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Abstract: Aiming at the coupling fault of axial load and radial rub, a geometric nonlinear 

rotor-casing system is developed in this paper. For the actual case that the aero-engine components

(i.e. compressor disc, turbine disc, stator casing, combustor and so on) are sprayed with thermal 

barrier coatings, the interaction between disc and casing is refined into four stages, including no rub,

low rub, rub and high rub. With the increase of invasion depth, the corresponding force models are

applied to describe the different impact mechanism. The frictional characteristic between disc and 

casing is described by the Coulomb model. Then the linear interpolation is used to predict the 

instantaneous contact of disc-casing and the nonlinear dynamic behaviors of the rotor-casing system

subjected to axial load and radial rub are analyzed in the form of bifurcation diagram. Moreover, the 

rub-impact forms, such as full annular rubbing and partial rubbing, are identified by whirl orbit and

waveform. On this basis, the dynamic comparison of the rotor system with/without axial load is

conducted. The response variations caused by coating hardness and support stiffness of casing are

further discussed. 

Key words: rotor-casing system, axial load, radial rub, nonlinear dynamic behavior 

1. Introduction

In recent years, larger axial load acting on rotors becomes a big issue regarding reliability of 

compressor, especially for applications in high temperature heat pump system [1-3]. Due to

atmospheric turbulence, non-uniform combustion, installation preload and so on, rotating machine is 

often subjected to axial load, which may affect natural whirl speed, vibration stability and nonlinear 

dynamic behaviors [4]. 

Generally speaking, axial load acting on the rotating machine can be classified as constant force, 

periodic force and random force. Under this circumstance, a large number of researchers have
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focused on the dynamic characteristics of rotating machine with effect of axial load. Aiming at a

constant axial force, Nelson [5] established a rotating shaft model and then analyzed the natural

characteristics, including critical speed and vibration mode. Chen et al. [6] analyzed the dynamic 

behavior of a rotating composite shaft subjected to periodic axial load. Meanwhile, the effects of

rotational speed and disc eccentricity on the unstable regions of the system were investigated in [6]. 

Additionally, Leng et al. [7] studied the bifurcation characteristics of a cracked rotor system with 

random axial load and obtained the variation routes going in and out of chaotic region. By using the 

Lagrange equations, Chen et al. [8] obtained the nonlinear stability of the rotating shaft-disc system

with sliding supported condition and periodic axial load. As can be seen, axial load plays an

increasingly important role in stability and dynamic characteristic of rotating machine and should be 

paid enough attention in the strength design. 

Radial rub-impact between rotor and stator is another important factor, which directly affects

the well operation of rotating machine. In order to pursue higher efficiency and larger thrust weight

ratio, smaller initial clearance of rotor-stator is widely accepted in the structural design [9-12]. 

Therefore, the possibility of rub-impact fault increases dramatically. The physical impact of the rotor

on the stationary elements of a rotating machine and the subsequent rubbing at the contact area cause

a serious malfunction that may lead to catastrophic failure [13]. To predict dynamic characteristic of 

rotor system with rub-impact fault, numerous articles on this topic have been published. Taking a

Jeffcott rotor with a given initial clearance and cross-coupling influences as the research object, Jiang 

and Ulbrich [14] studied the stability of the full annular rub solutions. Yu [15] studied the influences 

of disc eccentricity, initial clearance, frictional coefficient and structural damping on the full annular

rubbing. Chu et al. [16] investigated the periodic, quasi-periodic and chaotic motion of a Jeffcott

rotor system with imbalance-rub coupling fault. Vlajic et al. [17] analytically and numerically 

investigated torsional vibration of an unbalanced Jeffcott rotor subjected to continuous stator contact. 

By using the laboratory scale drilling apparatus, they further tested torsional vibration of a rotor 

enclosed within a stator subjected to dry friction [18]. To identify rub-impact characteristic of 

cracked rotor, Patel and Darpe [19] analyzed the directional nature of the higher harmonics and 

found the nature of 2X and higher harmonics at the sub harmonic resonances. When dealing with the 

partial rub of the generator, Huang et al. [20] explored the nonlinear behaviors of the rotor system

with imbalance and parallel misalignment. Xiang et al. [21] proposed an asymmetric double-disc 



rotor-bearing system and then analyzed the interaction between rub-impact force and oil-film force. 

Characterization of rub-impact mechanism is the crucial basis of predicting the dynamic 

characteristics of the rotor system with rub-impact. As mentioned in [22,23], when the aero-engine 

components are sprayed with coatings [24,25], both local deformation of coatings and structural 

deformation of components coexist during the rub-impact process. However, existing publications 

about coatings mainly focus on the material characteristics of coatings or static behaviors of 

aero-engine components with coatings [26,27]. Therefore, dynamic investigation of rotor-stator 

system with coatings should be given rise to a widely attention. 

So far single fault effect of axial load or radial rub has been investigated in detail. However, 

considering the application of surface coatings, pioneering contributions to dynamic variation of 

rotor system with coupling influence of axial load-radial rub have not been observed in existing 

literature. Actually, it is of practical significance for the purpose of guaranteeing run quality. In the 

authors’ previous work [28], a geometric nonlinear rotor system without axial load and casing has 

been established and the single rub-impact fault has been analyzed. On this basis, a more 

complicated dynamic model of rotor-casing system subjected to axial load and radial rub is further 

proposed in this paper. According to the penetration of disc-casing, the rub-impact process is divided 

into four stages, including no rub, low rub, rub and high rub. The tangential frictional force of 

disc-casing is described by the Coulomb model [29]. Then, the nonlinear dynamic characteristics of 

the rotor system are analyzed by bifurcation diagram. Particularly, the relation between axial load 

and radial rub is identified by using whirl orbit and waveform. Moreover, the dynamic variations 

caused by coating hardness and support stiffness of casing are revealed, such as rub-impact degree, 

rub-impact form and rotational speed of first rub-impact. 

2. Mathematical formulation 

During rotor operation, there are three main vibration modes – lateral, torsional and axial modes. 

Generally, the effect of torsional vibration is weaker than that of lateral vibration. Therefore, the 

whirling motion of rotor is of the greatest concern in the actual rotating machine. 

Take a rotor-casing system subjected to axial load as the research object. As shown in Fig. 1, the 

rigid disc with eccentricity is mounted on the elastic shaft, which is subjected to constant axial load. 

The casing is supported by the linear springs and viscous dampers. During the whirling motion with 



larger amplitude, the geometric relationship of strain-displacement becomes nonlinear and the 

material relationship of stress-strain is assumed to be linear. According to the actual case of 

aero-engine, the disc and the casing are sprayed with thermal barrier coatings. 
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Fig. 1. Schematic diagram of a rotor-casing system subjected to axial load. 

In order to analyze the vibration characteristics of the rotor-casing system, some assumptions 

are made during the process of dynamic modeling, including 

(1) The origin of the global coordinate system ( o xyz ) locates at the left end of shaft and the 

axis o x  coincides with the elastic axis of shaft. 

(2) Compared with transverse deformation, the axial deformation of shaft is much smaller and 

then ignored. 

(3) The mass of shaft is far less than that of disc and not taken into consideration. 

(4) The thermal effect and friction torque are ignored during the rub-impact process of 

disc-casing. 

2.1 Dynamic modeling of shaft subjected to axial load 

In this section, the dynamic modeling of the shaft subjected to axial load is established. The 

flexible shaft is described by the simply-supported Euler-Bernoulli beam subjected to the constant 

axial load N . Meanwhile, in the plane xoy , the interactional force between disc and shaft is 

expressed as aF . 

Due to the constant axial load, the initial strain of the flexible shaft can be expressed as 



0 = N

EA
                                    (1) 

where E  denotes the elastic modulus of shaft, A  denotes the area of cross section of shaft. 

Fig. 2 shows the deformation diagram of micro segment with the effect of axial load, where 

1 1 1i o i    and 2 2 2i o i    are the local coordinate systems at both sides of micro segment, 

respectively.   denotes the angle relationship between two local coordinate systems.   denotes 

the distance between arbitrary point A  and center of cross section 1O  in the local coordinate 

system 1 1 1i o i   . 
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Fig. 2. Schematic diagram of micro segment deformation with effect of axial load. 

Due to the large unbalanced force of disc, the phenomenon of whirling motion with large 

amplitude occurs, which leads to the obvious geometric nonlinearity of shaft. In this case, the 

transverse bending strain of shaft without axial load has been derived in [28], namely 

*
11                                      (2) 

where the elongation of the elastic axis   and the first partial derivate of angle    respectively 

obey 
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where w  denotes the transverse deformation. 

According to Eqs. (1) and (2), the total transverse strain of the Euler-Bernoulli beam subjected 

to axial load can be written as 



 2
11 0= + 1+ 1w                                 (4)

The above expression suggests that the total strain is composed of the initial strain and the bending

strain. 

Let us define the potential energy unit length as Vunit and then the first variation of Vunit can be 

expressed as 
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where the first variation of the initial potential energy generated by the initial strain 0  can be

expressed as 

 
0 0 02
=

1

w
V E dA w E dA

w

     


 


  (6) 

Since that the cross section of the shaft shown in Fig. 1 is circular, the static moment and the

inertia moment of area can satisfy 

20   dA dA I   ，     (7) 

Therefore, the first variation of the initial potential energy is further simplified as 
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By using the Taylor series expansion, Eq. (8) can be expressed in the form of three orders, so 

that 
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Due to the assumption (3) that the mass of the shaft is ignored, the first variation of the kinetic 



energy unit length is unit 0T  . Thus, the Hamilton’s principle of the whole Euler-Bernoulli beam 

can be expressed as 

 2
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+ 0

t

nc
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T V W dt                               (10) 

where the non-conservative work satisfies that 
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W dt Q wdxdt                              (11) 

and the non-conservative force ncQ  contains the acting force of the disc and the damping force of 

shaft. 

According to Eq. (10), the transverse vibration equation of the shaft in the plane xoy  is given 

as 
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Due to the fact that the work rotational speed of actual aero-engine is in the range of the first 

order and second order critical speeds, the truncated modal number is set to 1MN   during the 

discrete process of partial differential equation. 

Meanwhile, the simply-supported condition of the flexible shaft can be expressed as 

0 00,   0,   0,   0x x x l x lw w w w       
                   

(13) 

Based on the above boundary condition, the characteristic function corresponding to the first 

order is supposed as 

2 2sin ,   sinl lw x w x
l l
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                      (14) 

where 2l  denotes the transverse displacement of the middle part in the shaft. 

By substituting Eq. (14) into Eq. (12), the vibration equation of the shaft in the plane xoy  can 

be written as 
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Considering that the radius of shaft is much smaller than the length of shaft, the third term (i.e. 
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52
EI

l

 ) in Eq. (15) can be ignored. Therefore, we can further define that 
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where 
eqk  denotes the equivalent linear stiffness of shaft,   denotes the equivalent nonlinear 

stiffness of shaft, and 
eqc  denotes the equivalent damping of shaft. 

According to the definition shown in Eq. (16), Eq. (15) can be modified as 

 3
2 2 2a eq l l eq lF k c                               (17) 

Because of the circular cross section of shaft, the vibration equation of the shaft in the plane 

xoz  keeps the same as that in the plane xoy . Therefore, an equivalent dynamic model of the 

rotor-casing system subjected to axial load is established, as shown in Fig. 3. 



Equivalent spring

Equivalent damper

y

o z

 

Fig. 3. Equivalent dynamic model of rotor-casing system with axial load. 

After the above detailed derivations, the restoring force of the equivalent spring and equivalent 

damper depicted in Fig. 3 is written as 

 3
eq r r eq rF k c                                 (18) 

where r  denotes the radial displacement of the disc, namely 

 2 2
1 1r z y                                  (19) 

In Eq. (19), 1z  and 1y  denote the displacement components of the disc in the two directions, i.e. 

o z  and o y . 



2.2 Rub-impact mechanism of disc-casing 

Rub-impact fault of rotor-stator belongs to classical secondary fault that often occurs in rotating 

machine. When dealing with the rub-impact fault, the interaction between rotor and stator is usually 

identified as normal impact and tangential friction [30-34]. In other word, the collision direction is

seen as perpendicular to the tangential direction of contact surface. 

In this paper, the effects of the thermal barrier coatings painted on disc and casing are 

investigated, and the rub-impact mechanism of disc-casing with coatings is described by the novel 

force model that is recently proposed by the authors and examined on the rotor test rig [22,23]. The

whole interaction process is divided into no rub, low rub, rub and high rub as shown in Fig. 4, where 

0  denotes the initial clearance between rotor and stator, ck  denotes the structural stiffness of

casing, h
k  denotes the Hertz contact stiffness of surface coatings,   is defined to describe the

minor penetration and it is set to 1%. 
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In the range  00  ， , there is no rub-impact fault between disc and casing. With the increase of

penetration of disc-casing, in the range
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interval, the total deformation is composed of coatings deformation and casing deformation. 

Therefore, the different impact force models in the above four stages are expressed as 
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Fig. 5. Schematic diagram of rub-impact with surface coatings: (a) initial condition and (b) 

rub-impact condition. 

As shown in Fig. 5, due to the fact that the casing is supported by the linear spring and the 

viscous damper, the rub penetration needs to be described by the relative motion between disc and

casing, namely 

   2 2
0 1 2 1 2 0=  = c hz z y y          (21) 

where 2z  and 2y  denote the displacement components of the casing in the two directions of o z

and o y . c  and h  denote the casing deformation and coatings deformation, respectively. 

Referring to the authors’ previous work, the inner relation between total deformation and 

coatings deformation obeys 
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where  0f    is the function of the total penetration 0  , so that 
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When dealing with the friction between disc and casing, the Coulomb model is applied. 

=T N
F F (24) 

In the above expression,   denotes the Coulomb friction coefficient that is mainly determined by

the coatings material. 

Based on Eqs. (20) and (21), the impact force and friction force can be divided into two

components in the two directions of o z  and o y , namely 
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Particularly, the energy loss caused by the contact damping is not taken into consideration. 

2.3 Dynamic modeling of rotor-casing system subjected to axial load and radial rub 

Under the action of unbalanced force of disc, rub-impact force and axial load, the vibration 

equations of the rotor-casing system can be derived based on the Newton’s second law. 
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where 1m  and 2m  denote the disc mass and casing mass, e  denotes the disc eccentricity,   

denotes the rotational speed, s
c  denotes the support damping of casing, and s

k  denotes the 

support stiffness of casing, respectively. 

2.4 Validity discussion of rotor-casing model 

In this section, the validity of the equivalent dynamic model shown in Fig. 3 is examined by 



using ANSYS simulation. According to the structural design of the actual rotor test rig and some 

relevant references [36,37], the structural parameters of the rotor-casing system are listed in Table 1. 

Meanwhile, the majority of thermal barrier coatings is ZrO2 (zirconia) stabilized with 7-8 wt% Y2O3 

(yttria). As introduced in the references [38,39], the elastic modulus of coatings is about 210 GPa at 

room-temperature. With the sharp increase of environment temperature, the coatings soften 

significantly. For example, at 1600 ℃, the elastic modulus of coatings will decrease to 10 GPa. Even 

more serious is that the elastic modulus of coatings may further decrease to about 1 GPa at higher 

environment temperature. 

When dealing with the problem that the hinged-hinged rotating Euler-Bernoulli beam is 

subjected to axial load, the static buckling load has been derived in [6], so that 

0 2
9.870EI

P
l

                                (27) 

To ensure that the buckling phenomenon of shaft does not happen, the axial load acted on the shaft is 

set to 0=0.5N P . 

Table 1 Parameters of the nonlinear rotor-casing system with surface coatings 

Physical parameter Value 
Mass of disc 1m  (kg) 58.3613 

Mass of casing 2m  (kg) 11.6723 
Eccentricity of disc e  (mm) 2.2 
Radius of disc and casing 1R , 2R  (m) 0.3, 0.3025 
Length of shaft l  (mm) 448.8 
Radius of shaft r  (mm) 12.2 
Elastic modulus of shaft E  (GPa) 210 
Equivalent damping of shaft 

eqc  (N.s/m) 261.8 

Structural stiffness of casing c
k  (MN/m) 3 

Support stiffness s
k  (MN/m) 20 

Support damping s
c  (N.s/m) 2100 

Elastic modulus of coatings on disc and casing 1E , 2E  (GPa) 210 

Poisson ratio of coatings on disc and casing 1 , 2  0.3 

Initial clearance between disc and casing 0  (mm) 2.5 
Frictional coefficient   0.1 



Fig. 6. Comparison between theoretical results and simulation results in the condition of 0=0.5N P . 

As shown in Fig. 6, the relation between radial displacement of disc and restoring force of shaft 

F can be obtained by theoretical analysis (Eq. 18) and ANSYS simulation, respectively. It is evident

that two methods are match very well in the condition of smaller displacement. With the increase of

displacement, the relative error turns to be obvious. However, when the displacement is

0.016 mr  , the maximum error is 7.07%, which also belongs to the permissible range of actual

engineering. 

From the above analysis, the equivalent dynamic model shown in Fig. 3 is proved to be valid.

And then the dynamic characteristics of the model are further analyzed in the next part. 

3. General results and discussion

To comprehensively master the operation quality of rotor-casing system, the dynamic 

characteristics of the system are numerically investigated at different rotational speeds. During the 

numerical integration, predicting the instantaneous contact is crucial. Therefore, a linear interpolation

method is used to modify the time step at some special moments. 

o

Δt
Δt1

0 



k


+1k


*
1k

 

t  
Fig. 7. Schematic diagram of linear interpolation method. 

Fig. 7 illustrates the detailed modification of time step, where k
  and 1k

   respectively



denote the radial relative displacement of disc-casing at the previous moment and the next moment, 

t  denotes the time step,   denotes the calculation tolerance. 

In the case of ‘no rub-impact to rub-impact’, k
  and 1k

   are supposed to satisfy 

0

+1 0

0
0

k

k

 
 

 
  

(28) 

If the condition 1 0k     is achieved, the time remains t . Otherwise, the time step is

reset by the linear interpolation method, namely 

0
1

1

k

k k

t t
 
 


  


(29) 

By using the above expression 1t , the new radial relative displacement *
1k   can be recalculated. If 

the new condition *
1 0k      is achieved, the modified process is accomplished. Otherwise, the

iteration is required to go on. 
3.1 Effect of axial load 

It can be observed from Eq. (16) that both equivalent linear stiffness and equivalent nonlinear

stiffness are affected by the axial load N . Let us define the axial load as 0=N P . Then the change 

rules of them are further given, when the coefficient   is set to  0  0.5， , as shown in Fig. 8. With

the increase of the coefficient  , the equivalent linear stiffness
eqk  gradually decreases. On the 

contrary, the equivalent nonlinear stiffness   gradually increases. 

a)                                       b) 

Fig. 8. Effects of axial load on the elastic shaft: (a) equivalent linear stiffness and (b) equivalent

nonlinear stiffness. 



For complicated rotating machine, it is essential step for engineers to study the vibration of the 

rotor-casing system with coupling fault in advance. In this section, the nonlinear dynamic responses 

of the system are analyzed by bifurcation diagram, whirl orbit and waveform. 

The bifurcation diagrams of the system without and with axial load are respectively shown in 

Fig. 9(a) and 9(b), where the horizontal axis represents the rotational speed   and the vertical axis 

represents the vertical displacement of disc 1y . At the interval of 100 900 rad/s , there are rich 

nonlinear dynamic phenomena, including period, double periods, quasi period and chaos. 

By comparing Fig. 9(a) with Fig. 9(b), it can be seen that the response difference caused by the 

axial load mainly concentrates in the region of lower rotational speed, especially in the range 

 100  200  rad/s， . To further reveal the detailed difference, the local refined bifurcation diagram is 

shown in Fig. 10. 

a)                                        b) 

    

Fig. 9. Bifurcation diagram of the rotor system: (a) without axial load and (b) with axial load 

0=0.5N P . 

a)                                        b) 

    

Fig. 10. Local refined bifurcation diagram of the rotor system in the range 100  200  rad/s， : (a) 



without axial load and (b) with axial load 0=0.5N P . 

In the range  100  200  rad/s， , the vibration responses of the system without axial load are

mainly identified as periodic motion, such as period-1, period-2 and period-3. However, in the same 

range of rotational speed, quasi-periodic and chaotic motions happen in that of the system. These

phenomena suggest that the original smooth running of the rotor system can be seriously affected by 

the axial load at the lower rotational speed. 

a)                                     b) 

c) d) 

Fig. 11. Vibration response corresponding to the first rub-impact: (a) whirl orbit without axial load, 

(b) whirl orbit with axial load, (c) waveform without axial load and (d) waveform with axial load. 

Additionally, the effects of the axial load N  on the rub-impact form and the rotational speed 

corresponding to the first rub-impact are further investigated. When the shaft is not subjected to the 

axial load, the rotational speed corresponding to the first rub-impact is about 140 rad/s . Meanwhile,

the whirl orbit and waveform shown in Fig. 11(a) and 11(c) indicates that the fault form of the first

rub-impact is full annular rubbing. Specifically, the black dotted line represents the initial clearance

of disc-casing. 



When the shaft is subjected to the axial load, the rotational speed corresponding to the first 

rub-impact decreases from 140 rad/s  to 101 rad/s . And the fault form of the first rub-impact is 

changed to partial rubbing, as shown in Fig. 11(b) and (d). 

Thus, it is concluded that there is a close relationship between axial load and radial rub. The 

severity of rub-impact can be usually intensified by the axial load at the lower rotational speed. 

3.2 Coupling effect of coating hardness and axial load 

Compared with the single-parameter analysis of coating hardness [28], the main highlights of 

this part mainly focus on the coupling effects of coating hardness and axial load. The contents of 

coupling effects mean that when the axial load acts on the shaft, the dynamics variation rules caused 

by coating hardness are revealed at the lower rotational speed, which is less than the first critical 

speed. 

Considering the effects of the higher environment temperature, the severe coating softening 

happens. Therefore, keeping the other parameters illustrated in Table 1 constant, the coating hardness 

is reset to 10 GPa  and 1 GPa , respectively. 

In the condition of 10 GPa , the bifurcation diagram of the system subjected to axial load is 

numerically calculated. By comparing Fig. 9(b) with Fig. 12(a), it can be seen that the dynamic 

behaviors at the interval of lower rotational speed are obviously affected by the coating hardness. 

When the rotational speed is less than the first critical speed, the rotational speed range of 

quasi-period and chaos becomes relatively narrower. However, with the increase of rotational speed, 

the response differences between Fig. 9(b) and Fig. 12(a) are not obvious. 

As shown in Fig. 12(b), the original complicated dynamic phenomena of the system at the 

interval of lower rotational speed are replaced by the periodic motions, such as period-1, period-2 

and period-3. These phenomena suggest that when the rotor system is under combined action of axial 

load and radial rub, the influences of coating hardness mainly focus on the vibration characteristics 

of the system in the range of lower rotational speed. 

When the rotational speed is =148 rad/s , the whirl orbits of the rotor system with different 

coating hardness are shown in Fig. 13. In the conditions of 210 GPa  and 10 GPa , a lot of irregular 

curves occurs in the whirl orbit of the system, as shown in Fig. 13(a) and 13(b). When the coating 

hardness decreases to 1 GPa , the vibration amplitude becomes smaller and the whirl orbit is shown 

in the form of a single loop (see Fig. 13(c)). Additionally, the variation rules of whirl orbit also 



suggest that the rub-impact form gradually varies from partial rub-impact to full annular rubbing 

with the decrease of coating hardness. 

a)                                        b) 

Fig. 12. Coupling effects of axial load and radial rub on the bifurcation diagram of the rotor system:

(a) 1 2= =10 GPaE E  and (b) 1 2= =1 GPaE E . 

a) b) c) 

Fig. 13. At =148 rad/s , the variations of whirl orbit of the rotor system with different coating 

hardness: (a) 1 2= =210 GPaE E , (b) 1 2= =10 GPaE E  and (c) 1 2= =1 GPaE E . 

3.3 Effect of support stiffness of casing 

As for the rotor-casing system shown in Fig. 1, the support stiffness of casing is a key parameter,

which reveals the constraint degree of casing and directly affects the relative displacement of

disc-casing. Therefore, the bifurcation diagram of the rotor system with different support stiffness of

casing is analyzed in this section, where the stiffness is reset to 2 MN/m
s

k   and 200 MN/m
s

k  ,

respectively. 

As shown in Fig. 14(a), the system responses are exhibited as the alternate forms of periodic 

motion, quasi-periodic motion and chaos at the interval of 100 800 rad/s . From then, the rotor 



system enters into the irregular motion and remains the state up to 900 rad/s . Overall, the rotational 

speed range of periodic motion is wider than that of quasi-periodic and chaotic motion. 

a)                                        b) 

Fig. 14. Bifurcation diagram of the rotor system with different support stiffness of casing: (a) 

2 MN/m
s

k   and (b) 200 MN/m
s

k  . 

a)    b) 

c) d) 

Fig. 15. Vibration responses corresponding to the first rub-impact in the different conditions of

support stiffness of casing: (a) whirl orbit in the condition of 2 MN/m
s

k  , (b) whirl orbit in the 



condition of 200 MN/ms
k  , (c) waveform in the condition of 2 MN/m

s
k   and (d) waveform in 

the condition of 200 MN/m
s

k  . 

When the support stiffness of casing is set to 200 MN/msk  , the bifurcation diagram of the 

rotor system is given in Fig. 14(b). It is clear that in the range 100 800 rad/s , the vibration 

responses of the system become more complicated and the rotational speed range corresponding to 

irregular motion tends to be wider. With the further increase of rotational speed, the irregular motion 

is replaced by the 1T-periodic motion. Therefore, it can be concluded that there is a close relation 

between dynamic characteristics of the rotor system and support stiffness of casing. 

Moreover, the effects of support stiffness of casing on the first rub-impact between disc and 

casing are investigated, including the rotational speed corresponding to the first rub-impact and the 

fault form of the first rub-impact. For the case of 2 MN/m
s

k  , the rotational speed corresponding 

to the first rub-impact is about =101 rad/s  and the fault form is identified as slight partial rubbing, 

as shown in Fig. 15(a) and 15(c). If the support stiffness of casing is modified as 200 MN/m
s

k  , 

the rotational speed corresponding to the first rub-impact remains unchanged. However, the 

penetration between casing and disc becomes serious, as shown in Fig. 15(b) and 15(d). Thus, 

reducing support stiffness of casing may be an effective method to alleviate the rub-impact between 

disc and casing. 

4. Conclusion 

Taking a rotor-casing system subjected to axial load and radial rub as the research object, the 

corresponding dynamic model has been established in this paper. Due to the unbalanced excitation of 

disc, the rub-impact of disc-casing with coatings has happened and then the mechanical mechanism 

of rub-impact has been described by the different contact model during the different penetration 

process. Meanwhile, the Coulomb model has been applied to simulate the friction characteristics. 

Then the nonlinear dynamic behaviors of the rotor system with coupling fault have been analyzed by 

bifurcation diagram. Moreover, both whirl orbit and waveform have been used to identify the 

rub-impact form, such as full annular rubbing and partial rubbing. Finally, the effects of axial load, 

coating hardness and support stiffness of casing have been discussed respectively. Some conclusions 

drawn from the study can be summarized as follows: 



(1) For the geometric nonlinear shaft, axial load can decrease the equivalent linear stiffness of 

shaft while it can increase the equivalent nonlinear stiffness of shaft. 

(2) Axial load acting on the shaft more easily leads to the occurrence of complicated nonlinear 

dynamic phenomena, especially in the range of lower rotational speed. 

(3) Due to the effects of axial load, the protection of motion stability given by coatings mainly 

concentrates on the range of lower rotational speed, which is usually less than the first critical speed. 

(4) To some extent, decreasing the support stiffness of casing can relieve rub-impact harm and 

further guarantee well operation of rotating machine. 
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Highlights 
1. A complicated dynamic model for rotor-casing system subjected to axial load and

radial rub is established and verified. 

2. Nonlinear dynamic characteristics of the fault system at different rotational speeds

are analyzed. 

3. Effects of axial load, casing support and coating hardness on the vibration response

and rub-impact form are discussed. 


