are less

than a given precision. The behavior of the slave de-

pends on K and the form of the master. Assuming that

ε1 is small, the master variables take the form

q = A cos(ω0t − ϕ1), (39)

y1 = B cos(ω01t − ϕ2) (40)

where the amplitudes A and B depend on the system

parameters as described by (26) and (27). With this

form of the master, (37) and (38) takes the form

d2ζ

dt2
+ F1(t)

dζ

dt
+ G1(t)ζ + f21

dη1

dt
= 0, (41)

d2η1

dt2
+ F2(t)

dη1

dt
+ G2(t)η1 − f11

dζ

dt
= 0 (42)

with F1(t) = λ0 − 3
2
A2ω2

0ε1 cos(2ξ), G1(t) = Ω2,

λ0 = ε1(−1 + 3
2
A2ω2

0), F1(t) = ε2, G2(t) = ω2
01, ξ =

ω0t − γ1.

Setting the following transformations

ζ = U exp

(

−
1

2

∫

F1(t) dt

)

, (43)

η1 = V exp

(

−
1

2

∫

F2(t) dt

)

(44)

we rewrite (41) and (42) in the standard form

d2U

dt2
+ F(t)U

+ f21

(

dV

dt
− G2(t)V

)

exp(ψ) = 0, (45)

d2V

dt2
+ G(t)V

+
(

R(t)U − f11
dU

dt

)

exp(−ψ) = 0 (46)

with

F(t) = δ11 + 2 ∈11 sin(2ξ) + 2 ∈12 cos(2ξ)

+ 2 ∈13 cos(4ξ),

G(t) = δ21,

R(t) = δ22 + 2 ∈21 cos(2ξ),

ψ = −
1

2
(ε2 − λ0)t +

3

8
A2wε1 sin(2ξ),

δ11 = Ω2 −
λ2

0

4
−

9

32
A4w4ε1,

∈11= −
3

4
A4w3ε1,

∈12=
3

4
bA2 +

3

8
A2w2λ0ε1,

∈13= −
9

64
A4w4ε2

1, δ22 =
λ0f11

2
,

∈21= −
3

8
A2w2ε1f11, δ21 = w2

01 −
ε2

2

4
.
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Equations (45) and (46) are two coupled Hill’s equa-

tions. According to the Floquet theory [18, 19], the

solutions are

U = α(t) exp(θ1t) =
n=+∞
∑

n=−∞
αn exp(ant), (47)

V = β(t) exp(θ2t) =
n=+∞
∑

n=−∞
βn exp(bnt) (48)

where an = θ1 +2Jnω0, bn = θ2 +2Jnω0 (J 2 = −1).

The function α(t) = α(t + π) and β(t) = β(t + π)

are replaced by the Fourier series, with θ1, θ2 ∈ C and

αn, βn ∈ R. Inserting (47) and (48) into (45) and (46)

yields (∀n ∈ N)

n=+∞
∑

n=−∞
e2Jnω0

{

αn

(

a2
n + δ11

)

+ αn+1(∈12 +J ∈11)e
ψ2

+ αn−1(∈12 −J ∈11)e
−ψ1 + αn+2 ∈13 e−2ψ1

+ αn−2 ∈13 e2ψ2

+ f21βn

(

bn −
∈2

2

)

eυ

}

= 0, (49)

n=+∞
∑

n=−∞
e2Jnω0

{

αn(−f11an + δ22)e
−υ

+ αn+1 ∈21 eψ2−υ + αn−1 ∈21 e−ψ1−υ

+ βn

(

b2
n + δ21

)}

= 0. (50)

Equating each of the coefficients of the exponential

functions to zero, one obtains the following infinite set

(S) of linear, algebraic and homogeneous equations

for the αn and βn

(S)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

αn(a
2
n + δ11) + αn+1(∈12 +J ∈11)e

ψ2

+ αn−1(∈12 −J ∈11)e
−ψ1

+ αn+2 ∈13 e−2ψ1

+ αn−2 ∈13 e2ψ2 + f21βn

(

bn − ∈2
2

)

eψ = 0,

αn(−f11an + δ22)e
−ψ + αn+1 ∈21 eψ2−ψ

+ αn−1 ∈21 e−ψ1−ψ + βn(b
2
n + δ21) = 0

(51)

where υ = (θ2 − ε2
2
)t −(θ1 − λ0

2
)t + 3

8
A2ω0ε1 sin(2ξ),

ψ1 = 2Jγ1 + θ1t , ψ2 = 2Jγ1 − θ2t . Applying the con-

sideration of [2], we find that the boundary that sepa-

rates the stability from the instability domains, is given

by

det(S) = 0. (52)

Here we limit the calculation to the sixth order Hill’s

determinant of the algebraic system (S). Since, we

have

ζ = exp

{(

θ1 −
λ0

2

)

t −
3

8
∈1 wA2 sin(2ξ)

}

α(t),

(53)

η1 = exp

{(

θ2 −
∈2

2

)

t

}

β(t). (54)

The Floquet theory states that the transition from sta-

bility to instability domains (or the reverse) occurs

only in the two following conditions:

• π -periodic transitions at θ1 = θ1
1 = λ0

2
and θ2 =

θ1
2 = ∈2

2

• 2π -periodic transitions at θ1 = θ2
1 = λ0

2
+ J and

θ2 = θ2
2 = ∈2

2
+ J .

Thus, replacing θk by θk
k (k = 1,2) in (52), we obtain

an equation which helps us to determine the range of

K in which the synchronization process is stable.

5.3 Synchronization of the oscillatory dynamics

In this subsection, we consider the master and the

slave systems with a periodic behavior and compare

the results of numerical simulation of (33) and (34)

and (35) and (36) to that of the above analytical treat-

ment. The amplitude A = 0.31 is obtained from (26)

and (27) with ε2 = 0.01 while the frequency ω0 is

set equal to ω01 (at the resonance). From (52), the

stability is achieved for K ∈]−11.36;0]∪ ]0;+∞]
with the parameters of Fig. 2. For the numerical sim-

ulation of (33) and (34) and (35) and (36) along

with (9) and (10) and (16) and (17) of the mas-

ter, we use the initial conditions (q,
dq
dt

, v, ∂v
∂t

) =
(5.0,5.0,0.0,0.0) for the master and (p,

dp
dt

, u, ∂u
∂t

) =
(4.0,4.0,0.0,0.0) for the slave. We obtain that the

synchronization domain is K ∈]−12.4;0]∪ ]0;+∞]
from the modal approach (ordinary differential equa-

tions) and K ∈]−12.6;0]∪ ]0;+∞] from the direct

numerical simulation of the partial differential equa-

tions. We take T0 = 800 and assume that the syn-

chronization is achieved when |q − p| < h0,∀t >
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Fig. 8 Synchronization time Ts versus K with the parameter of

Fig. 2 and ε2 = 0.01 from the finite difference simulation (dash

line) and the modal approach (line)

Fig. 9 Synchronization time Ts versus K with the parameter of

Fig. 5 from the finite difference simulation (dash line) and the

modal approach (line) in the chaotic regime

T0 with h0 = 10−10. Figure 8 shows the synchroniza-

tion time Ts versus K . The agreement between the two

approaches and the analytical investigation is quite ac-

ceptable. The singularity at K = −0.7 can be the sig-

nature of parametric resonances.

5.4 Case of chaotic states

Hereafter, the master and slave systems are in the

chaotic state. We proceed to numerical simulation of

(33–34) and (35–36) to determine the range of K for

which the synchronization is achieved. The criterion

(a)

(b)

Fig. 10 Time history of the deviations z (a) and ζ (b) with the

parameters of Fig. 5 and K = 3 from finite difference simula-

tion: case of synchronization failure

of numerical synchronization is that used for the reg-

ular state. The initial conditions are (q,
dq
dt

, v, ∂v
∂t

) =
(3.5,3.2,0.0,0.0) for the master and (p,

dp
dt

, u, ∂u
∂t

) =
(4.0,4.0,0.0,0.0) for the slave. We vary K between

−15 and +15 to find the synchronization domains. For

the modal approach, we find that the synchronization

is achieved for K ∈]1.5;3.7]∪ ]3.8;4.2]∪ ]4.2;8]∪ ]
11;15], while the finite differences simulation gives

the synchronization for K ∈]0.4;15]. The synchro-

nization time Ts is plotted versus K and the results are

reported in Fig. 9 for the two approaches. The differ-

ence between the modal approach and the finite differ-

ence simulation is very important if compared to what

is observed in the case of oscillatory behavior. This is

understandable since the harmonic oscillatory approx-

imation (see (39) and (40)) used for the formalism is

invalid here. Indeed, it cannot approximate the time
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(a)

(b)

Fig. 11 Time history of the deviations z (a) and ζ (b) with the

parameters of Fig. 5 and K = −1 form the finite difference sim-

ulation: case of synchronization

behavior of the chaotic state. Figures 10 and 11 show,

respectively, the deviation between the slave and the

master in the case of synchronization, and in the case

where the synchronization process has failed.

6 Conclusion

This paper has dealt with the dynamics, chaos and

synchronization of self-sustained electromechanical

systems with flexible arm consisting of a Rayleigh–

Duffing oscillator coupled magnetically to a flexible

beam. The averaging method has been used to deter-

mine the amplitudes of the oscillatory behavior. The

Lyapunov exponent helps us to study the chaotic be-

havior and typical chaotic phase portraits were re-

ported. For the synchronization process, the analytical

investigation has been based on the properties of the

Hill equation which describes the deviation between

the slave and the master devices. The analytical results

have been compared to those of the semi-analytical

studies as well as to those of a direct numerical sim-

ulation of the partial differential equations. The next

step following this study is to carry out experimental

investigations where the effects of a parameters mis-

match is unavoidable.
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