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Summary. Spontaneous failure in a solid medium is described as a localized 
transition of the material from one physical state to another, characterized 
in part by contrasting rheological properties and density. Such a process is 
viewed as a local disordering of the relatively ordered structure of the solid 
due to any variety of causes, such as massive microfracturing or shear melting, 
and can be confined to a very thin zone, but nevertheless of finite volume 
such that a volumetric transition energy can be defined. This leads to the 
description of failure as a generalized phase transition in a prestressed 
continuum, with instability and transition zone growth being driven by the 
energy contributions from the relaxation of stress in the surrounding 
medium. Direct application of mass, momentum and energy conservation to 
such a generalized phase transition leads to ‘jump’ conditions specified on 
the growing boundary surface of the transition zone, that relate the rupture 
growth to discontinuous changes in the dynamic field variables across the 
failure zone boundary. These field discontinuities are, in turn, related to the 
localized changes in physical properties induced by failure. Dynamical con- 
ditions for rapid spontaneous failure growth in a stressed medium are in- 
vestigated in some detail, and we find that the failure boundary growth can 
be simply expressed in terms of energy ‘failure condition’ and a dynamic 
growth condition specifying the rupture velocity. These results imply that the 
integral energy change associated with earthquakes is in the range lo4- 
lo6 erg/g. Further the failure growth rate is shown to be expressible in terms 
of the rheological properties of the material before and after failure. For 
shear melting resulting in a low viscosity fluid, for example, the rupture 
velocity will be near the shear velocity of *e original material. A general 
Green’s function solution for the radiation due to stress relaxation in the 
medium surrounding the growing failure zone is given and provides the basis 
for detailed computations of the strain or displacement field changes due to 
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spontaneous failure processes. In particular, it is shown that the jump con- 
ditions for the growing transition zone boundary appear naturally as surface 
integral terms over the boundary. Since these boundary conditions contain 
the failure rate explicitly, then these terms include effects that have not been 
represented in previous integral representations of the radiation field resulting 
from failure. Further, we show that the formal Green’s integral representation 
for the dynamical wave field can be used with known, simple Green’s 
functions to generate approximate solutions for complex failure processes 
occurring in media with inhomogeneous material properties and prestress. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definitions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof principal symbols 

Definition 

Any function dependent on the flow variables through 
the particle coordinates (a general function of the flow, 
or deformation in solids). 

Surface of discontinuity across which the flow may be 
discontinuous. 

Velocity of a surface of discontinuity 2.  

Material velocity field. 

Jump in the value of a function of the flow, F ,  across 
Z, i.e. [[FIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F(Z, )  - F(Z2). 

Current density of F per unit time per unit area (flux 
vector). 

Relative current density or flux vector for the field F 
across a moving boundary Z. 

Material density. 

Cauchy Stress Tensor. 

Internal energy density of the material. 

Body force density. 

Body force potential, b = - V(P. 

Heat Flux Vector. 

Energy density p E  = pu + p / 2  V, &. 

Total Energy Density p 8= p E  + p$ 

Heat source density 

Normal component of the velocity of a discontinuity 
surface Z, measured relative to the particle velocity V 
in the medium into which the normal to the surface 
points. (Used as the definition of ‘rupture velocity’.) 

First introduced 

Equation (1) 

Equation (3) 

Equation (3) 

Equation (3) 

Equation (3) 

Equation (9) 

Equation (1 0) 

Table 1 

Table 1 

Table 1 

Table 1 

Table 1 

Table 1 

Table 1 

Table 1 

Table 1 

Equation (20) 
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Dynamics in prestressed media with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmoving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA67 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition First introduced 

The change in internal energy, u,  across a surface of 
discontinuity: L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [u]Z (used as a transition energy 
characteristic of a physical process of failure in a given 
material .) 

Elastic strain measured relative to the relaxed state of 
the solid material (free from external forces and 
surface tractions). 

Elastic displacement field measured relative to the 
relaxed state of the material. 

Elastic modulus tensor (Latin indices take on the 
values 1,2,3).  

Elastic-Inertial Tensor (Greek indices take on the 
values 1,2,3,4) .  

Four Dimensional Inertial-Stress Tensor. 

Space-time ‘elastic operator’ 

a 

ax0 
La, = - (CaP76 ;,. 

Four dimensional space-time normal vector defined for a 
moving surface of discontinuity. 

Two point elastic Green’s tensor (a component of the 
displacement at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx due to an impulse force component in 
the direction at xo). 

Generalized Delta Function. 

Equation (24) 

Equations (34) and 
(35) 

Equations (34) and 

Equation (33) 

(35) 

Equation (45) 

Equation (48) 

Equation (49) 

Equation (5 1) 

Equation (53) 

Equation (53) 

g{P(x, xo) Two point elastic Green’s stress tensor generated from Equation (75) 

u: Equilibrium elastic displacement field in the medium. Equation (92) 

the (displacement) Green’s tensor C:. 

Introduction 

A general description of material failure under stress loading is obtained within the frame of 
continuum mechanics by considering the failure process to be a generalized phase transition 
(Archambeau 1969). In this description the failure zone occupies a finite volume, the 
boundary of which corresponds to a moving phase boundary in a prestressed medium. The 
growth of the failure zone is then controlled by the energy balance at the ‘phase transition’. 
That is, we can define, as a macroscopic equivalent, a ‘latent heat’ of transition, associated 
with the energy required for microfracture and/or partial melting along grain boundaries or 
fracture surfaces. This energy term can be used as an intrinsic characteristic of the material, 
and describes the energetics of the irreversible processes of failure. 

From this point of view it is not necessary to specify the microscopic details of the 
failure process, which may involve brittle fracture, plastic flow, melting, etc.. . . , but only 
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68 

the composite irreversible energy required for these processes, as a function of temperature, 
pressure and material type. 

The dynamical evolution of the failure zone is then controlled by the laws of 
conservation of mass, momentum, and energy, in a continuum including a moving phase 
boundary. Because of the discontinuous behaviour of the medium at the failure boundary, 
the momentum and energy equations are coupled through boundary conditions at the failure 
surface. However, one can still construct a Green’s tensor representation theorem for the 
radiated field, in which the coupling appears as a term involving rupture velocity in the 
boundary surface integral over the failure surface. Since the radiation field arises from the 
relaxation of stress in the surrounding medium, the elastic field representation corresponds 
to that for relaxation source theory (e.g. Archambeau 1964, 1968,1972;Minster 1973). 

In this paper we shall give a concise account of the theoretical development of the basic 
conservation conditions that must hold in a continuum with localized discontinuous 
properties. We shall then focus on the case where the dynamical deformation of the 
surrounding medium induces rapid growth of a failure zone, since it corresponds to observed 
tectonic failure resulting in earthquakes. (The theory is, of course, also applicable to a 
variety of physical processes, including shock waves in solids and ordinary phase changes.) 
In this regard we will investigate the constraints placed on the rate of failure by the con- 
servation relations (‘jump conditions’) that must hold on the rupture boundary. 

Finally, the representation of the radiation field which arises from stress relaxation 
around the failure zone is expressed in terms of a general Green’s function solution. In order 
to obtain such a solution, the usual linearizing approximations are needed (e.g. the 
assumption of infinitesimal strains in the medium exterior to the failure zone), as well as 
some approximations that are unique to this problem. We will, however, develop an integral 
representation of the radiated field with the minimum number of assumptions in order to 
obtain general results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. B. Archambeau and J. B. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 Transport theorems and conservation equations 

In a general continuum representation of material flow the conservation of a function of 
the flow F may be expressed as* 

where the source density has the general form 

k(x, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= K ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. J(x ,  t ) ,  ( 2 )  

with J the flux of interacting fields and K corresponding to the intrinsic production of F 
in the volume V( t ) .  

Let S( t )  be the boundary of the material volume V ( t ) ,  let V ( x ,  t )  be the material velocity 
field, and assume that V ( t )  is cut by a surface of discontinuity X( t ) ;  moving with the 
velocity U ( x ,  t ) ,  as illustrated in Fig. 1. Let [GJc denote the jump of a quantity C across 
Z. Then the Reynolds transport theorem takes the form 

I[F(U - V )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- f i n  da 

*We will use an Eulerian description of deformation and flow throughout. 

(3) 
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Dynamics in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1. Case of a propagating discontinuity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ (I)  is the surface of discontinuity moving with velocity 
U. S, ( r )  + S,(t) is a material surface, moving with the medium. 

and Gauss’s theorem takes the form 

s vo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{z n v }  
J . Ada, s V - J d 3 x t  IznV [J . n^]da = 

so {snz) 
(4) 

where 0 and f l  denote the set theoretic difference and intersection respectively. A simplified 
proof of these results can be found, for example, in Eringen (1975). Edelen (1962) states 
a similar result to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), but neglects to exclude the points of C from the volume integral, so 
that the term in J . r i  is effectively included twice in his result. Note that (3) and (4) hold 
only as long as none of the functions F, v, J has a singularity on Z stronger than a mere 
discontinuity (Minster 1973). A detailed proof of these results can be obtained using the 
theory of distributions. If generalized functions are used, it is easy to see that (4) may, in 
fact, be written in the usual form 

Using (3), (4) in (I), (2), and noting that (1) holds for any volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(t) ,  we have away 
from discontinuities 

aF 
-t V, * (FV - J ) = K ,  
at 

which is the differential conservation equation. Since this has to hold at all points away from 
C, (1) reduces to 
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70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ( t )  is arbitrary, we must have at all points on Z 

C. B. Archambeau and J. B. Minster 

which is the boundary condition to be satisfied on C for conservation of F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A result of similar form has also been given by Freund (1970) in a somewhat different 

context. In a study by Snoke (1976), motivated by results equivalent to (8) given by Minster 
(1973), an attempt was made to obtain general ‘jump conditions’ such as (8) by a method of 
transformation of the equation of motion to a moving coordinate frame. The approach does 
not contain the essence of the ‘moving boundary problem’, however, namely the dis- 
continuous behaviour of the field variables, and yields results which are not conservation 
relations on the moving boundary surface. Burridge (1976) applies equations of the form of 
(8) in circumstances similar to those to be investigated here. However, he starts from 
relations that are approximations to equation (15)-(17) of the next section, these being 
generated by choice of F in (8) as the density, momentum and energy respectively. His 
equation for energy does not, however, agree with our own or other results (e.g. Eringen 
1975, vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, p. 460). Further, he takes the density jump across Z to vanish and this may be 
physically incompatible with the application of the other boundary conditions involving 
momentum and energy jumps. His final result can, nevertheless, be obtained using results 
given in equation (32), if it is assumed that [[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVk J x ,  the particle velocity change across Z, 
is very small. 

If we define V *  = V - U as the velocity of the material, relative to the boundary C, and 
introduce the current density of F per unit time per unit area (flux vector): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9= FV - J ,  
and the relative flux vector through Z : 2F* = FV* - J ;  then the conservation laws have the 
form 

aF asF; 

at ax, 
-+- = K  (9) 

U3pl]2: = 0 (10) 

where K is, as before, the rate of production of F per unit time per unit volume. 

becomes 
We observe that if the boundary Z is a material surface, or if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV* - n  =O,  then (10) 

( [ J - r i ] ~  = O  (1 1) 

which is the usual boundary condition when the boundaries move with material flow or 
deformation. 

Conservation equations apply in general to tensor components, and it is straightforward 
to show that the general forms for (9) and (1 0) are 

aFi . . . j  a 
+- “F i . . . j m l  = K i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . j  

at axm 

Table 1 furnishes a summary of the most common conservation equations. Additional 
conservation equations are also possible, such as those investigated by Fletcher (1974) for 
hyperelastic media using Noether’s theorem. The additional relations involve internal angular 
momentum for polar media, and since we are only concerned with nonpolar media, 
conservation of angular momentum only requires that the stress tensor cj be symmetric. 
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Dynamics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= density Tij = Cauchy stress tensor 
bi = body force density u = internal energy density 
qi = heat flux vector h = heat source density 
@ = body force potential: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = - @ 

Thus, equations (12), together with Table 1 ,  provide the complete set of conservation re- 
lations for the media of importance in this study. 

An alternative expression of the conservation equations in four dimensional form is also 
possible. We find such a compact representation to be useful when we consider integral 
representations of the linearized equations of motion for the continuum in a following 
section. Here we simply display the forms for the general (nonpolar) case. 

In particular, the conservation relations can be put in a compact explicit form that 
expresses conservation of mass and momentum by introducing fieldssap and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKp with the 
Greek indices running over the range 1-4. Thus, with space-time coordinates represented 
by x, we have* for the momentum equation 

w:pn,nz = 0 (13b) 

where KO and n ,  are the ‘space-like’ variables given by 

with Latin indices, such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  running over the (space) indices 1, 2, 3 only. The vector b 
denotes the body force density, p the medium density, and the nj are the components of the 
normal to any spatial surface in the medium. The fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA94 and 9% are given by: 

Here we retain a non-relativistic description, and merely consider time 1 as a fourth coordinate x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the 
Newtonian sense. The summation convention over all repreated indices applies to both Greek and Roman 
indices. 
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72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. B. Archambeau and J. B. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Similarly, the energy conservation equation, defined in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd the total density 

function for the medium may be expressed as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B'j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 

B&j = 0; j =  1 ,2 ,3  

&=pBI / i - I $q j+q i ;  1 = 1 , 2 , 3  

i, j =  1 , 2 , 3  

( &)44=pB 

and 

Hp = (O,O, 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPh). 

u8:,dz: = 0 

The associated condition on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is: 

with 

g&:( B$= 0; j = 1 , 2 , 3  

4: =p&h*- V G i + q i ;  i =  1,2,3.  

&* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44 PB 

B$= 0; i , j =  1 , 2 , 3  

It is easy to verify that the conservation relations given by (13) and (14) are the same as 
those obtained from equation (1 2) and Table 1. 

3 Conservation relations on X : Consequences for failure growth 

The boundary conditions to be satisfied on Z, which may be any boundary surface, are 

I[pI/i*ni]= = o 
([(p~,q*- Tki)niDZ = O  

I[@ sq* - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,T,~ + qi)& = o 

where the last equation can be trivially modified to include non-conservation body force 
fields using the results given in Table 1 along with equations (1 0) or (1 2). 

These conditions may be recast in a more useful general form if one notes that 
U Q  n i l z  = 0 and uses it in (10) to obtain 

Qni = [ & n i j z .  

From this equation we obtain, provided F has a nonzero jump across Z 

Qni= (IIFWiDz - I[JiniDz)/(I[Filz) (1 8) 

The special condition of no growth of the failure zone is that no material transport occurs 
across Z, in which case V* - ii = 0. We have seen earlier that this leads to equation (1 1). 
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Dynamics in prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA73 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this case (15) is satisfied identically, while from (16) and (17) we obtain, respectively 

UTkinillz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= IItkl lZ = 0 

UVkTkinijZ = [ V , ] x t k  = [ 4 i n i ] Z  

which are the well-known boundary conditions at (ordinary) material boundaries. Note that 
the tangential velocity may be discontinuous on C inasmuch as slip along z1 is allowable. 

More generally, investigation of (1 9) shows that slow boundary propagation is 
characterized by low values of the fluxes [ J i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni 1 z and/or large values of [ F ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. 

We are, however, most interested in 'fast' processes. From the conservation of mass (1 S), 
we have* 

Uini = UpKniD/UpD. (1 9) 

Let the unit normal to Z point away from the failure zone, and, with reference to  Fig. 1 ,  
let 

where C(') and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(') denote C approached, in the limit, from region 1 and 2 respectively. 
With similar definitions for the other field variables, then (19) may be written as 

where UR is the failure propagation velocity relative to the untransformed material. A large 
class of rapid processes of interest to us can be characterized by small fractional density 
jumps, since we expect material failure, involving macroscopic and microscopic fracture and 
cracking, plastic flow, grain boundary melting, etc.. . . to  result in very small change in the 
average density. This kind of transition is precisely of greatest geophysical interest and in 
this case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup ] is very small and UR may be very large as a consequence. 

We also observe that the momentum equation (1 6) may be written in the form 

and this relation is exact. When the density jump [ p  is small, then we have p ( ' )  = p(') and 
so, as an approximation 

I P V ~ U  UR = - utkn. (22) 

Precisely the same approximate result is obtained from (16) if we consider Q n i  s Kni ,  
which serves as the definition of a fast transition process. Then Kni can be neglected in 
(16), and we get (22) directly, with U R  = Qni. Equation (22) will be used extensively in 
later sections where we consider a 'representation theorem' for the radiated elastic field 
associated with a growing failure zone. 

We note that typical inferred values for (shear) stress drops and rupture velocities for 
earthquakes are of the order 10' dyne/cm* and 3 x lo5 cm/s respectively. With a density 

In the following we will often simply write [ for [ 1 Z, where it is understood that the jump notation 
always applies to a surface Z. 
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74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
near 3.5 g/cm3, then (21) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvk] - 10'cm/s. Thus, (21) implies tangential particle 
velocity jumps near 1 m/s across the failure boundary. 

The energy equation (17) can also be put into a more appropriate form for the present 
application. In particular, eliminating I[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEni ]I using (20), gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. B. Archambeau and J. B. Minster 

Here 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is the internal energy and 4 the body force potential energy. The second term is the 
change in the kinetic energy density of the material across the boundary. We can realistically 
neglect the change in 4 across a failure boundary compared with the change in the kinetic 
or internal energies. 

The change in the internal energy may be viewed as the energy required for the transition 
process in the material since we may consider the medium on either side of Z at a given time 
as two states of the same material. Viewed in this manner we observe that, while the 
transition is irreversible, we can nevertheless consider u to be a function of the ordering in 
the material, that is the entropy, and the strain energy density. In the transition process we 
would expect a decrease in the ordering upon failure, that is an increase in the disorder and 
in the entropy, while the strain energy density (i.e. the recoverable or reversible energy) 
should decrease. (Here, of course, the measure of strain is relative to the two distinctly 
different natural states of the material in question, while the difference in the ordering in 
these two states is measured by the change in the entropy.) Therefore we let 

with L the internal energy change associated with the specific process taking place in the 
material; where L is used to emphasize the fact that the quantity [ u n  is characteristic of 
the process for the material and hence a material property. We note that, because of the 
definition of [ u  1 = u( ' )  - u(*), we expect the change in u across Z due to disordering of 
the material to be negative, while the part of the change due to the strain energy positive. 
Thus the total change, being the sum of these, may in principle be positive or negative. We 
will show, however, that for a spontaneous process to occur along with rapid growth of the 
transition zone, then it is generally necessary that L be positive. In particular, if the spatial 
heat flux jump across Z is neglected (i.e. if the change in the thermal gradient and possible 
changes in the thermal coefficient across Z are neglected as small compared with the other 
effects), then L must always be positive. In general, for failure processes we expect terms 
like [[ V k t k  1 in (23) to be much larger in magnitude than the term [ [4knk  1, and this size 
ordering also leads to the requirement that L be positive for non-zero growth rate of a 
spontaneous failure zone. A requirement that L be positive simply means that the change in 
the strain energy must generally be larger in magnitude than that part of the internal energy 
change due solely to disordering. This requires relatively high (nonhydrostatic) strain energy 
for such a process to occur. 

To show that these statements follow from the condition (23), we can rewrite it as 

where we consider the case in which the denominator is non-zero, of course. Here we have 
suppressed the superscript on the density, p( ' ) ,  and simply written p to denote this quantity. 
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Dynamics in prestressed media with moving phase boundaries 75 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Using (2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) in this equation, after expanding both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI[ Vk tk and I[ Vk Vk 1, we have the results 

Using (21) again, in either of the expressions for U R  in (26),  to eliminate terms in I[ Vk 1, 
we get 

~ 4 ~ n ~ n ~ + 2 ~ 1 1 t ~ t ~ n  0. (28) 

When this condition is not met, then U R  has complex (or imaginary) roots and this means 
that initiation and growth of the transition process cannot occur. 

When the stresses, and hence the tractions, drop upon fdure ,  then [ t k t k  > 0, and the 
scalar terms involving the jumps on Z are all positive. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis case we must have 

L - ( u s k n k n Z ) / ( a t k t k n )  0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(28a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As was already noted, for a failure process we expect the heat flux term to be much smaller 
than the traction term so that, for all practical purposes, we must have 

L > O  

If we neglect the heat flux term completely on the grounds of its relative size for a rapid 
spontaneous process, then (27) gives 

UR = [6tktkn/(2PzL)] ”’- (29) 

Alternatively, under these circumstances 

L - u t k t k n m Z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui 1. 

We note that rapid growth of a tectonic failure zone involves UR = 3 x lo5 cm/s and 
traction jumps at the front of the failure boundary which appear to be of the order of 
108-109dyne/cmZ (e.g. Archambeau 1977). This implies that the internal energy change 
L is in the range from lo4 to lo6 erglg. 

We can also express L in terms of the particle velocity and traction changes across Z when 
we neglect the heat flux term. That is, eliminating 17;: from (30), using (21),  gives 

The ratio of the quadratics in traction in (31) will be near unity when the hydrostatic 
stress is maintained after failure (i.e. small specific volume change and density change) and 
when the deviatoric stresses nearly vanish upon failure - that is when there is nearly a 
complete loss of shear strength upon failure. It is quite possible that this situation would 
prevail for many, if not most, earthquakes. If this is the case then 

L = % w k n  6 v k l  (3 1 4 
With L in the range 104-106 erg/g then this implies a magnitude of from 1 to 10 m/s for 
particle velocity jumps across the failure surface and conversely. 
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76 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
relation (23) or (25) may be expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. B. Archambeau and J. B. Minster 

If the heat flux term can be neglected, that is if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI [ [ q k n k  I] I < I I[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  tk I] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, then the energy 

UR = - [ o[ Vktkll /b(L + ‘/L I[ Vk VkI])I . 

If we use the expression (31) for L in this, then we find that this expression of energy 
conservation can be put in the form: 

c o u R  mn - u t k m k n  = 0. 

In view of the relation (21) for U R ,  we see that this equation is satisfied when momentum 
is conserved. 

Therefore this shows that if [ [qknk  I]. [[ Vk tk 1, then conservation of energy is insured 
when equation (31) (or (31a)) is satisfied along with momentum conservation - which is 
expressed by equation (21). Consequently, the equations for failure zone growth seem to be 
well approximated by the relations 

If we treat L as a material property, then the second of these relations can be viewed as a 
condition for failure growth - that is when the particle velocities and tractions across the 
failure boundary are such that this relation is satisfied for a value of L appropriate to a 
specific failure mode of the material, then growth may occur; with the rate of growth then 
given by the first relation in (32). In at least some instances of rapid failure the shear 
tractions would be very small within the failure zone, and then, as previously noted, the 
second relation reduces to L = M [[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVk 1 [[ Vk I]. 

Thus we may view the second relation in (32) as a dynamic failure condition and the first 
relation as an equation for UR, the dynamic growth rate. 

The dependence of the rupture growth rate - or rupture velocity UR -on  the 
rheological properties of the material can be inferred from the first relation in (32) if we 
specify appropriate constitutive relations for the material in its two states, before and after 
failure has taken place. For example, a linear constitutive relation that could in many 
circumstances describe the local behaviour of the material after failure has the form* (e.g. 
Fung 1965) 

where the term involving the sum over a arises from relaxation processes within the material, 
of which there may be N types each denoted by an index a. Here Cia is a relaxation 
frequency (reciprocal relaxation time), and the object D!Ti1 is a time independent relaxation 
modulus (or ‘relaxation strength’) tensor. 

Relaxation terms can be shown to result from a variety of processes, including the move- 
ment of interstitial atoms, and vacancies, twining, chemical reactions, crystalline thermal 

*The more general case of a nonlinear rheology and finite strain for the material within the failure zone 
can also be addressed of course. However, we view the process of failure as a sudden (nonlinear) change in 
material properties, with the material afterwards having some new rheology such as that given by (33).  
The important characteristics of the process is the local sudden change in physical properties and the 
effective elastic characteristic of the material following this process since these properties will determine 
the stress relaxation and energy radiated by the stressed medium surrounding this failure zone, as is shown 
in the following sections. 

. 
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Dynamics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 

currents and dislocation motion. Descriptions of typical physical processes of this type for 
solids and liquids are given, for example, by De Groot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mazur (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA969) and Mason (1  966). 

The second term in (33) is a linear elastic term, while the last term is a simple linear 
viscous term. 

The strain ekl is defined as an infinitesimal strain measured from the completely relaxed 
state* of the material after transition. Thus, in the infinitesimal strain approximation which 
we will adopt for the material after transition 

where u f )  is a displacement from the relaxed reference state. 
A similar constitutive relation holds for the material outside the failure zone or for the 

material before failure. However, the relaxed state of this material is different from that for 
the failed material, so that the infinitesimal strain is defined as 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu f )  the displacement measured relative to the relaxed state of the unfailed material. 
Further, while the form of the constitutive relation may be the same for the material 

in the two states, the moduli D$$, c i jk ,  and would be very different. For the unfailed 
material we can, in the present context at least, neglect the anelastic moduli DFir and 
viscous term Ci;.kl relative to the linear elastic term c i j k ,  for the unfailed material. Thus for 
the region outside the failure zone we may use a constitutive relation of the form 

?j  = Cijklekl (3 6) 

with ekl defined by (35). In any case, however, (33) can be used to represent the form of the 
constitutive equation in both the failed and unfailed material, with the coefficients and 
strains taking on different values in the two zones. 

We can write (33) in the compact operational form 

(37) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT.. = M.. e 
i ]  ilk1 kl  

where Mijk, is the integral operator 

dt’exp [-np(t - t’)] [(I - 6 1 p ) ( l  - 6 , p ) + 6 , p 6 ( t  - t’) 

+ 6 z p 6 1 ( t  - 0 1  (38) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

with 6,p denoting the Kronecker delta, while 6 ( t  - t’) is a Dirac delta function and 
6 , ( t  - t ’ )  its derivative. Here rnfiI is a time independent modulus tensor, equal to the 
elastic and viscous tensors for 0 = 1 ,  2 and equal to the set of relaxation moduli tensors 
for 0 = 3 , 4 . .  .. We can also write (38) as 

where I p  is the time-dependent integral operator in (38). 

By relaxed state we mean the equilibrium configuration taken by a piece of the material removed from 
the surrounding medium, so that it is free from external forces and surface tractions. 
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78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. B. Archambeau and J. B. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Now the momentum condition in (32) can be written as 

Without undue loss of generality, we will consider the isotropic case. This gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= APai]alk &@il6 jk  ’ a i k 6 j i )  

for the modulus tensor. 
If we now define a signal velocity CS to be associated with the rate at which changes in 

the displacement fields are propagated, in the sense that displacements are causal with 
respect to such a velocity, then 

u(4E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk U k  (n) (7) (41) 

id;) 

where n = 1,2 for the two material states, and 7 = t - r/Cswith r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ j x j ) ” ~ .  Then we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-ii:--- 1 (Xi) - a$) 
ax, cs r 

Since we can use the infinitesimal strain approximation for the material in its initial 
(unfailed) and final (failed) states, then the reduced time derivative of uk is also the particle 
velocity. Thus 

Using (42) in the momentum condition yields 

for the isotropic case. R e  magnitude of UR is thus directly proportional to the changes in 
the material moduli upon failure. 

For example, suppose the material has the properties of a perfect fluid after transition. 
If the jump in the normal component of velocity across the transition boundary is small 
compared with the jump in the tangential components of the velocity (i.e. small changes in 
density and compressibility) then we have as an approximation to the maximum magnitude 
of UR 

considering the failure process to be driven by a shear wave, so that Cs = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVs with 
Vs = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa the shear velocity in the medium before failure and since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1 = 0 for an ideal fluid, 
then : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IURI- VS* 
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Dynamics in prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA79 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In conclusion then, it is evident that the form of (43) indicates a dependence of the 

failure rate on the transition process in terms of the changes in material moduli. In general 
we see that consideration of an expression like (40) is required in order to obtain a precise 
estimate of the magnitude and space-time dependence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Nevertheless, simplified 
expressions such as (43) and approximate results, such as that for the ideal fluid transition, 
are quite useful and can provide a basis for interpretation of observed failure rates. 

4 Linearization of the coupled conservation equations 

We will now focus our attention on the medium outside the failure zone and express the 
conservation relations in this region in linearized form, using the usual approximation of 
infinitesimal strain for this region. This will give linear equations of motion for this part of 
the medium when we take the material to be elastic and specify the rheology according 

We note that we can also describe the dynamical behaviour of the medium within the 
failure zone itself after failure using linear theory, if we adopt (33) as an adequate descrip- 
tion of the rheology. In this case we would simply repeat the arguments leading to linearized 
equations and obtain an integral Green’s function solution in a manner analogous to that for 
the region outside the failure zone. The two integral representations of the medium response 
would then be connected by the boundary conditions on the failure surface - as given by 
the equations (32) in the previous section. In this development, however, we will only 
consider the exterior region. This does not result in any loss of generality in the analytical 
description of the radiation field since the dynamical behaviour of the interior medium 
manifests itself directly in the boundary conditions for the exterior problem, and these can 
be treated in a formal manner with the tractions and the particle velocity of the interior 
zone material at the failure boundary being left completely arbitrary. The resulting general 
integral representation for the exterior radiation field can then be evaluated for particular 
cases when the rheological properties of the material after transition are independently 
specified. Then the resulting dynamical variation of the boundary surface tractions and the 
particle velocity are determined by either solving for the interior deformation fields using 
the Green’s function representation or by choosing a simple, yet adequate, rheological 
description for which the dynamical behaviour in the interior is known with sufficient 
accuracy a priori. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of the latter would be the assumption of melting and the 
production of an essentially inviscid fluid, so that the shear tractions in the interior would 
vanish and the particle velocity would only reflect any accompanying density change. 

To treat the exterior region we first observe that, in the present context, it may be 
viewed as containing an elastic material. In this case the energy equations are trivially 
satisfied in the medium away from the failure boundary if we neglect heat transport and 
transport terms in the energy equation. On the failure boundary, however, energy is 
absorbed by the failure process and energy conservation is expressed, approximately, by the 
second relation in (32). 

The linearized equations of motion for the exterior medium can be written in the form 

to (34). 

where ui is the elastic displacement, and both the density p and the elastic tensor Cijk, 
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80 C. B. Archambeau and J. B. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are treated as functions of the spatial coordinates alone*. In obtaining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(43) we have used 
symmetry relations (e.g. Landau zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Lifschitz 1965) 

c i j k 1  = C j i k l  = C i j I k  = C k l i j  

Because of the form of (44), we can write these linearized equations of motion in the 
same four-dimensional form as was used to express all the conservation relations earlier. 
Specifically, we define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan ‘elastic-intertial tensor’ as 

with the Greek indices ranging from 1 to 4. If we also define the spacelike fields 

1 ua = ( U l r  u2, U3Y 0) 

f a  (b l ,  b2, b3,O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7ap.p = Pfa 

then (44) can be written in the form 

Tap = capy6 uy,6 

(47) 

(48) 

Alternately, in a form convenient for a solution for the displacement field u y ,  the equations 
of motion may be expressed in the operator form: 

La+?, = Pfa 

where the ‘elastic operator’ is given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby? 

(49) 

The boundary conditions can also be expressed in terms of the elastic-inertial tensor 
defined in (45) and the spacelike displacement field u y  if we define a four dimensional 
space-time ‘normal’ as 

7)a = (nl,  nz, n3r - u* - f i )  (51) 

with 

(I:=&& 

In what follows, we use the common notation 

for partial derivatives. 

t Kupradze (1963) defines the ‘elastic operator’ in an analogous fashion in the frequency domain. 
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Dynamics in prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where ni is the regular spacelike normal to any spatial surface in the medium, in particular 
the surface C, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  = UR is the projection of the spacelike relative velocity vector for 
the surface Z along the normal to the surface. Now we observe that in view of the properties 
of the elastic-inertial tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(“rapPpnZ = UColprsu,,6vpn~ = - IICklmnum,nnl+ ~ u k , ~ u ; C n ~ h  

or 
* 

I I T ~ ~ ~ ~ I I ~  = U(PW - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATkr)nrnz 

but the right side expresses conservation of momentum on C, as is verified from (16), and 
vanishes. Thus we have that 

U~,pvpIlz = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall 01 and 0. 

four vector form, as 
Thus the linearized equations for the exterior region are most naturally expressed in a 

with the inertial-stress tensor T,@ given by (48) and where the elastic operator L,, is 
defined by (50). In the following we will linearize the boundary condition in (52) to the 
extent that we will use U, instead of U;C, which amounts to the neglect of V, compared 
with U,, as is justified for failure processes. 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGreen’s tensor equations for the radiation field in the elastic zone: elastodynamic 
representation theorems 

The differential operator L,, applies to space-like tensors (i.e. tensors without time-like 
components) with the property, 

w,p ... A=w,p . . . A  (1 - & l 4 ) - - - ( 1  4 A 4 ) .  

The contraction L,, wap . . . A  is another space-like tensor. The operator has been defined in 
a four dimensional space-time, and it is useful to consider an arbitrary four volume 52 in 
this space over which an inner product of space-like tensors is defined. Thus, given two 
space-like tensors g, , . . A and hp . . . ,, , we define an inner product in S l  by 

Here (g, . . . A ,  g, . . . h )  is positive and vanishes only when g, . . . = 0. Let &(x, x’) denote 
a two-point tensor, a function of the independent coordinates x and x‘ in 52, then we define 
the inner products* 

* 

(Cp,, ua)$ = 1 cp, ( x ,  x’)u, (X’)d4X’ 
Jsl  

*We will use, as a notational convenience, both superscript and subscript indices for the tensors appearing 
here. However, all tensors are Cartesian and there is no distinction between covariant or contravariant 
tensors. 
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a2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which give a vector function of x in the first case or a vector function of x’ in the second. 
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACE is symmetric in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx’, then the two inner product forms are entirely equivalent. 

The Green’s functions associated with the operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALa, are two point tensors that are of 
special importance in the present development. In particular, we define the two point 
Green’s tensor associated with L,, to ge given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. B. Archambeau and J. B. Minster 

LayGpy(x,xo) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A%, xo) (53) 

where the space-like tensor C{ is a fundamental solution of the operator La,  with a pole at 
xo; with the space-like tensor A: defined to be the generalized delta function 

Ag = 4n6,p(l - 6,4) (1 - 6 p 4 ) 6 ( ~  - XO) 

Here 6(x - xo) is the (four-dimensional) Dirac delta distribution. Clearly C$ defined by 
(53) will have a singularity at x = xo due to the presence of the Dirac delta distribution and 
therefore will satisfy (53) in a distributional sense (see, e.g. Stakgold 1968). In the present 
context G$(x,xo) can be viewed as the y component of the displacement field in the con- 
tinuum at x due to an impulsive force in the 0 direction located at x,,. Consequently xo can 
be thought of as the source point and x as the receiver or observer point. 

With these definitions of the inner product in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 for space-like tensors we can generate 
integral equations that are equivalent to the differential equations and associated boundary 
conditions which specify the displacement field u, in a continuum. To do so we will make 
use of the special properties of the Green’s function. 

In particular, the Green’s theorem in s1 is obtained by considering the inner product 

( L w , v ) ~  u,L , ,w,~~x  5, (54) 

where the operator L is simply the matrix operator with components given in (49), while 
w and v are fields satisfying either of the operator equations (48) or (53) and hence may be 
single or two point space-like tensors of first or second order. 

Now using the representation of the components of L given in (49) we have 

A result similar to the ordinary Green’s theorem is obtained by first observing that the 
integrand can be expressed in terms of an identity as: 

u a ( c ~ P ~ 6  Wr,6),p = (UaCaprs Wy,G),p - ua,pCapr6 w ~ , 6 .  

However the final term can be rewritten by using the symmetry properties of Cap,&, so that 

-Ua,pCapyG w y , 6  = wa(cap-y6 U y , 6 ) , p  - (wacap76 V r , s ) , p .  

Using these results in (55) we get 
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Dynamics in prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We can now define a formal adjoint operator L*, where 

are the matrix elements of L* and further define the bilinear concomitant Jp of w and v 
where 

J p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= UaCCYpyG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWy,6 - WaCaP76 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU7,G (58) 

in order to write (56) in the form 

P 

(L  w, v): = (w,  L*v)& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt J Jp,pd4x. 
51 

(59) 

This is the generalized Green's theorem for the operator L in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASZ. 

L* G L  

and hence that L is formally self adjoint. 
In deriving (59) we have considered the operation of L on fields specified at x and have 

formed inner products on SZ with respect to the coordinates x. We may form inner products 
with respect to fields specified at the Coordinates xo, which in the case of two point tensor 
fields, such as Cc(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXO), means integrating over the 'source coord inates '~~ rather than the 
'observer coordinates' x. In formal terms we may generate a completely parallel result to 
(59). Consider the operator L(') defined by 

We observe from comparison of (57) with (49) that 

in component form. Now 

is just the operation of L on u at xo. Here of course uy is expressed as a function of the 
coordinates xg- In case the operand is a two point tensor C$ 

Clearly we can now form the inner product 

(L(')w, v ) z  = u a L ~ ~ w , d 4 x 0 .  

By exactly the same formal manipulations used to obtain the previous result, we have the 
complementary Green's theorem in 52 for L(O) 

(L(')w, v): = (w, L(')*v)Z t / 5 1 4 i d 4 x 0  

where L(O)* is the adjoint of L(') and where 

L(')* L(0) 
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84 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(O) is formally self adjoint, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas is obvious since L was self adjoint. Here also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ f )  is 
formally identical with Jp, with the coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxp replaced by the coordinates xj.  

If w and v are one-point tensor fields then (59) and (62) are clearly identical results. 
However if one or both of w and v are two point tensor fields of x and xo, then (59) yields 
relations between function of xo while (52) yields relations involving functions of x which 
may be different. 

The integral relations obtained take a physical meaning when the fields v and w are 
specified. In particular we will take w to be the displacement field u satisfying the equations 
of motion and boundary conditions for the region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi2 surrounding a closed failure region. In 
this region we take the failure zone to have a volume V, with a closed boundary surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
while the remaining spatial volume is denoted by V, with an external boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, as shown 
on Fig. 2. Thus the boundary of V,  is C @ S while the boundary of Vz is C. The space-time 
volume !2 is the four volume occupied by the medium external to C as shown in Fig. 2. The 
external boundary of !2 is generated by parallel displacement of S in the direction of the 
x4 (time) axis, since S does not change with time. The internal boundary of i2, however, has 
generators that are not parallel to the x4 axis, reflecting the growth of the failure volume 
with time. 

In addition to the space-like boundary conditions expressed by the boundary conditions 
in (52), which apply on the spatial boundary C, there may be conditions on the fields that 
apply on the time-like boundary of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. These may be connected with the space-like 
conditions in (52) in that they may result from the change in C as a function of time, and 
in any case the conditions along the time-like surface of would correspond to ‘generalized 
initial conditions’. These general time-like conditions are in fact already contained in the 
boundary conditions (52) provided we recognize that C is a function of time and that the 
fields may be discontinuous in time as well as in space. We will later show how the time- 
like discontinuous behaviour gives rise to relaxation phenomena that account for the stress 
wave radiation accompanying the growth of the failure zone in an initially stressed medium. 

C. B. Archambeau and J. B. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. Geometry of the four volume f2 with x i  and X k  spatial coordinates, x ,  the time coordinate. 
A spatial section through the fourdimensional volume f2 at time f I is the ordinary spatial volume V ,  ( r l ) ,  
external to the failure region. 
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Dynamics in prestressed media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To complete the description of the physical problem we consider the impulse response 

of the medium to a simple delta ‘function’ point source. This response is of course provided 
by the Green’s function appearing in equation (53), the role of Green’s integral’theorem 
being simply to provide the means of superposing or adding together weighted Green’s 
functions in such a way as to represent the complex source we are dealing with. 

Therefore we will take the field v appearing in the Green’s theorem formulae (59) and 
(62) to be the two point tensor field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(x, xo). We shall require that causality is satisfied, 
that is (e.g. Morse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Feshbach 1953) 

and hence that 

In addition to the differential operator equation and the causality condition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACt is only 
fully determined by specification of boundary conditions to be fulfilled and the choice of 
boundary conditions appropriate for G$ depends upon the physical problem to be solved. 
In the present case, the problem is represented by the operator equations: 

The second equation simply represents the boundary conditions in (52) in compact 
operational form. In particular B is a matrix operator with components 

so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABayuy = 7,0770. Further, on Z, b, is the four vector equal to the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7orp77p 

arising from the action of the material within the failure zone enclosed by Z, which we may 
take as independently specified. For a physical system governed by operator equations of 
this form, then G = (Cc) is taken to satisfy the homogeneous system (e.g. Stakgold 1968) 

I L G = &  xecl 

B G = O ;  xeaR 

with L and B being identical operators in (65) and (66). We note that the Green’s theorems 
expressed by (59) and (62) involve the adjoint operators L* and L(’)*. Consequently we also 
define a system adjoint to (66) as 

I L*G* = A; xeR 

B*G*=O;  xeaR 

where C* is defined as the adjoint Green’s function, L* the operator adjoint to L and 
B*G* = 0 as adjoint boundary conditions defined to be such that 

(LG, G*)X, = ( C ,  L*G*)X, (68) 

Referring to the results (59)-(62) we observe, for the system represented by the differential 
operator and boundary conditions of (65) and the associated systems (66) and (67), that 
B* is determined by the condition that the bilinear concomitant of G and G* vanish. 
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86 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArchambeau and J. B. Minster 

Noting that 

L,,CP,(x; xo)=Ag(x; XO) 

L,*,Cp,’(x; xl) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A!(x; X I )  

with xo and x1 arbitrary source points in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and inserting these expressions in the integral 
relationship (68) involving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG and G*,  we have, using the properties of the delta functions 

1 G!y(xo; x) = CP,(x; xo) 

cP,*(x; x0) = cP,(xo; x j  

which is the reciprocity relation. Thus, from (64) and (69) it follows that the causal Green’s 
tensor C$ has the adjoint given by 

Now consider the operator L(O), defined to act on the source coordinates xo. Clearly, 
interchanging the roles of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and xo in (66) gives 

LL.C!(xo; x) = Ag(xo; x) = AE(x; xo) 

BL?G$(xo; x) = 0. 

By the reciprocity relation (69), then 

t LyCr (x ;  xo) = AE(x; XO) 

B,, Cpr* (x; xo) = 0 

Similarly, 

Liq*G$(x; xo) = A$(x; xo) 

BLY*GC(x; xo) = 0 

1 

Now returning to the Green’s theorem expressed by (62), where the integration is over 
the source Coordinates xo, and using G for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv and u for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, we have 

(L(’)U, G ) 2  = (u, L ( O ) * G ) ~  + Jf$p(u, G)d4x0 J, 

and where 

From the equations for ua in (65) we have 

(L(O)U, G)X,O = J’npf,Ggd4xo 

(73) 
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Dynamics in prestressed media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA87 

and from (72) we have that 

Liy*GM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 ,  

so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(u, L@)*C)? = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, a”,x; xo)u,(xo)d4xo 

0, i f x g S l  = I  4nu,(x), if xESl. 

Therefore the Green’s theorem in (73) yields 

4nu,(x) = ~ ( x ~ ) f ~ ( x ~ ) ~ t ( x ;  xo)d4x0 1, 

Now formal application of the divergence theorem to the second integral on the right 
gives, with the normal to the boundary of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: 

a 
-o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Gg~,p - u,Y{p] d x - [GErap - ~ , Y g p ]  Npd3x0 I, axp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO -  I, (77) 

The integral over the boundary a i l  however takes a special form because some of the 
fields, namely u, and G z ,  are purely space-like, while both 7,p and CEp have, by con- 
struction, time-like components. Hence, we can give more explicit form to the ‘surface’ 
integral in (77) by applying the divergence theorem to the expanded form of the integrand, 
where 7,p and Yip are written out in terms of the purely space-like fields used in their 
construction. From the definitions of rap andYEp we have 

where the Latin indices take only the values 1, 2, 3. Regrouping the terms and noting that 
the ordinary elastic stress is -7kI and similarly that -gp, is the elastic stress associated with 
the displacement Gp , we have 

Now we observe that the first integral involves a purely spatial divergence of a space-like 
field, while the second integral involves the purely time-like part of the (four-dimensional) 
divergence of a spatial field. Thus we integrate over only spatial coordinates in the first and 
over the time coordinate in the second, in the latter case observing that Sl is an explicit 
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88 

function of time since the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is expanding. In particular, taking the initiation of the 
process resulting in a dynamic field to begin at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxs  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo = 0 and noting that Cp is causal, so 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGF = 0 when xs  > x4,  then 

C. B. Archambeau and J. B. Minster 

by an ordinary application of the divergence theorem. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaul  is the boundary of the 
spatial volume u1 at time I, and nl is the normal to this spatial boundary, as shown in Fig. 2.  
Also, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt+ denotes t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, with E > 0 and infinitesimal. Here t+ is used instead of c alone in order 
to avoid any (distributional) singularity of the Green’s function at the integral limit. Further, 
we have replaced xs and x4 by the equivalents to and c. 

The second integral in (78) demands special care in performing the integration over the 
time coordinate xs since u1 is an explicit function of time, so that the integration over the 
spatial coordinates is to be performed before that over the time coordinate. Further, the 
resulting integrand for the time integration need not be continuous, as was noted earlier. The 
integral in question is 

where we let duo = dxydx:dx: denote the purely spatial volume element. Now we observe 
that, for a spatial integral of a function F of the medium deformation or flow, evaluated 
over a volume u1 with ul a function of time to 

which follows from the transport theorem of equation (3). Here the surface integral is due 
to movement of the boundary aul with velocity U. This form is valid no matter what the 
value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, that is whether the boundary of u1 moves with the material or not. Hence it is 
immediately applicable to the integral being considered, where we may regard the integrand 
in brackets as corresponding to F, so that 

where the first term on the right-hand side must be considered as a Stieljes integral 
(Archambeau 1972; Minster 1973). 

In the theory of elastic continua and in linear continuum theory the second integral in 
(80) is neglected since the boundary movement is with the particle velocity and the integral 
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Dynamics in prestressed media with moving phase boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA89 

term is small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a second-order effect due to transport which is negligible for solids. However, 
when the boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis not simply a material boundary and may in fact move with a normal 
velocity U . ri much larger than the particle velocity, then this term cannot be neglected 
since it may, in fact, be as large as the traction term at the boundary. We are dealing with 
precisely the case in which U may be large along that part of the boundary of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 correspond- 
ing to Z and so the term will be retained for integration over the ‘phase transition’ boundary 
Z. It can, however, be neglected on other boundaries corresponding to regular boundaries 
or external boundaries of the medium, since there V,nl  has the value of the particle velocity. 
For consistency with previous neglect of second order terms we are in fact forced to neglect 
material boundary position variations for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, in (80) is equal to the particle velocity. 
In expressing (80), however, we will retain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau, for the surface integral limit, but consider 
V, to be zero on material boundaries, which in effect neglects this transport integral term for 
boundaries other than Z. In addition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is of course a spatial function so that its value may 
be negligible on parts of the surface Z as well. Indeed, for spontaneous failure processes we 
would expect it to be of the order of the particle velocity over much of the failure surface 
except near the expanding ‘edges’ of the failure zone, which usually has a elongated shape. 
The magnitude of U on Z is of course determined by the jump conditions in (32), so that U 
is not arbitrary but determined by the radiation field itself. The shape of the failure 
boundary is thus determined by the spatial variation of U, so that some parts of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX may move 
rapidly while other sections may simply move with the particles as a simple material 
boundary. 

Now substituting (79) and (80) into (78) yields 

L at0 ato J 

From previous definitions of ~~p and Ygp and from the definition of the elastic-inertial 
tensor we have 

However, as previously noted, we must neglect terms involving products of the particle 
velocities in comparison with traction terms or terms involving products of the particle 
velocity and U,nl.  Therefore we can replace f$ appearing in these identities by V, alone. 
Thus in this linearized theory we use 
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and observe that these factors appear in (81). Further, we observe that, from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(74) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. B. Archambeau and J. B. Minster 

Using these identities in the integrals in (81), we get 

Thus the basic representation theorem for u7 (X) ,  expressed by equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(76), is 

Here 

J# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGg~,p - u,Sgp 

and 

r l p  = (n l ,  n2, n3, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA). 

Written out explicitly in three-dimensional spatial components, this result takes the form 

Here p and c j j k l  are functions of the spatial coordinates x: alone. 

6 Approximate radiation field solutions for growing failure zones 

The fields u7 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG t  satisfy the boundary conditions 

or, equivalently 

where the superscripts (1) and (2) refer to the quantities evaluated by limits on the surface 
approached from the inside or from the outside of Cl, respectively. Thus the result in (84) 
reduces to 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT:? ‘prescribed’ on the boundary of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul. The reduction of (84) to (87) is a consequence 
of the choice of the Green’s function, which eliminates the integral involving the unknown 
displacement field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, on the boundary of ul, as well as from the fact that the ‘generalized 
tractions’ 7,pqp appear explicitly in the boundary integral over au1 so that the ‘jump 
condition’ [ I ~ , p q p ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 can be used to introduce the action of the material external to u1 
at the boundary of u l .  

It is clear, however, that determination of the Green’s function satisfying the boundary 
conditions in (86) is at best difficult and quite impractical for applications in view of the 
necessity of satisfying boundary conditions on the growing failure boundary as well as on 
the material boundaries of the medium. We can, instead, introduce a Green’s function 
rt defined on a space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52’ that includes the problem space 52, i.e. 52 C 52’. In particular we 
can take 52’ to be the space bounded by the same external boundaries as 52 but without the 
internal boundary created by the failure zone. Then rt is given by 

where Lap is defined throughout a’ as if the whole medium were in its initial, unfailed state. 
The Green’s function defined by (88) has the same properties as GE and is also such that 
inner products over the subregion 52 of 52‘ can be defined. Thus the Green’s representation 
of (84) is reproduced, with Gg replaced by I‘g. However the price paid for the presence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
the simpler Green’s function is that (84) cannot be reduced to the simple form of the 
solution given in (87). In particular, we get, from (84) and (88) 

where aulG au‘, is the difference between the spatial boundaries of 52 and 52’. With 52’ 
defined as above, this is just the failure surface Z. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7% is the ‘generalized’ Green’s stress 
tensor’ associated with rg, that is 

and J t  is obtained from 

Jg  = rE7,p - u,y’”,p. 

Thus we get an extra integral in (89) involving u, on the failure boundary Z. Clearly this 
term arises from the fact that we have in effect relaxed the boundary conditions required 
for the Green’s function. 

The natural boundary conditions on Z do not involve u, directly, but instead specify 
conditions relating space and time derivatives of u, across Z, i.e. I[T,p7)paz = 0. Hence 
u, on Z is unknown and (95) is an integral equation for u,(x) rather than a solution. 

Note that instead of the Green’s function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI‘?, we can use the infinite space Green’s 
function r$. The latter affords a relatively simple closed form expression (e.g. Maruyama 
1963). In that case, however, the boundary integral over aul 0 au‘, in the representation 
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theorem (89) extends over all boundaries of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul, including exterior boundaries as well as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX .  

In addition, we must consider the process to occur in an isotropic and homogeneous space 
f ran  the onset. This is quite an acceptable assumption, to first order at least, in the vicinity 
of the failure zone. 

Successive approximations to the solution of (89) can be obtained by iteration. In this 
particular case we take the first iterate, u:(x), to be the final term in (89), the 'relaxation', 
or 'initial value' term. Hence, using the infinite space Green's function we define 

C. B. Archambeau and J. B. Minster 

A correction to this term, which yields the next iterate u:'(x) is defined by 

where the integration is only over the failure surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ. (Generally the volume integral over 
the body force density f, is neglected as being small and is not included.) In the past we 
have referred to u'(x) as the 'transparent source approximation to the direct source field', 
since it neglects the scattering at the failure boundary. The field u"(x) will simply be 
referred to as the 'approximate direct source field'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

By adding a general eigenfunction expansion with adjustable coefficients, which is regular 
everywhere in the domain (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa'); one can then satisfy boundary conditions on the other 
boundaries. For example, for a problem involving failure in the Earth, we could use a layered 
spherical model, and hence a vector spherical harmonic expansion for each layer zone. One 
could also express the Green's function I'E in (89) as an eigenfunction expansion and use it 
in place of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFz in (90) and (91) to obtain, directly, the approximate source fields in the 
domain a'. 

It is clear that the relaxation or initial value term plays a dominant role in this procedure. 
In fact, we have pointed out that it represents the essentials of the elastic wave radiation 
attributable to the source. Therefore we will consider its expression in more explicit and 
simplified form for spontaneous processes such as failure under a static or quasi-static initial 
stress condition. Related investigations have also been considered by Archambeau (1968, 
1972) and Minster (1 973). 

If we consider the field u'(x) at any particular time t l  we can represent its evolution at 
any later time t in terms of the initial value integral (e.g. Love 1944) 

This expression is the radiation field due to all effects occurring up to time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt l ,  including 
prior rupture growth. It is therefore the radiation that would be observed for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt > t l  if the 
failure zone boundary were fixed for times t > t,. If we now consider the same initial value 
representation of the field at t l  t 6 f l ,  where some additional change in the failure boundary 
has occurred in the time increment 6 t l ,  then the difference in the radiation fields is given by 

uf, (x, t ;  C ]  + st,) - uz, (x, t ;  t i )  = - duo t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(6 t : )  
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where (au:/i3to)lto=t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS t ,  is the incremental initial value, equal to the change in the equi- 
librium field caused by incremental growth of the failure zone, and where we have used the 
fact that accelerations remain finite so that the velocity is continuous. 

Dividing through by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6t l ,  and taking the limit as S t ,  approaches zero gives 

For failure occurring at a finite rate and of total duration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, then the derivative with respect 
to r l  vanishes for t l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 7. Thus integration of (92) yields 

where the constant of integration is fmed by the choice of reference equilibrium state. If 
we chose to measure u, relative to the final equlibrium state after the complete boundary 
has been formed, then 

so that 

u,(x, 0) = u;(x ,  0) - u;(x,  7 ) .  

If we refer the displacements to the initial equilibrium state then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  = 0. In either case 
c(x ,  t )  vanishes for t > 7. This result is formally exact; if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI‘$ or F$ is used, however, source 
boundary scattering is neglected. On the other hand, the equilibrium field changes expressed 
by u:(xo, t o )  account for both the spatial and temporal behaviour of the failure boundary, 
so that the only term neglected, as expressed approximately in (91) represents the dynamic 
interaction of the radiation field and the boundary, that is scattering. We expect this 
scattering to be significant only for wavelengths smaller than the characteristic source 
dimension. This is confirmed by the results of Burridge (1975), Koyama, Hariuchi & 
Hirasawa (1973) and Minster & Suteau (1976). These authors considered expanding 
spherical failure zones in an uniformly prestress infinite space. Scattering by C is shown to 
affect the spectrum only for frequencies greater than the source characteristic frequency 
f, = ~ R / L ,  where L is the maximum source dimension and the average failure rate, and 
the effects are not large. In the time domain, the ‘transparency’ approximation leads to a 
minor shortening of the far-field pulse and el idnation of its small amplitude oscillatory 
coda. 

7 Conclusions and consequences 

Some of the conclusions that we have drawn from the results of the work described are: 
(1) Conservation relations expressed on an expanding material transition surface (or 

failure zone boundary) show that traction and particle velocity jumps across such a 
boundary cannot be specified independently, as has been (implicitly) assumed, for example, 
in dislocation and stress pulse (crack theory).models for failure. In particular, it has been 
shown that the proportionality factor between particle velocity changes and traction changes 
across the failure boundary is pUR, with UR the rupture rate and p the initial material 
density. 
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(2) Introduction of a transition energy function provides a means of characterizing 
failure processes in terms of energy requirements. This function can be determined from 
seismically estimated rupture variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- in particular from the stress drop (on the failure 
boundary) and the rupture velocity. Hence the transition energy (density) function can be 
obtained for natural failure processes and compared to laboratory determined values which 
should lead to a more complete quantitative description and subsequent understanding of 
failure processes in the Earth (see also Husseini et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1975). 

(3) Since rupture rates have been shown to be directly proportional to stress drops on 
the failure boundary and also proportional to the change in the material moduli, i t follows 
that observations of high rupture rates for earthquakes, near the shear velocity of the 
medium, imply near total loss of shear strength and probable melting during failure (see also 
Archambeau 1977). 

(4) The Green’s function solution for the radiation field exterior to the failure zone 
shows that the field depends explicitly on the failure boundary growth rate, whereas 
previous radiation field representations did not contairi any such explicit dependence since 
dynamical boundary conditions were ignored in favour of heuristic kinematical representa- 
tions of boundary growth effects. This suggests that source representations such as those 
generated by displacement dislocations and stress pulse equivalents, that are formulated 
entirely in terms of equivalent applied boundary displacements or equivalent applied 
boundary tractions, must be carefully reconsidered since, at present, they do not account for 
the boundary integral terms involving the surface growth rate (i.e. the surface integral terms 
with integrands involving V, explicitly, as given for example in equation (85)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 5 )  The Green’s function solution shows that an appropriate first-order representation 
of the radiation field is obtained using the ‘initial value’ or ‘relaxation’ term in the Green’s 
integral representation. The radiation field predictions based on this integral representation 
can be directly related to the physical parameters for the failure process (i.e. the transition 
energy and the material rheology moduli before and after failure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as the rupture rate 
and stress level changes) and can be used for the representation of the radiation from 
complex failure phenomena in inhomogeneous media that is also inhomogeneously pre- 
stressed. Since strong prestress inhomogeneities are considered to be present for most if not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all failure processes (especially for earthquakes) and to have a very important effect on the 
character of the radiated elastic wave field, then it follows that the ability to theoretically 
predict the field from such complex sources is critical to the advancement of understanding 
of the mechanics of failure processes, particularly in the Earth. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. B. Archambeau and J. B. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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