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To meet the requirements of different farming objects, this paper presents a novel constraint metamorphic reversible plough
(CMRP) which has four distinct working phases and the feature of underactuation, and its prototype has been manufactured for
practical testing purposes. Firstly, the kinematics of the mechanism in each phase are studied systematically with the closed-loop
vector method, including displacement, velocity, and acceleration analysis. Considering the underactuated characteristics of the
mechanism in the source phase, its dynamic models in the source phase are further established by the Lagrange equation. Based on
the theory that velocity and acceleration are the same in an extremely brief period, the motion laws of the slider in the source phase
can be obtained. To obtain the constraint force/torque acting on the crucial joints in each phase, the dynamic model of the CMRP
is established by the Newton–Euler equation. Furthermore, the initial position of the CMRP with a flexible prismatic joint can be
determined using the static balance equation. Finally, the obtained kinematic and dynamic models of the CMRP in each phase are
verified, respectively, through comparing the simulation results in SolidWorks and Matlab software, and the experiment with the
prototype is conducted. *e CMRP proposed in this study provides a feasible technical scheme for improving the capability of
reversible plough over unknown and complex terrains.

1. Introduction

*e two-way plough can perform two-way tillage, which is
a plough for the tractor ploughing unit to perform one-way
tillage in one round trip, and it can be divided into the
reversible plough [1, 2] and the horizontally reversible
plough [3]. *e rotary plough frames of the reversible
plough are equipped with two sets of plough bodies, and
the two sets of plough bodies are alternately operated in
the round trip by the reversible mechanism; the unidi-
rectional turning is realized while having better tumbling
coverage performance [4]. To date, many scholars have
carried out thorough research into the reversible plough.
Gebresenbet et al. [5] designed and developed a reversible
animal-drawn plough, which is developed on the basis of
laboratory experiments reported earlier to determine
optimum parameters for a curved implement. Moitzi et al.
[6] studied the influence of working width of reversible

plough and T-trailed cultivator on field capacity, fuel
consumption, slip, and specific energy consumption.
Mahmoodi et al. [7] identified a way to use a mathematical
approach for the design of a moldboard plough. Com-
paring the determined guide curve extracted from this
approach with traditional methods revealed that this ap-
proach not only can be a useful tool to design the
moldboard plough with different curvatures but also can
relatively easily determine the guide curve for the mold-
board plough, which is traditionally considered as a very
tedious and time-consuming task. With the rapid devel-
opment of agricultural mechanization, the reversible
plough with changeable structures and mobility is ex-
pected in production to accommodate different operation
environments and meet various task requirements. Several
kinds of mechanisms such as the kinematotropic linkages
[8] and metamorphic mechanisms [9, 10] have been de-
veloped in the past decades.
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Metamorphic mechanisms are a new kind of mecha-
nism originated from the configuration and mobility re-
searches of decorative carton folds. Compared with
traditional mechanisms, metamorphic mechanisms have
the advantages of multifunctional stages, multitopological
structures, and multidegree of freedom [11]. Meanwhile,
according to the functional requirements or changes in the
environment, metamorphic mechanisms can adapt to
different tasks and be flexibly applied to different occasions
by changing its configuration in motion and self-restruc-
turing or reconstruction. It is well known that the con-
straint metamorphic mechanism is a metamorphic
mechanism that constrains movement cycles of meta-
morphic joints and is commonly used in practical opera-
tion, which is easy to control and realize [12]. Li et al. [13]
proposed a method for designing the configuration of
constraint metamorphic mechanisms according to the task
requirements, which include the types of metamorphic
kinematic pairs and the ways of constraints. Xu et al. [14]
designed a metamorphic mechanism cell, which can realize
deploying, self-locking, unlocking, retracting, and inter-
locking with other cells, by incorporating the variable ki-
nematic joints. Ma et al. [15] presented two novel 6R
metamorphic linkages as the spherical-planar meta-
morphic linkage and the Bennett-spherical metamorphic
linkage with each of them having three motion branches.
And they analyzed the reconfiguration of both linkages and
revealed the geometrical constraints for motion branch
transformations.

Above all, the principle of constraint metamorphosis is
applied to the reversible plough, and a novel CMRP is
designed. *e CMRP not only has the characteristics of
controllable, adjustable, and output performance of the
controllable mechanism but also has the characteristics of
multifunctional stages, multitopological structures, and
multidegree of freedom of constraint metamorphic mech-
anism, which makes the CMRP flexibly applied to different
occasions and different working objects.

Kinematic analysis [16] can reflect the kinematic char-
acteristics of mechanisms, so it is very important for the
CMRP. For example, kinematic models are essential for
trajectory planning, computer simulation, and real-time
control. Kinematic models are also the basis of dynamic
models. More importantly, dynamic models contribute to
the dynamic analysis and synthesis and are the basis of high
precision in real control. For example, the analytical results
of a dynamic model can be used for simulations, actuator
selection, mechanical vibration analysis, and dynamic
optimization.

Popular dynamic model methods include the Lagrange
equation [17, 18], the Newton–Euler method [19], the Kane
equation [20], the D’Alembert method [21], and the virtual
work principle [22]. Gan et al. [23] presented a unified
inverse kinematic and dynamic model of a metamorphic
parallel mechanism with pure rotation and pure translation
phases by using the Newton–Euler method. Jin et al. [24, 25]
established dynamic equations of the metamorphic mech-
anism for an arbitrary configuration according to Kane’s
equations. From these literatures, we know that the Lagrange

equation needs to get the kinetic energy and potential energy
of each part of the constraint metamorphic mechanism; the
Newton–Euler method and Kane method involve differ-
ential equation causing the increase of calculated amount;
the D’Alembert method states that the sum of the external
forces, inertia forces, and joint forces is zero; the virtual work
principle is known as the work of a force on a particle along a
virtual displacement. So the appropriate solving method
used in dynamics modeling is quite important. On the
contrary, they are associated with the risk of errors. Selecting
correct methods to improve gross performances and
establishing the basic kinematic and dynamic models are all
essential to design a novel CMRP which can be successfully
used in agriculture.

In this paper, the principle of constraint metamorphosis
is introduced into the design of the reversible plough, and a
novel CMRP is designed. By using the Lagrange equation,
the dynamics in the source phase are analyzed. Based on the
theory that velocity and acceleration is the same in an ex-
tremely brief period, the motion law of the slider in the
source phase can be obtained. Moreover, the dynamic model
of the CMRP in each phase is established by the Newton–
Euler equation. *e dynamic performance of the CMRP
such as the driving forces and the constraint forces/torques
acting on the crucial joints will be analyzed in each phase,
which provides a theoretical foundation for further study.

2. Structure Description and
Kinematic Analysis

2.1. Structure Description. Figure 1 shows the computer
aided design (SolidWorks) model of the CMRP, which is
composed by a frame, a rotary plough frame, a slider, a
compatibility rod, two springs, and two hydraulic cylinders.
In addition, the frame is welded with baffles to limit the
position of the rotary plough frame.

*e schematic diagram of the CMRP is shown in Fig-
ure 2, in which the cylinders 5 and 7 of the two hydraulic
cylinders and the frame 0 are hinged at joints D and E, and
the corresponding cylinder rods 4 and 6 and the compati-
bility rod 2 are hinged at joints B and C, respectively. *e
compatibility rod 2 and the slider 3 are hinged at jointA, and
the slider 3 is connected to the rotary plough frame 1 by two
springs. At this time, the prismatic joint P3 between the
slider 3 and the rotary plough frame 1 can be treated as a
flexible prismatic joint. *e rotary plough frame 1 and the
frame 0 are hinged at joint O, resulting a closed kinematic
chain. *e system drives the rotary plough frame 1 to
perform a 180-degree reciprocating inversion through the
joint action of the two hydraulic cylinders which can realize
the alternate operation of the CMRP in the round trip.

Different from the horizontally reversible plough pro-
posed in reference [26], the CMRP presented in this paper
has four distinct working phases. As shown in Figure 3, the
four distinct working phases of the CMRP can be expressed
as follows.

Configuration 1. As shown in Figure 3(a), the degrees
of freedom (DOFs) of the mechanism in the source
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phase can be obtained using the Grübler–Kutzbach
criterion as follows:

F �m
i�1

fi − d(m − n + 1) � 9 − 3(9 − 8 + 1) � 3, (1)

where F is the DOFs of the mechanism; fi is the DOFs
of the ith kinematic joint; d is the order of the
mechanism, and d � 6 − λ; λ is the public constraints;
m is the number of components including frame; and n
is the number of kinematic joints.

In the source phase, the mechanism can be regarded as an
equivalent eight-bar planar linkage which has six revolute
joints O, A, B, C, D, and E and three prismatic joints P1,

P2, and P3, and the number of actuators of themechanism
is less than the number of DOF; therefore, themechanism
in the source phase is an underactuated mechanism.

Configuration 2. In this configuration, the meta-
morphosis of the mechanism is mainly realized by
geometric constraint offered by the baffle when the
rotary plough frame rotates to the phase in Figure 3(b).
*ere is no relative movement between the rotary
plough frame and the frame. According to the
Grübler–Kutzbach criterion, the DOFs of the mecha-
nism can be obtained as follows:

F �m
i�1

fi − d(m − n + 1) � 8 − 3(8 − 7 + 1) � 2. (2)
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Figure 1: *e computer aided design (SolidWorks) model of the CMRP.
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Figure 2: (a) Composition and (b) schematic diagrams of the CMRP. 0, frame; 1, rotary plough frame; 2, compatibility rod; 3, slider; 4, left
cylinder rod; 5, left hydraulic cylinder; 6, right cylinder rod; 7, right hydraulic cylinder; 8, baffle.
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Now, the mechanism works as an equivalent seven-
bar planar linkage with five revolute joints A, B, C,
D, and E and three prismatic joints P1, P2, and P3,
and two hydraulic cylinders fully actuate the
mechanism. In this working phase, the mechanism
can adapt to soil with a different hardness by
adjusting the deformation of springs; therefore, this
working phase can be denoted with the adjustment
phase.

Configuration 3. When the deformation of springs
reaches a certain position shown in Figure 3(c), the
revolute joints O and A and the prismatic joint P3 can

be, respectively, seen as a fixed joint, and the DOFs of
the mechanism can be obtained using the Grübler-
Kutzbach criterion as follows:

F �m
i�1

fi − d(m − n + 1) � 6 − 3(6 − 5 + 1) � 0. (3)

In this time, the mechanism is in static balance and the
rotary plough frame no longer rotates. In addition, the
system state variables of the mechanism are consistent
with the system state variables at the end of the
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Figure 3: Equivalent mechanisms of the CMRP in different stages: (a) source phase, (b) adjustment phase, (c) normal working phase, and
(d) special phase of equivalent mechanism.

4 Mathematical Problems in Engineering



adjustment phase. *is working phase can be denoted
with the normal working phase.

Configuration 4.*emetamorphosis of the mechanism
is mainly realized by force constraint. When the
mechanism moves to the phase in Figure 3(d), the
rotary plough frame is disturbed by uncertainties such
as stones and exceptionally hard soil, which is un-
avoidable in the process of cultivation. To avoid the
damage of the plough blade, the mechanism will move
in the way in Figure 3(d). And the prismatic joints P1
and P2 can be, respectively, seen as a fixed joint. In
addition, the DOFs of the mechanism can be obtained
using the Grübler-Kutzbach criterion as follows:

F �m
i�1

fi − d(m − n + 1) � 7 − 3(7 − 6 + 1) � 1. (4)

At this time, the rotary plough frame is driven by an
external force, and the mechanism works as an
equivalent six-bar planar linkage with six revolute
joints O, A, B, C, D, and E and a prismatic joint P3. *is
working phase can be denoted with special phase.

In summary, the CMRP has four phases including the
source phase, the adjustment phase, the normal working
phase, and the special phase. *e source phase is a trans-
ferring phase, and the adjustment phase, the normal working
phase, and the special phase can return to the source phase
by releasing the constraints at the revolute joints and
prismatic joints.

2.2. Displacement Analysis. *e kinematic characteristics of
the CMRP in each working phase are analyzed based on the
closed-loop vector method. For convenience of the following
analysis, a coordinate system is established in Figure 2. With
reference frame {O}, O-xy is attached to the frame.

2.2.1. Displacement Analysis of the Source Phase. As shown
in Figure 2, θ1, θ2, θ3, and θ4 are the angle between the rotary
plough frame, the compatibility rod, the cylinders of the two
hydraulic cylinders, and the x-axis, respectively. LOA′, LA′A,
LAB, LBD, LGD, LOG, LGE, LCE, and LAC represent the length of
the line segment corresponding to two points, respectively.
To simplify the annotation, A′ is not shown in Figure 2, and
A′ represents the central position of the slider track.

For the closed-loop kinematic chain OA′ABDGO, the
closed-loop vector equation can be written as follows:

LOA′ cos θ1 − LA′A sin θ1 − LAB cos θ2 − LBD cos θ4 � LGD,

LOA′ sin θ1 + LA′A cos θ1 − LAB sin θ2 − LBD sin θ4 � LOG.


(5)
For the closed-loop kinematic chain OA′ACEGO, the

closed-loop vector equation can be written as follows:

LOA′ cos θ1 − LA′A sin θ1 + LAC cos θ2 − LCE cos θ3 � − LGE,

LOA′ sin θ1 + LA′A cos θ1 + LAC sin θ2 − LCE sin θ3 � LOG.


(6)
θ3, θ4, LBD, and LCE can be obtained according to

equations (5) and (6), respectively, and expressed as

θ3 � arctan
LOA′ sin θ1 + LA′A cos θ1 + LAC sin θ2 − LOG
LOA′ cos θ1 − LA′A sin θ1 + LAC cos θ2 + LGE

 , (7)

θ4 � arctan
LOA′ sin θ1 + LA′A cos θ1 − LAB sin θ2 − LOG
LOA′ cos θ1 − LA′A sin θ1 − LAB cos θ2 − LGD

 , (8)

LBD �

����������������������������������������������������������������������������
LOA′ sin θ1 + LA′A cos θ1 − LAB sin θ2 − LOG( 2 + LOA′ cos θ1 − LA′A sin θ1 − LAB cos θ2 − LGD( 2

, (9)

LCE �

����������������������������������������������������������������������������
LOA′ sin θ1 + LA′A cos θ1 + LAC sin θ2 − LOG( 2 + LOA′ cos θ1 − LA′A sin θ1 + LAC cos θ2 + LGE( 2

. (10)

*e number of actuators of the CMRP is less than the
DOF in the source phase, which is an underactuated
mechanism. For such mechanism, both kinematic analysis
and dynamic analysis must be performed. *is issue will be
explained in detail in Section 3.1.

2.2.2. Displacement Analysis of the Adjustment Phase. As
shown in Figure 3(b), by substituting θ1� 0, θ2� 0, and
LA′A � 0.015 sin(0.25πt) into equations (7)–(10), θ3, θ4, LBD,
and LCE in the adjustment phase can be obtained,
respectively.

2.2.3. Displacement Analysis of the Normal Working Phase.
As shown in Figure 3(c), in the normal working phase,
the two hydraulic cylinders are locked and the springs are
in an equilibrium position, at which time the arable work
can be performed. *e values of θ3, θ4, LBD, and LCE
are the same as the values at the end of the adjustment
phase.

2.2.4. Displacement Analysis of the Special Phase. For the
CMRP, as mentioned above, the two hydraulic cylinders are
not operated during the special phase. *us, the closed-loop
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vector equations in the kinematic diagram, as shown in
Figure 3(d), can be written as follows:

LOA′ cos θ1 + LA′A sin θ1 − LAB cos θ2 − LBD cos θ4 − LGD � 0,

(11)

LOA′ sin θ1 − LA′A cos θ1 − LAB sin θ2 − LBD sin θ4 − LOG � 0,

(12)

LOA′ cos θ1 + LA′A sin θ1 + LAC cos θ2 − LCE cos θ3 − LGE � 0,

(13)

LOA′ sin θ1 − LA′A cos θ1 + LAC sin θ2 − LCE sin θ3 − LOG � 0.

(14)
*e above equations are a set of highly nonlinear

equations. *erefore, it cannot be solved directly and
solved by the Newton–Raphson algorithm [27, 28]. *e
purpose of the Newton–Raphson method is to calculate a
local solution of the forward kinematic problem based on
the iterative procedure and an initial guessing. It is known
to list the matrix equations for solving unknowns’ in-
crements according to the Newton–Raphson algorithm as
follows:

sin θ1 LAB sin θ2 0 LBD sin θ4

− cos θ1 − LAB cos θ2 0 − LBD cos θ4

sin θ1 − LAC sin θ2 LCE sin θ3 0

− cos θ1 LAC cos θ2 − LCE cos θ3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ΔLA′A

Δθ2

Δθ3

Δθ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

− f1

− f2

− f3

− f4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

in which

f1 � − LOA′
_θ1 sin θ1 + LA′A

_θ1 cos θ1,

f2 � LOA′
_θ1 cos θ1 + LA′A

_θ1 sin θ1,

f3 � f1,

f4 � f2.

(16)

A set of initial values L(0)
A′A, θ

(0)
2 , θ

(0)
3 , and θ

(0)
4 are selected,

and the initial values can be approximated by the graphical
method. Substituting these initial values into equations
(11)–(15), the iterative increments (ΔL(0)

A′A, Δθ
(0)
2 , Δθ(0)3 , and

Δθ(0)4 ) and the next iteration variables can be obtained as
follows:

φ(1)j � φ(0)j + Δφ(0)j , (j � 1, . . . , 4), (17)

where φ1, φ2, φ3, and φ4 represent LA′A, θ2, θ3, and θ4 andΔφ(0)1 ,
Δφ(0)2 , Δφ(0)3 , and Δφ(0)4 represent ΔL(0)

A′A, Δθ
(0)
2 , Δθ(0)3 ,

and Δθ(0)4 , respectively.

*us, the displacement functions of the first iteration
f(1)i (i� 1, . . . , 4) can be calculated. Repeat iteratively until
the r times, if

f(r)i

 ≤ εi, i � 1, . . . , 4, (18)

the iterative procedure stops, where εi is the calculation
accuracy set for each function fi.

∆LA′A, ∆θ2, ∆θ3, and ∆θ4 in the matrix can be solved by
the subroutine of the Gaussian principal eliminationmethod
of solving the linear equations. Its iterative block diagram is
shown in Figure 4.

2.3. Velocity Analysis

2.3.1. Velocity Analysis of the Source Phase. Differentiating
equations (5) and (6) with respect to time yields

− LOA′
_θ1 sin θ1 − _LA′A sin θ1 − LA′A

_θ1 cos θ1 + LAB
_θ2 sin θ2 − _LBD cos θ4 + LBD

_θ4 sin θ4 � 0,

LOA′
_θ1 cos θ1 + _LA′A cos θ1 − LA′A

_θ1 sin θ1 − LAB
_θ2 cos θ2 − _LBD sin θ4 − LBD

_θ4 cos θ4 � 0,

⎧⎪⎨⎪⎩ (19)

− LOA′
_θ1 sin θ1 − _LA′A sin θ1 − LA′A

_θ1 cos θ1 − LAC
_θ2 sin θ2 − _LCE cos θ3 + LCE

_θ3 sin θ3 � 0,

LOA′
_θ1 cos θ1 + _LA′A cos θ1 − LA′A

_θ1 sin θ1 + LAC
_θ2 cos θ2 − _LCE sin θ3 − LCE

_θ3 cos θ3 � 0.

⎧⎨⎩ (20)

Equations (19) and (20) can be simplified as follows:
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− LOA′
_θ1 sin θ1 − θ4(  − LA′A _θ1 cos θ1 − θ4(  + LAB _θ2 sin θ2 − θ4(  − _LA′A sin θ1 − θ4(  � _LBD,

− LOA′
_θ1 sin θ1 − θ3(  − LA′A _θ1 cos θ1 − θ3(  − LAC _θ2 sin θ2 − θ3(  − _LA′A sin θ1 − θ3(  � _LCE.

⎧⎪⎨⎪⎩ (21)

Supposing ω1 � _θ1
_θ2 _LA′A T is the velocity vector of

Cartesian coordinates and ν1 � _LBD _LCE T is the velocity
vector of actuated joint coordinates, equation (21) can be
written as the matrix form:

Ja1ω1 � Jb1ν1. (22)

*e velocity equation also can be obtained as follows:

ν1 � J
− 1
b1 Ja1ω1, (23)

where

Ja1 �
− LOA′ sin θ1 − θ4(  − LA′A cos θ1 − θ4(  LAB sin θ2 − θ4(  − sin θ1 − θ4( 
− LOA′ sin θ1 − θ3(  − LA′A cos θ1 − θ3(  − LAC sin θ2 − θ3(  − sin θ1 − θ3(  ,

Jb1 �
1 0

0 1
 .

(24)

2.3.2. Velocity Analysis of the Adjustment Phase. As shown
in Figure 3(b), the vector of Cartesian coordinates can be

expressed as ω2 � _θ2 _LA′A T, and the vector of actuated
joint coordinates can be expressed as ν2 � _LBD _LCE T.
*us, equation (21) can be written as the matrix form:

Ja2ω2� Jb2ν2. (25)

*e velocity equation in the adjustment phase can be
expressed as

ν2 � J
− 1
b2 Ja2ω2, (26)

where

Ja2 �
LAB sin θ2 − θ4(  − sin θ1 − θ4( 
− LAC sin θ2 − θ3(  − sin θ1 − θ3(  ,

Jb2 �
1 0

0 1
 .

(27)

2.3.3. Velocity Analysis of the Normal Working Phase.
When the mechanism changes to the normal working phase,
the two hydraulic cylinders are locked and the springs are in
an equilibrium position, so _θ3,

_θ4, _LBD, and _LCE are all zero.

2.3.4. Velocity Analysis of the Special Phase. Supposing that
the vector of Cartesian coordinates is expressed as ω4 �

Input θ1; 

φj
(0)(j = 1, …, 4); εi

r = 0

f i
(r)(i = 1, …, 4)

f i
(r) ≤  εi?

End

Y

∆φj
(r)(j = 1, …, 4)

r = r + 1

φj
(r) = φj

(r–1) + ∆φj
(r–1)

N

Figure 4: *e block diagram of the Newton–Raphson method.
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_θ2
_θ3

_θ4 _LA′A T and the vector of actuated joint co-
ordinates is expressed as ν4 � [

_θ1]
T. Differentiating equa-

tions (11)–(14) with respect to time yields

Ja4ω4 � Jb4ν4. (28)

*e velocity equations in the special phase can be ob-
tained as

ω4� J
− 1
a4Jb4ν4, (29)

where

Ja4 �

LAB sin θ2 0 LBD sin θ4 sin θ1

− LAB cos θ2 0 − LBD cos θ4 − cos θ1

− LAC sin θ2 LCE sin θ3 0 sin θ1

LAC cos θ2 − LCE cos θ3 0 − cos θ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Jb4 �

− LOA′ sin θ1 + LA′A cos θ1

LOA′ cos θ1 + LA′A sin θ1

− LOA′ sin θ1 + LA′A cos θ1

LOA′ cos θ1 + LA′A sin θ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(30)

2.4. Acceleration Analysis

2.4.1. Acceleration Analysis of the Source Phase. Taking
equations (7) and (8) into equation (23), its time derivative
can be obtained:

a1� Eα1 +H

_θ
2

1

_θ
2

2

_L
2

A′A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + G

_θ1
_θ2

_θ1 _LA′A
_θ2 _LA′A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (31)

where

E�
e11 e12 e13

e21 e22 e23
 ,

H�
h11 h12 h13

h21 h22 h23
 ,

G�
g11 g12 g13

g21 g22 g23
 ,

(32)

where a1� €LBD €LCE T is the acceleration vector of actu-
ated joints and α1 � €θ1

€θ2 €LA′A T is the acceleration

vector of Cartesian coordinates. eij, hij, and gij are the

variables related to the posture of the mechanism (i� 1, 2;
j� 1, 2, 3).

2.4.2. Acceleration Analysis of the Adjustment Phase.
Taking equations (7) and (8) into equation (26), its time
derivative can be obtained:

a2 �Wα2 + P
_θ
2

2

_L
2

A′A

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + q _θ2 _LA′A, (33)

where

W �
w11 w12

w21 w22
 ,

P �
p11 p12

p21 p22
 ,

(34)

where a2 � €LBD €LCE T is the acceleration matrix of ac-
tuated joints and α2 � €θ2 €LA′A T is the acceleration vector
of Cartesian coordinates; wij, pij, and q are the variables

related to the pose of the mechanism (i� 1, 2; j� 1, 2).

2.4.3. Acceleration Analysis of the Normal Working Phase.
When the mechanism changes to the normal working phase,
the two hydraulic cylinders are locked and the springs are in
an equilibrium position, so €θ3,

€θ4, €LBD, and €LCE are all zero.

2.4.4. Acceleration Analysis of the Special Phase. Taking
equations (7) and (8) into equation (29), its time derivative
can be obtained:

α4� Za4 + X

_θ
2

1

_θ1
_θ2

_θ1 _LA′A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (35)

where

Z � z11 z12 z13 z14 T,

X �

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(36)

where a4� [
€θ1] is the acceleration vector of actuated joint,

α4 � €θ2
€θ3

€θ4 €LA′A T is the acceleration vector of Car-
tesian coordinates, and zij and xij are the variables related to
the posture of the mechanism (i� 1, 2, 3, 4; j� 1, 2, 3, 4).

3. Dynamic Analysis

*e velocity and acceleration of each component obtained
through the above kinematic analysis can be used to es-
tablish the inverse dynamic models of the CMRP.*e results
of dynamic analysis will be used for simulations, actuator
selection, mechanical vibration analysis, and dynamic op-
timization. More importantly, the precision of the CMRP
definitely relies on the dynamic properties.

3.1. Dynamic Analysis of the Source Phase. Kinematic anal-
ysis must be performed together with dynamic analysis for
the CMRP, as mentioned in Section 2.2.1. In order to solve
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the force of each component conveniently, the Newton–
Euler method is used to establish its dynamic model.
However, for the metamorphic mechanism with force
constraint, if the Newton–Euler method is directly used, the
listed equations will be highly complex nonlinear differential
algebraic equations and the number of equations is exces-
sive, which will make it difficult to solve the equations.

From the energy view point, the dynamic equations
obtained by the Lagrange method are relatively simple, and
the number of equations is only related to the DOF of the
mechanism. In addition, there is no external force input at
the prismatic joint P3 for the mechanism with force con-
straint proposed in this paper.

*erefore, a solving method combining Lagrange
equation with the Newton–Euler equation is presented.
Firstly, according to no external force input at the prismatic
joint P3, the kinematics equation and dynamics equation are
solved simultaneous by the Lagrange method. *en, the
displacement, velocity, and acceleration of slider are ob-
tained, which are brought into Newton–Euler equations.
Finally, the equations are transformed into algebraic
equations, which effectively improve the efficiency of solving
the nonlinear differential algebraic equations and reduce the
difficulty.

When modeling the system dynamics based on the
Lagrange equation, the generalized coordinates of the system
are selected first, and then the expressions of kinetic energy,
potential energy, and generalized force of the system are
obtained. Substituting into the Lagrange equation, the
system dynamic equation can be derived as follows:

d

dt

zT

z _qi
  − zT

zqi
+
zU

zqi
� Qi, i � 1, 2, . . . , n, (37)

where n is the DOF of the system, qi denotes the generalized
coordinates,U is the total potential energy of the system, T is
the total kinetic energy of the system, and Qi represents the
generalized force corresponding to qi.

3.1.1. Total Potential Energy of the Source Phase. For con-
venience, setm1,m2,m3,m4,m5,m6, andm7 as the masses of
the rotary plough frame, the slider, the compatibility rod, the
left cylinder rod, the corresponding left cylinder, the right
cylinder rod, and the corresponding right cylinder, re-
spectively; set s1, s2, s3, s4, s5, s6, and s7 as the centroids of the
rotary plough frame, the slider, the compatibility rod, the left
cylinder rod, the corresponding left cylinder, the right
cylinder rod, and corresponding right cylinder, respectively.
*e positions of s2 and s3 coincide with the position of joint
A; for convenience, they are not marked in the figures. *e
centroid coordinates of each component can be written as
follows:

x1 � − r1 cos β − θ1( ,
y1 � r1 sin β − θ1( , (38)

x2 � LOA′ cos θ1 − LA′A sin θ1,

y2 � LOA′ sin θ1 + LA′A cos θ1,
 (39)

x3 � LOA′ cos θ1 − LA′A sin θ1,

y3 � LOA′ sin θ1 + LA′A cos θ1,
 (40)

x4 � LOA′ cos θ1 − LA′A sin θ1 + LAC cos θ2 − r4 cos θ3,

y4 � LOA′ sin θ1 + LA′A cos θ1 + LAC sin θ2 − r4 sin θ3,


(41)

x5 � − LGE + r5 cos θ3,

y5 � LOG + r5 sin θ3,
 (42)

x6 � LOA′ cos θ1 − LA′A sin θ1 − LAB cos θ2 − r6 cos θ4,

y6 � LOA′ sin θ1 + LA′A cos θ1 − LAB sin θ2 − r6 sin θ4,


(43)

x7 � LGD + r7 cos θ4,

y7 � LOG + r7 sin θ4.
 (44)

*e total potential energy of the CMRP can be obtained
from equations (38)–(44) as follows:

Uall �7
i�1

migyi + U8, i � 1, . . . , 7. (45)

in which U8 is expressed as

U8 �
1

2
kL2A′A  × 2, (46)

where U8 is the elastic potential energy, k is the elastic
coefficient, and g is the gravitational acceleration along the
negative direction of the y-axis.

3.1.2. Total Kinematic Energy of the Source Phase. All the
components of the CMRP are moved in a plane, and the
kinetic energy of each component can be expressed by the
general formula as follows:

T �
1

2
m _x2 + _y2  + Jω2 . (47)

According to equation (47), the kinetic energy of each
component in the system can be obtained as

T1 �
1

2
J1O

_θ
2

1, (48)

T2 �
1

2
m2 _x22 + _y22  + 1

2
J2
_θ
2

1, (49)

T3 �
1

2
m3 _x23 + _y23  + 1

2
J3
_θ
2

2, (50)

T4 �
1

2
m4 _x24 + _y24  + 1

2
J4
_θ
2

3, (51)

T5 �
1

2
J5E

_θ
2

3, (52)
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T6 �
1

2
m6 _x26 + _y26  + 1

2
J6
_θ
2

4, (53)

T7 �
1

2
J7D

_θ
2

4, (54)

in which J1O is the moment of inertia of the rotary plough
frame around the point O; J5E is the moment of inertia of the
cylinder of the left hydraulic cylinder around the point E; J7D
is the moment of inertia of the cylinder of the right hydraulic
cylinder around the point D; and J2, J3, J4, and J6 denote the
moment of inertia around centroid of the slider, the com-
patibility rod, the cylinder rod of left hydraulic cylinder, and
the cylinder rod of right hydraulic cylinder, respectively.

*e total kinetic energy of the system can be obtained
from equations (48)–(54) as follows:

Tall �7
i�1

Ti. (55)

3.1.3. Establishing a Dynamic Model of the Source Phase
Using the Lagrange Equation. In the source phase, the
CMRP is a 3-DOF mechanical system and LA′A, θ1, and θ2
are selected as generalized coordinates. As shown in Fig-
ure 2, the friction and clearance between the motion pairs
and deformation of the components are ignored. Taking
equations (38)–(55) into equation (37), the dynamic
equations of the system can be written as follows:

0 �
d

dt

zL

z _LA′A
  − zL

zLA′A
, (56)

M1 �
d

dt

zL

z _θ1
  − zL

zθ1
, (57)

M2 �
d

dt

zL

z _θ2
  − zL

zθ2
. (58)

Dynamic analysis must be performed in conjunction
with the kinematic analysis due to the CMRP being an
underactuated mechanism during the source phase. On the
basis, considered the theory that velocity and acceleration
are the same in an extremely brief period, simultaneous
equations (7)–(10) and (56) can be used to obtain the dis-
placement, velocity, and acceleration of the slider. *en, the
generalized momentsM1 andM2 can be solved according to
equations (57) and (58), respectively.

According to the virtual work principle, the relationship
between the driving forces F1 and F2 of the two hydraulic
cylinders and the generalized moments M1 and M2 can be
derived as follows:

F1δLCE + F2δLBD + F3δLA′A �M1δθ1 +M2δθ2. (59)

Substituting equations (9) and (10) into equation (59)
leads to

AF1 + CF2( δθ1 + BF1 +DF2( δθ2 + EF1 + FF2 − F3( δLA′A
�M1δθ1 +M2δθ2,

(60)

in which

a � LOA′ cos θ1 − LA′A sin θ1 + LAC cos θ2 + LGE,

b � LOA′ sin θ1 + LA′A cos θ1 + LAC sin θ2 − LOG,

c � LOA′ cos θ1 − LA′A sin θ1 − LAB cos θ2 − LGD,

d � LOA′ sin θ1 + LA′A cos θ1 − LAB sin θ2 − LOG,

A � a2 + b2 − (1/2)a − LOA′ sin θ1 − LA′A cos θ1( 
+ b LOA′ cos θ1 − LA′A sin θ1( ,

B � a2 + b2 − (1/2) − aLAC sin θ2 + bLAC cos θ2( ,
C � c2 + d2 − (1/2)c − LOA′ sin θ1 − LA′A cos θ1( 

+ d LOA′ cos θ1 − LA′A sin θ1( ,
D � c2 + d2 − (1/2) cLAB sin θ2 − dLAB cos θ2( .

(61)

According to equation (60), the driving forces F1 and F2
of the two hydraulic cylinders can be expressed as

F1 �
DM1 − CM2

AD − BC
,

F2 �
BM1 − AM2

BC − AD
.

(62)

3.1.4. Establishing a Dynamic Model of the Source Phase
Using the Newton–Euler Method. *e velocity and accel-
eration of each component obtained through the above
analysis can be used to establish the inverse dynamic
model of the CMRP. *e advantage of the Newton–Euler
method is that, unlike other methods, this method not
only can solve the driving forces but also can obtain the
internal forces and moments applied to the passive joints.
It is essential for engineering design applications such as
selection of bearings and materials and design of the
links.

*e force analysis diagram of the rotary plough frame
is shown in Figure 5. In the analysis, it is assumed that the
centroid of the rotary plough frame is located at the
geometric center, and the self-gravity of this linkage is
G1.

According to the D’Alembert principle, the dynamic
equations of the rotary plough frame can be derived as
follows:
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Fox − Fn cos θ1 − 2kLA′A sin θ1 − F3x − m1 €x1 � 0, (63)

Foy − Fn sin θ1 + 2kLA′A cos θ1 − F3y − G1 − m1 €y1 � 0,

(64)

FnLA′A + F3x LOA′ sin θ1 + LA′A cos θ1( )
+ F3y − LOA′ cos θ1 + LA′A sin θ1( ) + 2kLA′ALOA′

+ G1r1 cos β − θ1( ) − J1O€θ1 � 0,

(65)

where Fox and Foy are the constraint forces of the joint O in
the directions of the x and y, respectively, and Fn is the
constraint force of the prismatic joint P3.

�e dynamic equations of the slider according to the
D’Alembert principle, as shown in Figure 6, can be written as
follows:

− Fax + 2kLA′A sin θ1 − Fn cos θ1 + F3x − m2 €x2 � 0, (66)

− Fay + 2kLA′A cos θ1 + Fn sin θ1 + F3y − G2 − m2 €y2 � 0,

(67)

where Fax and Fay are the constraint forces of the joint A in
the directions of the x and y, respectively.

�e dynamic equations of the compatibility rod
according to the D’Alembert principle, as shown in Figure 7,
can be written as follows:

Fax + Fbx + Fcx − m3 €x3 � 0, (68)

Fay + Fby + Fcy − G3 − m3 €y3 � 0, (69)

FbxLAB sin θ2 − FbyLAB cos θ2 − FcxLAC sin θ2

+ FcyLAC cos θ2 − J3
€θ2 � 0,

(70)

where Fbx and Fby are the constraint forces of the joint B in
the directions of the x and y, respectively, and Fcx and Fcy are
the constraint forces of the joint C in the directions of the x
and y, respectively.

�e dynamic equations of the left hydraulic cylinder
according to the D’Alembert principle, as shown in Figure 8,
satisfies

− Fcx − Fex − m4 +m5( )€x45 � 0, (71)

− Fcy − Fey − Gp1 − m4 +m5( )€y45 � 0, (72)

Fcx LCE − L1c( )sin θ3 − Fcy LCE − L1c( )cos θ3 − FexL1c sin θ3
+ FeyL1c cos θ3 − J4 + J5( )€θ3 � 0,

(73)
where Fex and Fey are the constraint forces of the joint E in
the directions of the x and y, respectively, and in which

L1c �
m5r5 +m4 LCE − r4( )

m4 +m5

,

x45 � − LGE + L1c cos θ3,

y45 � LOG + L1c sin θ3,




GP1 � G4 + G5.

(74)

�e dynamic equations of the right hydraulic cylinder
according to the D’Alembert principle, as shown in Figure 9,
satisfies

− Fbx − Fdx − m6 +m6( )€x67 � 0, (75)

− Fby − Fdy − Gp2 − m6 +m7( )€y67 � 0, (76)

O

A

s1

r1

θ1 Fox

Foy

G1

A′

F3x

Fn
2kLA′A F3y

β

Figure 5: �e force analysis diagram of the rotary plough frame
during the source phase.

2kLA′AFn

Fax

Fay

G2

F3y

A
F3x

θ1

Figure 6:�e force analysis diagram of the slider during the source
phase.

B

A

C

Fbx

Fby

Fay

Fax

G3

Fcx

Fcy

Figure 7: �e force analysis diagram of the compatibility rod
during the source phase.
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Fbx LBD − L2c( sin θ4 − Fby LBD − L2c( cos θ4
− FdxL2c sin θ4 + FdyL2c cos θ4 − J6 + J7( €θ4 � 0, (77)

where Fdx and Fdy are the constraint forces of the joint D in
the directions of the x and y, respectively, and in which

L2c �
m7r7 +m7 LBD − r6( 

m6 +m7

,

x67 � LGD + L2c cos θ4,

y67 � LOG + L2c sin θ4,

⎧⎪⎨⎪⎩
GP2 � G6 + G7.

(78)

*en, the driving forces of the two hydraulic cylinders
can be expressed as

F1x � Fcx +m4 €x4, (79)

F1y � Fcy + G4 +m4 €y4, (80)

F2x � Fbx +m6 €x6, (81)

F2y � Fby + G6 +m6 €y6. (82)

3.2. Dynamic Analysis of the Adjustment Phase. When the
mechanism moves to the phase in Figure 3(b) where the
joint O is locked, the mechanism is a 2-DOF mechanical

system with two effective actuators at the two hydraulic
cylinders. *e required driving forces based on the
Newton–Euler method can be directly obtained
according to the motion laws of the slider and the
compatibility rod.

*e dynamic equations of the slider according to the
D’Alembert principle, as shown in Figure 10, satisfies

− Fax − m2 €x2 � 0,

− Fay + 2kLA′A − G2 − m2 €y2 � 0.
(83)

*e force analysis diagrams of the compatibility rod and
the two hydraulic cylinders are the same as Figures 7–9,
respectively. Similarly, the dynamic equations of the com-
patibility rod and the two hydraulic cylinders can be
expressed as equations (68)–(77), respectively.

Similarly, the driving forces of the two hydraulic
cylinders can be expressed as the same as equations
(79)–(82).

3.3. Dynamic Analysis of the Normal Working Phase. *e
driving forces of the two hydraulic cylinders and the internal
forces applied to the passive joints, in the normal working
phase, are the same as the end of the adjustment phase.

3.4. Dynamic Analysis of the Special Phase. *e dynamic
equations of the rotary plough frame according to the
D’Alembert principle, as shown in Figure 11, satisfies

Fox − Fn cos θ1 + 2kLA′A sin θ1

− m1 €x1 � 0,

Foy − Fn sin θ1 − 2kLA′A cos θ1 + F − G1

− m1 €y1 � 0,

− FnLA′A − 2kLA′ALOA′ + G1r1 cos β − θ1(  + Fl cos θ1
− J1O

€θ1 � 0,

(84)
where F is the external force and l denotes the distance from
the action point of the external force to joint O.

*e dynamic equations of the slider according to the
D’Alembert principle, as shown in Figure 12, satisfies

Fax − 2kLA′A sin θ1 + Fn cos θ1 − m2 €x2 � 0,

Fay + 2kLA′A cos θ1 + Fn sin θ1 − G2 − m2 €y2 � 0.
(85)

*e dynamic analysis diagrams of the compatibility rod
and the two hydraulic cylinders are the same as Figures 7–9,
respectively. *e dynamic equations of the compatibility rod
and the two hydraulic cylinders can be expressed as equa-
tions (68)–(77), respectively.

4. Numerical Simulation and
Performance Analysis

4.1. Determination of the Initial Position of the Springs.
Determining the initial compression length of the spring
with the elastic coefficient is one of the most basic things due

D

Fdy

Fdx

B

Fby

Fbx

Gp2

L2c

Figure 9:*e force analysis diagram of the right hydraulic cylinder
during the source phase.

C

E
L1c

Fey

Fex

Gp1

Fcy

Fcx

Figure 8: *e force analysis diagram of the left hydraulic cylinder
during the source phase.
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to the dynamic equations of the CMRP being solved
numerically. Assume that the elastic coefficient k is
0.08 N/m.When the initial compression lengths of the two

springs are 0, combining Table 1, LA′A can be obtained
numerically by solving equations (9), (10), and (56), as
shown in Figure 13(a). As can be seen from Figure 13(a),
the slider is in the vibrating state during the reversal
process, which is determined by the initial compression
length of the spring.

�erefore, the static balance analysis of the CMRP can
be performed by changing the acceleration of each
component in equations (63)–(82) to 0, and LA′A can be
solved (the initial compression length of the spring is
0.00059m), as shown in Figure 13(b). As can be seen from
Figure 13(b), with this initial spring constant, the non-
hesitating motion of the slider during the reversal process
can be achieved.

4.2.KinematicNumerical Simulations. Table 1 presents all of
the related parameters: the structure parameters LOA′, LAC,
LAB, LGE, LGD, LOG, r1, r3, r4, r5, r6, r7, α1, and g; the

2kLA′A

Fax

Fay

G2

A

Figure 10: �e force analysis diagram of the slider during the
adjustment phase.

G1

s1 r1

Fox

Foy

A

A′

2kLA′A 

Fn

F

O

β

Figure 11: �e dynamic analysis diagram of the rotary plough
frame during the special phase.

2kLA′A

G2

A

Fay

Fn

Fax

Figure 12: �e dynamic analysis diagram of the slider during the
special phase.

Table 1: Parameters of the CMRP.

Symbol Values (unit)

LOA′, LAC, LAB 0.3, 0.12, 0.12 (m)
r1, r3, r4 0.088, 0, 0.267 (m)
m1, m2, m3 84.633, 2.288, 5.6327 (kg)
J1O, J2, J3 6.22, 0.002, 0.039 (kg·m2)
β 1.311 (rad)
LGE, LGD, LOG 0.4, 0.4, 0.75 (m)
r5, r6, r7 0.27, 0.267, 0.27 (m)
m4, m5, m6, m7 4.78, 13.76, 4.78, 13.76 (kg)
J4, J5E, J6, J7D 0.15, 1.35, 0.15, 1.35 (kg·m2)
g 9.8 (m/s2)
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Figure 13: Displacement of slider in the source phase. Initial spring
deformation: (a) 0m; (b) 0.00059m.
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component masses m1, m2, m3, m4, m5, m6, and m7; and the
moments of inertia J1O, J2, J3, J4, J5E, J6, and J7D.

From the above analysis, the kinematic numerical
simulations in the source phase can be obtained by equations
(7)–(10) and (56), in the adjustment phase by equations
(7)–(10), and the kinematic numerical simulations in the
normal working phase stay the same as the state at the end of
the adjustment phase, and in the special phase by equations
(15) and (17). And Figure 14 shows the curves obtained from
Matlab software, among which (a)–(c) reflect the dis-
placements, velocities, and accelerations of the two hydraulic
cylinders.

In order to verify the numerical example, the results
obtained by means of the kinematic models are compared
with the simulation results by creating the 3D model in
SolidWorks software. Under SolidWorks environment, the

structure parameters and initial kinematic parameters are
the same as the previous analytical model. �e simulation
results generated in SolidWorks software are shown in
Figure 15, among which (a)–(c) reflect the displacements,
velocities, and accelerations of the two hydraulic cylinders,
respectively.

By comparing the curves shown in Figures 14 and 15,
we can see that the variation tendencies of the results
obtained by the two programs are identical. �is is suffi-
cient to guarantee the correct of the theoretical kinematic
models.

4.3. Dynamic Numerical Simulations and Contrast Analysis.
To verify the above dynamic models of the CMRP, the same
operations as the above kinematic analysis are done. And
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Figure 14: Kinematic simulation from the Matlab software: (a) displacements curves; (b) velocity curves; (c) acceleration curves.
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then the results from the two different programs are shown
in Figures 16(a) and 16(b) reflecting the actuation forces of
the two hydraulic cylinders from theMatlab and SolidWorks
software, respectively. Furthermore, the relative error
analysis is given in Figure 16(c) in order to guarantee the
accurate result.

Figure 16(c) shows that the maximal relative error of the
actuation forces is less than 0.045. It is known that the
dynamic simulation results are in excellent agreement with
the analytic results derived from the analytic method. And
the actuation forces can judge the loading characteristics of
the actuators. Except that, the internal forces acting on
revolute joints can help us to judge the joints stiffness. Here,

the revolute joints related to the slider and the coordinated
linkage are picked out as examples, and the joint forces are
obtained; the internal forces acting on the revolute joints are
shown in Figure 17.

Figure 17(a) shows the joint force Fa of the revolute joint
located at point A; Figure 17(b) shows the joint force Fb of
the revolute joint located at point B; and Figure 17(c) shows
the joint force Fc of the revolute joint located at point C.
From the results shown in Figure 17, we know that all of
these three joint forces change comparatively smooth and
steadily in the first three configurations. When the CMRP is
in the special phase, all of these three joint forces change a lot
under the effect of uncertain external force.
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Figure 15: Kinematic simulation from the SolidWorks software: (a) displacement curves; (b) velocity curves; (c) acceleration curves.
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4.4. Experimental Verification. An experimental trajectory
has been designed to conduct the experiment and measured
the displacements of the two hydraulic cylinders. In this
paper, the electrohydraulic servo control system can be used
to control the position of the two hydraulic cylinders, and
the block diagram of the control system is shown in Fig-
ure 18. When the displacement command signals Li of the
two hydraulic cylinders are input into the given potenti-
ometer, the corresponding voltage signals U1i are generated
and transmitted to the amplifier, and the amplifier converts
voltage signal U1i to current signal Ii and applies it to the
position feedback electrohydraulic servo valve. *e flows Qi

are obtained by the proportional relationship between the
output signal current of the electrohydraulic servo valve and
the input signal current, which makes the hydraulic cylinder
move. *en, the displacements Li0 of the two hydraulic
cylinders measured by the measuring element are fed back to
the input end of the system by the voltage signals U2i

generated by the feedback potentiometer. Finally, compared
with the input signals U1i, the deviation signals are amplified
and corrected and applied to the electrohydraulic servo valve
to drive the hydraulic cylinder to move in the direction of
eliminating the deviation until the deviation approaches
zero.

On the basis, the principle prototype of the CMRP is
built. Due to the limited experimental space, only the ex-
periments of the source phase and the adjustment phase are
carried out. As shown in Figure 19, the automatic operation
mode of the CMRP prototype is started after the parameters
related to the test are input into the control system through
the operation panel. When the rotary plough frame is turned
over to 180°, the CMRP prototype is stopped. *en, the
displacement data of the hydraulic cylinder collected by the
displacement sensor are derived. Finally, the comparisons
between theoretical displacement and measured displace-
ment are shown in Figure 20.
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Figure 16: Dynamic simulations of the CMRP: (a) Matlab simulation; (b) SolidWorks simulation; (c) relative error.
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From Figure 20, we can see the trend of the two curves is
generally the same. On the contrary, this also verifies the
correctness of the theoretical model. But there is a sight
difference between the two curves through the comparisons.
*rough the analysis, we can know the main reasons that
caused the difference between the two curves:

(1) Construction Error. When the prototype is built, the
size and shape of actual parts are not exactly the same as
the simulation model. In the dynamic model, the pa-
rameters of the CMRP are identical but different in the

actual part. *e assembly clearances between the parts
are not considered in the dynamic model. *ese errors
can lead tomany differences between theory and reality.

(2) Measurement Error. When we measure the dis-
placements of the two hydraulic cylinders, the mea-
suring instrument has certain accuracy. In addition,
the structure of the instrument cannot be guaranteed
to satisfy various geometric relations during the
process and assemblies. Such an instrument will in-
evitably bring errors to the measurement.
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Figure 17: Joint force of the CMRP: (a) forces at joint A; (b) forces at joint B; (c) forces at joint C.
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5. Conclusions

A novel CMRP is proposed, which has potential for agri-
culture. Aiming at the CMRP with four work patterns, its
kinematics, including displacement, velocity, and acceleration,

are analyzed in detail. Using the Newton–Euler method and
Lagrange method, dynamics modeling of the CMRP with
flexible patristic joint is established on the basis of kinematics.
*en, based on the static balance analysis, the initial com-
pression length of the spring with the elastic coefficient is
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determined. And the numerical simulations containing ki-
nematic models and dynamic models are performed using
Matlab software and SolidWorks software, respectively. *e
comparisons, especially the error analysis of the actuation
forces, show the validity of dynamic models. *e internal
forces acting on the revolute joints A, B, and C are also solved
by means of separated model blocks, and the results are
conducive to judge the joints stiffness.*e contrast analyses of
the displacements of the two hydraulic cylinders according to
theoretical calculation and experimental verification are given,
which is conducive to verify the correctness of the theoretical
model.

*e main contribution of this paper lies in the theoretical
analysis of a novel CMRP, which lays a foundation for
practical application with dynamic models taken into account.
*e research also shows that the pressure of the bottom of the
rotary plough frame to the bottom of the groove can be
adjusted tomaintain the stability of the depth of the tillage.*e
metamorphic characteristics of the underactuated mechanism
enhances the research application of the metamorphic
mechanism. *erefore, the CMRP has potential application
prospects. In our future work, field trail of this novel CMRP
with outstanding performance will be performed.
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