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Abstract

This paper studies mathematical properties and dynamics of a duopoly with price competi-

tion and horizontal product differentiation by introducing quadratic production costs (decreas-

ing returns to scale), thus extending the model with linear costs (constant returns to scale)

of Fanti et al. (2013). The economy is described by a two-dimensional non-invertible discrete

time dynamic system. The paper first determines fixed points and other invariant sets, showing

that synchronized dynamics can occur. Then, stability properties are compared in the cases

of quadratic costs and linear costs by considering the degree of product differentiation and the

speed of adjustment of prices as key parameters. It is also shown that synchronization takes

place if products tend to be relatively complements and stressed similarities and differences

between models with quadratic and linear costs. Finally, the paper focuses on the phenomenon

of multistability thus underlying new evidences in comparison with the model with linear costs.
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1 Introduction

This paper extends the work of Fanti et al. (2013) by considering a nonlinear duopoly with price

competition, horizontal differentiation and quadratic production costs (decreasing returns to scale)

instead of linear costs (constant returns to scale).

The analysis of economic models with product differentiation has become of greater importance

in the oligopoly literature - especially in the case of price-setting firms - both in the absence of

managerial delegation contracts (Singh and Vives, 1984) and when ownership and management are

separate (Kopel and Lambertini, 2013).

The study of nonlinear dynamics in oligopolies (Bischi et al., 2010) has essentially concentrated

on the case of quantity-setting firms to analyse long-term outcomes when information is incomplete

(Bischi et al., 1998, 2007), while leaving the case of price-setting firms untreated (an exception is

Fanti et al., 2013). The aim of this paper is to deepen the study of the behaviour of nonlinear

duopolies with price competition by considering that firms operate with a decreasing returns-to-

scale technology and incomplete information. The assumption of incomplete information follows the

literature pioneered by Bischi et al. (1998). In this case, in fact, firms adopt specific behavioural

rules (such as adjustment mechanisms based on marginal profits or the so called Local Monopolistic

Approximation, as in Bischi et al., 2007) in the product market.

The present paper stresses the mathematical properties of a duopoly with price competition with

nonlinear production costs and then outlines similarities and differences with respect to the model

with linear costs. When the cost function is nonlinear we find different dynamic outcomes than

when firms operate with a linear cost function. Specifically, we find that synchronized dynamics

increases in complexity by starting from the case of independent products to complementary or

substitutability. In the case of independent products (i.e., each single firm behaves just like a

monopolist in the market), results are different depending on the extent of market demand. In

fact, the flip bifurcation for which the Nash equilibrium loses stability occurs earlier when costs are

quadratic (resp. linear) if the extent of market demand is large (resp. small).

With regard to multistability, there exist coexisting attractors in either cases of complementarity

and substitutability. However, when products are complements the structure of the basins of attrac-

tion may result to be complex, so that the final outcome of the economy may be unpredictable. The

difference in terms of policy insights is then clear in the two cases. When products are substitutes,

it is possible provide adequate policies on the degree of product substitutability (for instance, adver-

tising investments) to drive the economy towards the target, while when products are complements

policies may not be effective or have detrimental effects.

The rest of the paper proceeds as follows. Section 2 sets up a duopoly with price competition,

linear demand and decreasing returns to scale. It also outlines the two-dimensional map that char-

acterises the evolution of prices from one period to another. Section 3 determines the fixed points

and other invariant sets. Then, local stability is investigated and a comparison with the dynamics

produced by the model with linear costs is also presented. Similar with the case of linear costs,

Section 4 shows that synchronization is likely to emerge if products are complements. In addition,

the phenomenon of multistability is investigated, thus underlying new evidences. Specifically, in

the particular case of independent products the paper shows that the size of the extent of market

demand is crucial to determine whether the primary period doubling bifurcation occurs earlier in

the case of quadratic or linear costs. Section 5 outlines the conclusions.
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2 The model

The economy is comprised of firms and consumers. There exists a competitive sector that produces

the numeraire good k ≥ 0 (whose price is normalised to 1), and a duopolistic sector where firm 1

and firm 2 produce (horizontally) differentiated products of variety 1 and variety 2, respectively. Let

pi ≥ 0 and qi ≥ 0 be the price and quantity of product of firm i (i = 1, 2), respectively.

Consumers. There exists a continuum of identical consumers that have preferences towards

goods q1, q2 and k described by the separable utility function V (q1, q2, k) : R
3
+ → R+ and specified

by V (q1, q2, k) = U(q1, q2) + k, where U(q1, q2) : R
2
+ → R+ is a twice differentiable function. The

representative consumer aims at maximising V (q1, q2, k) subject to p1q1 + p2q2 + k = M (budget

constraint), where M > 0 is the exogenous nominal income of the consumer. This income is high

enough to avoid the existence of corner solutions. In addition, there are no income effects on the

duopolistic sector. The consumer’s optimisation problem is max{q1,q2} U(q1, q2)− p1q1 − p2q2 +M .

We assume that consumers’ preferences towards q1 and q2 are captured the utility function:

U(q1, q2) = a(q1 + q2)−
1

2
(q21 + q22 + 2dq1q2), (1)

where a > 0 is the extent of market demand of both goods and −1 < d < 1 is the degree of horizontal

product differentiation. If d = 0 products of variety 1 and variety 2 are independent and each firm

behaves as a monopolist. If d > 0 (resp. d < 0) products are substitutes (resp. complements), while

when d → 1 (resp. d → −1 ) they tend to be perfect substitutes (resp. perfect complements). By

using (1), the consumer’s maximisation programme gives the following inverse demands of good 1

and good 2, respectively:

p1 = a− q1 − dq2 and p2 = a− q2 − dq1. (2)

From (2) the corresponding direct demands are then given by:

q1 =
a(1− d)− p1 + dp2

1− d2
and q2 =

a(1− d)− p2 + dp1
1− d2

. (3)

Duopolistic firms. We assume that firm i produces with the decreasing returns-to-scale technology

qi =
√
Li, where Li is the labour force employed. Firm i’s cost function is ci = wLi, where w > 0 is

the cost per unit of labour. The cost function can then be written as ci = wq2i , so that average and

marginal costs are respectively given by wqi and 2wqi, i.e. marginal costs are higher than average

costs for every qi > 0.

Firm i maximises profits Πi = piqi −wq2i with respect to pi. Then, by using (3) marginal profits

of ith firm are given by

∂Πi

∂pi
=

[a(1− d) + dpj ](1− d2 + 2w)− 2(1− d2 + w)pi

(1− d2)
2 , i, j = 1, 2, i ̸= j. (4)

Dynamic setting. Consider now a dynamic setting where time is indexed by t ∈ Z+. By following

Bischi et al. (1998) and Fanti et al. (2012, 2013), we assume that both players have limited infor-

mation. In order to set the price between two subsequent periods, both firms follow an adjustment

process based on local estimates of their own marginal profit in the current period. This is given by:

pi,t+1 = pi,t + αpi,t
∂Πi(pi,t, pj,t)

∂pi,t
, i = 1, 2, t ∈ Z+, (5)
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where α > 0 and ∂Πi

∂pi

is determined by (4). The model is definitely described by the following

two-dimensional non-invertible discrete time dynamic system (Tq,R
2
+):

Tq :







x′ =
[

1 + αa
1+d

+ 2 αaw
(1−d)(1+d)2

]

x− 2
[

α
1−d2 + αw

(1−d2)2

]

x2 +
[

αd
1−d2 + 2 αdw

(1−d2)2

]

xy

y′ =
[

1 + αa
1+d

+ 2 αaw
(1−d)(1+d)2

]

y − 2
[

α
1−d2 + αw

(1−d2)2

]

y2 +
[

αd
1−d2 + 2 αdw

(1−d2)2

]

xy
, (6)

where x′ = p1,t+1, x = p1,t, y
′ = p2,t+1 and y = p2,t.

System Tq is a two-dimensional dynamic system whose iteration defines the time evolution of

price of each variety in the Bertrand duopoly model with differentiated products and quadratic costs.

In order to analyze dynamics of map Tq and compare them with dynamics produced by the

model with linear costs, in what follows we refer to the former system with index q and to the latter

with index l. We underline that the results obtained for the linear case to which we will refer in this

paper can be found in Fanti et al. (2013).

3 Analysis and comparisons

3.1 Fixed points and local stability

A preliminary consideration with regard to system (Tq,R
2
+) is that (similar with the model with

linear costs) there exist initial conditions (x(0), y(0)) ∈ R
2
+ producing trajectories that exit from

the set R
2
+, for instance those belonging to a suitable neighborhood of infinity. This means that a

necessary condition for Tq to produce meaningful economic dynamics is that the price of each variety

at time t = 0 is not too high.

We recall that a trajectory ψt = {(x(t), y(t))}∞t=0 is said feasible if (x(t), y(t)) ∈ R
2
+ for all t ∈ N .

Then, we call set D ⊆ R
2
+, whose points generate feasible trajectories, as the feasible set. With

regard to the structure of the feasible set, the following Proposition concerning some limit cases

holds.

Proposition 1. (i) If d→ 1− then the set D −
{

(0, 0),
(

aw
1+w

, aw
1+w

)}

is empty,

(ii) If d→ −1+ then the set D − {(0, 0), (a, a) , (x,−x+ 2a)} is empty.

Proof. (i) Consider first d → 1−, then limd→1− x
′ = −∞, ∀x(0) > y(0) and limd→1− y

′ = −∞,

∀x(0) < y(0). Hence initial conditions with x(0) ̸= y(0) cannot generate feasible trajectories.

Consider now x(0) = y(0) ̸= 0 and x(0) = y(0) ̸= aw
1+w

. Then limd→1− x
′ = −∞. This proves

the statement for d→ 1−.

(ii) Case d → −1+ is proved by considering that limd→−1+ x
′ = ∞ ∀x(0) ≠ 0, a,−y(0) + 2a and

limd→−1+ y
′ = ∞ ∀y(0) ̸= 0, a,−x(0) + 2a.

Proposition 1 shows that economic meaningful trajectories are produced only whether the degree

of product differentiation is not too high or too low. This confirms the result obtained with linear

costs. For intermediate values of d, in Figure 1 two different feasible sets are depicted in white, while

the set of points generating trajectories that exit from R
2
+ (i.e. the unfeasible set) is shown in gray.

We can observe that if parameter d is slightly modified the structure of the feasible set changes,

passing from simple (connected sets) to complex (infinitely many non connected sets). This transition
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Figure 1: Parameter values: α = 0.5, w = 0.5 and a = 1. Feasible set (white region) and unfeasible

set (gray region) for different values of dpoint x∗q (in red) and x∗l (in black) as d is moved, for the

parameter values α = 0.5, w = 0.5, a = 1.3. (d) The fixed points are computed for a = 1.8 and the

other parameters as in panel (c).

is due to a global bifurcation (namely, a contact bifurcation) that can be investigated by using the

method of critical curves, as it has been done in Fanti et al. (2013) (we refer to this work for further

details). It is interesting to note that the structure of the feasible set increases in complexity as d

increases or decreases and that if products are perfect substitutes or perfect complements almost all

trajectories are unfeasible.

Equilibria or fixed points of Tq are solutions of the following equation:

Tq(x, y) = (x, y).

Trivially, the following proposition holds.

Proposition 2. System Tq given by (6) admits four fixed points for all parameter values. They are

given by:

E0 = (0, 0) , E1q =
(

0, a(1−d)(1−d2+2w)
2(1−d2+w)

)

, E2q =
(

a(1−d)(1−d2+2w)
2(1−d2+w) , 0

)

,

and E∗
q = (x∗q , x

∗
q) =

(

a(1−d2+2w)
(1+d)(2−d)+2w ,

a(1−d2+2w)
(1+d)(2−d)+2w

)

.
(7)

Remark 3. As with linear costs, Tq always admits four fixed points: E0, E1q and E2q are located

on the coordinate axes, E1q and E2q are in symmetrical positions with respect to the main diagonal

∆ = {(x, y) ∈ R
2
+ : x = y}, and E∗

q ∈ ∆ is the unique interior Nash equilibrium of the economy.
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By substituting the equilibrium price x∗q into direct demand functions we obtain the equilibrium

value of the quantity associated with the unique interior fixed point. This is given by

q∗q =
a

(1 + d)(2− d) + 2w
> 0.

Different from the case of linear costs, q∗q is positive for all parameter values, while condition a > w

must hold to guarantee that the equilibrium quantity when production costs are linear is positive,

i.e. q∗l > 0. For this reason we will compare the two models while focusing on the case a > w. In

addition, we will consider new results for map Tq also when a ≤ w.

In order to compare the position of the interior fixed point on plane (x, y) between the case of

linear and quadratic costs, the following Proposition can be proved.

Proposition 4. Let a > w. If a > 17
8 then x∗q > x∗l ; if a ≤ 1 then x∗q ≤ x∗l .

Proof. The proof is obtained while comparing x∗q = a(1−d2+2w)
(1+d)(2−d)+2w with x∗l = a(1−d)+w

2−d
.

From an economic point of view it is important to stress that the extent of market demand a

determines whether prices under decreasing returns to scale are higher or lower than under constant

returns to scale. In particular, when market demand is large (resp. small) - i.e. high (resp. low)

values of a -, equilibrium prices under decreasing returns to scale are higher (resp. lower) than

under constant returns to scale. This because when costs are nonlinear and the extent of market

demand is large firms operate close to their full production capacity and prices tend to be higher

than when costs are linear. However, for intermediate values of a, the sign of x∗q − x∗l is ambiguous

as it depends also on the degree of product differentiation d. This fact can easily be revealed by

comparing Figure 1 (c) to Figure 1 (d). In each panel, equilibrium values x∗q and x∗l are plotted with

respect to d, while fixing the other parameters and with a being chosen at an intermediate value

(i.e. a ∈ (1, 17/8]). It can be observed that if a = 1.3 (as in panel (c)) then the equilibrium price in

the case of quadratic costs is larger than the equilibrium price in the case of linear costs, as long as

the degree of product differentiation d is smaller than the threshold d̃ = −0.3062. Differently, if a

larger value of a is considered, i.e. a = 1.8, then x∗q > x∗l for all d-values.

The local stability analysis of the four fixed points of Tq can be carried out by considering the

Jacobian matrix associated with map Tq, that is:

Jq(x, y) =

(

1 + αa
(1−d

2+2w)

(1−d)(1+d)2
− 4α (1−d

2+w)

(1−d2)2
x+ αd

(1−d
2+2w)

(1−d2)2
y αd

(1−d
2+2w)

(1−d2)2
x

αd
(1−d

2+2w)

(1−d2)2
y 1 + αa

(1−d
2+2w)

(1−d)(1+d)2
− 4α (1−d

2+w)

(1−d2)2
y + αd

(1−d
2+2w)

(1−d2)2
x

)

.

(8)

Since the eigenvalues of a diagonal or triangular matrix are given by the elements of the main

diagonal, then it can easily be verified that E0 is an unstable node while E1q and E2q can be both

unstable nodes or saddle points. With regard to the local stability properties of the unique interior

fixed point E∗
q , the eigenvalues of Jq(E

∗
q ) can be obtained. They are given by

λ∥(E
∗
q ) = 1− αa(1− d2 + 2w)

(1− d2)2
(1− d2)(2− d) + 2w

(1 + d)(2− d) + 2w
,

and

λ⊥(E
∗
q ) = 1− αa(1− d2 + 2w)

(1− d2)2
(1 + d)[(1− d)(2 + d) + 2w]

(1 + d)(2− d) + 2w
.
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Observe that for all parameter values λ∥(E
∗
q ) < 1 and λ⊥(E∗

q ) < 1, so that the interior fixed

point may lose stability if and only if at least one eigenvalue crosses −1. Furthermore, only the

interior fixed point can be attracting, confirming the result in Fanti et al. (2013).

The following Proposition contrasts local stability of the interior fixed point in the cases of

quadratic costs (E∗
q ) and linear costs (E∗

l ).

Proposition 5. Let a > w.

(i) ∀d ∈ (−1, 1), ∃ᾱ(d) such that if α > ᾱ(d) then E∗
q and E∗

l are both locally unstable;

(ii) ∃I(0) such that ∀d ∈ I(0), ∃α̃(d) such that if α < α̃(d) then E∗
q and E∗

l are both locally stable;

(iii) ∃I(0) such that ∀d ∈ I(0) then λ∥(E
∗
q ) < λ∥(E

∗
l ) and λ⊥(E

∗
q ) < λ⊥(E∗

l ) if and only if a > 1
2 .

Proof. (i) The result is trivially obtained from the following limits: limα→+∞ λ∥(E
∗
q ) = limα→+∞ λ⊥(E∗

q ) =

−∞ and limα→+∞ λ∥(E
∗
l ) = limα→+∞ λ⊥(E∗

l ) = −∞.

(ii) If d → 0 we obtain λ∥(E
∗
q ) = λ⊥(E∗

q ) = 1 − αa(1 + 2w) := λ(E∗
q ). Then λ(E∗

q ) > −1 iff

α < 2
a(1+2w) := α̃q. Similarly, if d = 0, λ∥(E

∗
l ) = λ⊥(E∗

l ) = 1 − α(a + w) := λ(E∗
l ) and

λ(E∗
l ) > −1 iff α < 2

a+w
:= α̃l. As a consequence, α̃(d) = min{α̃q, α̃l} which is given by α̃q

(resp. α̃l) iff a ≥ 1
2 (resp. a < 1

2 ).

(iii) The proof immediately follows from part (ii).

Notice that case (i) in Proposition 5 holds also for a > ā (or w > w̄), that is ∀d ∈ (−1, 1) ∃ā(d)
(or w̄(d)) such that a > ā (or w > w̄) implies that E∗

q and E∗
l are both locally unstable. This means

that in both cases of quadratic and linear costs, the Nash equilibrium is unstable when α is large or

when the extent of market demand or the cost per unit of labour is high. In fact, if (for instance)

the labour cost increases, prices will increase in the next period because they follow the behaviour

of marginal cost (i.e., marginal profits becomes large and firms react by setting prices at a level that

may cause unstable trajectories in the next period).

Since we are mainly interested in the role played by parameters d and α, in Figure 2 (a) and (b)

we depict different bifurcation curves in the parameter plane (d, α) corresponding to set of points

such that λ∥(E
∗
q ) = −1 and λ⊥(E∗

q ) = −1 (black curves) or λ∥(E
∗
l ) = −1 and λ⊥(E∗

l ) = −1 (white

curves). These curves separate the plane into regions depicted with different colours for which the

two fixed points are locally stable, locally unstable or saddle points, respectively. As stated in

Proposition 5, we note that both equilibria are locally unstable (resp. stable) if α is large (resp.

small) enough, if d belongs to an opportune neighborhood of the origin, while for intermediate values

of α several features can be observed depending on the value of the extent of market demand a.

3.2 Invariant sets and synchronized trajectories

We now consider the invariant sets of system Tq and observe that each coordinate semiaxis is

invariant, i.e. Tq(x, 0) = (x′, 0) and Tq(0, y) = (0, y′), as for the linear costs model. As a consequence,

also in this case the dynamics of Tq on such lines are governed by a one-dimensional map which is

topologically conjugate to the standard logistic map. Hence, they can easily be completely known

(see Fanti et al., 2013 for details).
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Figure 2: Bifurcation curves on the parameter plane (d, α) identifying regions at which different

stability regimes occurs for w = 0.2. In panel (a) a = 3 while in panel (b) a = 0.3. st means locally

stable, un means locally unstable while sad means saddle.

Notice that eigenvalues λ⊥ of J(0, y) and J(x, 0) are given by:

λ⊥(x = 0) = 1 + αa
1− d2 + 2w

(1− d)(1 + d)2
+ αd

1− d2 + 2w

(1− d2)2
y > 1, ∀y ≥ 0,

and

λ⊥(y = 0) = 1 + αa
1− d2 + 2w

(1− d)(1 + d)2
+ αd

1− d2 + 2w

(1− d2)2
x > 1, ∀x ≥ 0.

This proves that both invariant semiaxes are repellor by allowing us to restrict attention to the

interior fixed point in what follows. In addition, it can be proved that, as for system Tl, the diagonal

∆ is an invariant set also for Tq, i.e. Tq(x, x) = (x′, x′).

In what follows, we focus on the dynamics embedded by Tq on ∆ and we compare these ones

with those produced by Tl along the same restriction. Since Tq(∆) ⊆ ∆, the dynamics generated

by Tq on the invariant submanifold ∆ can be studied through the restriction of system Tq to set ∆

given by:

Tq∆ = φq(x) =

[

1 +
αa

1 + d
+

2αaw

(1− d2)(1 + d)

]

x− α
(2− d)(1 + d) + 2w

(1− d2)(1 + d)
x2, (9)

that is topologically conjugate to the logistic map z′ = µqz(1− z) with

µq = 1 +
αa

1− d2

(

1− d2 + 2w

1 + d

)

, (10)

by the linear transformation

x =
(1− d2)(1 + d) + αa(1− d2 + 2w)

α((2− d)(1 + d) + 2w)
z.

Therefore, the dynamics generated by map Tq on the diagonal are completely known, since they can

be obtained from those of the logistic map (see Devaney 2003). It is important to observe that equal

initial conditions imply equal dynamic behavior forever: trajectories embedded into ∆, i.e. those

characterized by x = y for all t, are called synchronized trajectories (see Bischi et al. 1998; Bischi

and Gardini, 2000).

In order to determine conditions concerning the local stability of the interior fixed point x∗q of φq

and to compare them with the ones holding for the local stability of x∗l for φl, we prove the following

Proposition.
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Proposition 6. Let a > w.

(a) If αa(1 + 2w) < 2, then x∗q is a locally stable fixed point of φq ∀d ∈ (d1q, d2q), −1 < d1q < 0 <

d2q < 1.

(b) Let a ≤ 1
2 and α(a + w) < 2 or a > 1

2 and αa(1 + 2w) < 2. Then x∗q is a locally stable fixed

point of φq ∀d ∈ (d1q, d2q) and x
∗
l is a locally stable fixed point of φl ∀d ∈ (d1l, d2l).

Furthermore, let P = 2a(a− 1)(4− α) + αw and Q = 4(2a− 1)− aα. Then:

(i) if P > 0 and Q < 0 then d1q > d1l and d2q > d2l;

(ii) if P < 0 and Q ̸= 0 then d1q < d1l and d2q > d2l;

(iii) if P > 0 and Q > 0 the case is open.

Proof. To prove part (a) assume that αa(1 + 2w) < 2. Then x∗q is locally stable iff µq ∈ (1, 3), i.e.

fq(d) = αa

(

1− d2 + 2w

1 + d

)

< 2(1− d2) = g(d).

Observe that limd→−1+ fq(d) = +∞, fq(0) = αa(1 + 2w) and fq(d) > 0, f ′q(d) < 0 and f ′′q (d) > 0

∀d ∈ (−1, 1). On the other hand g(d) is a concave parabola such that g(−1) = g(1) = 0 having

its maximum at (0, 2). Hence, since αa(1 + 2w) < 2, fq and g intersect each other at two points,

namely d1q and d2q, where −1 < d1q < 0 < d2q < 1.

To prove part (b) we consider the proof of Proposition 3 in Fanti et al. (2013), then conditions

a ≤ 1
2 and α(a+w) < 2 or a > 1

2 and αa(1+2w) < 2 guarantees that the fixed point is locally stable

both in the linear and nonlinear costs model, and, in particular, x∗l is locally stable ∀d ∈ (d1l, d2l)

where

d1l,2l =
aα∓

√

a2α2 + 16− 8α(a+ w)

4
.

In fact µl ∈ (1, 3) iff fl(d) < g(d) where fl(d) = −aαd+ α(a+ w). Notice also that

fq(d) = fl(d) + h(d), h(d) = αw

(

2a

1 + d
− 1

)

.

Since h(d) = 0 iff d = 2a− 1, h′(d) < 0 and h′′(d) > 0 ∀d > −1, statements (i), (ii) and (iii) can be

easily proved.

The previous Proposition states conditions on parameters explaining how the d-interval corre-

sponding to the local stability of the unique interior fixed point under linear costs, changes (for

instance it enlarges) if quadratic costs are introduced. In Figure 3 (d) curves P = 0 and Q = 0 are

depicted on plane (a, α). Observe that if a and α are both small enough, then case (ii) in Proposition

6 holds. Then, the d-interval such that the Nash equilibrium attracts synchronized trajectories with

quadratic costs is larger with respect to the case of linear costs. The decreasing returns to scale are

related to the existence of constraints that prevent some factors of production to increase in their

optimal proportions. Thus, given the extent of market demand and the speed of adjustment of price,

technological conditions related to quadratic costs allow the stability region (that depends on the

degree of product differentiation) to be larger than under constant returns to scale.

In Figure 3, we also show three bifurcation diagrams to compare the long-term evolution of

synchronized trajectories in the cases of linear costs (black points) and quadratic costs (red points).
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P=0
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Figure 3: Bifurcation diagrams of map φl (in black) and φq (in red) w.r.t. d for α = 1.2 and w = 0.3

with x(0) the maximun point of φl and φq respectively. (a) a = 0.8 and condition (i) of Proposition

6 applies; (b) a = 1.1 and condition (iii) of Proposition 6 holds. (c) α = 5, a = 0.2, w = 0.1

and condition (ii) of Proposition 6 holds. (d) If w = 0.5 the cases presented in Proposition 6 are

considered.
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In panel (a), the d-interval such that x∗q is locally stable (or, equivalently, φq admits an attractor)

has moved to the right, confirming the result proved in Proposition 6 (i). On the other hand, in

panel (b) we consider a larger value of a and show a different situation, i.e. the d-interval such

that x∗q is locally stable (or, equivalently, φq admits an attractor) is now reduced. Furthermore,

if d = 0 synchronized trajectories converge to a 2-period cycle providing that with quadratic costs

fluctuations can be produced also with independent products. This is an important difference with

the case of linear costs. In fact, though products are independent when d = 0 there are endogenous

fluctuations even if each firm behaves just like a monopolist in the market (no strategic behaviour).

More precisely, the setting of price for the subsequent period by every firm is based on its own

marginal profits, so that the effects of nonlinear (quadratic) costs is to induce fluctuations in a

parametric context where the fixed point is stable when costs are linear.

Finally, Figure 3 (c) refers to case (ii) in Proposition 6 and the d-interval enlarged when passing

from linear to quadratic costs.

We recall that ∀µq ≤ 4 map Tq admits an attractor that lies on the diagonal that (given the

properties of the logistic map) may consist in either a cycle or a more complex set. By following

similar arguments to those used in Proposition 6, and by taking into account numerical evidences

shown in Figure 3, the following remark can be stated.

Remark 7. If aα(1+2w) < 3 then φq admits an attractor ∀d ∈ (d̄1q, d̄2q). The comparison between

the intervals (d̄1q, d̄2q) (which exists in the quadratic costs case) and (d̄1l, d̄2l) (containing the values

of d such that an attractor exists in the model linear costs), follows the same properties stated in

Proposition 6.

Finally, about the existence of divergent trajectories, the following Proposition holds.

Proposition 8. A threshold value ᾱq does exist such that synchronized trajectories are divergent

∀α > ᾱq given the other parameter values (the same result holds if a > ā or w > w̄). Let ᾱl be the

corresponding value of ᾱq in the linear costs model. Then: (i) if w = 0 then ᾱq = ᾱl; (ii) if w > 0

then ᾱq ≥ ᾱl if and only of 1 + d− 2a ≥ 0.

Proof. The synchronized trajectories of Tq are governed by φq which is topologically conjugate to

the logistic map. Hence the generic trajectory diverges if µq > 4, i.e.

αa

1− d2
1− d2 + 2w

1 + d
> 3

which holds iff

α > 3
(1− d2)(1 + d)

a(1− d2 + 2w)
:= ᾱq.

From Proposition 2 in Fanti et al. 2013 we recall that ᾱl = 3 1−d2

a(1−d)+w
and, after some algebra, parts

(i) and (ii) trivially holds.

In line with Bischi et al. (1998), our finding confirms that when at least one of the two players

has limited information, the higher the speed of adjustment α, the more likely the destabilization

of the equilibrium of the map (similar to linear case). Specifically, our results aim at showing that

the convergence of synchronized trajectories towards the Nash equilibrium is necessarily associated

with intermediate values of d, confirming the result obtained with linear costs. In particular, if x∗q is

locally stable for a given d-value, then it loses stability via a period doubling bifurcation due to an

increase in the degree of substitutability (resp. complementarity) between products, i.e. d moves to

11



1 (resp. to −1). This fact shows that synchronized dynamics increases in complexity while moving

from the case of products of independent varieties to complementary or substitutability. In the limit

cases (d→ ±1), no bounded dynamics occurs on ∆, confirming the result proved in Proposition 1.

4 Synchronization and Multistability

In order to consider producers that start from different initial conditions (i.e., they set different

prices at time t = 0), we recall that a feasible trajectory starting from (x(0), y(0)), x(0) ̸= y(0) is

said to synchronize if |x(t)− y(t)| → 0 as t→ +∞.

Now, let that the condition stated in Remark 7 hold, so that φq admits an attractor A ⊆ I,

where I = [φ2q(c−1), φq(c−1)] and c−1 is the critical point of φq. Then, A is stable with respect to

perturbations along ∆. In order to study the stability of A for Tq, we have to consider the transverse

stability. For fixed points and cycles embedded into the invariant line ∆, the stability conditions

along ∆ are the same as for the corresponding fixed points and cycles of the quadratic map φq(x).

Therefore, in what follows we consider the transverse stability of invariants sets located on ∆.

If the attractor A consists of a fixed point, then by taking into account Proposition 5, if α is

not too high and parameter d belongs to a range of intermediate values, then E∗
q is locally stable

and trajectories that start from a neighborhood of E∗
q synchronizes, i.e. if firms start from different

initial conditions, they will behave in the same way in the long term. If E∗
q loses its local stability,

then the following result can be stated.

Proposition 9. (i) Let aα(1+2w) < 2. Then λ⊥(E∗
q ) < λ∥(E

∗
q ), ∀d ∈ I+(0) and λ⊥(E∗

q ) > λ∥(E
∗
q ),

∀d ∈ I−(0). (ii) Let α(a + w) < 2. Then λ⊥(E∗
l ) < λ∥(E

∗
l ), ∀d ∈ I+(0) and λ⊥(E∗

l ) > λ∥(E
∗
l ),

∀d ∈ I−(0).

Proof. (i) Firstly consider the case d = 0, then λ⊥(E∗
q ) = λ∥(E

∗
q ) = 1 − aα(1 + 2w) ∈ (−1, 1) iff

aα(1+2w) < 2. Hence E∗
q is locally stable for d = 0. Consider now d ̸= 0, hence λ∥(E

∗
q )−λ⊥(E∗

q ) =

F (d)G(d) with

F (d) :=
aα(1− d2 + 2w)

(1− d2)2[(1 + d)(2− d) + 2w]
and G(d) := 2d(1− d2 + w).

Since limd→0 F (d) > 0, then ∃I(0) such that F (d) > 0, ∀d ∈ I. Moreover, G(d) > 0 iff d > 0, hence

the statement is proved. Following similar steps, (ii) is obtained.

Notice that the condition for E∗
q to be locally stable for d = 0 is αa(1 + 2w) < 2, i.e. the

adjustment coefficient is not too large. According to Proposition 9, if synchronized trajectories

converge to x∗q with independent products, then trajectories starting from initial conditions close to

it, (x(0), y(0)) ∈ I(E∗
q , r), with x(0) ̸= y(0), synchronize in the long term as long as d ∈ I(0) while,

as d increases, the fixed point first loses its transverse stability, i.e. trajectories do not synchronize.

This fact implies that if there exists a feasible initial condition (x(0), y(0)) with x(0) ̸= y(0), then

it necessarily converges to another bounded attractor B existing out of the diagonal and coexisting

with E∗
q . This situation is presented in Figure 4 (a): for the chosen parameter constellation, if

d = 0 the Nash equilibrium E∗
q attracts every initial feasible condition while, if d increases, E∗

q (the

white point) loses its transverse stability and a 2-period cycle is created out of the diagonal (black

points); the 2-period cycle attracts all feasible initial conditions having x(0) ̸= y(0) (orange region).

If d increases further, two cyclic attracting closed invariant curves are created around the unstable
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2-period cycle due to a Neimark-Sacker bifurcation, and non synchronized feasible trajectories (the

ones that start from a point in the green region) exhibits a quasi-periodic or periodic behavior (see

Figure 4 (b)). We also observe that multistability arises, i.e. two attractors coexist, each of which

with its own basin of attraction, so that the selected long-term state depends on the initial condition.

In this case, the structure of the basins of attraction of different attractors becomes crucial to predict

the long-term outcome of the economic system: it may be simple as in Figures 4 (a) and (b) (hence

the final outcome of the economy can be predicted) or more complex, as it will be shown later in

this Section.

A different scenario occurs when products are complements, i.e. d decreases. According to

Proposition 9, starting from a situation in which E∗
q is locally stable for d = 0 (that is α less

enough), when d decreases the Nash equilibrium first loses the stability along the diagonal via a

period doubling bifurcation which creates an attracting cycle of period 2. Immediately after this

first flip bifurcation, the 2-period cycle is necessarily locally stable (as the transverse eigenvalue is still

less then one in modulus). Therefore, synchronization occurs. However, if the degree of horizontal

product differentiation still decreases, a sequence of flip bifurcation occurs on the diagonal, and

attracting periodic cycles appear around the unstable Nash equilibrium.

If A is an attracting m-cycle of φq, i.e. A = {x1, ..., xm}, then the corresponding m-cycle

{(x1, x1), ..., (xm, xm)} of Tq is transversely stable as long as

λ
(m)
q⊥ =

m
∏

i=1

λq⊥(xi) ∈ (−1, 1),

where λq⊥(xi) are the eigenvalues of the Jacobian matrix evaluated at a point (xi, xi) associated

with eigenvectors normal to ∆. Several numerical experiments show that, similar to what happens

for the fixed point, if A is an attracting m-cycle for d = 0, then as d increases (resp. decreases) the

m-cycle first loses its transverse stability (resp. its stability along ∆). As a consequence, we expect

synchronization to arise with negative values of d, thus confirming the result obtained in Fanti et

al. (2013).

If the m-cycle is transversely unstable, the situation may become very complicated, as is shown

in Figure 4 (c) where a 4-period cycle attracts all synchronized trajectories, while a 4-piece quasi

periodic attractor exists out of the diagonal and synchronization does not take place. A completely

different situation is depicted in Figure 4 (d): the attractors coexisting on the diagonal and outside

the diagonal are complex. In addition, a final bifurcation occurred causing the transition to complex

basin boundaries, and consequently to the final state sensitivity, that is the final outcome of the

economy becomes unpredictable. Furthermore, it may occur that trajectories starting far from ∆

synchronize in the long term, while firms starting from an initial condition slightly different do not.

Notice that in Figure 4 (d) A is a 2-piece chaotic attractor on ∆. In order to study its transverse

stability, we can apply the procedure proposed in Bischi et al. (1998), Bischi and Gardini (2000)

and used also in Fanti et al. (2014). Recall that the transverse Lyapunov exponent is defined as

Λq⊥ = lim
N→∞

1

N

N
∑

n=0

ln |λq⊥(xn)| , (11)

where x0 ∈ A and xn is a generic trajectory generated by φq. If x0 belongs to a generic aperiodic

trajectory embedded inside chaotic set A, then Λq⊥ is the natural transverse Lyapunov exponent

Λn
q⊥, where natural indicates that the exponent is computed for a typical trajectory taken in the

chaotic attractor A, where

Λmin
q⊥ ≤ ... ≤ Λn

q⊥ ≤ ... ≤ Λmax
q⊥
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Figure 4: (a) A 2-period cycle (balck points) coexists with the attractor A belonging to the diagonal

(the fixed point) for α = 0.4, d = 0.4, w = 0.5 and a = 2. (b) If d = 0.5 two cyclic attracting closed

invariant curves have been created out of the diagonal. (c) If d = −0.328 a 4-piece quasi periodic

attractor coexists with a 4-period cycle on the diagonal. (d) If d = −0.351, two coexisting complex

attractors are owned and the basin structure is quite complex. (e) If d = −0.383 bursts away from

the diagonal before synchronization occur for x(0) = 1.7 and y(0) = 2.1. (f) Complex attractor on

∆ coexisting with a 4-period cycle for d = −0.383.
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is a spectrum of transverse Lyapunov exponents. The natural transverse Lyapunov exponent repre-

sents a sort of weighted balance between the transversely repelling and transversely attracting cycles.

If all cycles embedded in A are transversely stable, that is Λmax
q⊥ < 0, then A is asymptotically stable

in the Lyapunov sense. If Λmax
q⊥ > 0 and Λn

q⊥ < 0 then A is a stable attractor in the Milnor sense. In

this last case, transversely repelling trajectories can be re-injected towards ∆ so that their behavior is

characterized by some bursts far from the diagonal, before the synchronization or before converging

to a different attractor. This situation is called on-off intermittency. This phenomenon is shown in

Figure 4 (e) and a trajectory starting from an initial condition that does not belong to the diagonal

has a long transient before converging to A. In this case, A is a complex attractor belonging to the

diagonal, coexisting with an attracting 4-period cycle whose basin is given by the yellow points in

Figure 4 (f). The economic behaviour cannot be predicted as the basins of attraction have a very

complex structure. This result may be of importance for policy insights. For instance, advertis-

ing policies may result in undesirable outcomes in the long term, i.e. the convergence towards an

attractors where profits are small.

To sum up, it is always possible to have coexisting attractors. If an attractor is complex then

initial conditions matter (sensitivity to initial conditions). Indeed, the structure of the attractor

is known so we are able to conclude, for instance, that aperiodic fluctuations can occur but they

are bounded in a given set. Coexisting attractors can exist in either cases of substitutability and

complementarity of products (positive and negative values of d, respectively). However, in the

case of substitutability it is possible to see - by looking at the basins of attraction - that the final

outcome of the economy is predictable. For instance, it is possible to predict long-term dynamics

by starting from an initial condition that lies on the diagonal or outside the diagonal. Though

coexisting attractors may exist also in the case of complementarity, the structure of the basins of

attraction may result to be complex in that case, so that the final outcome the economy may follow

is unpredictable (sensitivity with respect to the final outcome), i.e. it is not possible to ascertain

whether starting from a given initial condition outside the diagonal the trajectory will lead the

economy to an attractor or another (for instance, on the diagonal) that may have a completely

different structure, or if the economy will synchronize. The difference in terms of policy insights is

then clear in the two cases. When d > 0 it is possible to drive the direction of long-term outcomes

by providing adequate policies on the degree of product substitutability (for instance, advertising

investments) as well as on initial conditions, while when d < 0 policies may not be effective or have

detrimental effects.

As is shown above, in a Bertrand duopoly with product differentiation and quadratic costs mul-

tistability and synchronization may occur. However, while the synchronization phenomenon has

also been described in Fanti et al. (2013), multistability has not been considered in that work, so

that we now want to investigate whether this evidence also occurs with linear costs. Obviously, the

comparison between the two models becomes quite difficult, as qualitative properties of coexisting

attractors as well as properties of their basins are strictly related to the chosen parameter constella-

tions. For this reason, we start the analysis considering parameter sets used in Figure 4 also for the

case of linear costs, and then we focus on the particular case of independent products (i.e. d = 0),

with the main goal of showing a particular way in which multistability arises and to contrast models

with linear and quadratic costs.
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Figure 5: (a) The Nash equilibrium attracts all trajectories starting from and interior feasible point

for α = 0.4, d = 0.4, w = 0.5 and a = 2. (b) If d = 0.8 a 2-period cycle has been created out of the

diagonal. (c) If d = 0.82 two cyclic attracting closed invariant curves have been created out of the

diagonal. (c) If d = −0.662 a 4-period cycle coexists with a complex attractor on the diagonal. (d)

If d = −0.667, a 12-period cycle coexists with a complex attractor on the diagonal.
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4.1 Multistability with linear costs: numerical comparisons

Consider first the situation presented in Figure 4 (a) and observe that λ∥(E
∗
q ) ∈ (−1, 1) while

λ⊥(E∗
q ) ̸∈ (−1, 1). Hence, E∗

q is a saddle point. By taking into account Proposition 5 part (iii) and

the fact that λ∥(E
∗
l ) < 1 and λ⊥(E∗

l ) < 1, then λ∥(E
∗
l ) ∈ (−1, 1) while λ⊥(E∗

l ) can be both smaller

or larger than 1 in modulus. This means that the Nash equilibrium in the case of linear costs may

be a saddle point or a stable node. In Figure 5 (a) it can be observed that all interior feasible points

produce trajectories converging to E∗
l , that is a stable node. As for the quadratic costs model, if d

increases, E∗
l looses its transverse stability (see Figure 5 (b)). However, this bifurcation occurs later

(i.e. at d ≃ 0.747) providing the following two evidences: with linear costs and substitute products

the Nash equilibrium remains stable if d belongs to a d-interval which is larger in size with respect to

the case of quadratic costs; coexisting attractors emerge while synchronization is avoided. In Figure

5 (c) two cyclical attracting closed invariant curves are presented, similarly to what occurred in the

quadratic costs model (see Figure 4 (b)).

Consider now the case in which products are complements. As for the quadratic costs model,

multistability may emerge and, in addition, synchronization may occur. Anyway, also in this case

it can be noticed that, if we consider the same parameter values as in Figure 4 (c), then the

corresponding linear costs model behaves as in Figure 5 (a), i.e. the Nash equilibrium is a stable

node. As a consequence, again we need to further decrease parameter d to obtain situations similar

to those presented in 4 (c) and (d), i.e. showing complex attractors and/or complex basins. In

fact, the first period doubling bifurcation creating a 2-period cycle on the main diagonal occurs at

d ≃ −0.5348, while for smaller values of d, the more complex phenomena depicted in Figure 5 (d)

and (e) emerge.

The numerical experiments herewith presented aim at confirming that, for the chosen parame-

ter constellations, multistability occurs and synchronization characterises duopoly models in which

products are complements. In addition, the stability of the unique interior Nash equilibrium more

likely emerges when production costs are linear.

4.2 Independent products

This section studies the particular cases in which firms behave as if they were monopolist and

products of each variety are independent, that is d = 0. In this case our system becomes the

following:

Tq(d = 0) :

{

x′ = (1 + aα+ 2aαw)x− 2α(1 + w)x2

y′ = (1 + aα+ 2aαw)y − 2α(1 + w)y2
, (12)

which is a diagonal system where both equations are conjugated to the logistic map. Since the

eigenvalues associated with the Jacobian matrix J(x, y) are λ⊥(x, y) = 1+ aα(1+2w)− 2α(1+w)x

and λ∥(x, y) = 1 + aα(1 + 2w) − 2α(1 + w)y, which are symmetric, any periodic point along the

diagonal has always identical eigenvalues. Due to this property, any period doubling bifurcation

along the diagonal, which is associated with the bifurcation cascade of the logistic map, is followed

by a simultaneous period doubling bifurcation in the symmetric direction. This lead to the particular

complex phenomenon of multistability, with the creation of several coexisting attracting cycles that

have their own basins of attraction, as in Bischi and Kopel (2003).

Notice that the same holds in the case with linear costs. In particular, the equilibrium E∗
q =

(x∗q , x
∗
q), x

∗
q = a(1+2w)

2(1+w) loses stability via a first flip bifurcation (with both eigenvalues equal to −1)

at α̃q := 2
a(1+2w) ; in the same way E∗

l loses stability at α̃l :=
2

a+w
. Since we are interested in the
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Figure 6: (a) If a = 2, w = 0.5 and α = 0.51, Tq(d = 0) admits two stable coexisting cycles of period

2, whose basins of attraction are represented by the green and orange regions respectively. (b) If

α = 0.62, Tq(d = 0) admits two stable coexisting cycles of period 4, whose basins of attraction are

represented by the yellow and blue regions respectively.

comparison between models with linear and quadratic costs, in the following Proposition we consider

the first flip bifurcation in both cases.

Proposition 10. Let d = 0, a > w and α̃q := 2
a(1+2w) , α̃l :=

2
a+w

. Then:

(i) if a > 1
2 then E∗

q and E∗
l are both locally stable (resp. unstable) ∀α < α̃q (resp. ∀α > α̃l); if

α ∈ (α̃q, α̃l) then E
∗
q is locally unstable while E∗

l is locally stable;

(ii) if a < 1
2 then E∗

q and E∗
l are both locally stable (resp. unstable) ∀α < α̃l (resp. ∀α > α̃q); if

α ∈ (α̃l, α̃q) then E
∗
q is locally stable while E∗

l is locally unstable.

Proof. Let d = 0 then λ⊥(E∗
q ) = λ∥(E

∗
q ) = 1−aα(1+2w) which is less then −1 iff α > α̃q = 2

a(1+2w)

while λ⊥(E∗
l ) = λ∥(E

∗
l ) = 1 − α(a + w) which is less then −1 iff α > α̃l =

2
a+w

. Considering that

α̃q < α̃l iff a >
1
2 , statements (i) and (ii) are proved.

According to the previous Proposition, the Nash equilibrium loses stability if α increases in both

cases of linear and quadratic costs. However, the primary period doubling bifurcation occurs earlier

in the case of quadratic (resp. linear) costs if a > 1
2 (resp. a < 1

2 ), while it occurs simultaneously

in the two cases if a = 1
2 . Interestingly, the extent of market demand differently affects stability

of the Nash equilibrium depending on technology conditions. Specifically, if the size of market

demand is relatively large and there are decreasing returns to scale (quadratic costs), firms would

like to operate at full capacity, i.e. they need small prices and large quantities. However, given

the adjustment mechanism based on marginal profits, the higher the extent of market demand, the

higher marginal profits and prices in the subsequent period. This over-reaction tend to destabilise

the Nash equilibrium. In contrast, when the size of market demand is relatively small and there are

constant returns to scale (linear costs), firms would like to operate at average capacity, i.e. they

need not too high prices and quantities, otherwise they over-react and fix too high prices in the

subsequent period.

Moreover, we note that in the case in which the fixed point is locally unstable, a stable 2-cycle is

created along the invariant diagonal x = y and also a stable 2-cycle is created out of the diagonal,

with periodic points symmetric to it. In Figure 6 (a) we consider the case in which the size of demand

in the market is great enough; in this case α̃q = 0.5 < α̃l = 0.8 and if we set α slightly greater then
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α̃q the first flip bifurcation occurred in the quadratic costs model, while the Nash equilibrium is still

stable in the linear costs one.

Similar to what we have done about the first period doubling bifurcation of the fixed point, it

is possible to compare the model with quadratic costs with the one with linear costs also in terms

of subsequent bifurcations. Consider, for instance, the parameter values for which a second flip

bifurcation occurs along the diagonal (which is followed by a simultaneous flip bifurcation out of the

diagonal), i.e. ˜̃αq :=
√
6

a(1+2w) for the quadratic costs and ˜̃αl :=
√
6

a+w
for the linear costs case (these

values are obtained by considering µq(d = 0) = 1+
√
6 and µl(d = 0) = 1+

√
6). Again, it is possible

to verify that the second flip bifurcation occurs earlier in case of quadratic (resp. linear) costs if

a > 1
2 (resp. a < 1

2 ). This result holds also for all the subsequent bifurcations. In Figure 6 (b) we

consider a α-value slightly greater then ˜̃αq and, as expected, two stable cycles of period four coexist.

Notice that, since ˜̃αq = 0.6124, in this situation the Nash equilibrium in the linear costs model is

still stable. In fact, as previously discussed, E∗
l is locally stable as long as α < 0.8 while, if α = 0.8,

the generic trajectory produced by the model with quadratic costs exit the set R
2
+. This happens

because a final bifurcation occurred for system Tq(d = 0) when α = αf
q := 3

a(1+2w) (corresponding

to µq = 4) so that given the chosen parameter constellation, αf
q = 0.75. Notice that when a > 1

2 , the

system with quadratic costs closes earlier complexity. This is in line with our previous results and

considerations about the effects of the extent of market demand on stability of the Nash equilibrium.

5 Conclusions

This paper has taken a dynamic view of a duopoly market with price competition and horizontal

differentiation. The literature that studies dynamic phenomena in nonlinear oligopolies has mainly

concentrated on the behaviour of quantity-setting firms and provided results about conditions for

stability and instability of the Nash equilibrium under complete information (Puu, 1991) and in-

complete information by assuming specific behavioural rules (Bischi et al., 1998, 2007; Fanti et al.,

2012). The present paper has extended Fanti et al. (2013) and considered firms that operate with

a decreasing returns to scale technology that gives rise to nonlinear (quadratic) costs instead of a

constant returns to scale technology that gives rise to linear costs. We have remarked differences and

similarities of models with quadratic and linear costs, with specific regard to synchronisation and

multistability. In particular, when products are substitutes and production costs are linear the Nash

equilibrium is stable for a wider range of values of the degree of substitutability than when costs

are quadratic. In addition, coexisting attractors emerge while synchronization is avoided. When

products are complements the basins of attraction may be complex, so that the existence of different

attractors may cause problems of unpredictability.

Finally, when products are independent the flip bifurcation for which the Nash equilibrium loses

stability occurs earlier when costs are quadratic (resp. linear) if the extent of market demand is

large (resp. small).
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