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Dynamics Characterization of a U-Shaped

Micro-Resonator Portal Frame
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Abstract— We present a study of the natural (resonance)
frequencies of a tunable in-plane Microelectromechanical portal
frame (U-shape) under DC electrostatic loads. The structure is
designed and fabricated to excite the in-plane anti-symmetric
(sway, first) and the symmetric (second) modes. Experimental
results show high tunability of the resonance frequencies of both
modes due to the electrostatic forces. Finite element simulations
show good agreement with the experimental measurements.
Further simulations are presented for the tunability of the natural
frequencies of other higher-order modes using various electrode
configurations. Frequency-response curves are presented for pure
AC actuation of the first two modes showing strong nonlinear
softening behavior due to the geometric nonlinearities of the
portal frame. [2020-0269]

Index Terms— Experimental measurements, finite element
method, high tunability, micro fabrication, nonlinear dynamics.

I. INTRODUCTION

A
S SENSING and actuation technologies continue to

evolve, there is critical need for the development of

smaller and smarter devices capable of providing new capa-

bilities and solutions. A central platform toward this is

micro-electromechanical systems (MEMS), which have the

advantages of low-cost fabrication, small size, fast response,

low power consumption, and high sensitivity. MEMS have

been used in several applications, such as gas-sensors

[1], [2], mass detection [2], [3], pressure sensors [4], bio-

applications [5], [6], electrothermal actuations [6], [7], energy

harvesting [8], [9], Radio Frequency (RF) switches [10], [11],

logics [12], [13], filters [14], and control [15].

In addition, MEMS are attractive due to their flexibility,

reliability, feasibility, and diversity of applications. Thus,

the study and optimization of MEMS devices become very

important so that improved prototypes and even novel appli-

cations can be realized.

In macro-sized systems, it can be challenging to reveal

the rich dynamic properties due to difficulties in controlling

precisely and in a wide range the stiffness, damping, and

forcing of the system. At the micro-scale, on the other hand,

stiffness can be tuned through, for example, electrostatic and

Manuscript received July 13, 2020; revised August 12, 2020; accepted
August 24, 2020. This work was supported by the King Abdullah University of
Science and Technology (KAUST). Subject Editor N. Barniol. (Corresponding
author: Mohammad I. Younis.)

The authors are with the Physical Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-
6900, Saudi Arabia (e-mail: mohammad.younis@kaust.edu.sa).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JMEMS.2020.3020230

electrothermal actuation, damping can be controlled through

environmental chambers and design variations, and forcing can

be applied in a wide range through voltage changes. Hence,

large deformations of microstructures can be induced amplify-

ing the effect of their geometric nonlinearities. Such nonlinear

behaviors have been cited in several studies [16]–[31]. Recent

advances of linear and nonlinear dynamics of MEMS are

surveyed in [32].

Nonlinearities in straight micro beams have been exten-

sively studied the past two decades when they are excited

near resonance conditions under electrostatic DC and AC

voltages. Jump phenomenon is the most common, which

prevails in beams due to, for example, mid-plane stretch-

ing in clamped-clamped beams, internal resonances between

modes of vibrations, and softening effect of the electrostatic

forces [33]–[36]. Jumps can be of softening or hardening

types.

Simple structures, such as single beams, have been com-

monly employed in MEMS due to the ease of accessing their

modes of vibration and exploring their linear and nonlinear

dynamical behaviors. Compound and more complex structures

have not been commonly used in dynamic-based applications.

These structures have been more frequently implemented at

the macro-scale.

Compound structures can have various forms, such as L-

shape [37], [38], T-shape [39], and U-shape (portal frame)

beams [40]–[46], which are commonly called frames, and

triangular shapes, such as trusses. In micro-scale systems,

such compound structures can be promising for various appli-

cations, such as energy harvesting, sensing, and actuation.

Nevertheless, these structures have been reported mostly for

static applications, and mainly in the linear regime, without

considering or accounting properly for the effect of their

nonlinearities [37]–[46].

Portal frames have been commonly employed and studied

in macro structures in urban and domestic applications, for

example in bridges and trusses. According to Brasil and

Mazzilli [46], when these structures undergo large vibration,

geometric nonlinearities are activated, and nonlinear behavior

becomes important. Nonlinear behaviors in portal frames, such

as the saturation phenomenon, have been reported due to

the dominant quadratic nonlinearities [42]–[48]. Other works

also reported nonlinear phenomena due to dominant quadratic

nonlinearities in different compound structures [37], [39],

and [47]–[49]. These studies demonstrated the importance

of proper modeling with analytical and numerical techniques

to understand their complex behavior. At the micro-scale,
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Fig. 1. (a) Schematic of the micro portal frame with the actuation electrodes;
(b) Top view of the fabricated MEMS portal frame made of silicon.

U-shaped structures are very common for in-plane operations,

such as electrothermal actuation [50], and logics [51]; as well

as for out-of-plane operations, such as energy harvesting [52],

and other linear and static applications.

Since at the micro-scale large deformations are commonly

induced, it is essential to understand the dynamical behavior

of compound structures while accounting properly for their

nonlinear behavior. Specially, the portal frame has shown

to have rich dynamical behaviors, such as the saturation

phenomenon, the excitation of various higher order modes,

and various ways to excite and tune resonance frequencies.

It offers several design possibilities with a variety of electrode

configurations for electrostatic actuation. Hence, it is important

to model this system under such excitations to fully understand

its behavior in order to effectively exploit it for different

applications.

Hence, this work investigates the dynamical behavior of a

micro portal frame designed to be excited at its first (sway,

anti-symmetric) and second (symmetric) in-plane modes using

DC and AC electrostatic forces.

II. THE MICRO PORTAL FRAME DESIGN AND

MEASUREMENTS METHOD

The micro portal frame under study, shown in Figs. 1a, 1b,

is fabricated by the SOIMUMPs process of MEMSCAPTM

[53]. The microstructure is subjected to an electrostatic force

through two electrodes, one on top of the supported beam

(Electrode 1 (E1)) and the other on the column (Electrode 2

(E2). The device has Young Modulus of 136GPa, the short

beam elements (column) of length L2 = 133.1µm, the long

beam element (supported beam) of length L1 = 240µm,

and a depth of 25µm. Due to imperfections from the fab-

rication process, the beam and columns widths are measured

respectively as h1 = 1.73µm, and h2 = 1.6µm. The distance

between the supported beam and columns from their respective

electrodes are of d1 = 3.442µm and d2 = 3.51µm, respec-

tively.

It is important to mention that, due to the small gap between

the resonator and the electrodes, a vacuum chamber is required

to minimize squeeze-film damping [31] with the pressure

of 50mTorr set throughout the experiments.

The resonance frequencies are measured using a laser

Doppler vibrometer, Micro System Analyzer (MSA), from

Polytec with white noise and very small AC voltage to get the

Fast Fourier Spectrum FFT of the in-plane motion. To capture

the forced vibration response, amplitude-frequency curves,

stroboscopic video microscopy with a Bode plot of the MSA

was used.

III. EXPERIMENTAL MEASUREMENTS AND FINITE

ELEMENTS ANALYSIS

The first and second natural frequencies were initially mea-

sured, as 79,580 Hz and 166,667 Hz, respectively, as shown

in Fig. 2. The first mode is actuated by Electrode 2 (E2)

while Electrode 1 (E1) actuates the second mode. In addition,

Figs. 2a and 2b show the simulated modes of vibration of each

frequency as obtained through a finite-element model using the

software COMSOL.

Figs. 3a and 3b show the frequency shift due to Vdc for the

first and second modes, respectively. They indicate that the

natural frequencies of the structure decrease with the increase

of the Vdc due to the softening effect of the electrostatic force.

When the first mode is actuated (see Fig. 3a), the second

mode is slightly affected. However, when the second mode

is actuated (see Fig. 3b), the first mode is barely affected.

Figure 3 also shows Finite Element Method (FEM) simula-

tions using the software COMSOL Multiphysics. Good agree-

ment is noted between the FEM and the experimental data.

Both FEM results and experimental data show high tunability

of the first mode when actuated by electrode E2 and of the

second mode when actuated by electrode E1. Moreover, when

actuating with E1, the second mode natural frequency crosses

with the first one near the pull-in voltage (at 77.0 V). The

simulated maximum static displacements (Wmax) of the portal

frame just before pull-in of the first mode (Fig. 3a) and second

mode (Fig. 3b) are 1.27µm and 1.35µm, respectively; hence

the ratio of Wmax to gap electrode is around 37% in both

cases.

The modes of vibration of compound structures are global

modes representing the vibration of all connected single struc-

tures. In the portal frame, there are three beams coupled with

each other. Each one of these beams has its own natural

frequencies and corresponding modes of vibration. However,

as the beams are mechanically coupled, they vibrate all at the

same time with the same natural frequency. Here, the first

global mode of vibration is dominated by the sway of the

two columns, while the second mode is dominated by the

bending of the clamped-clamped beam of the supported beam

connecting the two columns.
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Fig. 2. Top views of the MEMS portal frame when vibrating at the (a) first
and (b) second modes, with the measured Fast Fourier Transform (FFT), and
finite element simulation of the modes.

Next, we use FEM simulations to study tuning the natural

frequency of other higher-order modes of the micro-resonator

under DC loads. The effect of various electrode configurations

on these modes will be examined.

Table I shows the calculated natural frequencies at zero DC

loads for the first five in-planes modes.

Figures 4a, 4b and 4c show the FEM results of the frequency

tuning for the third, fourth and fifth modes, respectively, when

they are actuated by the electrode E2 or E1, as clarified

in Fig. 1. Note that these electrodes affect the first and sec-

ond modes as well. Hence, in the figure different ranges

of frequency are shown for each used electrode as the first

and second modes gets affected and eventually pulls-in. It is

Fig. 3. Natural frequency shifts of the first two modes due to the effect of
the electrostatic force, (a) when actuating the structure through Electrode 2
(E2) and (b) when actuating the structure with Electrode 1 (E1).

TABLE I

NATURAL FREQUENCY OF THE FIRST FIVE IN-PLANES MODES OF

VIBRATION OF THE PORTAL FRAME CALCULATED USING FEM AT ZERO

DC VOLTAGE

noticed that the higher-order modes have lower tunability than

the first and second ones.

When E1 is activated, where the second mode pulls-in (as

shown in Fig. 2b), there is slight decrease in the third and fifth

modes (see Fig. 4a and 4c, respectively), while the fourth mode

is barely affected (Fig. 4b). However, when E2 is activated,

where the first mode pulls-in (as shown in Fig. 2a), the fourth

mode is the most affected one, while the third almost does
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Fig. 4. Frequency shifting due to the effect of electrostatic force for (a) 3rd
mode, (b) 4th mode, and (c) 5th mode when they are actuated by E1 or E2.

not decrease. Moreover, the fifth mode shifts more when E1 is

activated.

Looking at the shapes of each mode, it is observed that the

third mode depends on the motion of the long beam element

L1 of the frame. The fourth and fifth ones depend directly on

the motion of the short beam ones L2, clearing the fact that

the actuation of the second mode affects most the third mode

while the actuation of the first mode affects more the fourth

and fifth ones.

Fig. 5. Schematic illustrating various electrode configurations around the
microstructure.

IV. EFFECT OF OTHER ELECTRODE CONFIGURATIONS ON

HIGHER-ORDER MODES

The effect of different electrode configurations is investi-

gated next on the natural frequency of higher-order modes

of vibration. Figure 5 shows a schematic for the various

studied electrode configurations. In addition to the initial

design (Fig. 1b), two more electrodes are considered in the

opposite side of E1 and E2, named E3 and E4.

Figure 6 shows the frequency shifts of the first five in-plane

modes for all the different configurations of electrodes. The

numbers in the legends indicates the used configurations.

The first and second natural frequencies are the most

affected by the electrostatic force. For all the configurations,

either the first or the second mode pulls-in first.

As noted from Fig. 3a and 3b, an electrode configuration

can have significant impact on one mode while it barely affects

the other. Then, looking at the case of actuation of E1 and

E2 at the same time (case 1-2 in Fig. 6), both first and second

modes have their natural frequencies shifted. The figure also

indicates that all the higher-order modes are affected by the

electrostatic force. The most affected one is the third mode,

as the long element L1 of the portal frame is less stiff.

Furthermore, to shift all the natural frequencies and increase

the tunability of the higher-order modes, the case of actuating

the structure with all the four electrodes E1, E2, E3 and E4

(case 1-2-3-4 in Fig. 6) is the best among them. The 2nd mode

is the first one to pull-in and the 3rd, 4th and 5th modes are all

affected, which is obvious as the whole structure is actuated

at the same time. The reason that the second mode pulls-in

before the other modes is that this mode depends on the long

element, which is less stiff than the other ones.

When the structure is actuated by E1 and E3 (case 1-3),

the frequency tunability of higher-order modes is enhanced

compared to case 1, as shown in Figs. 6c, 6d and 6e. The

natural frequencies of higher-order modes decrease even more

with the increase of DC voltage. The pull-in voltage of

the second mode increases around 25%, as shown in Fig. 6b.

Similarly, the tunability of case 2-4 compared to case 2 is

enhanced for higher-order modes, as shown in Figs. 6c, 6d and

6e. In addition, the pull-in voltage of the first mode increases

around 25%, as shown in Fig. 6a. This is because the structure

is actuated by two electrodes on the same element.

Authorized licensed use limited to: KAUST. Downloaded on September 09,2020 at 05:01:11 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TUMOLIN ROCHA et al.: DYNAMICS CHARACTERIZATION OF A U-SHAPED MICRO-RESONATOR PORTAL FRAME 5

Fig. 6. Frequency shifts of (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, and (e) 5th mode, for different electrode configurations. The numbers
on the legends represent the number of the used electrodes as indicated in Fig. 5.

It is noticed from Figs. 3 and 6 that the 2nd mode natural

frequency can decrease until it reaches a value close to the 1st

mode natural frequency. Fig. 7 shows what happens when the

2nd mode is close to the first mode for the cases where the

2nd mode is the most affected. All the curves starting near

120 kHz are for the second mode while the curves starting

around 75 kHz of frequency are for the first mode.

When the system is actuated by E1 only (case 1), E1 to E4

(case 1-2-3-4), and E1 and E3 (case 1-3), the second mode

crosses the first mode. However, when the system is actuated

by E1 and E2 (case 1-2), it is possible to see that the modes

do not cross. The second mode deviates (veers away) when

the first one sudden drops to pull-in. It is clear from Fig. 7

that this indicates a veering phenomenon [54]. This is due to

the effect of electrostatic force in breaking the symmetry of

the structure. The electrodes E1 and E2 actuating on the long

element L1 and one of the short elements L2, respectively,

soften the elements, making them less stiff than the other short
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Fig. 7. Frequency shifting of the first mode and second mode for the cases
where the second mode is tuned more than the first mode around the crossings.
The dotted line with circles indicates the first modes, and the solid line with
stars indicates the second modes. The colors of the lines indicate the cases
of the electrodes’ configuration.

Fig. 8. Schematic of the micro portal frame model.

element. With that, the symmetry between both sides of the

portal frame is broken.

V. NONLINEAR DYNAMIC ANALYSIS

A. The Model

Next, a mathematical model is developed to simulate the

dynamic response of the system. For this, the micro portal

frame of Fig. 1a is represented by Fig. 8. The supported

middle beam is represented by the lumped mass mb and a

moment of inertia Ib. Each vertical column is represented

by a lumped masses mc with a moment of inertia Ic. Both

columns and beam have a depth b. All the other parameters

are presented in Section II. In the reduced-order mathematical

model, inextensible links are considered.

The linear stiffness of the columns and the beam can be

evaluated by a finite-element Rayleigh-Ritz procedure using

cubic trial functions [45]. The shortening due to bending of the

columns and beam introduces quadratic geometric nonlinearity

of the structure. The shape functions related to the columns

and beam can be approximated as

φu =
6

L3
2

(

L2x2

2
−

x3

6

)

, 0 ≤ x ≤ L2

φv =
12

L3
1

(

x3

3
−

L2
1x

4

)

, 0 ≤ x ≤ L1 (1)

where φu describes an interpolated shape function of the first

mode of a cantilever beam along the column length L2 and

φv describes an interpolated shape function of the first mode

of a clamped-clamped beam along half of the supported beam

length L1.

The nodal displacements, shown in Fig. 8, are given by

u2 = q1 u1 = u2 +
B

2
v2

2 u3 = u2 −
B

2
v2

2

v2 = q2 v1 = −
C

2
u2

2 v3 = −
C

2
u2

2 (2)

where the constants B and C are as below

C =

L2
∫

0

(φ′
u)2dx B =

L1
∫

0

(φ′
v )

2dx (3a)

We calculate the linear stiffness of the beam kb and columns

kc through the Rayleigh’s method as

kc = E Ic

L2
∫

0

(φ′′
u )2dx kb = E Ib

L1
∫

0

(φ′′
v )2dx (3b)

This yields B = 69/5L1, C = 24/5L2, kb = 192E Ib

/

L3
1,

and kc = 12E Ic

/

L3
2. Note that the generalized coordinates

of the structure are considered the motion of the mass at the

mid-span of the supported beam; u2 = q1, and v2 = q2, as in

Eq. (2), and illustrated in Fig. 8.

The total kinetic energy of the structure T is calculated by

accounting for the motion of all the three masses related to

the nodal displacement as

T =
1

2
mb

(

u̇2
2 + v̇2

2

)

+
1

2
mc

(

u̇2
1 + u̇2

3 + v̇2
1 + v̇2

3

)

(4)

where the masses are calculated by

mc = ρbh2

L2
∫

0

φ2
udx; mb = ρbh1

L1
∫

0

φ2
v dx (5)

where ρ is the mass density of the material. Hence, deriving

Eq. (2) in time and substituting into Eq. (4) yields

T =
1

2
mb

(

q̇2
1 + q̇2

2

)

+ mcq̇2
1 + C2mcq2

1 q̇2
1 + B2mcq2

2 q̇2
2 (6)

Note that from Eq. (6), inertia nonlinearities are obtained.

The potential energy of the structure U is given by

U =
1

2
kc

(

u2
1 + u2

3

)

+
1

2
kb

(

v2 −
v1 + v3

2

)2

(7)

Substituting the nodal displacements of Eq. (2) into Eq. (7)

yields

U = kcq2
2 +

1

2
Ckbq1q2

2 +
1

2
kbq2

1 +
1

4
C2kbq4

2 +
1

8
B2kcq4

1

(8)
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The potential energy shows quadratic, cubic, quartic, and

coupling terms. These nonlinear terms may drive the system

into nonlinear behaviors.

The dissipative energy D of the supported beam and

columns are defined as

D =
1

2
2ccq̇2

1 +
1

2
cbq̇2

2 (9)

where cc and cb are the damping coefficients of the columns

and supported beam, respectively.

The structure is actuated by DC and AC electrostatic loads

through Electrode 1 and Electrode 2. Hence, the electrostatic

force for each electrode is given by

Feq1 =
εA1

2 (d2 − u1)
2

(Vdc1 + Vac1 cos ω1t)2

Feq2 =
εA2

2 (d1 − v2)
2

(Vdc2 + Vac2 cos ω2t)2 (10)

where the indexes 1 and 2 are related to the coordinates q1 and

q2. Note that the quadratic term of u1 is neglected in Eq. (10)

as its influence is negligible for the results.

Next, we apply the Euler-Lagrange equations

L (q, q̇, t) = T − U (11)

d

dt

(

∂L

∂ q̇i

)

−
∂L

∂qi

+
∂ D

∂ q̇i

= Qext i = 1, 2 (12)

where Qext is the generalized non-conservative forces.

Hence, the equations of motion of the portal frame are

obtained as

(2mc + mb) q̈1 + ccq̇1 + 2kcq1 + 2C2mc(q
2
1 q̈1 + q1q̇2

1 )

+ Ckbq1q2 +
1

2
C2kbq3

1 =
εA1(Vdc1 + Vac1 cos ω1t)2

2(d2 − q1)2

mbq̈2 + cbq̇2 + kbq2 + 2B2mc(q
2
2 q̈2 + q1q̇2

2 )

+
1

2
Ckbq2

1 + B2kcq3
2 =

εA2(Vdc2 + Vac2 cos ω2t)2

2(d1 − q2)2

(13)

where the first and second equations represent the horizontal

and vertical displacements, respectively, of the mass at the

mid-span of the supported beam.

A dimensionless procedure is carried out with the new non-

dimensional variables below

x =
q1

d2
; y =

q2

d1
; ωn1 =

√

2kc

2m + M
; τ = ωn1t (14)

yielding the new non-dimensional equations of motion:

ẍ + µ1 ẋ + x + k31x3 + α11xy + α21

(

x ẋ2 + x2 ẍ
)

= E1
(Vdc1 + Vac1 cos 	1τ )2

(1 − x)2

ÿ + µ2 ẏ + ω2
n2 y + k32y3 + α12x2 + α22

(

y ẏ2 + y2 ÿ
)

= E2
(Vdc2 + Vac2 cos 	2τ )2

(1 − y)2
(15)

Fig. 9. Experimental frequency-response curves of the (a) 1st mode and (b)
2nd mode, respectively.

where the dimensionless coefficients are:

k31 =
C2d2

2 kb

2 (mb + 2mc) ω2
n1

; α11 =
Cd1kb

(mb + 2mc) ω2
n1

;

α21 =
2C2d2

2 mc

mb + 2mc

; µ1 =
cc

(mb + 2mc) ωn1
; 	1 =

ω1

ωn1
;

E2 =
εA2

2d3
1 mbω

2
n1

; E1 =
εA1

2d3
2 (mb + 2mc) ω2

n1

;

k32 =
B2d2

1 kc

mbω
2
n1

; ωn2 =

√

kb

mbω
2
n1

; α12 =
Cd2

2 kb

2d1mbω
2
n1

;

α22 =
2B2d2

2 mc

mb

; µ2 =
cb

mbωn1
; 	2 =

ω2

ωn1
; (16)

B. Experimental Results

The first and second modes are excited by an AC voltage

excitation with no DC voltage. This is to suppress the softening

effect of the DC voltage due to the quadratic nonlinearity [31];

and hence highlight the effect of other nonlinearities from the

geometry of the structure itself.

The experimental frequency response curves of the first

anti-symmetric (1st mode) and first symmetric (2nd mode)

modes are depicted in Figs. 9a and 9b, respectively. Linear

responses of each mode are noted when applying a very small

AC voltage excitation (Vac = 1.2V). However, with a small

increase in the AC voltage (Vac = 1.8V (1st mode) and 2.0V

(2nd mode)), one can see nonlinear softening behavior. Since
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Fig. 10. Simulated frequency-response curves of the (a) 1st mode and (b) 2nd

mode.

there is no Vdc and very small Vac excitation, it is clear that

the softening behavior is purely due to geometric nonlinearities

from the frame, providing unique and interesting dynamics of

this microstructure.

C. Simulation Results

Integrating Eqs. (15) in time, the steady-state response of

the system is obtained assuming cc = cb = 20.1pNs/m and

Vdc1 = Vdc2 = 0 V. The simulated frequency response curves

of the first and second modes are shown in Figs. 10a and 10b,

respectively. As in the experimental curves, linear responses

are noted when applying a small AC voltage excitation (Vac1 =

Vac2 = 0.8V). With a small increase in the AC voltage

excitation, Vac1 = 2.0V (1st mode) and Vac2 = 2.0V (2nd

mode), forward and backward integrations are carried out. For

both modes there is nonlinear softening behavior.

The investigation of the geometry of the portal frame is

carried out by observing the frequency-responses of both 1st

and 2nd modes for different lengths of the supported beam

L1 that are considered as L1 = 180µm, 220µm, and 290µm.

The smaller is L1, the higher is the natural frequencies of the

modes.

Fig. 11 shows various frequency-response curves accounting

for the different lengths of the supported beam, from L1 =

180µm (Fig. 11a) to L1 = 290µm (Fig. 11c), respectively,

excited by a Vac1 = Vac2 = 2.0V, except the last one (Fig. 11c,

with Vac1 = Vac2 = 1.3V). The figures in the left side

Fig. 11. Simulated frequency-response curves of the 1st (left figures) and

2nd (right figures) modes, respectively, for the supported beam length L1 of
(a) 180µm for V ac1 = V ac2 = 2.0V, (b) 220µm for V ac1 = V ac2 = 2.0V,
and (c) 290µm for V ac1 = V ac2 = 1.3V. All simulations show backward
sweep.

represent the 1st mode frequency-responses while the right

side figures are for the 2nd mode ones.

With the increase of L1, it is observed the increase of the

final response of the softening behavior of the 2nd mode, while

the 1st mode seems to decrease (see the progression of the

curves for Fig. 11a, 11b, 10a and 10b).

However, when L1 = 290 µm, the 1st mode response

increases again. Note that Fig. 11c is simulated for Vac1 =

Vac2 = 1.3V. As expected, the longer is the beam the higher is

the amplitude of vibration. Then, dynamic pull-in is observed

at Vac1 = Vac2 = 2.0V.

Since the modeling of the portal frame accounts for

quadratic and cubic geometric nonlinearities, the quadratic

ones seem dominant as observed in the various different

geometries of the structure.

VI. CONCLUSION

An experimental and FEM study of the tunability of an in-

plane micro-electromechanical portal frame (U-shape) struc-

ture under DC electrostatic excitation has been presented. The

results showed high tunability for the first symmetric and first

anti-symmetric (sway) modes of vibration.
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FEM results showed the possibility to tune higher-order

modes. Even though they are of low tunability, the third mode

can be better tuned when the supported beam L1 is excited,

while the fourth and fifth modes can be effectively tuned by

exciting the columns L2. One way to have a slightly high

tunability of the higher-order modes is exciting the system

with different configurations of the electrodes on the structure.

Crossings and veering between the first and second modes can

be observed during various tunability scenarios. However, all

the crossing and the veering phenomena were very close to

the pull-in voltage.

Besides that, it is also possible to clarify that the direct

actuation on the supported beam L1 tunes the third mode,

while the fourth and fifth modes are tuned only when the

columns L2 are actuated.

Moreover, the structure was experimentally excited sweep-

ing the frequency near the resonance only with electrostatic

AC voltage. The frequency response curves showed linear

response for a very small voltage (1.0V). However, increasing

the voltage to Vac = 2.0V, the system showed nonlinear

softening behavior, which clearly comes from the geometric

nonlinearities of the structure, as there was no DC load

excitation.

A mathematical model for the first and second modes was

also developed and showed the dominance of the quadratic

nonlinearity of the portal frame. This highlights the fact that

the portal frame has an interesting dynamic due to the structure

itself.

The results of this paper shed light on the possibility of

studying and utilizing other compound structures with multiple

excitation inputs and multiple outputs, which can be used for

variety of applications, such as in logic, computation [55],

sensing, and actuations. These results open possibilities for

applications, such as in logic gates and switches due to the

tuning between those two modes, including the different ways

that they can be actuated and sensed. Also, the system showed

rich nonlinear dynamics with high potential for applications in

energy harvesting due to the low energy necessary to access

high amplitudes of vibration.
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