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Abstract

Variable length multisection continuum arms are a class of continuum robotic manipulators that
generate motion by structural mechanical deformation. Unlike most continuum robots, the sections of
these arms do not have (central) supporting flexible backbone, and are actuated by multiple variable
length actuators. Because of the constraining nature of actuators, the continuum sections can bend
and/or elongate (compress) depending on the elongation/contraction characteristics of the actuators
being used. Continuum arms have a number of distinctive differences with respect to traditional
rigid arms namely: smooth bending, high inherent compliance, and adaptive whole arm grasping.
However, due to numerical instability and the complexity of curve parametric models, there are
no spatial dynamic models for multisection continuum arms. This paper introduces novel spatial
dynamics and applies these to variable length multisection continuum arms with any number of sec-
tions. An efficient recursive computational scheme for deriving the equations of motion is presented.
This is applied in a general form based on structurally accurate and numerically well posed modal
kinematics that assumes circular arc deformation of continuum sections without torsion. It is shown
that the proposed modal dynamics are highly scalable, producing efficient and accurate numerical
results. The spatial dynamic simulation results are experimentally validated using a pneumatic mus-
cle actuated multisection prototype continuum arm. For the first time this enables investigation of
spatial dynamic effects in this class of continuum arms.

Keywords: continuum arms, modal shape functions, spatial dynamics, recursive computations

1 Introduction

Due to their inherent flexibility and compliance, soft continuum robots inspired by tongues (Takanobu
et al., 2004), elephant trunks (Cieslak and Morecki, 1999; Hannan and Walker, 2003; Wolf et al., 2003),
octopus arms (Cianchetti et al., 2011; Grissom et al., 2006), and other cephalopod appendages (McMahan
et al., 2004), can elongate, contract, and bend at any point along their structure (Trivedi et al., 2008b).
This allows them to, access highly confined spaces and follow complex trajectories. They have some
unique and highly distinctive features when compared with rigid bodied robots: such as smooth bending,
inherent compliance (Rucker and Webster, 2011a), reduced weight, and increased fault tolerance (Godage
et al., 2011b). Continuum arms also have excellent potential for adaptive whole arm grasping (McMahan
and Walker, 2008; Li and Xiao, 2011), obstacle avoidance (Godage et al., 2012a), navigation in highly
unstructured, narrow and obstructed environments (Xiao and Vatcha, 2010), minimally invasive surgery
(Lock et al., 2010; Lyons et al., 2009; Penning et al., 2011; Simaan et al., 2004; Rucker and Webster,
2011b), inspection tasks (Mehling et al., 2006), and human friendly interaction (Walker et al., 2005).
In light of these advantages, continuum and soft robotics has become an area of major importance in
bio-inspired robotics.

Figure 1 shows two, highly compliant, state of the art variable length multisection continuum arms
that are powered by pneumatic muscle actuators (PMA). In this paper, a continuum “section” is identified
as a unit that is capable of producing independent bending deformation whereas “segments” are a subset
of a continuum section, i.e., multiple segments make up a section as shown in Figure 1b. Due to the
particular constraining nature of variable length actuator arrangement, a continuum section deforms
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Figure 1: Pneumatic muscle actuated, three-section variable length continuum robotic arm prototypes. (a) The continuum
arm developed at the Italian Institute of Technology (IIT) manipulating an object. Note the smooth circular arc shape
bending of variable length continuum sections, (b) the prototype of Figure 1a is at rest without actuation. Section and
segment terms are also indicated as referred to in this paper, (c) The continuum arm developed at Clemson University
demonstrating multisection bending. Individual continuum sections and neutral axis are annotated for clarity.

in a circular arc (without torsion) where straight section poses are modeled as circular arcs of zero
curvature. PMA’s are particularly suitable for implementing variable length multisection continuum
arms owing to their low cost, high flexibility and compliance, excellent length change ratio, and high
power to weight ratio (Caldwell et al., 1995). Similar pneumatically actuated multisection continuum
arms include OctArm (McMahan et al., 2006; Neppalli et al., 2007) and FESTO bionic handling assistant
(Grzesiak et al., 2011; Mahl et al., 2014) among others. Multisection continuum arms are constructed by
stacking at least two continuum sections where, each is actuated by multiple variable length actuators.
These continuum sections are kinematically independent (bending of one section does not affect the
others), generate motion by elastic deformation (that results in a length change along the neutral axis
hence the term variable length), and not backbone supported (actuators provide the structural strength).
These unique features therefore differentiate this class of continuum arms from other continuum arm
implementations that employ: fixed-length flexible backbones (Gravagne and Walker, 2000; Rucker and
Webster, 2011b), tendon/rod actuation (Camarillo et al., 2009; Xu and Simaan, 2010; Goldman et al.,
2011), tendon-pneumatic hybrid actuation (Immega et al., 1995; McMahan et al., 2005), and concentric
tubes (Webster et al., 2009; Dupont et al., 2010).

Lumped or segmented models for continuum arms represent the natural transition from the tra-
ditional, rigid multijointed robot dynamic modeling approaches. When used for relatively few rigid
segments, lumped models avoid the complex expressions intrinsic in continuum arms to yield efficient
results (Giri and Walker, 2011; Khalil et al., 2007). However, to accurately resemble the smooth bending
of continuum arms many segments are required (Zheng et al., 2012), significantly increasing the overall
degrees of freedom (DoF) in contrast to actual number of controlled joint variables.

Cosserat rod theory has been successfully applied to solve for statics/dynamics of flexible back-
bone supported, tendon actuated, and concentric type continuum arms. Jones et al. (2009) proposed
three-dimensional statics for gravity loaded, unactuated flexible rods, while Rucker and Webster (2011b)
generalized the approach for backbone supported tendon actuated continuum arms with general tendon
routing. A similar approach was applied to multibending soft robot by Renda et al. (2014). Flexible
manipulator dynamics proposed by Book (1990) assumed small relative deformation hence are not ap-
plicable to continuum arms that can exhibit large omni-directional deformation. Xu and Simaan (2010)
utilized elliptic integrals to derive kinematics, statics, and shape restoration of continuum arms but
only a single continuum section was considered. Rone and Ben-Tzvi (2014) employed Kane’s method
to derive dynamics for tendon-actuated multisegment (technically a single section as the segments are
kinematically coupled) continuum arms. Trivedi et al. (2008a) proposed a planar model for multisection
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continuum arms and validated only for static poses. This approach has not been extended to model
spatial dynamics of variable length multisection continuum arms.

Unlike their rigid counterparts, the displacement between any two points within a continuum arm is
not fixed. As a result of their inherent large deformations, points along a continuum arms have varying
relative position, orientation, and linear and angular velocities. To account for this continuous and
deforming nature, continuum arm Equations of Motion (EoM) are derived from energy based methods
such as the Lagrangian formulation.

Although there has been an impressive amount of research in prototypes, the advancements in mod-
eling and control of variable length continuum arms, particularly dynamic modeling, lags behind. This is
mainly because of the complex and highly nonlinear kinematics and dynamics associated with this class
of continuum arms. Theoretical models for inextensible, unidimensional, cable like mechanisms were pro-
posed by Mochiyama (2006) but multisection continuum arms have multiple DoF. As shown in Figures
1a and 1c, upon actuation the variable length continuum sections of the prototype arms are deformed in
circular arc shapes. The kinematic model proposed by Jones and Walker (2006a) accurately calculates
the arc parameters that describe this circular arc shape in joint-space variables (i.e., actuator lengths).
However, due to the highly nonlinear, complex expressions and numerical instabilities, it is challenging to
extend the parametric kinematics to dynamic analysis. Tatlicioglu et al. (2007a,b) proposed a dynamic
model for the OctArm (Grissom et al., 2006) extensible continuum manipulator. However, these planar
dynamic models did not account for the geometrical coupling between curve parameters and joint space
variables (Godage et al., 2011b) and were not experimentally validated.

Godage et al. (2011a,b) proposed spatial dynamics for a single, variable length continuum section
and experimentally validated for a PMA actuated continuum section in (Godage et al., 2012b). The
modal1 kinematics for variable length multisection continuum arms proposed by Godage et al. (2011c,
2015) combined the structural accuracy of curve parametric models (Jones and Walker, 2006a) and
numerical efficiency and stability of modal methods (Shabana, 2005). Further, much of the work on
variable multisection continuum arms so far focused on slow moving applications where static models and
kinematic control were sufficient (Jones and Walker, 2006b). But increasingly continuum robots are, and
surely will be, affected by dynamics for applications such as obstacle avoidance in dynamic environments,
inspection operations, and object manipulation tasks which requires increased performance. Hence
there is the need for scalable, numerically efficient, and structurally accurate spatial dynamic models for
variable length multisection continuum arms.

Derived from modal kinematics (Godage et al., 2011c, 2015) and extending previous work on single
continuum section dynamics, this paper presents a new spatial dynamic model for variable length multi-
section continuum arms. The EoM are derived in a recursive form and produce computationally efficient
results without the numerical instabilities. The proposed method is directly derived in joint space with-
out intermediate morphological transformations and therefore provides enhanced physical insight into
the practical mechanics of continuum arms. The dynamic simulation results are then compared and
validated against the PMA actuated variable length multisection continuum arm shown in Figure 1c.
The proposed model can be extended to structurally similar multisection continuum arms of any variable
length actuator type.

The layout of this paper is as follows. The methodology of the dynamics approach for an arbitrarily
long, variable section length continuum arm is presented in Section 2 with a review of modal kinematics
in the beginning. The development of an efficient, recursive computational scheme for formulating the
dynamics is then developed in Section 3. Details of the prototype arm, simulation model, and adaptations
are presented in Section 4. Simulation results and model validation against the prototype arm dynamics
are detailed in Section 5. A discussion summarizing the previous related work highlighting the benefits
of the proposed modal dynamics is given in Section 6 followed by conclusions in Section 7.

2 Methodology

In this section, the development of a dynamic model for a variable length multisection continuum arm
(similar to the prototype shown in Figure 1) with N sections is detailed. The section-wise Lagrangian
formulation presented here lays the foundation for a recursive computational scheme to compute the
final EoM. Mathematical variables utilized throughout the paper are enumerated in Table 1.

1The term “modal” in (Godage et al., 2011c) depicts that the parameter variation of HTM elements are approximated
by modal shape functions analogous to (Chirikjian and Burdick, 1994) and (Shabana, 2005).
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Table 1: Nomenclature of Mathematical Symbols

Symbol Definition

i Continuum section index♯

ri, Li0 Radius and unactuated length of continuum section
lij jth actuator length change, j ∈ {1, 2, 3}
q Complete joint space vector of the arm∗

qi, qi Joint space vector of, and up to ith continuum section

{Oi},
{
O′

i

}
Base and moving coordinate frames

{O} Task coordinate frame
ξi Scalar denoting points along the of ith continuum section
Ti MHTM† of the ith continuum section relative to {Oi}

pi, Ri Position vector and rotation matrix of Ti

TJ
i Constant HTM‡ to account for position/orientation offsets at ith section joint

Ti MHTM of ith continuum section relative to {O}
Ψi, Θi Modal position and rotation matrices of Ti.
ξ, ξi Vector of scalar coefficients of the entire arm, and up to ith section.
mi Mass of the continuum section
ρi Linear mass density

K, Ki Total and ith section kinetic energy
P, Pi Total and ith section potential energy

Hυ
i , Hω

i Linear and angular Hessians relative to
{

O′
i

}
at ξi.

Mυ
i , Mω

i Linear and angular inertia matrices of a slice of continuum section at ξi

M, C Complete generalized inertia and Coriolis/Centrifugal force matrices of entire arm
Mυ

i , Mω
i Generalized linear and angular inertia matrices

Cυ
i , Cω

i Linear and angular Coriolis/Centrifugal force matrices
G, Gi Complete and ith section conservative force vectors
D, Di Complete and ith section damping coefficient matrices.

υi, ωi Linear and angular velocities relative to
{

O′
i

}
at ξi

Jυ
i , Jω

i Linear and angular Jacobians at ξi relative to
{

O′
i

}
Ke

i Elastic stiffness coefficient matrix
τ e Complete input force vector in the joint space
I3 Rank 3 identity matrix

♯ Subscript i denotes the ith continuum section parameters
∗Vectors are denoted by boldface lowercase italics (i.e., qj) and elements are denoted by regular lowercase italics (i.e., qj).
‡ Homogeneous transformation matrix (HTM). Matrices are denoted by boldface uppercase letters (i.e., M)
† Modal homogeneous transformation matrix (MHTM).
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Figure 2: Schematic of a multisection continuum arm with arbitrary N continuum sections. The base section (indexed 1)

coincides with {O}. The base coordinate frame, {Oi}, and moving coordinate frame at ξi of the ith section,
{

O′
i

}
, are

also shown.

Base

Top

(a) (b)

Figure 3: (a) Schematical illustration of the infinitesimally thin slice at ξi on any ith continuum section along with curve

parameters {λi, φi, θi} (listed in Appendix A.1), actuator variables, {Oi}, and
{

O′
i

}
, (b) Velocities and forces acting on

the thin slice with respect to
{

O′
i

}
.

2.1 Variable Length Multisection Continuum Arm System Model

Figure 2 shows the schematic for a variable length, N section, continuum arm. Without losing generality,
the widely used and optimal (for spatial operation), three-actuator configuration is considered per con-
tinuum section similar to the prototypes shown in Figure 1. One notable difference between this class of
continuum arms and the more traditional tendon actuated continuum arms is that the actuator lengths
of continuum sections are kinematically independent. In tendon actuated arms, the tendons run along
the length of the arm and therefore actuation of preceding sections (assuming no slacking of tendons)
affect the tendon lengths of subsequent sections.

Consider the schematic of any ith continuum section of the arm as shown in Figure 3a. It consists of
three mechanically identical variable length actuators with Li0 ∈ R and lij (t) ∈ R, where j ∈ {1, 2, 3}
and t is the time. Hence the length of an actuator at any time is Lij = Li0 + lij(t). In this way, both
extensions, i.e., lij ∈ R

+
0 and contractions, i.e., lij ∈ R

−
0 can be described (Walker et al., 2006). The

actuators are fixed 2π
3

rads apart and are mechanically constrained to actuate at a distance ri, parallel
to the neutral axis. The l11 actuator is aligned with the X axis of {O}. Similarly, li1 actuator is aligned
with the Xi axis of {Oi}. Note that Li0 > 0 and ri > 0 are known constant design parameters of the
continuum sections.

2.2 Review of Modal Kinematics and Dynamics

In dynamics derived in this paper is based on the modal kinematics proposed by Godage et al. (2011c,
2015). It provides an intuitive, stable, efficient, structurally accurate, and scalable kinematics for vari-
able length continuum arms. Further, the kinematics are computed directly in the joint-space without
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intermediary transformations thus avoiding nonlinear morphological mappings. As the individual contin-
uum sections are kinematically independent, the modal homogeneous transformation matrix (MHTM)
of {O′

i} at ξi of any ith continuum section, Ti ∈ SE (3), with respect to {Oi} is given by

Ti (ξi, qi) =

[
Ri (ξi, qi) pi (ξi, qi)

0 1

]
(1)

where qi = [li1, li2, li3]
T ∈ R

3, ξi ∈ [0, 1] is a scalar coefficient that defines the points along the length
of the neutral axis (ξi = 0 is the base and ξi = 1 is the tip), Ri ∈ SO (3), and pi∈ R

3. For clarity, the
complete curve parametric HTM, from which the MHTM is derived, is included in Appendix A.1. The
complete MHTM is listed in Appendix A.2.

Employing basic coordinate transformations, Ti ∈ SE (3) relative to {O} is calculated as

Ti
(
ξi, qi

)
=

i∏

k=1

{
Tk (qk, ξk) TJ

k

}

=

[
Θi

(
ξi, qi

)
Ψi

(
ξi, qi

)

0 1

]
(2)

where Θi ∈ SO (3), Ψi ∈ R
3, qi = [q1, q2, · · · , qi] ∈ R

3i and ξi = [ξ1, ξ2, · · · , ξi] ∈ R
i and ξk = 1, ∀k < i

(i.e., the preceding sections) and ξk = 0, ∀k > i (i.e., the successive sections).
Assuming continuum sections are made up of infinitesimally thin slices, Godage et al. (2011a,b)

proposed an integral Lagrangian formulation based modal dynamics for single section variable length
continuum arms. Therein, first the kinetic energy (KE) and potential energy (PE) are derived for a thin
slice and then the total energies are found by integrating along the length of the arm. The Lagrangian
is then utilized to derive the EoM of the continuum section.

2.3 Equations of Motion for Variable Length Multisection Continuum Arms

Based on the modal kinematics (Godage et al., 2011c, 2015), the integral Lagrangian approach used
on single continuum sections (Godage et al., 2011a) is extended herein for formulating the dynamics of
multisection continuum arms. However, the complex kinematics and integral nature of the procedure
prevent direct extension of the integral derivation proposed in (Godage et al., 2011a) to multisection
continuum arms. Therefore we propose a section-wise formulation technique. In developing this model,
for any ith continuum section it is assumed that;

AS1 Continuum sections always maintain a circular arc shape
This implies that continuum sections are torsionally stiff and not subjected to “large” external
forces.

AS2 Continuum sections have no supporting backbones
The variable length actuators provide the only structural support.

AS3 Continuum sections have symmetric cross sections about the neutral axis of the arm
As a result, the center of mass is located at the center of the cross section.

AS4 Continuum sections are kinematically independent
The actuation of one continuum section does not affect any other sections.

AS5 The actuators are only subject to length change and therefore maintaining ri and 2π
3

clearance
This assumption further ensures the assumption AS1.

AS6 Continuum sections have constant mi and variable but uniform linear density (ρi)
The effect of air pressure changes is neglected. The length variation during operation cause ρi to
vary as mi is constant.

The validity of these assumptions for the prototype continuum arm (shown in Figure 1c) is discussed
in Section 4.2. For ease of presentation, the particular mathematical operators used in the paper are
enumerated in Table 2.
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Table 2: Nomenclature of Mathematical Operators

Operator Definition

∇q ( ) Partial derivative with respect to vector q

( ),x Partial derivative with respect to variable qx ∈ q where qx ∈ R

( )x xth column vector of the enclosed matrix
[ ]x xth element of the enclosed vector

[ ]xy (x, y)th element of the enclosed matrix

( )xy (x, y)th vector of the enclosed Hessian of a vector

( )∨ Form the velocity vector from skew symmetric angular velocity matrix∗

( )∧ Form skew symmetric angular velocity matrix from angular velocity vector∗
´

ξi
( ) Integration from 0 to 1 with respect to ξi(
˜
)

Replace the last column of the matrix with zeros

Diag ( ) Form a diagonal matrix from the enclosed vector as the principal diagonal
T2( ) Sum first two elements of the principal diagonal of 3 × 3 matrix
V( ) Column-wise vectorization operation on a matrix

∗ Definitions are given in Appendix B.

If the total KE and PE of the entire arm shown in Figure 2 is known, then the complete Lagrangian
is given by L = K−P. Without considering the dissipative terms, the ideal generalized EoM are derived
from the Lagrangian as d

dt
∇T

q̇
L −∇T

q
L and in classical compact matrix form presented as

Mq̈ + Cq̇ + G = τ e (3)

where τ e ∈ R
3N . Physically, τ e is the tensile or compressive forces generated by the variable length

actuators.
Terms of the EoM given by Equation (3) contain the cumulative contributions from each continuum

section of the arm. Therefore, the respective terms of Equation (3) are decomposed herein to section-
wise dynamic contributions to obtain a general representation that can be incorporated into a recursive
computation scheme. The following theorems are used to integrate section-wise component contributions
into the final EoM.

Theorem 1. Consider a general (rigid or continuum) N-link serial arm with an actuated joint space

vector q ∈ R
u. Then the complete generalized inertia matrix, M =

(∑N

i=1 Mi

)
∈ R

u×u where Mi ∈
R

u×u are individual generalized inertial matrices corresponding to any ith link.

Proof. Let qi and q = [q1, q2, · · · , qN ] ∈ R
u be the ith link and complete joint space vectors respectively.

The spatial location of any ith link is a function of preceding links and qi = [q1, q2, · · · , qi] ∈ R
w (w ≤ u)

denotes the joint space vector up to the ith link. The M can be related to the total KE of the arm,
K ∈ R, as

K (q, q̇) =
1

2
q̇T Mq̇ (4)

Similarly, the Mi and Ki are related as

Ki

(
qi, q̇i

)
=

1

2
q̇T Miq̇ (5)

Note that, [Mi]jk = 0∀ {j, k} > w because qi 7→ Ki

(
qi
)

and kinematic independence of continuum
sections (assumption AS4 in Section 2.3).

The K is the sum of KE’s of all the arm links and can be written as

K =

N∑

i=1

Ki (6)

Substituting K from Equation (4) and Ki from Equation (5) into Equation (6) yields
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1

2
q̇T Mq̇ =

N∑

i=1

(
1

2
q̇T Miq̇

)
=

1

2
q̇T

(
N∑

i=1

Mi

)
q̇ (7)

From the Equation (7) it follows that

M =

N∑

i=1

Mi (8)

Proof completed.

Proposition 2. From Theorem 1, the complete centrifugal/Coriolis force matrix, C =
(∑N

i=1 Ci

)
∈

R
u×u where Ci ∈ R

u×u are individual centrifugal/Coriolis force matrices corresponding to any ith link.

Proof. Define [C]jk ∈ R as

[C]kj =

u∑

h=1

Γkjh (M) q̇h (9)

where M ∈ R
u×u, Γkjh(M) = 1

2
([M]kj,h + [M]kh,j − [M]hj,k) ∈ R is the respective Christoffel symbol,

qh ∈ q, and qh ∈ R.
Substitute M from Equation (8) into Equation (9) to obtain

[C]kj =
u∑

h=1

Γkjh

(
N∑

i=1

Mi

)
q̇h =

N∑

i=1

{
u∑

h=1

Γkjh (Mi) q̇h

}
(10)

From the definition of [C]kj given in Equation (9) it follows that the Coriolis/centrifugal force ma-

trix elements of the ith link [Ci]kj =
∑u

h=1Γkjh(Mi) q̇h and Γkjh (Mi) = 0 ∀ {k, j, h} > w because

qi 7→ Mi

(
qi
)

and kinematic independence of continuum sections (assumption AS4 in Section 2.3).
Consequently [Ci]kj =

∑w

h=1 Γkjh (Mi) q̇h and Equation (10) can be rewritten as

[C]kj =
N∑

i=1

{
w∑

h=1

Γkjh (Mi) q̇h

}
=

N∑

i=1

[Ci]kj (11)

By element mapping of Equation (11) therefore

C =

N∑

i=1

Ci (12)

Proof completed.

Theorem 3. Consider a serially-linked arm having N links (rigid or continuum) with an actuated joint

space vector q ∈ R
u. Then the complete conservative force vector, G =

(∑N

i=1 Gi

)
∈ R

u where Gi ∈ R
u

are individual conservative force vector vectors corresponding to any ith link.

Proof. The total arm PE, P∈R, and G are related as

∇T
q
P (q) = G (13)

Similarly, ith link PE, Pi∈R, and Gi are related as

∇T
q
Pi

(
qi
)

= Gi (14)
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where [Gi]k = 0∀k > w because qi 7→ Gi

(
qi
)

and kinematic independence of continuum sections
(assumption AS4 in Section 2.3).

The total PE is cumulative of PE’s of every arm link and therefore

P =

N∑

i=1

Pi (15)

Apply ∇T
q

to both sides of Equation (15) and substitute Equations (13) and (14) to obtain

G =
N∑

i=1

(
∇T

q
Pi

)
=

N∑

i=1

Gi (16)

Proof completed.

Now that the relation of section-wise components to the final EoM given by Equation (3) is estab-
lished. Next, the section-wise Lagrangian formulation to derive these contributions is presented.

2.4 The Lagrangian Formulation of Any ith Continuum Section

This section, without losing generality, presents the method to compute Mi ∈ R
3N×3N , Ci ∈ R

3N×3N ,
and Gi ∈ R

3N from the KE and PE of any ith continuum section. For ease of presentation, applying
Theorem 1 to linear and angular KE’s of the continuum section separately, Mi is further expanded as

Mi = Mυ
i + Mω

i (17)

where Mυ
i ∈ R

3N×3N and Mω
i ∈ R

3N×3N . The partial derivatives of Mi are used to compute Ci as
shown in Proposition 2.

2.4.1 Position, Orientation and Velocity of a Thin Slice

Consider an infinitesimally thin slice of any ith continuum section at ξi as shown in Figure 3a. As with
any serially connected structure, the position, orientation, and velocity of the ith continuum section only
depends on all the preceding continuum sections hence ξk = 1∀k < i and ξk = 0∀k > i (see Figure 2)

(Godage et al., 2011c). The ωi ∈ R
3 and υi ∈ R

3 at any point ξi along the neutral axis relative to
{

O
′

i

}

is given by

ωi

(
ξi, qi

)
=
(
ΘT Θ̇i

)∨
= Jω

i

(
ξi, qi

)
q̇ (18)

υi

(
ξi, qi

)
= ΘT

i Ψ̇i = Jυ
i

(
ξi, qi

)
q̇ (19)

where Jω
i =

(
ΘT

i ∇qΘi

)∨ ∈ R
3×3N and Jυ

i =
(
ΘT

i ∇qΨi

)
∈ R

3×3N .

2.4.2 Kinetic Energy, Mi and Ci Matrices

Following the approach reported by Godage et al. (2011b), the mass of an infinitesimally thin slice (see
Figure 3b) is derived as δmi = miδξi due to the constant mass and uniform linear density (assumption
AS6 in Section 2.3). The center of mass of the slice lies at its geometric center and Ixx = Iyy because
of the symmetric cross section (assumption AS3 in Section 2.3) where Ixx and Iyy are the moments
of inertia about the X ′

i and Y ′
i axes respectively. Hence Mυ

i = miδξiI3 and Mω
i = Ixxδξi Diag (1, 1, 2)

derived from Izz = Ixx + Iyy = 2Ixx (perpendicular axis theorem) where Izz is the moments of inertia
about the Z ′

i axis.
The angular (δKω

i ∈ R) and linear (δKυ
i ∈ R) KE’s for the thin slice can be written utilizing Jω

i from
Equation (18), Jυ

i from Equation (19), Mυ
i , and Mω

i as

δKω
i =

1

2
ωT

i Mω
i ωi =

1

2
q̇T δMω

i

(
ξi, qi

)
q̇ (20)

δKυ
i =

1

2
υT

i Mυ
i υi =

1

2
q̇T δMυ

i

(
ξi, qi

)
q̇ (21)

9



where δMω
i = JωT

i Mω
i Jω

i and δMυ
i = JυT

i Mυ
i Jυ

i are the angular and linear generalized inertia matrices
of the thin slice.

By integrating with respect to ξi, Mυ
i and Mω

i can now be computed as

Mω
i

(
qi
)

=
´

ξi

(
JωT

i Mω
i Jω

i

)
(22)

Mυ
i

(
qi
)

=
´

ξi

(
JυT

i Mυ
i Jυ

i

)
(23)

Partial derivatives of Mi required to derive the Ci can now be computed from Equations (22) and
(23).

2.4.3 Potential Energy and Gi Vector

Any ith continuum section is subjected to gravitational PE, Pg
i ∈ R, and elastic PE, Pe

i ∈ R. Assuming
the continuum arm is made up of infinitesimally thin slices, the gravitational PE (δPg

i ∈ R) of a slice at
ξi is

δPg
i

(
ξi, qi

)
= (miδξ) ΨT

i g (24)

where g = [0, 0, g]
T ∈ R

3 is the gravity vector in {O}.
The total gravitational PE of the continuum section is then determined as

Pg
i

(
qi
)

=
´

ξi

δPg = mi

(
´

ξi

ΨT
i

)
g (25)

The elastic PE of any continuum section is due to the axial elastic deformation of variable length
actuators (e.g. PMA’s) during operation. The elastic PE of the ith continuum section is given by

Pe
i (qi) =

1

2
qT

i Ke
i qi (26)

where Ke
i = Diag {Ki1, Ki2, Ki3} and Kij ∀j ∈ {1, 2, 3} are the elastic stiffness coefficients of the three

variable length actuators.
The Gi is then calculated utilizing Equations (25) and (26) as

Gi

(
qi
)

= ∇T
q

(Pg
i + Pe

i ) (27)

This completes the theoretical deriving of the contributions from any ith continuum section to the
final EoM.

3 Development of an Efficient Computational Scheme

This section proposes an efficient recursive implementation for computing the section-wise contributions
developed in Section 2.4 toward the complete EoM given by Equation (3). The lack of accurate spatial
dynamic models for variable length multisection continuum arms is because of many resulting integral
expressions containing complex laborious terms, i.e., consider Equations (22) and (23). The complexity
and size of these integrands substantially increase as the number of continuum sections, N , grows.
Bertails (2009) proposed efficient dynamics for constant length helical shapes for computer graphics.
However the approach in the paper was developed for simulating passive flexible objects and does not
account for actuators used in robots. Also, Hollerbach (1980) and Featherstone (2008) among others
proposed recursive computational schemes that are limited to rigid arms.

Similar to the procedure for the single continuum arm case reported in (Godage et al., 2011a), the
integrals can be precalculated symbolically. However, unlike the single section continuum arms, inte-
grable components of expressions are separated by complex non-integrable (terms independent of the
variable of integration) components. Hence in the multisection arm case, additional algebraic relation-
ships are used to simplify and bring integrable terms together so those can be precomputed to increase
the computational efficiency. In order to accomplish this, first the spatial displacement, corresponding
velocity Jacobians, and Hessians are recursively implemented. Utilizing these, recursive relationships are
then derived for EoM contributions, Mi, Ci, and Gi from any ith section. Finally, the results from each
continuum section are iteratively summed up through Theorems 1, 2 and 3 to obtain the final EoM.
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3.1 Recursive Implementation of Body Velocities, Jacobians, and Hessians

In the Lagrangian formulation, the Jacobians play a significant role to derive Mi and Ci as shown by
Equations (22) and (23). In this section, recursive representations of displacements, Jacobians, and
Hessians are developed.

Consider the infinitesimally thin slice at ξi of the ith section (see Figure 3a) where the spatial location
is given by {O′

i}. The recursive rotational matrix and position vector are given by

Θi

(
ξi, qi

)
= Θi−1

(
qi−1

)
Ri (ξi, qi) (28)

Ψi

(
ξi, qi

)
= Ψi−1

(
qi−1

)
+ Θi−1pi (ξi, qi) (29)

where the derivation is given in Appendix C.1. Note that, for ease of notation, the dependency variables
are omitted from here onward.

From the definition of Jω
i given in Equation (18), relationship

(
JΩ

i

)
j

= (Jω
i )

∧

j , and noting qi =[
qi−1, qi

]
,
(
JΩ

i

)
j

in recursive form is given by

(
JΩ

i

)
j

=

{
RT

i

(
JΩ

i−1

)
j

Ri ; qj ∈qi−1

RT
i Ri,j ; qj ∈qi

(30)

The derivation is given in Appendix C.2.
Similarly, from the definition of Jυ

i in Equation (19), (Jυ
i )j in recursive format is given by

(Jυ
i )j =

{
RT

i

{(
Jυ

i−1

)
j

+
(
JΩ

i

)
j

pi

}
; qj ∈qi−1

RT
i pi,j ; qj ∈qi

(31)

The derivation is given in Appendix C.3.
Hessian matrices of the velocity relationships are used to compute Ci. Taking the partial derivatives

of
(
JΩ

i

)
j

given by Equation (30), with respect to cases qk ∈ qi−1 and qk ∈ qi, the recursive relationship

of
(
HΩ

i

)
jk

is given by

(
HΩ

i

)
jk

=





RT
i

(
HΩ

i−1

)
jk

Ri ; {qj , qk}∈qi−1

RT
i,k

(
JΩ

i−1

)
j

Ri + RT
i

(
JΩ

i−1

)
j

Ri,k ; qj ∈qi−1, qk∈qi

0 ; qj ∈qi, qk∈qi−1

RT
i,kRi,j + RT

i Ri,j,k ; {qj , qk}∈qi

(32)

The derivation is given in Appendix C.4.
Similarly the recursive relationship of (Hυ

i )jk is derived from Equation (31) as

(Hυ
i )jk =





RT
i

{(
Hυ

i−1

)
j

+
(
HΩ

i−1

)
j

pi

}
; {qj , qk}∈qi−1

RT
i,k

{(
Jυ

i−1

)
j

+
(
JΩ

i−1

)
j

pi

}
+ RT

i

(
JΩ

i

)
j

pi,k ; qj ∈qi−1, qk∈qi

0 ; qj ∈qi, qk∈qi−1

RT
i,kpi,j + RT

i pi,j,k ; {qj , qk}∈qi

(33)

The derivation is given in Appendix C.5.
This completes the recursive derivation of spatial displacements, Jacobians, and Hessians. Utilizing

these recursive relationships, element-wise calculations of Mi, partial derivatives of Mi for computing
Ci, and Gi are presented next.

3.2 Recursive Computation of M
ω
i and the Partial Derivatives

First the Mω
i and the partial derivatives are derived followed by Mυ

i and the partial derivatives.
From the definition of Mω

i given by Equation (22) and Mω
i defined in Section 2.4.2, consider any

[Mω
i ]jk given by

11



[Mω
i ]jk =

´

ξi

{
(Jω

i )
T

j Mω
i (Jω

i )k

}

= Ixx

´

ξi

{
(Jω

i )
T

j Diag (1, 1, 2) (Jω
i )k

}
(34)

The Algebraic Identity 1 is used to simplify Equation (34).

Algebraic Identity 1:

If A ∈ R
3×3 is skew symmetric matrix and B = A∨, then BT

Diag (1, 1, 2) B = T2

(
AT A

)
.

The proof is given in Appendix D.1.

The assumption AS5 on constant ri of continuum section (or any constant, symmetric shape), listed
in Section 2.3 enables this algebraic simplification. Now applying Algebraic Identity 1, Equation (34)
becomes

[Mω
i ]jk = Ixx

´

ξi

T2

{(
JΩ

i

)T

j

(
JΩ

i

)
k

}
(35)

Considering the case-wise definition of
(
JΩ

i

)
j

given in Equation (30) and the symmetry of Mω
i , three

unique cases for [Mω
i ]jk can be identified when; (1) {qj , qk} ∈ qi−1, (2) qj ∈ qi−1, qk ∈ qi, and (3)

{qj , qk} ∈ qi. Hence, the development [Mω
i ]jk is presented under these three separate cases where their

partial derivatives are presented under two sub cases.

Case 1: {qj , qk}∈qi−1

The corresponding Jacobian columns from Equation (30) are substituted into Equation (35) to obtain

[Mω
i ]jk = Ixx

´

ξi

T2

(
RT

i

{(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

}
Ri

)
(36)

In the integrand of Equation (36), only Ri contains the variable of integration, ξi, but there are
matrix terms in between the integrable Ri terms. Given the complexity of the expression, computer
algebra systems run into problems when attempting to symbolically evaluate Equation (36) as is. Also,
evaluating all the integral terms numerically during simulations entails a heavy computational burden.
However by using suitable algebraic identities to bring the terms containing ξi together, the integral can
be precomputed in symbolic form prior to starting the simulation. Once the integrals are precomputed
the simulation execution time significantly decreases. A detailed account on this is provided in Section
6.2. In order to simplify Equation (36) the following Algebraic Identity 2 is employed.

Algebraic Identity 2:

If matrices {A, B, W} ∈ R
3×3, then T2

(
AT WB

)
= V

T(ÃB̃T )V(W).

The proof is given in Appendix D.2

Applying Algebraic Identity 2 on Equation (36) becomes

[Mω
i ]jk = Ixx

´

ξi

V
T
{(

R̃iR̃
T
i

)}
V

{(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

}
(37)

But since R̃iR̃
T
i = Ĩ3, Equation (37) reduces to

[Mω
i ]jk = Ixx

´

ξi

V
T
(

Ĩ3

)
V

{(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

}
(38)

where
(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

and Ĩ3 do not depend on ξi. So the integral is easy to compute since
´

ξi

=
´ 1

0
dξi = 1. Also, VT(̃I3)V(W) = T2(W) where W ∈ R

3×3. Therefore Equation (38) simplifies to
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[Mω
i ]jk = Ixx T2

{(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

}
(39)

The partial derivatives of [Mω
i ]jk are also derived case-wise depending if qs ∈ qi−1 or qs ∈ qi as

[Mω
i ]jk,s =

{
Ixx T2

{(
HΩ

i−1

)T

js

(
JΩ

i−1

)
k

+
(
JΩ

i−1

)T

j

(
HΩ

i−1

)
ks

}
; qs∈qi−1

0 ; qs∈qi

(40)

This process is applied to all the cases of [Mi]jk and [Mi]jk,s.

Case 2: qj ∈ qi−1 and qk ∈ qi

Substituting the relevant Jacobian columns from Equation (30) into Equation (35) and applying Alge-

braic Identity 2 yield

[Mω
i ]jk = Ixx V

T
{
´

ξi

(
R̃iR̃

T
i,k

)}
V

{(
JΩ

i−1

)T
j

}
(41)

Note that, the integration is only applied to
(

R̃iR̃
T
i,k

)
because

(
JΩ

i−1

)
j

is independent of ξi. This is

always a valid operation because the vectorization operation is not affected by the integration nor it
affects the integration.

And taking the partial derivatives of Equation (41), [Mω
i ]jk,s is given by

[Mω
i ]jk,s =





Ixx V
T
{
´

ξi

(
R̃iR̃

T
i,k

)}
V

{(
HΩ

i−1

)T
js

}
; qs∈qi−1

Ixx V
T

{
´

ξi

(
R̃iR̃

T
i,k

)
,s

}
V

{(
JΩ

i−1

)T

j

}
; qs∈qi

(42)

Case 3: {qj , qk} ∈ qi

Likewise, substitute the relevant columns from Equation (30) into Equation (35). Here the Algebraic

Identity 2 is not required as there are no terms in between the integrable terms.

[Mω
i ]jk = Ixx T2

(
´

ξi

RT
i,jRi,k

)
(43)

And similarly [Mω
i ]jk,s is given by

[Mω
i ]jk,s =





0 ; qs∈qi−1

Ixx T2

(
´

ξi

RT
i,jRi,k

)
,s

; qs∈qi

(44)

3.3 Recursive Computation of M
υ
i and the Partial Derivatives

Similarly, substituting Mυ
i = miI3 defined in Section 2.4.2 into Equation (23), the [Mυ

i ]jk is given by

[Mυ
i ]jk = mi

´

ξi

{
(Jυ

i )
T

j (Jυ
i )k

}
(45)

Here also, the evaluation of [Mυ
i ]jk is presented case-wise similar to Section 3.2.
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Case 1: {qj , qk}∈qi−1

The respective cases of Equation (31) are substituted into Equation (45) and expanded as

[Mυ
i ]jk = mi

(
Jυ

i−1

)T

j

{(
Jυ

i−1

)
k

+
(
JΩ

i−1

)
k

(
´

ξi

pi

)}
+ mi

(
´

ξi

pT
i

) (
JΩ

i−1

)T

j

(
Jυ

i−1

)
k

+ mi

´

ξi

{
pT

i

(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

pi

}
(46)

Here also, the integrable components (that are functions of ξi) of the last term of Equation (46)
are separated by Jacobian terms. Analogous to Equation (36), the integrable components are brought
together by employing the following Algebraic Identity 3.

Algebraic Identity 3:

If {A,B}∈R3×1 and Q∈R3×3, then AT QB = V
T(ABT )V(Q).

The proof is given in Appendix D.3

Therefore, Equation (46) is rewritten as

[Mυ
i ]jk = mi

(
Jυ

i−1

)T

j

{(
Jυ

i−1

)
k

+
(
JΩ

i−1

)
k

(
´

ξi

pi

)}
+ mi

(
´

ξi

pT
i

) (
JΩ

i−1

)T

j

(
Jυ

i−1

)
k

+ mi V
T
{
´

ξi

(
pip

T
i

)}
V

{(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

}
(47)

Notice that, since integrable terms of the last term of Equation (47) are now together, the integral
can be symbolically solved without affecting the result prior to starting the simulation.

And now partial derivatives of Equation (47) are taken to compute relevant [Mυ
i ]jk,s as

[Mυ
i ]jk,s =





mi

(
Hυ

i−1

)T

js

{(
Jυ

i−1

)
k
+
(
JΩ

i−1

)
k

(
´

ξi

pi

)}

+mi

(
Jυ

i−1

)T

j

{(
Hυ

i−1

)
ks

+
(
HΩ

i−1

)
ks

(
´

ξi

pi

)}

+mi

(
´

ξi

pT
i

) (
HΩ

i−1

)T

js

(
Jυ

i−1

)
k

+ mi

(
´

ξi

pT
i

) (
JΩ

i−1

)T

j

(
Hυ

i−1

)
ks

+mi V
T
(
´

ξi

pip
T
i

)
V

{(
HΩ

i−1

)T

js

(
JΩ

i−1

)
k

+
(
JΩ

i−1

)T

j

(
HΩ

i−1

)
ks

}
; qs∈qi−1

mi

(
Jυ

i−1

)T

j

(
JΩ

i−1

)
k

(
´

ξi

pi,s

)
+ mi

(
´

ξi

pT
i,s

) (
JΩ

i−1

)T

j

(
Jυ

i−1

)
k

+mi V
T
{
´

ξi

(
pip

T
i

)
,s

}
V

{(
JΩ

i−1

)T

j

(
JΩ

i−1

)
k

}
; qs∈qi

(48)

Case 2: qj ∈ qi−1 and qk ∈ qi

Similarly, the corresponding cases of Equation (31) are substituted into Equation (45) and applying
Algebraic Identity 3 to obtain

[Mυ
i ]jk = mi

(
Jυ

i−1

)T

j

(
´

ξi

pi,k

)
+ mi V

T
{
´

ξi

(
pip

T
i,k

)}
V

{(
JΩ

i−1

)T

j

}
(49)

Now the related [Mυ
i ]jk,s is computed as

[Mυ
i ]jk,s =





mi

(
Hυ

i−1

)T

j

(
´

ξi

pi,k

)
+ mi V

T
(
´

ξi

pip
T
i,k

)
V

{(
HΩ

i−1

)T

j

}
; qs∈qi−1

mi

(
Jυ

i−1

)T

j

(
´

ξi

pi,k,s

)
+ mi V

T

{
´

ξi

(
pip

T
i,k

)
,s

}
V

{(
JΩ

i−1

)T

j

}
; qs∈qi

(50)

Case 3: {qj , qk} ∈ qi

Finally, the relevant cases of Equation (31) are substituted into Equation (45) to obtain

14



[Mυ
i ]jk = mi

´

ξi

(
pT

i,jpi,k

)
(51)

Similarly, corresponding [Mυ
i ]jk,s is calculated as

[Mυ
i ]jk,s =

{
0 ; qs∈qi

mi

(
pT

i,jpi,k

)
,s

; qs∈qi

(52)

This completes the derivation of elements of Mi and their partial derivatives required to compute
Ci.

3.4 Recursive Computation of Gi

From the definition in Equation (25), [Gg
i ]

j
is given by

[Gg
i ]

j
= mi

(
´

ξi

ΨT
i,j

)
g (53)

Since ΘΘT = I3, without affecting the outcome, Equation (53) is rearranged and substituted (Jυ
i )j

from Equation (19) to obtain

[Gg
i ]

j
= mi

´

ξi

{
Ψi,j

(
ΘiΘ

T
i

)}
g

= mi

´

ξi

{(
ΘT

i Ψi,j

)T
ΘT

i

}
g

= mi

´

ξi

(Jυ
i )

T

j ΘT
i g (54)

Substituting the case-wise definition of (Jυ
i )j from Equation (31), Equation (54) is expressed recur-

sively as

[Gg
i ]

j
=





mi

{(
Jυ

i−1

)
j

+
(
JΩ

i−1

)
j

(
´

ξi

pi

)}T

ΘT
i−1g ; qj ∈ qi−1

mi

(
´

ξi

pT
i,j

)
ΘT

i−1g ; qj ∈ qi

(55)

The elastic PE of continuum sections are independent of position or orientation and hence can be
directly accounted for as

Ge
i = Ke

i qi (56)

This completes the derivation of Gi. These recursive results are then substituted in Equations (8),
(12), and (16) to compute M, C, and G of the complete EoM given by Equation (3). For the ease of
reference, Algorithm 1 summarizes the application of mathematical results derived in this section for
formulating the EoM.

4 Prototype Arm and the Simulation Model

4.1 Details of the PMA Actuated Prototype Continuum Arm

Each continuum section of the prototype arm (shown in Figure 1c) consists of three mechanically identical
extending PMA’s (Caldwell et al., 1995; Godage et al., 2012b) with Li0 = 0.15m, li:min = 0m, and
li:max = 0.065m. These actuators are pressurized in the range (0 − 6bars). Silicone rubber tubes of
inner diameter (ID) 7.5mm and outer diameter (OD) 9.5mm were used as the PMA containment layer.
The outer braided sheath is made from polyester (min. OD = 7mm, max. OD = 17mm) and forms
the core platform for the motion of the actuator. Nylon union tube connectors ( ID = 4mm) seal the
Silicone tubes and control the air in/out flow. Rigid plastic frames (ABS thermoplastic) of ri = 0.0125 m
and 2.54mm thickness (see Figure 4a) are used to mount the PMA’s and connect adjacent continuum
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Algorithm 1 Pseudo code for the recursive implementation of the proposed continuum arm dynamics
algorithm

BEGIN

FOR i ∈ {1 · · ·N}
// evaluate ith section related functions and precomputed integrals

FOR j ∈ {1 · · · i}
FOR k ∈ {j · · · i} // exploit symmetry of Mω and Mυ

// update Mω and Mυ

[Mω]jk ← [Mω]jk + Eq.(39) OR Eq.(41) OR Eq.(43)#

[Mυ]jk ← [Mυ]jk + Eq.(47) OR Eq.(49) OR Eq.(51)

FOR s ∈ {1 · · · i}
// update partial derivatives of Mω and Mυ

[Mω]jk,s ← [Mω]jk,s + Eq.(40) OR Eq.(42) OR Eq.(44)

[Mυ]jk,s ← [Mυ]jk,s + Eq.(48) OR Eq.(50) OR Eq.(52)

ENDFOR

ENDFOR

// update Gg

[Gg]j ← [Gg]j + Eq.(55)

ENDFOR

// sub loop for updating Jacobians and Hessians

FOR j ∈ {1 · · · i}
FOR k ∈ {1 · · · i}

// update Hessians, Hυ and HΩ

[Hω]jk ← Eq.(32)

[Hυ]jk ← Eq.(33)

ENDFOR

// update Jacobians, Jυ and JΩ

(
JΩ
)

j
← Eq.(30)

(Jυ)j ← Eq.(31)

ENDFOR

// update Ψ and Θ

Θ← Eq.(28)

Ψ← Eq.(29)

ENDFOR

// combine Ge from Eq. (56) and Gg to derive G using Eq.(27).

// combine Mω and Mυ and partial derivatives to obtain M and its partial derivatives

M←Mω + Mυ
AND M,s ←Mω

,s + Mυ
,s

// fill the lower triangular part of M and its partial derivatives

[M]kj ← [M]jk AND [M]kj,s ← [M]jk,s

// compute C

[C]kj ← Eq.(9)

// combine computed EoM components and solve for joint space accelerations via Eq.(3)

END

# Depending on j and k combinations (i.e., qj ∈ qi−1 or qj ∈ qi), relevant equations are used to update the relevant
elements.
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Grooves
(a) (b)

Figure 4: (a) 3D printed rigid plastic mount frames (2.54mm thickness) of continuum sections where the grooves are
designed to fit the union tube connector dimensions. The adjacent continuum sections are afixed at a π

3
orientation offset

as shown. (b) 3D printed plastic constrainers (2.54mm thickness). Three groves house the PMA’s and the rest route the
pressure supplying tubes.

sections with a π
3

rad angle offset about the Z axis of the arm tip coordinate frame. This offset ensures
easy mounting of the PMA’s and pressurized air supply tubes. Rigid plastic constrainers (Figure 4b)
maintain the PMA’s parallel to the neutral axis with a clearance (2π

3
rad apart at ri) from each other.

These constrainers also provide improved torsional stiffness minimizing the possible deviations from the
assumed circular shapes when operating out of the plane under the influence of gravity. Each continuum
section, inclusive of the tubing and constrainers has an approximate mass of 0.13kg. The gravitational
acceleration used in the simulations is 9.81ms−2.

4.2 Validity of the Model Assumptions

The assumptions made in Section 2.3 have significant implications to the final dynamic model. Therefore,
to validate the model, the prototype arm shown in Figure 1c needs to comply with those assumptions.
This section discusses how the prototype arm adequately complies with the assumptions for the experi-
ments carried out in Section 5.

The modal kinematics, on which the proposed dynamic model derived upon, assume circular arc
shaped deformation in each continuum section. Assumption AS1 arises from this claim. However, under
the influence of gravity, preceding sections are subjected to external forces/moments when subsequent
sections bend in multiple planes. This can cause sections to deviate from the assumed circular arc. The
prototype arm mitigates this problem through the use of evenly distributed constrainers fitted along
the length of continuum sections. This approach significantly increase the torsional stiffness of the arm
to torsionally “lock” the PMA’s to prevent twisting about its neutral axis. Otherwise, the continuum
sections may deform in helical shape. In addition, the high elastic stiffness (relative to the gravity
loading) of the Silicon reduces deviations from the circular arc. Figure 5 compares a static pose of
the prototype arm with the kinematic model given by Equation (57). From this figure it can be seen
that there is an excellent fit between the physical system and the model and this helps to validate the
assumption.

The prototype arm is powered by extending PMA’s which also provide the structural support without
the need for a backbone found in many continuum systems. Thus satisfies assumption AS2. The
prototype arm sections are tightly bundled and constrained cylindrically to comply with assumption
AS3. Also, the prototype fulfills assumption AS4 because the PMA’s are firmly attached to the relevant
individual sections and therefore the length variations do not kinematically affect the deformation of other
sections. The construction of the PMA’s make use of Polyester braided sheath which (except under
extreme pressure) prevents it expanding radially and drive the axial expansion. Also, the constrainers
along the length maintains the clearance of the PMA’s during operation thus meeting assumption AS5.
The amount of air present in each continuum section can be safely neglected and hence the mass of each
section is only due to the construction materials. Further, the PMA’s, pressure supplying tubes and
constrainers are uniformly distributed along the length of continuum sections. The union connectors
(Nylon 1300kgm−3) and mounting frames (ABS thermoplastic 1070kgm−3) at either end of the sections
have lower densities than that of the PMA’s (Silicone 2300kgm−3). This gives essentially a uniform
linear density and assumption AS6 holds. Therefore, the dynamic model given in Equation (58) can be
applied to the prototype continuum arm.
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(a) (b)

Figure 5: Comparison of modal kinematic result against the prototype multisection continuum arm (a) The proto-
type arm with curvature radii overlaid for base, mid, and distal continuum sections: {λ1 = 110.4mm, φ1 = 1.44rads},

{λ1 = 70.2mm, φ1 = 2.35rads}, and {λ3 = ∞, φ3 = 0} for joint space variables q1 = [0.027, 0, 0]T , q2 = [0, 0.044, 0]T ,

and q3 = [0, 0, 0]T . (b) Forward kinematic result for the same joint space variables inputs employed in Figure 5a with
curvature radii overlaid. Result closely matches holding the circular arc shape assumption AS1 made in Section 2.3. The
section tip positions of base, mid, and distal sections of the prototype arm are denoted by Ψe

1, Ψe
2, and Ψe

3. Corresponding
kinematic model’s tip positions are denoted by Ψ1, Ψ2, and Ψ3 respectively.

4.3 Prototype Continuum Arm Simulation Model

The physical parameter values employed in subsequent simulations were taken from the prototype arm
and are listed in Section 4.1. The prototype arm continuum sections bend close to 200◦ within the
PMA operation range. As noted in Section 2.2, the modal dynamics is based on the modal kinematics,
which is essentially a high dimensional approximation technique. For the approximation used in this
paper, an absolute position error of 0.005m (1% of the total length when normalized to the unactuated

length,
∑3

i=1 Li0 = 0.474m) at the arm tip was considered acceptable. Therefore order 11 expansion for
all MHTM elements were chosen which resulted 0.0043m absolute maximum position error (A detailed
account on the accuracy of modal approach is provided in Section 6.1). Substituting the parameter
values listed in Section 4.1, the complete MTHM, T3 ∈ SE (3) from Equation (2) is derived as

T3 (ξ, q) =

N=3∏

k=1

{
Tk (qk, ξk) TJ

k

}
(57)

where the constant TJ
k ∈ SE (3) accounts for the π

3
angle offset and the 0.008m displacement offset along

the Z ′ axis (due to the required union tube connector clearance to mount) between adjacent continuum
sections.

The prototype arm continuum sections do not have a deformable backbones and the bending is due
to the linear elongation of PMA’s. The elastic energy is therefore results chiefly from the extension
of the Silicon bladders of PMA’s. The bending PE of individual PMA’s are negligible compared to
the elastic PE as shown in (Godage et al., 2012b). One of the limitations of previous continuum arm
models was the lack of the mechanical limits of variable length actuators. As a result many produced
solutions beyond the physical robot’s realizable task-space (Godage et al., 2012b). By defining stiffness
coefficients as functions of PMA length variation of, the mechanical limits can be emulated. This is
achieved by assigning a high stiffness value, Ki:max = 106Nm−1, beyond maximum and minimum length
variations and the actual stiffness values, Ki:min, within the operational range as a function of PMA
length variation. A smooth approximation ensures rapid simulations without discontinuities avoiding
high frequency under-damped vibratory outputs. The stiffness variation used in simulations is given by

Ke
ij = Ke

i:min +
1

2
Ke

max [2 + tanh {µ (lij − lmax)} − tanh {µ (lij − lmin)}] , ∀ {i, j} ∈ {1, 2, 3}
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where µ = 2000 specifies the rate of stiffness variation at the limits.
These elastic stiffness limiting values and damping coefficients were approximately identified by fol-

lowing an experimental procedure similar to the method proposed in (Godage et al., 2012b). The results
from (Godage et al., 2012b) provide estimate stiffness and damping coefficients for variable length contin-
uum sections. However, once continuum sections serially connected and highly constrained (to eliminate
torsion) these parameters no longer hold. This is due to the added weight of subsequent continuum sec-
tions as seen by preceding sections and higher inter-PMA friction within highly constrained continuum
sections.

Because of these reasons, accurate modeling of PMA’s solely based on mechanical parameters is
infeasible. Therefore, step response of each PMA of any ith continuum section is analyzed and utilized to
experimentally identify the section’s elastic stiffness (Ke

i ) and damping (Di) parameters. Each PMA of
a section is provided with a step input of 5bars and the input pressure profile and dynamic response are
recorded. The dynamic responses are obtained in the task-space as the relevant continuum section’s tip
trajectory by a two-camera setup explained in Section 5.2. Then, the task-space dynamic response of the
simulation model for the same step pressure input is tuned to match the experimental data by varying
the respective PMA’s elastic stiffness (mainly affects the steady state errors) and damping coefficients
(mainly affects the transient errors). The tuning process was done by manually estimating the coefficients
from starting values found in (Godage et al., 2012b). Because this is an estimation process, attempts
were made to obtain good agreements between the simulated and experimental data.

The elastic stiffness and damping coefficients that produce the least transient and steady state errors
were then recorded. As there are three PMA’s per continuum section, the mean value of the recorded
stiffness and damping coefficients are assigned as the elements of Ke

i and Di for that section. This yielded
Ke

1:min = 2300Nm−1, Ke
2:min = Ke

3:min = 1700Nm−1 (rounded to the nearest 100) and the damping
coefficients, D1 = 110 and {D2, D3} = 90 (rounded to the nearest 10). Note that the hysteretic effects
are negligible relative to the damping effects and are not considered in this experiment. Hence the EoM
employed in simulations is given by

Mq̈ + Cq̇ + Dq̇ + G = τ e (58)

where D = Diag {D1η, D2η, D3η} ∈ R
9×9 and η = [1, 1, 1].

The simulations were carried out in MATLAB computer program. The MATLAB environment was
chosen for its rich selection of toolboxes and ease of use. The SIMULINK platform was used with variable-
step ODE15s routine for its speed in handling complex dynamic systems such as the one discussed in
this paper. The simulation output was recorded at 30 data samples per second for high accuracy of
results and the ease of simulation movie creation at 30 frames per second. The model is able to simulate
motions across the entire task-space without restrictive starting poses enforced on previous models at
singular configurations.

4.4 Simulation Results and Scalability

Figure 6 shows the simulation results of two multisection continuum arms employing the proposed spatial
dynamic model. Figure 6a shows five instances of a dynamic simulation of the prototype continuum arm
model. The model has nine DoF and the simulation was generated for random input forces on different
joint space variables (i.e., PMA’s). The simulation starts from a straight-arm singular pose (for which the
previous curve parametric models were undefined) and exhibits omnidirectional bending in task-space.
The simulation successfully demonstrates the passive compliance (in the form of decaying oscillations)
in continuum arms. The extensibility and computational efficiency of the model is then presented by
simulating a 10-section continuum arm in Figure 6b. The complete model has 30 DoF (3 for each section)
and the simulation starts from a random starting pose and then continues to models the arm’s passive
dynamic behavior under the influence of gravity. The starting pose was generated by assigning random
initial conditions for joint space variables of sections 1,3,6,7,10 (base of section 1 coincides with the task-
space origin) while remaining DoF are assigned 0. Hence the starting pose incorporates both bending
and straight arm (undefined in previous curve parametric models) continuum sections to demonstrates
the models numerical stability. The full simulations are shown in Extension 1.
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Figure 6: Dynamic spatial simulation results. (a) Snapshots of a three-section prototype continuum arm motion simulation
in space, (b) Snapshots of a 10-section continuum arm motion in space. This verifies the extensibility of the proposed
recursive spatial dynamic model for arbitrarily long continuum arm dynamic simulations.

5 Experimental Results

The objective of the following experiments is to validate the compliant dynamic responses of the PMA
actuated prototype multisection continuum arm using the proposed modal dynamics. Experiments are
carried out to compare the modeling accuracy of both active and passive responses of the prototype
arm. The experiments are conducted in the joint-space and the results are compared in the task-
space. In the following experiments, the prototype arm pressure commands are applied at arbitrary
times and the pressure profiles are recorded with temporal information. These pressure profiles are
then used to generate the input pressure commands (as SIMULINK input source, structure with time,
from the workspace) to the prototype arm dynamic model given by Equation (58). The experimental
and simulation temporal responses are then validated by comparing each section tip trajectories in the
task-space.

5.1 Experimental Setup

The overall experimental system block diagram is illustrated in Figure 7a. There are five main parts in
the experimental setup: input pressure source, digital pressure controllers, pressure command interface,
prototype arm (discussed in Section 4.1), and the task-space trajectory tracking system.

The input pressure to the setup is a constant 7bar pressure supplied by a GMC 6310 air compressor
which is distributed to Pneumax R© 171E2N.T.D.0009S digital proportional pressure regulators via 4mm
(OD) Polyurethane tubing. The pressure regulators are arranged in a compact assembly as shown in
Figure 7b. PMA’s of the prototype arm are connected to 9 separate pressure regulators. The pressure
regulators are operated at 24V DC and have inbuilt digital pressure control system to output any pressure
between 0-9bars with a maximum input pressure of 10bars. They also support 4800bps RS232 based
digital command-response type interface that support real-time pressure commanding and reading. USB-
RS232 hardware interfaces are attached to pressure controllers that are connected to the commanding
host via three USB hubs (each with 4 USB ports).

The pressure commands for the prototype continuum arm are generated by a computer user interface.
Note that the pressure step inputs for all the experiments are rate limited to 12.5bar/sec to reflect the
gradual pressure build up observed in the PMA’s. The generated pressure commands are communicated
to pressure regulators via a RS232 communication line at 40Hz. Given the bandwidth of pneumatic
valves (Godage et al., 2012b), this rate ensures high fidelity of input pressure commands. For each
experiment carried out, the pressure commands are saved in separate text files with the time stamps
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Figure 7: (a) The block diagram of the experimental setup showing the main components: pressure source, control
unit, pressure control interface, continuum robot, and the visual trajectory tracking system. (b) The pressure regulator
assembly: A:-The pressure distribution tubing for individual PMA’s, B:-Pneumax R© 171E2N.T.D.0009S digital proportional
regulators, C:-Power supply and communication wiring.

and these data are then used to generate input force commands for the dynamic simulations. Trajectory
tracking system is presented in detail in the following Section.

5.2 Spatial Task-space Trajectory Tracking Through Video Reconstruction

As noted in Section 4.2, the constrainers installed along the length of each sections effectively eliminate
possible deviations from the circular arc deformation assumptions at section level. Therefore for the
prototype arm considered herein, only the tip coordinates of each continuum section are recorded to
determine the accuracy of the model.

For measuring the section spatial tip trajectories of each section in the task-space, a two-camera
setup was used and shown in Figure 8a. It is a simple but effective system for the task at hand. Each
camera (Panasonic HDC-HS700) records in HD (1920px×1080px where px denotes pixels) definition at
60 frames per second. One camera is placed with a −5◦ offset to the +X axis (normal to Y axis to
capture the Y coordinates) and the other is placed with −5◦ offset to the +Y axis (normal to X axis
to capture the X coordinates) at a 8ft clearance (to reduce perspective errors), parallel to the center of
the unactuated prototype arm. The −5◦ offset enables to observe the in-plane motions in both X and Y
axes without occlusion.

After the experiments, the videos are clipped for the duration (start to finish), synchronized by
matching the motion start times, cropped to the task-space size, and arranged side by side (Figure 8b).
Then images from the videos are generated for each frame by using “ffmpeg R©” software. The tracking
system covered ~10m3 volume and produced 0.0014m/px tracking resolution within the ~0.55m3 task-
space of the prototype arm. Statistical measurements carried out in multiple occasions for the known arm
base location resulted ±4px error which translates to ±0.0056m in task-space coordinates. Due to it’s
negligible size (1.18% of prototype arm length) this error is considered acceptable for the experiments.

The coordinates values of each continuum section tip of the prototype (Ψe
1, Ψe

2, and Ψe
3) in video

frames are manually recorded in pixel values via image analysis in MATLAB. Figure 8b-IMGX shows
an instance of the manual tip location tracking where 8b-IMGX records the Z and Y coordinates and
8b-IMGY records Z and X coordinates relative to the corresponding base coordinates (marked BX and
BY). Image processing techniques were not used because of occlusion of markers. Also, the tracking
bands are attached on the periphery of the arm but the tip location is located at the center of each band.
Thus, manual tracking proved straightforward and effective for the purpose of this paper with 1.18%
normalized error. Figure 8b-IMGY shows how the tip locations were deduced from the different marker
band orientations.

The data recorded in pixel values are then scaled to task-space coordinates. Scaling factors for each
perspective of Figure 8b is computed by finding the known unactuated arm length (0.474m) in pixel values
which provide the m/px scale. Task-space trajectories are then constructed from the X,Y,Z coordinates.
Finally, data is re-sampled at 10 frames per second (utilizing MATLAB’s “interp1” sub-routine with
“PCHIP” interpolation method) for ease of comparison on plots. The re-sampling process also averages
out any user introduced errors during manual data recording.
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Figure 8: (a) The dorsal view schematic illustration of the two-camera tracking system employed in the experiments. The
are of interest is shaded, (b) Manual tip position tracking from the two camera video frames. The IMGX and IMGY
respectively denote the videos from X and Y directions shown in Figure 8a. IMGX shows task-space origin (BX), base, and
mid tip positions marked with the cursor (cross-hair) hovering on top of the distal tip position. IMGY shows the manual
estimation of the sections tips from the marker band orientations. This manual setup is simple, effective, and produce good
(error ±0.0056m) results. The base section tip band is shown enlarged for clarity.

5.3 Error Metrics and Results Validation

The dynamic simulations are carried out in the joint-space for the input pressure profiles associated with
the experiments. As noted in Section 4.3, The joint-space trajectories data are recorded at 30 times per
second from the simulations. The resulting joint space trajectories are then transformed to task-space
trajectories of each section tip (Ψ1, Ψ2, and Ψ3) using the prototype arm kinematic model given by
Equation (57) for all N = 1, 2, 3 with an additional homogeneous rotational transformation of −5◦ at
the base to align with the task-space trajectory tracking camera setup. Note that this transformation is
possible because the prototype satisfies the circular arc assumption (assumption AS1 Section 5).

Due to the redundancy of multisection prototype continuum arm, it is important to establish the
uniqueness of comparing arm poses. For a given end effector position there are multiple solutions for
the shape of the continuum arm (3 point constraints vs. 9DoF). However all the section tip positions of
the prototype arm provide a 9 point constraint, i.e., 3x3 position coordinates. In other words, model is
validated against a unique continuum arm pose without redundancy conflicts. This approach can also
be thought as a 4 point (including the arm base) shape estimation of the entire arm and conforms to
the shape accuracy measuring requirements. Hence, the three uniformly distributed section tip positions
(marked with bright red bands in Figure 5a denoting Ψe

1, Ψe
2, and Ψe

3 ) of the prototype arm are compared
against the corresponding section tip positions (annotated in Figure 5b as Ψ1, Ψ2, and Ψ3) of the dynamic
model.

To quantify the agreement between the experimental and simulation data, instantaneous position
errors (ERRi = ‖Ψe

i (t)−Ψi (t)‖ ∀i ∈ {1, 2, 3} where i is the section number) are computed at each
section tip and plotted along with task-space Cartesian coordinates. Finally, in order to quantify the
overall model accuracy, maximum of the mean cumulative error of the arm and maximum section error

are computed for each experiment. Maximum cumulative error is defined as max
(∑3

i=1 ERRi

)
and

maximum section error is given by max ([max (ERR1) , max (ERR3) , max (ERR3)]).

5.4 Planar Dynamics: In Plane Motion of All Sections

In the first experiment, the planar dynamic motion is compared of all three sections actuated in order
from distal to the base sections against the proposed model. By actuating continuum sections separately,
both passive and active responses of the arm can be clearly compared. The following PMA’s, denoted
by l33, l22, and l11, are provided with 6bars, 5bars, and 5bars pressure step inputs at t = 0s, t = 3.2s,
and t = 7.55s respectively and maintained throughout the experiment.

As described in Section 5. These pressure commands result all the sections to bend in the y = 0
plane. The dynamic model is also given the same pressure command sequence and the tip coordinate
values are compared in Figure 9. Each subplot denotes the tip coordinates of base (section 1, Ψe

1), mid
(section 2, Ψe

2), and distal (section 3, Ψe
3) continuum sections of the prototype arm respectively along
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Figure 9: Sequential planar bending of all the sections. Comparison of the dynamic section tip coordinate evolution (solid
line) vs. the corresponding on coordinate values of the prototype arm (X,Y,Z experimental data are denoted by ◦, +, ×

marks respectively). Position errors, ERRi =
∥∥Ψe

i − Ψi

∥∥ ∀i ∈ {1, 2, 3} are denoted by dashed line in each subplot.

Figure 10: Final pose comparison of the dynamic model and prototype continuum arm for in plane bending of all sections.
The real-time side by side comparison is shown in Extension 2. The grid lines of the simulation are spaced at 0.1m.

with the relevant section tip position errors. The corresponding visual comparison of prototype and
simulation model poses at t = 11.4s is shown in Figure 10.

From the comparison of output data and error evolution, it can be seen that the proposed model
agrees the experimental data well. The maximum section error was 0.0696m (recorded at distal section)
and the maximum mean error of the arm was 0.0384m. Noticeable deviations indicated by the errors are
observed during step inputs which quickly decay down to steady state values. Closer inspection reveals
that the steady state error of Ψe

1 begins at the mid section actuation. Further there are some oscillation
phase mismatch observed during the transients following base section actuation (after 8sec) with Ψe

1

and Ψe
3. These deviations can be attributed to the approximated damping coefficients and unmodeled

friction/hysteretic effects. The visual real-time side by side comparison is shown in Extension 2.

5.5 Spatial Dynamics 1: Out of Plane Motion of Two Sections

Modeling and experimental validation of the out of plane dynamic motion have been two of the key
challenges faced by variable length multisection continuum dynamic models and prototype arms. This
is due to possible torsional deformations of the arm that cause deviations from the circular arc shape
bending deformation (assumption AS1 in Section 2.3). In order to demonstrate the accuracy of the
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Figure 11: Comparison of the simulated model output against the prototype arm for the out of plane bending of mid and
distal sections. Extension 3 shows the real-time side by side comparison. The grid lines of the simulation are spaced at
0.1m.

proposed model and the efficacy of the prototype arm in mitigating torsional moments, in the second
experiment, the actuation of the distal and mid sections are considered in two different bending planes.
The base section is kept unactuated to exhibit the passive effects of the gravity induced forces affecting
the base section. Step pressure inputs of 5bars and 3bars were given to l23 at t = 0s and l33 at t = 3.3s
respectively and maintained throughout. This causes the arm to bend in the task space as shown in
Figure 11. It can be seen that the base continuum section’s passive bend to balance the forces induced
by the mid and distal sections. This phenomenon is correctly modeled by the dynamic model.

As result of the constrainer-enforced torsional rigidity, the arm was able to maintain the assumed
bending deformation without deviating from the circular arc shape to produce correct results. This
fact can be verified by comparing the relevant coordinate values of experimental data, simulation data
during the simulation, and the joint position errors plotted in Figure 12. Particularly the values derived
for D successfully attributes the principle components of the decaying damping. The errors in this
experiment also varies during the step input transient stages but settles down quickly. This experiment
recorded lower steady state and transient errors than the planar experiment and the possible cause is
the unactuated base section.

The maximum section error and mean error of the arm were computed as 0.0539m (recorded at
distal section) and 0.0363m respectively. Note though that, as the base section is unactuated, it can be
seen bending slightly under the resulting moments/forces of the actuation of mid and distal sections.
This behavior is accurately reflected by the proposed dynamic model (refer to Figures 11 and 12) thus
validating the correctness of the model. Extension 3 presents the visual real-time side by side comparison.

5.6 Spatial Dynamics 2: Out of Plane Motion of All Sections

In the final experiment, all three sections of the continuum arm are actuated to bend in different bending
planes to assume a complex task-space shape shown in Figure 13. Pressure step inputs of 5bars, 3bars,
and 3bars are respectively provided to actuators l33 at t = 0s, l23 at t = 2.55s and l11 at t = 5.05s
and maintained during the experiment. The sequence of pressure step inputs cause the arm sections to
suddenly bend in different planes. These motions result and propagate passive compliant and dynamic
effects on other continuum sections as depicted in Extension 4.

The corresponding tip coordinate trajectories and position errors are compared in Figure 14. This
experiments resulted a 0.0671m maximum section error (recorded at distal section) and a 0.0410m
cumulative mean error. According to the results, the proposed modal dynamic model output agrees
well with the experimental outcome. Similar to previous experiments, higher position errors can be
observed during transient stages following the step inputs but the decaying oscillatory motions and
steady state shapes are correctly accounted for by the dynamic model. Noticeable steady state errors
can be seen during mid section actuation (3s-5s) in the Z coordinates of Ψe

2, Ψe
3. Also during base

section actuation (5.5s-7s), the X coordinates of Ψe
2, Ψe

3 and Z coordinate of Ψe
1 register some steady

state errors. The residual steady state errors can be due to the currently unmodeled hysteresis/friction
forces in PMA’s. Note that, increasing errors towards the arm tip can be observed in all simulations due
to error propagation because of the serial arrangement of continuum sections. By comparing the results
of all three experiments, it can be seen that the proposed modal dynamics model for variable length
multisection continuum arms successfully predicts and models the dynamic behaviors of the prototype
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Figure 12: Comparison of the dynamic model coordinates values against the prototype arm section coordinate values
(X,Y,Z experimental data are denoted by ◦, +, × marks respectively) during the out of plane spatial bending of distal and
mid sections. The position errors are denoted by dashed lines in each subplot. The final resulting pose is shown in Figure
11.

continuum arm.

6 Discussion

6.1 Numerical Stability and Accuracy of the Proposed Modal Approach

In this section, the limitations of the curve parametric dynamics and how the proposed modal dynamics
circumvents those issues are quantitatively presented.

The curve parametric spatial forward kinematics derived in the joint-space correctly and efficiently
model the physical structure of the variable length continuum arms but suffer from numerical instabilities
(Jones and Walker, 2007). This instability stems from the circular arc parameters (λi and θi in Appendix
A.1) that becomes undefined for straight arm poses. Therefore, any model that uses this parameterization
inherits this instability. The modal kinematics (Godage et al., 2011c, 2015) solve this numerical problems
by substituting HTM elements with polynomial MSF’s.

Figure 13: Final pose comparison of the simulated dynamic model output against the prototype multisection arm for the
bending of distal, mid, and base sections in different bending planes respectively. Extension 4 presents the real-time side
by side comparison. The grid lines of the simulation are spaced at 0.1m.

25



0 1 2 3 4 5 6 7 8
0.2

0.15

0.1

0.05

0

0.05
S

e
c
ti
o

n
 1

 [
m

] x
1

y
1

z
1

ERR
1

0 1 2 3 4 5 6 7 8
0.4
0.3
0.2
0.1

0
0.1
0.2
0.3

S
e

c
ti
o

n
 2

 [
m

] x
2

y
2

z
2

ERR
2

0 1 2 3 4 5 6 7 8
0.5
0.4
0.3
0.2
0.1

0
0.1
0.2

S
e

c
ti
o

n
 3

 [
m

]

time [s]

 

x
3

y
3

z
3

ERR
3

Figure 14: Comparison of the simulated dynamic model section joint coordinate trajectories and errors (denoted by
dashed lines) against the prototype arm section coordinate values (X,Y,Z experimental data are denoted by ◦, +, × marks
respectively) during the bending of distal, mid and base sections. Each continuum section bends in differing planes that
results in a complex resulting pose shown in Figure 13.

The order of Taylor series expansion defines the fidelity of the MSF’s. The order 11 modal approxi-
mation (Appendix A.2) results less than 1% normalized (to prototype length) position error at the arm
tip. The accuracy of velocity modal kinematics is illustrated by using the base continuum section pa-
rameters. The maximum joint-space velocity for any PMA length change is 0.135ms−1 (corresponds to
12.5bar/sec pressure build up). Given the ranges q1 ∈ [0, 0.065] and q̇1 ∈ [−0.135, 0.135], the maximum
linear velocity error at the tip is 0.0235ms−1 (range normalized error2 1.52%) when q1 = 0.065 and

q̇1 =[0.135,−0.135,−0.135]
T

. The maximum angular velocity error at the tip is 0.8238rads−1 (range

normalized error 5.7%) when q1 =[0.065, 0, 0.065]
T

and q̇1 =[0.135,−0.135, 0.135]
T

. These errors were
considered acceptable as the curve parametric Jacobians are unreliable with significant errors within
singular configurations.

The numerical instabilities of curve parametric kinematics become more significant when extended
to formulate dynamics. Therefore, the works such as (Tatlicioglu et al., 2007a,b; Rone and Ben-Tzvi,
2014) assume non-straight starting poses to avoid this numerical problem. To demonstrate the severity
of the problem in a numerical example, define the curve parametric kinematics (HTM given in Appendix
A.1) based generalized inertia matrix from the linear KE for the base continuum section M1c ∈ R

3×3.
For ease of comparison, a single element of M1c is used for generating the results. Because there is only
one section, from the definition given in Equation (51) define [Mυ

1c]11 ∈ R as

[Mυ
1c]11 = m1

ˆ

ξ1

(Jυ
1c)

T

1 (Jυ
1c)1 (59)

where Jυ
1c =

(
∇q

1
pc

1

)
∈ R

3×3 and pc
1 ∈ R

3 is the curve parametric position vector of Tc
1.

The integral was symbolically precomputed using MAPLE (2010). Figure 15a shows the range-
normalized percentage error within the range of joint space vectors l12 ∈ [0, 0.065] and l13 ∈ [0, 0.065]
while l11 = 0.0325. Notice the singularity induced errors around l12 = l13 = 0.0325. Due to the complex
nonlinear terms and accumulative nature of multiplying errors, this produces prohibitively large errors(
> 103%

)
within a considerably larger singularity neighborhood. Note that this example is for a single

continuum section. On top of the added complexity of nonlinear terms and additive nature of errors,
thus it can be deduced that a multisection continuum arm will have considerably larger errors.

2Range normalized error of x against xa is defined as
‖x−xa‖

max(xa)−min(xa)
where xa is the actual value.
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Figure 15: Generalized inertia matrix numerical error comparison of the base continuum section. (a)
[
Mυ

1c

]
11

. Note

the large errors (≥ 103%) towards the singularity at q1 = 0.0325 and its (expanded to around {l12, l13} ∈ [0.02, 0.05])

neighborhood. (b)
[
Mυ

1

]
11

. In contrast to Figure 15a, the error is negligible (≤ 0.014%) within the entire actuation region.

During both simulations l11 = 0.0325.

The numerical stability of the modal dynamics can be clearly shown as follows. Define the modal
kinematics (MHTM given in Appendix A.2) based generalized inertia matrix from the linear KE for the
base continuum section M1 ∈ R

3×3. From the Equation (51), define [Mυ
1 ]11 ∈ R, which is the modal

implementation of [Mυ
1c]11, as

[M1]11 = m1

ˆ

ξ1

(Jυ
1 )

T

1 (Jυ
1 )1 (60)

where Jυ
1 =

(
∇q

1
p1

)
∈ R

3×3 and p1 ∈ R
3 is the modal position vector of T1.

Figure 15b shows the range-normalized percentage error (maximum percentage error ∼ 0.02%) within
the range of joint space vectors l12 ∈ [0, 0.065] and l13 ∈ [0, 0.065] while l11 = 0.0325. Note that the
error → 0 towards the singularity at q1 = 0.0325. Therefore, the proposed modal dynamics produces
excellent results with negligible errors.

6.2 Computational Efficiency

The MSF based approach is essentially a high dimensional approximation for HTM elements and nat-
urally, computational efficiency is of concern. However, the modal approach is more computationally
efficient than the curve parametric methods and the recursive scheme proposed in this paper improves
the computational efficiency. This is achieved by only computing the terms corresponding to the contin-
uum section being evaluated while utilizing the results of previous steps. Figure 16 plots the normalized
computing time of MHTM (given by Equation (1)) vs. the multivariate Taylor series expansion order
showing that the higher orders (higher accuracy of MSF’s) have negligible effect on the computational
time. This is due to the structure of MSF’s which constituted of increasing powers of the same algebraic
terms (see Appendix A.2), that are computationally more efficient than trigonometric evaluations. This
has a profound effect when it comes to computing dynamics due to the sheer amount of computational
terms that adds up to significant time saving.

An exemplary comparison was carried out on computational efficiency between curve parametric and
modal dynamics. Table 3 summarizes the normalized computational time for [Mυ

1 ]11 and [Mυ
1c]11 in

both numerical integration and precomputed integration approach. Numerical integration was carried
out utilizing the MATLAB’s “integral” routine. Assuming these margins remain the same, then numerical
computation time ratio of entire Mυ

1 and Mυ
1c will be similar to Table 3. Thus the proposed MSF based
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Figure 16: Computation time comparison of MHTM order versus curve parametric HTM. The execution time is normalized
to the execution time of Tc

1 (25.2µs). The mean execution time was calculated by averaging the time for 1000 computations
for random q1.

Table 3: Computation times of precomputed and numerical integration on curve parametric and modal dynamics. These

times are computed for
[
Mυ

1c

]
11

,
[
Mυ

1

]
11

and normalized to the execution time of integral precomputed modal dynamics.

Curve parametric dynamics
from Equation (59)

Modal dynamics
from Equation (60)

Numerical integration 190-240 110-140
Precomputed integration 25-35 1

precomputed integral dynamics formulation proves superior to curve parametric or numerical integration
approaches.

Figure 17 shows the normalized time taken to evaluate a single step of the EoM against the number
of continuum sections. The algorithm is of O

(
n3
)

complexity, but translates to milliseconds in real-
time computations. For instance, the 11th order modal implementation presented herein has a absolute
step calculation time around 3ms (~120 when normalized to the execution time of Tc

1, 25.2µs) for the
prototype model. Also, depending on the required accuracy, the order can be further reduced thus
improving the computational time. With the MATLAB’s ODE15s solver typical simulations spanning
10sec complete around ∼ 10s making it suitable for rapid spatial dynamic simulations. The timings of
computations are carried out on a AMD A10-4600 quad-core (2.6GHz) laptop with 8Gb RAM. The com-
putational time can be further improved by clever programming and the use of a compiled programming
language.

7 Conclusions

A novel spatial dynamic model was presented for arbitrarily long, variable length multisection continuum
arms. The model solves a longstanding spatial dynamics research problem for this class of continuum
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Figure 17: Computational time for one step of the dynamic equation vs. the number of continuum sections of multisection

continuum arms. The execution time is normalized to the execution time of Tc
1 (25.2µs). The algorithm is of O

(
n3
)

complexity but shows very fast times for practical 3-section continuum arms.

28



robotic arms through an efficient, highly scalable, recursive computational scheme to yield fast simula-
tion results. The derivation is based on the modal kinematics previously proposed by the authors and
hence avoid complex derivations and numerical instabilities associated with curve parametric modeling
methods. As a result, the proposed model is structurally accurate, developed in the joint-space, and thus
eliminates morphological mappings, and provides better insight to physical operation. Spatial dynamic
simulations of the prototype arm successfully attested the numerical stability of the model at singular,
straight arm poses. The scalability and numerical efficiency of the proposed modal recursive dynamics
were demonstrated by spatial dynamic simulation of a 10-section (30 DoF) continuum arm. Dynamic
simulation results were then compared using a PMA actuated variable length prototype continuum arm
dynamics for three different experiments including a planar and spatial task-space motions. The results
show good agreement overall and the dynamic model was able to correctly simulate the passive and active
dynamics of the compliant multisection prototype continuum arm. A discussion on the accuracy and
computational efficiency of the proposed model was also presented. To the best of author’s knowledge,
this is the first structurally accurate spatial dynamic model presented for variable length multisection
continuum arms.
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Appendix A Homogeneous Transformation Matrices

A.1 Curve Parametric Homogeneous Transformation Matrix

Upon actuation, a variable length continuum section deforms in a circular arc (straight section pose
is modeled a circular arc of zero curvature). This circular arc shape of any ith continuum section can
be described by three geometrical parameters that are functions of qi: radius of curvature λi, angle
subtended by the bending arc φi, and angle of the bending plane with respect to the +X axis θi

(Figure 3a). Therefore, the curve parametric HTM for any ith continuum section with respect to its base
coordinate frame, {Oi} is given by

Tc
i (ξi, qi) = Rz(θi)Px(λi)Ry(ξiφi)Px(−λi)R

T
z(θi)

=

[
Rc

i (ξi, qi) pc
i (ξi, qi)

0 1

]
(A.1)

where Rz ∈ R
4×4 and Ry ∈ R

4×4 are the homogeneous rotational matrices about the Z and Y axes.
Px ∈ R

4×4 is the homogeneous translation matrix along the X axis. R3
i ∈ SO (3) and pc

i ∈ R
3 are the

rotational and translation components of the curve parametric HTM. The HTM elements of Equation
(A.1) is given below.

[Rc
i ]11 = cos2 θi cos (ξi φi) + sin2 θi [Rc

i ]12 = sin θi cos θi {cos (ξi φi)− 1}
[Rc

i ]13 = cos θi sin (ξi φi) [Rc
i ]21 = [Rc

i ]12

[Rc
i ]22 = sin2 θi cos (ξi φi) + cos2 θi [Rc

i ]23 = sin θi sin (ξi φi)
[Rc

i ]31 = − [Rc
i ]13 [Rc

i ]32 = − [Rc
1]23

[Rc
i ]33 = cos (ξi φi) [pc

i ]1 = λi cos θi {1− cos (ξi φi)}
[pc

i ]2 = λi sin θi {1− cos (ξi φi)} [pc
i ]3 = λi sin (ξi φi)
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where λi = λ (qi), φi = φ (qi), θi = θ (qi) and

λ (qi) =
(3Li0 + li1 + li2 + li3) ri

2
√

l2
i1 + l2

i2 + l2
i3 − li1li2 − li1li3 − li2li3

φ (qi) =
2
√

l2
i1 + l2

i2 + l2
i3 − li1li2 − li1li3 − li2li3

3ri

θ (qi) = arctan

{ √
3 (li3 − li2)

li2 + li3 − 2li1

}

A.2 Modal Homogeneous Transformation Matrix

The MSF’s for the MHTM (given by Equation (1)) elements are derived by applying the multivariate
Taylor series expansion on the HTM elements (listed in Appendix A.1) at qi = 0. The 11th order (same
order used in the dynamic simulations) MHTM is given below as

Ti (ξi, qi) =

[
Ri (ξi, qi) pi (ξi, qi)

0 1

]

where

[Ri]11 = 1− A2
2A1
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10
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4
− A3

2ξi
2

6ri
2

[Ri]23 = −2
√

3A3A1
4ξi

9

55801305ri
9

+
4
√

3A3A1
3ξi

7

688905ri
7
− 2
√

3A3A1
2ξi

5

3645ri
5

+
2
√

3A3A1ξi
3

81ri
3

−
√

3A3ξi

3ri

[Ri]33 = 1− 2ξi
2A1

9ri
2

+
2ξi

4A1
2

243ri
4
− 4ξi

6A1
3

32805ri
6

+
2ξi

8A1
4

2066715ri
8
− 4ξi

10A1
5

837019575ri
10

[Ri]21 = [Ri]12 , [Ri]31 = − [Ri]13 , [Ri]32 = − [Ri]23

[pi]1 = −A2A1
4A4ξi

10

837019575ri
9

+
A2A1

3A4ξi
8

4133430ri
7
− A2A1

2A4ξi
6

32805ri
5

+
A2A1A4ξi

4

486ri
3
− A2A4ξi

2

18ri

[pi]2 = −
√

3A4A3A1
4ξi

10

837019575ri
9

+

√
3A4A3A1

3ξi
8

4133430ri
7
−
√

3A4A3A1
2ξi

6

32805ri
5

+

√
3A4A1A3ξi

4

486ri
3

−
√

3A4A3ξi
2

18ri

[pi]3 =
2A1

4A4ξi
9

55801305ri
8
− 4A1

3A4ξi
7

688905ri
6

+
2A1

2A4ξi
5

3645ri
4
− 2A1A4ξi

3

81ri
2

+
A4ξi

3

and A1 = l2
i1 + l2

i2 + l2
i3− li1li2− li1li3− li2li3, A2 = 2li1− li2− li3, A3 = li2− li3, A4 = 3Li0 + li1 + li2 + li3.

Depending on the error requirements of the user, one can decide the required order. Note the
polynomial nature of terms which results in computational efficiency. Further, for singular straight arm
configurations where li1 = li2 = li3, all A1, A2, and A3 becomes 0 producing the correct MHTM.

Appendix B Mathematical Operators

The definitions of some of the mathematical operators are listed below.

B.1 Operator ∧
Let A ∈ R

3×1 and A = [a1, a2, a3]
T

. Then
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A∧ =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

B.2 Operator ∨
Let the skew symmetric matrix A be

A =




0 −a3 a2

a3 0 −a1

−a2 a1 0




Then ∨ is defined as

A∨ = [a1, a2, a3]
T

.

Appendix C Recursive Kinematic Relationships

The complete derivation of recursive kinematic relationships are included below. These lay the foundation
for developing the recursive dynamics.

C.1 Position and Orientation

Expanding the MHTM given by Equation (2) for a multisection continuum arm, consider the position
vector and orientation matrix for the ith continuum section given as

Θi = R1R2 . . . Ri−1Ri (C.1)

Ψi = p1 + R1p2 + · · ·+ R1R2 . . . Ri−1pi (C.2)

where pk = p (ξk, qk, rk, L0k), Rk = R (ξk, qk, rk, L0k) are the functional implementation of position and
rotational matrices. k is the section index. Input of section radius and original length can accommodate
mechanically different continuum sections. The dependency variables are dropped for brevity.

The recursive position vector is therefore

Θi = (R1R2 . . . Ri−1) Ri = Θi−1Ri (C.3)

where Θi−1 = R1R2 . . . Ri−1 from the definition given in Equation (C.1)
Similarly, using the result of Equation (C.3), Equation (C.2) is manipulated to

Ψi =
(
p1 + · · ·+ R1 . . . Ri−2pi−1

)
+ (R1 . . . Ri−1) pi

= Ψi−1 + Θi−1pi (C.4)

where Ψi−1 = p1 + R1p2 + · · ·+ R1 . . . Ri−2pi−1 from the definition given by Equation (C.2).

C.2 Angular Velocity Jacobian

From the angular velocity Jacobian definition given in Equation (18), (Jω
i )j ∈ R

3 can be written as

(Jω
i )j =

(
ΘT

i Θi,j

)∨
(C.5)

For ease of notation, considering Ω ≡ ω∧, define
(
JΩ

i

)
j

= (Jω
i )

∧

j ∈ R
3×3. Therefore
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(
JΩ

i

)
j

= ΘT
i Θi,j (C.6)

Note that
(
JΩ

i

)
j

= 0∀j > i because qi 7→ JΩ
i

(
qi
)
. Considering qi =

[
qi−1, qi

]
, hence depending on

whether the partial derivative variable belong to either qj ∈ qi−1 or qj ∈ qi, the result can be simplified
to two separate cases. When qj ∈ qi−1, substituting Equation (C.3) into Equation (C.6) gives

(
JΩ

i

)
j

= RT
i

(
ΘT

i−1Θi−1,j

)
Ri

= RT
i

(
JΩ

i−1

)
j

Ri (C.7)

where, by definition given in Equation (C.6),
(
JΩ

i−1

)
j

= ΘT
i−1Θi−1,j .

Similarly, when qj ∈ qi , Equation (C.6) becomes

(
JΩ

i

)
j

= RT
i

(
ΘT

i−1Θi−1

)
Ri,j

= RT
i Ri,j (C.8)

where ΘT
i−1Θi−1 = I3.

Combining these results gives

(
JΩ

i

)
j

=

{
RT

i

(
JΩ

i−1

)
j

Ri ; qj ∈ qi−1

RT
i Ri,j ; qj ∈ qi

(C.9)

C.3 Linear Velocity Jacobian

From the Jυ
i definition given in Equation (19), the (Jυ

i )j ∈ R
3 is given by

(Jυ
i )j = ΘT

i Ψi,j (C.10)

Similar to the JΩ
i recursive derivation, when qj ∈ qi−1, substituting Equation (C.4) into Equation

(C.10) and simplifying give

(Jυ
i )j = RT

i

{(
ΘT

i−1Ψi−1,j

)
+
(
ΘT

i−1Θi−1,j

)
pi

}
(C.11)

Substituting
(
Jυ

i−1

)
j

= ΘT
i−1Ψi−1,j and

(
JΩ

i−1

)
j

= ΘT
i−1Θi−1,j derived from the definitions given by

Equations (C.10) and (C.6) into Equation (C.11) yields

(Jυ
i )j = RT

i

{(
Jυ

i−1

)
j

+
(
JΩ

i−1

)
j

pi

}
(C.12)

When qj ∈ qi, Equation (C.10) becomes

(Jυ
i )j = RT

i

(
ΘT

i−1Θi−1

)
pi,j = RT

i pi,j (C.13)

where ΘT
i−1Θi−1 = I3.

Combining the results of Equations (C.12) and (C.13) gives

(Jυ
i )j =

{
RT

i

{(
Jυ

i−1

)
j

+
(
JΩ

i−1

)
j

pi

}
; qj ∈ qi−1

RT
i pi,j ; qj ∈ qi

(C.14)
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C.4 Angular Velocity Hessian

For a N section continuum arm with each section having 3 DoF, define Hω
i ∈ R

3×3N×3N of ωi as

Hω
i = ∇qJω

i (C.15)

From Equation (C.15), define (Hω
i )jk ∈ R

3 as

(Hω
i )jk = (Jω

i )j,k (C.16)

For the ease of notation, define
(
HΩ

i

)
jk
≡ (Hω

i )
∧

jk ∈ R
3×3. Following the case-wise derivation, when

qk ∈ qi−1, substituting Equation (C.9) into Equation (C.16) gives

(
HΩ

i

)
jk

=

{
RT

i

(
JΩ

i−1

)
j,k

Ri ; {qj , qk}∈qi−1

0 ; qj ∈qi, qk∈qi−1
(C.17)

When qk ∈ qi

(
HΩ

i

)
jk

=

{
RT

i,k

(
JΩ

i−1

)
j

Ri + RT
i

(
JΩ

i−1

)
j

Ri,k ; qj ∈qi−1, qk∈qi

RT
i,kRi,j + RT

i Ri,j,k ; {qj , qk}∈qi

(C.18)

Substituting the definition of
(
HΩ

i−1

)
jk

=
(
JΩ

i−1

)
j,k

derived from Equation (C.16) into Equations

(C.17), (C.18) and combining the result gives

(
HΩ

i

)
jk

=





RT
i

(
HΩ

i−1

)
jk

Ri ; {qj , qk}∈qi−1

RT
i,k

(
JΩ

i−1

)
j

Ri + RT
i

(
JΩ

i−1

)
j

Ri,k ; qj ∈qi−1, qk∈qi

0 ; qj ∈qi, qk∈qi−1

RT
i,kRi,j + RT

i Ri,j,k ; {qj , qk}∈qi

(C.19)

This completes the derivation of
(
HΩ

i

)
jk

.

C.5 Linear Velocity Hessian

For a N section continuum arm with each section having 3 DoF, define the linear velocity Hessian,
Hυ

i ∈ R
3×3N×3N as

Hυ
i = ∇qJυ

i (C.20)

From Equation (C.20), define (Hυ
i )jk ∈ R

3×1 as

(Hυ
i )jk = (Jυ

i )j,k (C.21)

When qk ∈ qi−1, substituting the recursive (Jυ
i )j from Equation (C.14) into Equation (C.21) yields

(Hυ
i )jk =

{
RT

i

{(
Jυ

i−1

)
j,k

+
(
JΩ

i−1

)
j,k

pi

}
; {qj , qk} ∈ qi−1

0 ; qj ∈ qi, qk ∈ qi−1
(C.22)

Similarly, when qk ∈ qi

(Hυ
i )jk =

{
RT

i,k

{(
Jυ

i−1

)
j

+
(
JΩ

i−1

)
j

pi

}
+ RT

i

(
JΩ

i−1

)
j

pi,k ; qj ∈ qi−1, qk ∈ qi

RT
i,kpi,j + RT

i pi,j,k ; {qj , qk} ∈ qi

(C.23)
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Substitute the definition of
(
HΩ

i−1

)
jk

=
(
JΩ

i−1

)
j,k

and
(
Hυ

i−1

)
jk

=
(
Jυ

i−1

)
j,k

derived from Equations

(C.16) and (C.21). Combining the results of Equations (C.22) and (C.23) gives

(Hυ
i )jk =





RT
i

{(
Hυ

i−1

)
j

+
(
HΩ

i−1

)
j

pi

}
; {qj , qk}∈qi−1

RT
i,k

{(
Jυ

i−1

)
j

+
(
JΩ

i−1

)
j

pi

}
+ RT

i

(
JΩ

i

)
j

pi,k ; qj ∈qi−1, qk∈qi

0 ; qj ∈qi, qk∈qi−1

RT
i,kpi,j + RT

i pi,j,k ; {qj , qk}∈qi

This completes the derivation of (Hυ
i )jk.

Appendix D Algebraic Identities

For simplification of generalized inertia matrix terms and symbolic precomputation of the integrals,
following algebraic identities are used. This results in significant computational efficiency as discussed
in Section 6.2.

D.1 Algebraic Identity 1: BT
Diag (1, 1, 2) B = T2

(
A

T
A

)

Proof. Let A ∈ R
3×3 be a skew symmetric matrix and, B = A∨, and [B]i = bi.

Consider the following result.

BT
Diag (1, 1, 2) B = b2

1 + b2
2 + 2b2

3

Now consider

T2

(
AT A

)
= b2

1 + b2
2 + 2b2

3

= BT
Diag (1, 1, 2) B (D.1)

Proof completed.

D.2 Algebraic Identity 2: T2

(
A

T
HB

)
= V

T
(
ÃB̃

T
)
V(H)

Proof. Let [A]ij = aij , [B]ij = bij , and {r, k} ∈ {1, 2, 3}. Then

T2

(
AT HB

)
=
∑

s (
∑

rasr (
∑

khrkbks)) , s ∈ {1, 2}
=
∑

s

∑
r

∑
k (asrbks) hrk

= V
T
(

ÃB̃T
)
V(H)

Proof completed.

D.3 Algebraic Identity 3: AT
HB = V

T
(
ABT

)
V(H)

Proof. Let {A, B} ∈ R
3×1, H ∈ R

3×3, and defined as [A]i = ai, [B]j = bj , [H]ij = hij . Then

AT HB =
∑

iai

(∑
jhijbj

)
=
∑

i

∑
jaihijbj

=
∑

i

∑
j (aibj) hij = V

T
(

ABT
)
V(H)

Proof completed.
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