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Abstract: 

Origami-inspired structures and materials have shown extraordinary properties and performances 

originated from the intricate geometries of folding. However, current state of the art studies have 

mostly focused on static and quasi-static characteristics. This research performs a comprehensive 

experimental and analytical study on the dynamics of origami folding through investigating a 

stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally 

investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under 

harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum 

analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate 

rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities 

indicate that a third-order polynomial can be employed to approximate the measured 

force-displacement relationship. Such an approximation is validated via numerical study by 

qualitatively reproducing the phenomena observed in the experiments. The dynamic 

characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); 

this suggests the possibility of applying the established tools and insights of HDO to predict 

origami dynamics. We also show that the bistability of SMO can be programmed within a large 

design space via tailoring the crease stiffness and initial stress-free configurations. The results of 

this research offer a wealth of fundamental insights into the dynamics of origami folding, and 

provide a solid foundation for developing foldable and deployable structures and materials with 

embedded dynamic functionalities. 
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I. INTRODUCTION 

Origami, an ancient art of paper folding, now refers to all folding practices regardless of the 

materials being used. Over the last several decades, there has been a significant rise of interest in 

origami research across the disciplines of natural science, mathematics, architecture, and 

engineering. For example, plant biologists used origami folding to explain the deploying 

mechanisms of tree leaves, flowers, and seed capsules [1–3], and mathematicians developed 

algorithmic and computational tools to design complex crease patterns and analyze their folding 

and unfolding behaviors [4–9]. Architects and engineers have mainly explored a special kind of 

origami design called rigid-foldable origami, a structure consisting of rigid panels connected by 

ideal hinges. Many origami-inspired applications have exploited the kinematics of folding. The 

complex yet programmable shape transformations originated from folding have served as 

guidelines for many design innovations, such as architectural polyhedral surfaces [10], sandwich 

cores [11], aerospace deployable structures [12,13], surgical devices [14], and self-folding 

robots [15]. Recently, research on origami mechanics have demonstrated that folding can also be 

a powerful tool to tailor the structural stiffness [16–21] and generate attractive and even 

unorthodox mechanical properties. For example, origami-based metamaterials and structures can 

exhibit auxetic effects [22–24], programmable stiffness [25], high stiffness yet high 

reconfigurability [26], bistability and multistability [23,27–29], programmable locking and 

stiffness jump [24,30], and recoverable collapse [31].  

Despite the significant research progress, most of the previous studies on origami have 

mainly focused on kinematics or static/quasi-static characteristics. Origami folding, on the other 

hand, could be a dynamic process and origami structures could possess rich dynamic 

characteristics under excitations. For example, folding and unfolding of origami can be rapid and 

reciprocal, and origami-based mechanical metamaterials can be a medium for elastic wave 

propagation and vibration transmission. Hence, origami dynamics could be important in many 

engineering systems and applications. Yasuda et al [32,33] investigated the nonlinear elastic 

wave propagation in a multiple degree-of-freedom (DOF) origami metamaterials consisting of 

Tachi-Miura polyhedron (TMP) cells. They demonstrated that, via utilizing the 

geometry-induced nonlinearity and the structure periodicity, such TMP-based tubular 

metamaterials can be developed into vibration and impact mitigating structures with tunable 

characteristics. In another study, Ishida et al. [34] developed an origami-based cylindrical 
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structure featuring quasi-zero stiffness and experimentally demonstrated that it can effectively 

isolate base excitations at low frequencies. These examples show that understanding the 

origami’s dynamic characteristics is an essential research topic towards many potential 

applications. However, other than [32–34], there are no literature on origami dynamics. 

Furthermore, a rigorous and comprehensive framework to investigate the dynamics of origami is 

lacking. Instead of fully capturing the effects of folding crease lines and rotating facets, the 

previous origami dynamic studies simplified the structures into equivalent linkage systems with 

multi-bars or spring-shafts [32–34]. Such approaches are effective in reducing the problem 

complexity but will discard important folding-related characteristics that are unique to origami. 

Therefore, it is still unknown how the many newly discovered mechanical properties from 

origami folding, such as bistability and multistability [23,27–29], could generate interesting and 

useful system dynamic behaviors.  

Based on the above observations, the goal of this research is to advance the state of the art 

through exploring origami dynamics. We focus our efforts on a stacked origami structure made 

up of two Miura-Ori cells [Fig. 1(a)]. Miura-Ori is the simplest degree-4 vertex pattern that 

possesses flat-foldability and single collinearity. Stacking two different Miura-Ori cells under 

geometry constraints [22,24] could yield a stacked flat-foldable structure [Fig. 1(b)]. When 

assigned with appropriate bending stiffness at the creases, the structure is able to exhibit 

bistability [27], that is, it can stay in two different folding configurations without any external aid. 

Note that bistability is a strong nonlinear characteristic with rich dynamics, some of which could 

be exploited for performance enhancement in various applications [35] such as energy 

harvesting [36–39], motion amplification [40,41], damping [42], sensing [43,44] and vibration 

cancelation [45] and isolation [46]. Despite its potential, the exploration of bistable dynamics in 

origami structures has never been pursued. 

This research conducts a comprehensive experimental and analytical study on the dynamics 

of a bistable stacked Miura-ori structure (SMO) without simplifying it into an equivalent linkage 

mechanism. We design and fabricate a rigid-foldable origami prototype and carry out systematic 

dynamic tests under harmonic base excitations. Notably, we observe that the SMO structure is 

able to exhibit two types of dynamic responses: small-amplitude intrawell oscillations and 

large-amplitude interwell oscillations. Transmissibility analysis shows that the intrawell 

oscillation, at some frequency intervals, is able to attenuate the excitations; while the interwell 

oscillation will amplify the excitations. We then perform spectrum analysis on the measured 
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responses, which reveals that both quadratic and cubic factors are dominant in the SMO 

nonlinear stiffness. It is these two types of nonlinearities that induce the observed rich dynamics, 

including regular periodic oscillations, subharmonic oscillations, and chaotic oscillations. To 

validate the experimental findings, we use a third-order polynomial to approximate the measured 

force-displacement curve of the SMO structure and apply it in numerical investigations. 

Simulation results capture the experimental observations, illustrating the validity of the 

nonlinearity identification. Some heuristic discussions on the SMO structure and its dynamics 

are presented, which offers directions for future research. We first note that the SMO structure 

exhibits an asymmetric bistable potential profile that can be described by a Helmholtz-Duffing 

oscillator (HDO). Such an observation indicates that the established tools (e.g., the harmonic 

balance method) and insights of HDO can be utilized to predict the bistable origami dynamics. 

We also demonstrate that the SMO structure’s bistability can be effectively programmed in terms 

of the stable well positions, the well depth, and the asymmetry level between the wells, without 

changing the origami crease pattern.  

 

 

FIG. 1. Geometry and kinematics of the SMO structure. (a) Geometry of a single SMO structure. The plane crease 

pattern of the bottom cell A and top cell B are given, with the internal solid and dashed lines indicating the 

“mountain” and “valley” creases, respectively. (b) A single SMO structure at the bulged-out ( 0Aθ < ), intermediate 

( 0Aθ = ), and nested-in ( 0Aθ > ) configurations. (c) Origami-based metamaterials expanded from SMO units, 

shown in three states. 
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This paper is organized as follows. Sec. II introduces the geometric design, folding 

kinematics, and bistability of the SMO structure. Sec. III presents the analysis of the dynamic 

experimental results based on an SMO prototype. The key nonlinear factors of the SMO structure 

are identified and are qualitatively verified through numerical investigation, as illustrated in Sec. 

IV, and heuristic discussions are presented in Sec. V. Finally, Sec. VI concludes with a summary 

and remarks on potential applications. 

II. ORIGAMI MODELING AND PROTOTYPE  

A. Origami geometry and kinematics 

We begin by characterizing the Miura-Ori geometry and folding kinematics. Miura-Ori is a 

particular kind of degree-4 vertex with a pair of collinear creases and reflectional symmetry 

about this crease. A Miura-Ori cell crease pattern can be defined by the lengths of two adjacent 

crease lines ( ka , kb ) and an angle kγ  between them [Fig. 1(a)], where the subscript “k (=A, B)” 

indicate the two connected cells A and B. Considering the rigid-folding scenario, Miura-Ori 

retains a single degree-of-freedom (DOF) for folding. Its folding motion can be described by the 

folding angle  ( , )k k A Bθ =  defined as the dihedral angle between the facet and the reference 

x y−  plane [Fig. 1(a)]. Without loss of generality, we designate the smaller cell with the shorter 

crease length as the bottom cell A [Fig. 1(a)]. To ensure kinematic compatibility between the two 

cells so that they keep connected during folding, the following relations have to be satisfied [22]: 

B A
A B

A B

cos
.

cos
,    b

a
b b

a

γ
γ

== =  (1)

With these kinematic constraints, the folding angles Aθ  and Bθ  follow the following 

relationship [22]: 

tan
arccos cos .

tan

A
B A

B

γ
θ θ

γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2)

Note that Aθ  ranges between / 2π−  and / 2π  while Bθ  keeps positive such that cell A 

bulges out of the larger cell B when A 0θ <  and nests into B otherwise. In what follows, for 

clarity, we denote the configuration with A 0θ <  as ‘bulged-out’ and otherwise as ‘nested-in’ 

[Fig. 1(b)].  

Particularly, Eq. (2) indicates a non-unique angle relation between the folding angles of the 
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two cells. For one Bθ  angle, Aθ  could take two values with the same magnitudes but opposite 

signs corresponding to the bulged-out and nested-in configurations, respectively. The only 

exception occurs at the minimum value of Bθ , which corresponds to a flat state of cell A (i.e., 

0Aθ = ). We will show in later discussion that such non-unique relationship is the origin of the 

elastic bistability. 

Miura-Ori’s folding motion can also be depicted by the dihedral angles between each two 

adjacent facets  ( , ;  1,2,3,4)ki k A B iρ = =  [Fig. 1(a)], we have: 

1 3

2

2 2

4 2

2 ,

cos
sin ,

2 1 sin sin

2 .

k k k

k k

k k

k k

ρ ρ π θ

ρ θ

θ γ

ρ π ρ

= = −

−

= −

=  (3)

For the bulged-out configuration ( A 0θ < ), we assign A2 ( ,2 )ρ π π∈ ; for the nested-in 

configuration ( 0Aθ > ), A2 (0, )ρ π∈ . The dihedral angles at the connecting creases are given as 

C B Aρ θ θ= − . 

We remark here that the 3-dimensional (3D) SMO structure possesses high potential to be 

expanded into a 3D origami-based metamaterial [Fig. 1(c)] [22,47]. If all the SMO units are 

ideally connected under the rigid-foldable assumption, the overall periodic SMO metamaterial is 

still rigid-foldable with a single DOF for folding. 

B. Elastic bistability 

When subjected to an external force, the Miura-origami structure can deform by both crease 

folding and facet bending, depending on the relative stiffness difference between the facets and 

the creases [20]. Here in order to investigate the bistable dynamics without unnecessary 

complexities, we assume the facets to be rigid, and the creases to be elastic hinges of prescribed 

torsional stiffness. We assign Ak  and Bk  as the torsional spring stiffness per unit length for the 

creases in cell A and cell B, respectively; and Ck  as the torsional stiffness at the connecting 

creases between the two cells. Then the torsional stiffness constants ( kiK  and CK ) 

corresponding to each dihedral angle ( kiρ  and Cρ ) can be determined. In cell A, 

A1 A3 AK K k b= = , A2 A4 A AK K k a= = ; in cell B, B1 B3 BK K k b= = , B2 B4 B BK K k a= = ; and at the 

connecting creases, C CK k b= . Hence the total potential energy of an SMO structure originating 

from the torsional springs yields 
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( ) ( ) ( )
4 4

2 2 2
0 0 0

A A A B B B C C C

1 1

1
4 ,

2
i i i i i i

i i

K K Kρ ρ ρ ρ ρ ρ
= =

⎡ ⎤
Π = − + − + −⎢ ⎥⎣ ⎦

∑ ∑  (4)

where 0 0,  Ai Biρ ρ  and 0

Cρ  are the dihedral angles corresponding to the stress-free stable folding 

configuration ( 0

A Aθ θ= ) where no crease is deformed from its “natural” stress-free shape. 

Upon adjusting the torsional stiffness and the stress-free configuration, the system potential 

can be programmed. Fig. 2(a) and 2(b) display the effects of torsional stiffness coefficients and 

the stress-free configuration on the structure potential, respectively. The SMO structure design 

parameters are listed in Table 1; in what follows, unless noted otherwise, all studies are based on 

this design. Fig. 2 reveals that the structure’s potential energy with respect to the folding angle is 

highly nonlinear, even though the constituent torsional stiffness of the creases are linear. Such 

nonlinearity is due to the intrinsic nonlinear geometric relationship between the dihedral angles 

( kiρ  and Cρ ) and the folding angle ( Aθ ) shown in Eq. (3). Particularly, if the torsional stiffness 

of cell B (i.e., Bk kµ= , where µ  is a positive constant) is significantly higher than Ak  and 

Ck , or the stress-free folding angle ( 0

Aθ ) deviates further from 0, the potential curve begin to 

show a twin-well scenario, which is a characteristic feature of bistability. The origin of this 

elastic bistability is directly related to the A Bθ θ−  relation given in Eq. (2). Note that the two 

stable configurations will have qualitatively different shapes: if the stress-free configuration is 

designated to have a nested-in shape, the other stable configuration will be bulged-out; and vice 

versa. An interesting feature that distinguishes the SMO structure with other bistable structure is 

its intrinsic asymmetric bistability. Fig. 2 reveals that the two stable configurations are not 

symmetric in either positions or potential values. 

 

FIG. 2. The normalized potential energy landscape with respect to the folding angle Aθ . (a) With stress-free 

configuration 
0

A / 3θ π= , bistability (dot-dashed) shows up when Bk kµ=  is significantly higher than Ak k= . (b) 

With B 10k k= , bistability (dot-dashed) shows up when the stress-free configuration 
0

Aθ  is far away from 0. Note 

that the bistability profile presents obvious asymmetry. 
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TABLE 1. SMO structure design 

Parameters Values Parameters Values 

A Bb b b= =  38.1 mm Aγ  60
o
 

Aa  38.1 mm Bγ  75
o
 

A Ck k=  k  Bk  kµ  

 

 

FIG. 3. Asymmetric bistability in the SMO structure, with 
0

A / 3θ π= −  and B A20 1 (N m)/radk k= = ⋅ . (a) The 

normalized potential energy with respect to the height H . (b) The force-displacement curve. The two stable 

configurations are denoted by solid dots 1H  and 2H . 

 

Considering the difficulty in measuring and utilizing the folding angles in applications, it is 

more convenient to examine the structure in terms of its height. The height H  of the SMO 

structure, defined as the distance between the center vertices of both cells [Fig. 1(a)], can be 

expressed as 

B B B A A Asin sin sin sin .H a aθ γ θ γ= −  (5)

Hence, the two stable configurations (say, 1H  and 2H ) can be determined via 

2

2
0,  0.

H H

∂Π ∂ Π
= >

∂ ∂
 (6)

Taking derivative of the potential Π  with respect to H , the force-displacement relation can be 

obtained as 

1

A A

d d d
.

d d d

H
F

H θ θ

−
⎛ ⎞Π Π

= = ⎜ ⎟
⎝ ⎠

 (7)

Hence, on the force-displacement curve [Fig. 3(b)], the two stable configurations are the 

intersection points with the 0F =  axis and with positive slopes. 

C. Prototype and static test 

Rather than simplifying the origami structure into an equivalent linkage system, we design and 

fabricate a proof-of-concept origami prototype that retains the feature of rigid facet and 

hinge-like creases.  This prototype is for: (i) validating the predicted bistability, (ii) measuring 

 [
]

F
N

[mm]H

0 / 3Aθ π= −

2H
1H

2

A
1

/
 [

ra
d

]
K

Π

[mm]H

0 / 3Aθ π= −

1H2H



Paper submitted to Physical Review E 

 9 / 25 

 

the bistable force-displacement relationship, and (iii) implementing dynamic experiments. The 

origami facets are water jet cut individually from 0.25-mm thick stainless steel sheets. Then they 

are stuck to a 0.13-mm thick adhesive-back plastic film (Ultra High Molecular Weight (UHMW) 

Polyethylene) to form two separate Miura-Ori cells (see the Miura-Ori design in Table 1). We 

paste 0.01-mm thick pre-bent spring-steel stripes at the creases corresponding to the dihedral 

angles B2ρ  and B4ρ  to provide strong torsional stiffness ( B2K  and B4K ). The stress-free angle 

for these pre-bent spring-steel stripes is about 90o , corresponding to a stress-free folding angle 

0

A1 57θ ≈ o . Then the two Miura-Ori cells are connected along the connecting creases by adhesive 

films to form a complete SMO structure prototype. Fig. 4(a) schematically illustrates the 

prototyping steps. The obtained SMO prototype maintains its rigid-foldability because the steel 

facets are much stiffer than the plastic creases, and the crease stiffness B2K  and B4K  are 

significantly higher than the stiffness of other creases (originated from the bending of the films) 

to generate bistability. 

To install the SMO prototype on the universal testing machine and the shaker, we design 

and 3D-print several connectors [Fig. 4(b)]. The connectors are screwed onto the rectangle steel 

plates, which are further connected with the SMO prototype at the top and bottom creases 

through adhesive films. A screw rod can then be inserted into the holes on the connectors and 

fixed with the connectors so that the relative motions between the top (or bottom) creases are not 

restricted while the external force can be effectively transmitted to the SMO prototype.  

 

FIG. 4. SMO structure prototype. (a) Illustration of the prototyping method. (b) SMO prototype with 3D-printed 

connectors and screw rods. 
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FIG. 5. Measured and fitted force-displacement curves of the SMO prototype. Insects display the prototype at the 

nested-in configuration (i), bulged-out configuration (ii), and a middle state (iii). 

 

We perform five complete tensile and compression tests on the SMO prototype to derive the 

force-displacement relationship; for each test, we average the tensile and compression data to get 

one curve. Averaging over the five tests yields the measured average (solid curve) and the 

standard deviation (SD, shaded bands) [Fig. 5]. For convenience, we introduce a new coordinate

0u H H= − , where 0 0u =  (i.e., 0H H= ) is set at the unstable equilibrium (in Fig. 5, it is the 

intersection points with the 0F =  axis and with negative slope). The SMO prototype shows 

strong bistability, with two bistable configurations locating at 1 14.43 mmu = −  and 

2 27.75 mmu = . The insets display the bulged-out and nested-in configurations, as well as an 

intermediate folding state. 

III. DYNAMIC EXPERIMENTS  

A． Experimental setup 

Fig. 6(a) schematically illustrates the experimental setup for the dynamic test. With the 

3D-printed connectors, we are able to connect the SMO prototype onto the shaker and connect a 

lumped mass with the SMO prototype. The SMO prototype is suspended on a fixed frame with 

very light strings. We apply harmonic base excitations to the SMO prototype in the horizontal 

direction (i.e., the height direction of the SMO structure), and use two laser vibrometers to 

synchronously measure the absolute motions of the shaker and the lumped mass, respectively. 

The base excitation amplitude maintains a relatively stable value based on preset gain factors. 

The experimental parameters are listed in Table 2. 

 



Paper submitted to Physical Review E 

 11 / 25 

 

 

FIG. 6. (a) Schematic illustration of the dynamic experiment setup; insets show the photos of the nested-in and 

bulged-out configurations of the SMO prototype. (b) Equivalent SDOF model for numerical simulation, inset shows 

the fitted force-displacement curve. 

 

TABLE 2. Dynamic Experiment Parameters 

Parameters Values 

SMO prototype mass 41 g 

Lumped mass 89 g 

Total mass 135 g 

Shake excitation frequency 2 Hz~12 Hz 

Shake excitation amplitude  

(average value and SD) 

6.17 mm 

=0.397 mmσ  

 

B． Displacement transmissibility analysis 

The SMO prototype is tested under discrete excitation frequencies from 2 Hz to 12 Hz, with 

frequency interval of step 0.1 Hz. External perturbations are applied to the lumped mass so as to 

capture all possible steady-state dynamics. At each excitation frequency ω , the absolute 

displacement time-histories of the lumped mass (say, X ) and the shaker (say, Y ) are measured. 

Considering that the dynamic response of the SMO prototype can be highly nonlinear, we use the 

root mean square (RMS) value of the displacement data to characterize the average vibrational 

energy. Dividing the RMS of the lumped mass’s steady-state displacement by the RMS of the 

shaker’s excitation displacement, we derive the displacement transmissibility of the SMO 

prototype in terms of the RMS value: 

( )
( )

2 2 2

1 2
RMS

_ RMS
2 2 2

RMS
1 2

... /
,

... /

N

d

N

x x x NX
T

Y y y y N

+ +
= =

+ +
 (8)
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where ix  and iy  ( 1,2,...,i N= ) denote the data points in the displacement time-histories; the 

data time length is selected as the integer multiples (>10) of the excitation period. Fig. 7(a) 

shows the relationship between _ RMSdT  and the excitation frequency ω . By examining the 

_ RMS ~dT ω  relationship and the displacement time-histories, two types of responses are 

identified: intrawell responses that oscillate near one of the stable configurations, and interwell 

responses that snap between the two stable configurations. The intrawell responses can be around 

either the nested-in or the bulged-out configuration, which are referred as intrawell (in) and 

intrawell (out), respectively; the interwell responses can be periodic or chaotic (see descriptions 

below). 

Fig. 7(a) reveals that at certain excitation frequency, multiple types of responses could 

coexist under different initial conditions. For intrawell vibrations, the intrawell (out) responses 

have higher transmissibility than the intrawell (in) responses. It is found that at relatively low 

excitation frequency, the transmissibility is higher than one and increases slowly with ω ; while 

at relatively high excitation frequency, the transmissibility could drop below one, indicating an 

attenuation of the base excitation. For the interwell vibrations, a much higher transmissibility is 

detected, suggesting a remarkable amplification of the base excitation. For the periodic case, the 

transmissibility gradually increases with respect to the excitation frequency; while for the chaotic 

case, the transmissibility remains fluctuation and is lower than that for the periodic case. 

C. Spectrum analysis 

Note that the RMS displacement transmissibility analysis offers an overall evaluation of the 

SMO prototype’s performance on transmitting vibration energy. However, this index alone 

cannot provide detailed dynamic characteristics. To gain in-depth understanding, spectrum 

analyses are carried out on the response signals. We apply fast Fourier transform (FFT) on X  

and identify the most significant components, say kX  at frequency kω . By dividing kX  by the 

base excitation amplitude (say, 0Y ), we derive the displacement transmissibility for each main 

frequency component: 

_

0

.k
d k

X
T

Y
=  (9)
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FIG. 7. Experiment results. (a) Displacement transmissibility in terms of the RMS value with respect to the 

excitation frequency ω . (b) From top to bottom, showing the displacement transmissibility of the main frequency 

components for the intrawell (in), intrawell (out), and interwell responses, respectively. (c) Three types of responses 

at 5.8 Hzω = : from top to bottom, single periodic intrawell (in), 2T-subharmonic intrawell (out), and 

3T-subharmonic interwell responses. (d) Three types of responses at 11 Hzω = : from top to bottom, 

2T-subharmonic intrawell (in), 2T-subharmonic intrawell (out), and interwell chaotic responses. Both the 

displacement time histories and the FFT spectrums are displayed in (c) and (d), and for reference, the excitation 

signals are also included.  

(a)

(b)

0 2 4 6 8 10 12
0

1

2

3

4

5
_

R
M

S
 [

-]
f

T

 [Hz]ω

Intrawell (in)
Intrawell (out)
Interwell
Interwell chaos

Period-2T

Period-3T

5.8Hz 11Hz

0 2 4 6 8 10 12

1

10

 [
-]

d
T

 [Hz]ω

Interwell Period-3T

110−

210−

16 17 18 19 20
-30

-15

0

15

30

,
 [

m
m

]
X

Y

[s]t

Intra(in)
10

-3

10
-2

10
-1

1

10

A
m

p
. 
[m

m
]

Freq. [Hz]

0 5 10 15 20 25 30 35 40

ω
2ω

3ω

Intra(in)

31 32 33 34 35
-30

-15

0

15

30

,
 [

m
m

]
X

Y

[s]t

Intra(out)

36 37 38 39 40
-30

-15

0

15

30

,
 [

m
m

]
X

Y

[s]t

Interwell

10-3

10-2

10-1

1

10

A
m

p
. 
[m

m
]

Freq. [Hz]
0 5 10 15 20 25 30 35 40

/2ωω
3 /2ω

Intra(out)

10-3

10-2

10
-1

1

10

A
m

p
. 

[m
m

]

Freq. [Hz]
0 5 10 15 20 25 30 35 40

/3ωω
2 /3ω

Interwell

5.8Hz

(c)

11Hz

(d)

10-3

10-2

10
-1

1

10

A
m

p
. 

[m
m

]
Freq. [Hz]

0 5 10 15 20 25 30 35 40

/2ω
ω

3 /2ω

Intra(in)

2ω

46 47 48 49 50
-30

-15

0

15

30

,
 [

m
m

]
X

Y

[s]t

Intra(in)

14 15 16 17 18
-30

-15

0

15

30

,
 [

m
m

]
X

Y

[s]t

Intra(out)

50 51 52 53 54
-30

-10
0

20
30

,
 [

m
m

]
X

Y

[s]t

Inter(Chaos)

10

-20

10-3

10-2

10-1

1

10

A
m

p
. 
[m

m
]

Freq. [Hz]
0 5 10 15 20 25 30 35 40

ω
Inter(Chaos)

3 / 2ω 2ω 3ω
/ 2ω ω

 in chaosω
/ 3ω 2 / 3ω

1

10

 [
-]

d
T

Intrawell (in) Period-2T

0 2 4 6 8 10 12

110−

210−

5.8Hz 11Hz

1

10

 [
-]

d
T

Intrawell (out) Period-2T

0 2 4 6 8 10 12

110−

210−

10-3

10-2

10-1

1

10

A
m

p
. 
[m

m
]

Freq. [Hz]
0 5 10 15 20 25 30 35 40

/2ω
ω

2ω

Intra(out)

3 /2ω

Base Origami

Base Origami

ω

ω

ω

ω

ω

ω



Paper submitted to Physical Review E 

 14 / 25 

 

Fig. 7(b), from top to bottom, shows the displacement transmissibility of the main 

frequency components for the intrawell (in), intrawell (out), and interwell responses, respectively. 

For the intrawell responses, it is found that when the excitation frequency is relatively low, the 

oscillation is a single periodic response dominated by the main harmonic (i.e., ω ); 2ω  and 

3ω  super harmonic components with much lower magnitude are also observed in the spectrum. 

For example, the intrawell (in) response at 5.8 Hzω =  [Fig. 7(c), top] belongs to this type. 

With the increase of excitation frequency, order-1/2 and order-2 harmonics ( / 2,  3 / 2,  2ω ω ω ) 

appear. The / 2ω  component becomes especially dominant and induces a subharmonic 

response with period 2 2 /T ω= ; for example, the intrawell (out) response at 5.8 Hzω =  [Fig. 

7(c), middle] and the intrawell (in) and intrawell (out) responses at 11 Hzω =  [Fig. 7(d), top 

and middle]. 

For the periodic interwell response, spectrum analyses reveal that the order-1/3 harmonics 

( / 3,  2 / 3ω ω ) exist. Especially, / 3ω  component makes a dominant contribution to the 

spectrum and induces another subharmonic response with period 3 3 /T ω= , see the example at 

5.8 Hzω =  [Fig. 7(c), bottom]. However, for the irregular interwell response, except the 

excitation component at frequency ω , no other discrete peaks is identified in the spectrum; 

instead, continuous frequency band is observed, which is an indicator of chaotic response. Such 

chaotic response is illustrated via an example at 11 Hzω =  [Fig. 7(d), bottom]. 

The spectrum analysis provides us with wealth of information for determining the dominant 

nonlinearities of the SMO structure. For the intrawell vibrations, no matter the single periodic or 

2T-subharmonic, the order-1/2 harmonic components (i.e., / 2ω , 2 / 2ω , 3 / 2ω , and 4 / 2ω  

components) occupy the majority of the vibration energy, indicating the dominance of the 

quadratic nonlinearity. While for the periodic interwell vibrations (which is 3T-subharmonic), the 

order-1/3 harmonics (i.e., / 3ω , 2 / 3ω , and 3 / 3ω  components) plays a major role, 

suggesting the dominance of the cubic nonlinearity. Overall, spectrum analysis demonstrates that 

the quadratic and cubic factors dominate the SMO structure’s nonlinearities; the observed 

difference on dominant factors is owing to the disparity of vibration amplitudes in intrawell and 

interwell responses. 
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IV. NUMERICAL SIMULATIONS 

A. Fitted force-displacement relation and simplified system 

The sub-harmonic and super-harmonic components in the dynamic responses indicate that both 

quadratic and cubic nonlinearity are significant for the origami structural stiffness; we can thus 

use a third-order polynomial to approximate the measured force-displacement curve. 

Considering that the equilibrium positions are the most important information to be captured, we 

use the following polynomial for curve fitting: 

0 1 2( ) ( )( )( ),F u u u u u u uα= − − −  (10)

where 0 =0u  denotes the unstable equilibrium, 1 14.43 mmu = −  and 2 27.75u =  denote the 

two stable configurations, and α  can be determined via an additional point on the curve. Here 

we choose the point with the maximum negative force (i.e., 3u  in Fig. 5), which gives 

0.0001578α = , and the fitted force-displacement curve yields 

( ) 0.0001578 ( 14.43)( 27.75),F u u u u= + −  (11)

shown in Fig. 5 with dashed curve. 

The fitted curve captures the main characteristics of the measured force-displacement 

relationship, including the dominant nonlinearities, the stable and unstable equilibriums, and the 

maximum negative force. However, the fitted curve shows some discrepancy with the measured 

data when the displacement far exceeds the stable configurations. Taking higher order 

polynomial is a possible way to address this issue, but may make it more difficult to predict the 

dynamic responses. 

With the fitted force-displacement relation, the undertaken dynamic experiments can be 

simplified into a single DOF nonlinear system subject to harmonic base excitation, shown in Fig. 

6(b). Its equation of motion is 

( ) ,mu F u cu my+ + = −&& & &&  (12)

where m  denotes the load mass; u x y= −  denotes the relative displacement between m  and 

the base, with 0u =  being the unstable equilibrium; ( )F u  is the fitted force-displacement 

relation (i.e., Eq. (11)); and c  is the viscous damping coefficient. The damping mainly comes 

from the creases made of plastic films. The base is subjected to a harmonic excitation 

sin( )y b tω=  with amplitude b  and frequency ω .  
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FIG. 8. Numerical simulation results. (a) Displacement transmissibility in terms of the RMS value with respect to 

the excitation frequency ω . (b) From top to bottom, showing the displacement transmissibility of the main 

frequency components for the intrawell (in), intrawell (out), and interwell responses, respectively.  
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B. Numerical simulations 

The objective for performing numerical study is to verify whether it is viable to use the quadratic 

and cubic terms to represent the SMO structure’s nonlinearity. If so, the simplified dynamic 

system (Eq. (12)) should reproduce similar bistable dynamics as those observed in experiments, 

including the intrawell and interwell responses, the transmissibility, and the spectrum 

information.  

Based on the experimental setup [Table 2], we assign 0.12 kgm = ,  6 mmb = , and 

0.6 kg/sc =  in Eq. (12) for numerical simulations. Eq. (12) is solved in Matlab
®

 through 

ordinary differential equation solver ODE45. With a step of 0.1 Hz, a discrete frequency sweep is 

performed between 2 Hz and 20 Hz. At each excitation frequency, three initial conditions 

0 0( , )u u&  are used to capture different dynamics: (-14.43, 0), (0, 0), and (27.75, 0). Similar to the 

experiments, we examine the system’s displacement transmissibility in terms of the RMS value 

(i.e., _ RMS RMS RMS/dT y x= ) [Fig. 8(a)]. It shows that the system is able to produce intrawell (in), 

intrawell (out), periodic interwell, and chaotic interwell oscillations. In the intrawell responses, 

the base excitations could be significantly attenuated at relatively high frequency, while the 

interwell responses have obvious amplification effects. Applying FFT on these responses, we 

derive the displacement transmissibility of the main frequency components [Fig. 8(b)]. 

Simulations indicate that for the periodic intrawell responses, the ω  and 2ω  components play 

a leading role; for 2T subharmonic intrawell responses, the / 2ω , ω , and 3 / 2ω  components 

dominates; and for 3T subharmonic interwell responses, the / 3ω , 2 / 3ω , and ω  components 

govern the oscillations. 

The numerical simulation results discussed above qualitatively agree with the experiments 

in terms of the response type, the displacement transmissibility, and the dominant frequency 

components. It manifests that combined quadratic and cubic nonlinearities could effectively 

predict the dynamic response of the bistable origami structure. Such a simplified nonlinearity 

representation provides an efficient and effective approach to analyze such origami dynamics 

with different designs and bistable characteristics. We remark that the damping coefficient and 

the excitation amplitude could also significantly affect the origami dynamics; however, 

investigating their influences is beyond the scope of this study. In addition, a quantitatively 

accurate verification is possible if the origami facet inertial is considered and more precise 

stiffness and damping profiles can be obtained.  
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V. DISCUSSION 

The research reported in Sections III and IV have successfully identified the dominant 

nonlinearities and investigated the dynamic characteristics of the SMO prototype through 

experimental and numerical studies. These results offered important physical insights and laid 

down the foundations for more comprehensive analyses of different origami designs and bistable 

profiles. In this section, we heuristically discuss several analytical tools that could contribute to 

the in-depth understanding on the dynamics of bistable origami. 

A. Stacked Miura-Ori structure and Helmholtz-Duffing Oscillator 

Recalling the simplified equation of motion of the SMO structure (i.e., Eq. (12)) and substituting 

the fitted force-displacement relation (Eq. (10)) and the base excitation into it, we get 

2 3

1 1( ) sin ,u k u k s u u cu p t
m

α
ω− + − + + =&& &  (13)

where 1 1 2 /k u u mα= − , 1 2 1 2( ) /s u u u u mα= + − , 
2p bω= , and * /c c m=  (for clarity, we will 

leave out the star). Careful observation indicates that Eq. (13) actually represents a 

Helmholtz-Duffing oscillator (HDO).  

In general, an HDO can be expressed as [48] 

2 3(1 ) sin ,z z z z z p tκ σ λ δ ω− + − + + =&& &  (14)

where κ , σ , δ , and λ  are constants. Consider the corresponding conservative system of Eq. 

(14), the potential function can be expressed as 
2 3 4( ) / 2 (1 ) / 3 / 4V z z z zκ σ λ= − + − + . When 

0κ < , the potential displays monostability with only one well locating at 0z = , see an example 

with 0.1κ = − , 0.3λ σ= =  [Fig. 9(a)]. When 0κ > , the potential profile shows bistability: if 

1,  0σ λ= ≠ , the system degenerates into a classical Duffing oscillator with symmetric bistable 

potential wells; if 1,  0σ λ≠ = , the system degenerates into a Helmholtz oscillator with a 

single-well potential; in more general situations when 1σ ≠  and 0λ ≠ , the system’s twin-well 

potential shows asymmetry. With 1κ =  and λ σ= , we plot the bistable potential energy 

landscapes corresponding to 0 1σ< ≤  and 1σ ≥  in Figs. 9(b) and (c), respectively, with 

0.4σ =  and 3σ =  as examples. The two wells exhibit asymmetry with different depth and 

different width: when 0 1σ< ≤ , the left well is deeper and wider than the right one; and when 

1σ ≥ , the right well is deeper and wider. 
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FIG. 9. Similarities between the HDO potential and the SMO potential profiles. (a) ~ (c) show the potential energy 

landscapes of the HDO at 0.1,  0.3κ σ= − = , 1,  0.4κ σ= = , and 1,  3κ σ= = , respectively, denoted by solid 

curves. For reference, the degenerated situations at 1σ =  are also plotted with dotted curves. (d) ~ (f) show the 

potential energy landscapes of the SMO structure with a small stress-free angle 
0 / 6Aθ π= , a nested-in stress-free 

configuration at 
0 / 3Aθ π= , and a bulged-out stress-free configuration at 

0 / 3Aθ π= − , respectively. The SMO 

structure’s potential is calculated based on Eq. (4) and (5). Comparing the subfigures in the same row could indicate 

the similarities between the HDO and the SMO potential profiles.  

 

Similarly, the above features and degenerations of the potential profile can also be observed 

in the SMO structure. Note that the parameters 1 1,  ,  k s u  and 2u  in Eq. (13) cannot randomly 

take values but depend on the SMO structure design parameters including geometry and 

torsional stiffness assignment. If the stress-free angle 0

Aθ  is close to 0o  or the crease torsional 

stiffness ratio µ  is low, the SMO potential would be monostable [Fig. 9(d)], similar to the case 

shown in Fig. 9(a). Otherwise, if with a larger stress-free angle 0

Aθ  or higher torsional stiffness 

ratio µ , the SMO potential would show bistability. When the SMO structure’s stress-free 

configuration locates at the nested-in stage, we have 1 2u u− >  and 1k s> , indicating that the 

nested-in well is deeper and wider than the bulged-out well [Fig. 9(e)], similar to the case of 

0 1σ< <  shown in Fig. 9(b). When the stress-free configuration is bulged-out, we have 

1 2u u− <  and 1k s< , implying that the bulged-out well is deeper and wider than the nested-in 

well [Fig. 9(f)], similar to the 1σ >  case displayed in Fig. 9(d). However, we remark that the 

SMO structure always possesses a cubic nonlinearity originating from the geometry, and the 
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asymmetry of the two potential wells is an intrinsic characteristic; therefore, Eq. (13) cannot 

degenerate into a Helmholtz oscillator without any cubic terms or a classical Duffing oscillator 

with symmetric bistable potential wells. 

Note that the HDO can describe the dynamics of many engineering systems, e.g., one 

dimensional structural system with an initial curvature [49], ship roll dynamics with wind load 

and unbalanced cargo load [50], etc. The investigation shown in Fig. 9 indicates that the potential 

energy profile of the SMO structure resembles those typical of an HDO, and can be effectively 

tailored by adjusting the stress-free configuration (i.e., 0

Aθ  in Fig. 9(c) and (d)). We will 

systematically discuss in the next subsection on how to program the bistability profile without 

changing the origami crease pattern.  

The HDO has been an active research topic in the field of nonlinear dynamics due to its rich 

phenomena. A number of analytical tools have been developed and significant insights on HDOs 

have been developed [48,51–58]. Therefore, considering the SMO structure as an HDO would 

contribute to the in-depth understanding of the dynamics of bistable origami. For example, the 

bifurcation and chaos studies on HDOs [48,52] could help us to uncover the mechanisms that 

generate subharmonic and chaotic responses observed in the experiments and simulations; the 

change in HDO dynamics with respect to its potential asymmetry level [56,57] could improve 

our understanding about the effects of tailoring origami bistability; and many analytical and 

numerical methods for HDO analyses (such as the energy balance method [55,59], harmonic 

balance method (HBM) [53,54], frequency–amplitude formulation [55], and high-order 

averaging method [58]) could be employed for accurate response prediction for bistable origami. 

B. Programmable bistability 

In this subsection, we discuss the potentials to program the bistability profile without changing 

the origami crease pattern. Providing that the origami crease pattern is fixed, Eq. (4) indicates 

that the SMO structure’s potential energy depends on two factors: the torsional stiffness at the 

creases and the stress-free angles. These two factors are relatively easier to be tailored than the 

origami crease pattern. Here we discuss the effects of programming the crease stiffness ratio ( µ ) 

and the stress-free angle ( 0

Aθ ) on the structure’s bistability.  

With the design parameters shown in Table 1, the SMO structure’s potential energy is 

evaluated. Based on whether the structure is monostable or bistable, the 0

Aµ θ−  plane can as 

divided into three regions, namely, monostable region I and bistable regions II and III [Fig. 
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10(a)], where the representative potential curves are sketched. In the monostable region I, the 

SMO potential profile is similar as the HDO with 0κ <  (e.g., Fig. 9(a)); in the bistable region 

II, the SMO potential profile is similar as the HDO with 0,  1κ σ> <  (e.g., Fig. 9(b)); in the 

bistable region III, the SMO potential profile is similar as the HDO with 0,  1κ σ> >  (e.g., Fig. 

9(c)). Therefore, this partition map enables us to simplify the SMO structure into the 

corresponding HDO system.  

In addition to obtaining the boundary between monstability and bistability, the bistable 

potential profiles are further investigated in terms of the distance between the two stable wells 

( d ), their depths ( inV  and outV ), and the asymmetry level between the two wells [Fig. 10(a)]. 

Here the potential difference between the two stable wells ( out inV V VΔ = − ) is employed as the 

index to characterize the asymmetry (denoted by contours in the bistable regions), with a positive 

value indicating that the bulged-out configuration is more stable (deeper) than the nested-in 

configuration, and vice versa.  

Fig. 10(a) reveals that the bistable potential profile can be effectively programmed by 

tailoring the 0

Aθ  and µ  values. If the stress-free angle 0

Aθ  is fixed, increasing the stiffness 

ratio µ  can change the SMO structure from being monostable to bistable (e.g., from point 1a  

to 2a  [Fig. 10(a, b)]). Inside the bistable regions, increasing µ  will significantly deepen the 

potential wells (e.g., from point 2a  to 3a  [Fig. 10(b)]). However, changing µ  does not affect 

the distance and asymmetry level between the two stable wells significantly. On the other hand, 

if µ  is fixed, 0

Aθ  has stronger effects on the bistability profile. Adjusting the stress-free 

folding angle from nested-in ( 0 0Aθ > ) to bulged-out ( 0 0Aθ < ) values can fundamentally shift the 

bistability asymmetry (e.g., from point 4a  to 7a  [Fig. 10(c)]). Moreover, increasing the 

magnitude of 0

Aθ  (e.g., from point 6a  to 7a  [Fig. 10(c)]) can separate the two stable wells 

further apart and deepen the potential wells, thus significantly strengthen the asymmetry level. 

Therefore, we show that the SMO structure’s bistability can be effectively programmed by 

tailoring the stress-free configuration and the torsional stiffness ratio. Such qualitative changes of 

bistability profile will be reflected in the corresponding dynamic equation (i.e., the HDO 

parameters), which will then significantly change the dynamic characteristics of the bistable 

origami.  
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FIG. 10. Programmable bistability. (a) Monostable region I and bistable regions II and III on the 
0

Aµ θ−  plane; in 

the bistable regions II and III, the contours indicate the potential difference between the two wells ( VΔ ). Insets 

show sketches of the monostable and bistable potential curves. The arrows indicate the increase direction of the 

distance ( d ), potential depth ( inV  and outV ), and asymmetry level ( VΔ ). (b) Potential energy landscapes 

corresponding to points 1a , 2a , and 3a  to illustrate the effects of the stiffness ratio µ . (c) Potential energy 

landscapes corresponding to points 4a , 5a , 6a , and 7a  to illustrate the effects of the stress-free folding angle 
0

Aθ . The change of potential well positions are denoted be arrows. 
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Spectrum analyses indicate that both quadratic and cubic factors dominate the structural 

nonlinearities. Due to the difference in response amplitudes, the quadratic nonlinearity plays a 

leading role in intrawell oscillations, while the cubic nonlinearity dominates the periodic 

interwell oscillations. Such observations indicate the feasibility of using third-order polynomials 

to approximate the experimentally measured force-displacement curve of the SMO structure. To 

verify this extrapolation, we performed numerical simulations with the fitted force-displacement 

relation. Simulation results manifest the correctness of the identified nonlinearities by capturing 

the dynamic phenomena observed in experiments. 

Through heuristic discussions, we established the parallelism between the SMO structure 

and the Helmholtz-Duffing Oscillator (HDO) by comparing their potential energy profiles. We 

noted that the SMO structure’s potential profile resembles an HDO, suggesting that the 

established tools and insights of HDO can be applied in analyzing the bistable origami dynamics. 

Moreover, we showed that without changing the origami crease pattern, the bistable profile of 

the SMO structure can be programmed by tailoring the crease stiffness ratio and the stress-free 

configuration. Such changes in bistability are equivalent to altering the HDO parameters, which 

will directly affect the system dynamic response.  

The bistability in origami structure is highly programmable, not only in terms of the 

transition between monostability and bistability, but also in terms of the equilibrium positions, 

the potential well depth, and the asymmetry between the two stable configurations. Such strong 

programmability would offer the bistable origami structure with great potentials in various 

dynamic applications. For example, if the origami structure is adopted as an energy harvester, 

relatively shallow potential wells would be helpful for the triggering of large-amplitude interwell 

responses with low-excitation levels [36,60]; if the SMO structure is developed as a dynamic 

motion amplifier, increasing the distance between the two stable configurations will increase the 

amplification ratio [61].  

We also want to remark that with the rigid-foldable assumption, the 3D periodic SMO 

metamaterial shown in Fig. 1(c) could retain all the kinematical, mechanical and dynamical 

characteristics of a single SMO unit. In addition, since the origami kinematics is 

scale-independent, proportionally increasing or decreasing the size would not fundamentally 

affect the mechanical and dynamical characteristics of the origami structure.  

This research performs a comprehensive experimental and analytical investigation on the 

dynamics of a bistable Miura-ori structure. The findings can significantly advance the state of the 
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art and open new perspectives for the origami research. It provides a solid foundation for 

programming origami bistability, tailoring the origami bistable dynamics, and adopting origami 

metastructures and metamaterials in dynamic applications. 
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