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Abstract The dynamics of a close-loop electrostatic

MEMS resonator, proposed as a platform for ultra

sensitive mass sensors, is investigated. The parameter

space of the resonator actuation voltage is investigated

to determine the optimal operating regions. Bifurca-

tion diagrams of the resonator response are obtained

at five different actuation voltage levels. The resonator

exhibits bi-stability with two coexisting stable equilib-

rium points located inside a lower and an upper poten-

tial wells. Steady-state chaotic attractors develop in-
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side each of the potential wells and around both wells.

The optimal region in the parameter space for mass

sensing purposes is determined. In that region, steady-

state chaotic attractors develop and spend most of the

time in the safe lower well while occasionally visiting

the upper well. The robustness of the chaotic attractors

in that region is demonstrated by studying their basins

of attraction. Further, regions of large dynamic ampli-

fication are also identified in the parameter space. In

these regions, the resonator can be used as an efficient

long-stroke actuator.

Keywords Chaos · Bifurcation · MEMS ·
Electrostatic actuators

1 Introduction

MEMS are used widely as sensors due to their small

size, high sensitivity and precision, and low cost. Mass

sensing is an important commercial application of

MEMS sensors. One approach to realize MEMS mass

sensors is to place a selective recipient material on the

surface of a micro-beam. When the target analyte ad-

heres to the recipient surface, it changes the mass of

the beam. The change in the mass is then determined

by either measuring the change in static position of the

beam [1], or tracking a change in dynamic behavior as

a result of that change in mass. The change in dynamic

behavior can be a shift in the natural frequency [2, 3],
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mailto:eihab@uwaterloo.ca
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the location of a bifurcation point [4, 5], or the eigen-

mode of an array of beams [6].

Yin and Epureanu [7] were able to measure ex-

perimentally small variations in the mass of a can-

tilever beam by detecting changes in the shape of its

chaotic attractor. Chaos in dynamic systems was first

observed in the late nineteenth century by Poincaré;

however, useful applications of this interesting phe-

nomenon did not emerge until the nineties [8]. The

metrics of chaotic attractors are highly sensitive to

variations in the system parameters [9] which makes

them an ideal platform for parameter identification.

Epureanu el al. [10] were able to detect damage in

thermo-shielding panels undergoing chaotic oscilla-

tions. Ghafari et al. [11] used the Lyapunov expo-

nent of the chaotic oscillations of rolling element bear-

ings to detect bearing faults. Wu et al. [12] used the

3-dimensional fractal dimension of the fetal cortical

surface to assess the level of cortical development and

to detect morphologic abnormalities in fetuses. Com-

bining the enhanced sensitivity of the chaotic attractor

metrics and MEMS sensors can take micro-mass sens-

ing to a new dimension.

Chaos in MEMS was first observed by Bienstman

et al. [13] in an electrostatically actuated impact res-

onator. They used a simple fixed-fixed beam driven

by a voltage larger than the pull-in voltage. When the

beam pulls in, a short circuit is introduced. As a re-

sult, the voltage drops and the mechanical stiffness

becomes larger than the electrostatic force, thus forc-

ing the beam away from the electrode. When con-

tact is lost, the electric force starts building up and

the beam pulls in again. This switching-like opera-

tion produces large periodic motions. Chaos was ob-

served in the system, and thus tracked to be avoided.

Wang et al. [14] realized a MEMS resonator excited

by two non-overlapping comb-drives, thus creating a

bi-stable Duffing oscillator. They measured chaotic os-

cillations experimentally around a drive frequency of

6 kHz, which is the natural frequency of the system.

However, there were large mismatches between the

model and experiment. The mismatch was mainly due

to their inability to estimate the system parameters.

DeMartini et al. [15] used a similar structure and were

also able to produce chaotic motions experimentally

around 20 kHz, which is about 1.15 times the natural

frequency of the system.

De and Aluru [16] reported chaos in a model of an

open-loop electrostatically actuated parallel-plate res-

onator prior to pull-in. Najar et al. [17] reported an

incomplete cascade of period-doubling bifurcations in

a similar model just before pull-in. They showed that

chaos cannot occur in open-loop electrostatic actua-

tors due to the occurrence of a homoclinic bifurcation

which leads to rapid dynamic pull-in.

Liu et al. [18] observed period-doubling bifurca-

tions and chaos in a model of a close-loop controlled

micro-resonator. The close-loop system was designed

and realized to serve as a magnetic probe tip actuator

for a probe-based micro-disc drive [19]. Towfighian et

al. [20] studied this system and found an asymmetric

two-well potential with two distinct chaotic attractors;

one of which occurs predominantly in the lower-well,

and a second that visits a lower-well orbit and a two-

well orbit.

Electrostatically-actuated micro-beams are gaining

widespread use as actuators, resonators, and sensors.

The requirements for each of these uses are disparate

and in some cases contradictory. For example, micro-

positioning requires repeatability of motion along a

trajectory, while sensing requires high sensitivity; rel-

atively large responses to relatively small stimuli.

A major obstacle in the use of the electrostatically

actuated micro-beams is the presence of pull-in insta-

bility which takes place when the electrostatic force

overcomes the elastic restoring force in the beam. Re-

cently, closed-loop control was used to retard or elim-

inate the pull-in instability [19, 21].

In particular, Towfighian et al. [21] demonstrated

experimentally a closed loop controlled electrostatic

micro-actuator with an operating range over 90% of

the gap. This actuator can realize large-orbit oscilla-

tions within the electrostatic field. Since electrostatic

forces are highly nonlinear, the ramifications of these

large motions are not obvious and require further in-

vestigation.

In this paper, we undertake a qualitative study of the

Towfighian et al. [20, 21] actuator that maps the actua-

tion parameter-space to classify available motion pat-

terns, identify phenomena arising due to large motions

within strongly non-linear electrostatic fields, and to

delineate regions where it can be used as a micro-

positioner or periodic resonator and regions where it

can be deployed as a chaotic resonator to serve as a

platform for a high-sensitivity mass sensor. Toward

that end, bifurcation diagrams are obtained for a range

of excitation voltage amplitudes and frequencies. Lya-

punov exponents are found to verify the existence of

chaotic attractors and the basins of attraction of those
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attractors are also found to determine the safe basin of

motions.

2 The close-loop electrostatic resonator

The motions of a micro-cantilever beam electrostatic

resonator, Fig. 1 can be described using a single-mode

approximation. The single degree-of-freedom equa-

tion of motion can be written as [20–22]:

d̈ = − k

m
d + βV 2

m(g − d)2
(1)

where d, k,m,β,V, and g are the displacement of the

beam tip, the effective stiffness of the beam, the ef-

fective mass of the beam, the electro-mechanical cou-

pling coefficient, the voltage drop across the capaci-

tor gap, and the gap distance, respectively. The elec-

trostatic force term in (1) is highly non-linear. In fact,

the electrostatic force grows and approaches infinity as

the resonator displacement grows and approaches the

size of the capacitor gap d → g. On the other hand,

the beam stiffness k is finite, which causes the static

equilibrium of the resonator to lose stability at about

one-third of the gap g in a phenomenon known as

Fig. 1 Electrostatically actuated cantilever beam

static pull-in. The static and dynamic response of un-

controlled electrostatic MEMS resonators have been

studied extensively by many researchers, for example

Najar et al. in [17, 23].

With the introduction of close-loop control [20, 21],

stable beam motions can be extended to over 90%

of the gap. Further, the close loop actuator can be

configured to exhibit two stable equilibria instead

of the single equilibrium available under open loop

conditions. Large motions and bi-stability fundamen-

tally change the dynamics of MEMS electrostatic res-

onators, thereby suggesting a re-examination of the

types of behavior available in the parameter space and

their potential applications.

Figure 2 shows a block diagram of the close-loop

electrostatic resonator under study [21]. The plant is a

MEMS microcantilever beam with length, width, and

thickness L,w, and h, respectively. The plant input

is the actuation voltage Va . A vibrometer (Polytech

MSV 400) is used to measure the velocity of the beam

tip. The velocity of the tip is the plant output that is

used in feedback path to generate the control voltage

Vs and close the loop. The controller is implemented

using analog electronics. The close-loop system equa-

tions are [20]:

ḋ = v (2)

v̇ = −µv

+ −c3d − c4d
2 − c5d

3 + c6G
2(Va

√
α − Vs)

2

c0 + c1d + d2

(3)

V̇s = −r

(

Vs − d

1 − d
Ψ

√
α

)

(4)

Fig. 2 Block diagram of

the close-loop system
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Table 1 System

parameters used in

simulations

Parameter Value

L 200 µm

w 80 µm

h 4.5 µm

g 3 µm

µ 0.73

r 100

G 0.8

Ψ 3 V

ρ 2331 kg/m3

E 166 GP

α 0.0002 V−2

where d(t) and v(t) represent the displacement and

velocity of the tip of the beam in the z direction, Fig. 2,

Vs(t) is the non-dimensional control voltage, Va(t) =
VDC +VAC sin(Ωt) is the actuation voltage, ci are non-

dimensional modal coefficients obtained from a one-

mode Galerkin expansion, µ is the non-dimensional

damping coefficient, r is the controller damping, G is

a voltage gain, Ψ is a displacement gain, and α is the

electromechanical coupling coefficient. The tip posi-

tion, voltage, and time are non-dimensionalized with

respect to the capacitor gap g, the electromechanical

coupling coefficient α, and the time constant of the

beam T =
√

ρAL4

EI
respectively, where α has the di-

mensions of volts−2, A = hw, E is Young’s modulus,

and I = wh3

12
. The first two equations govern the posi-

tion and velocity of the tip of the beam, and the third

governs the controller voltage. The system parameters

are listed in Table 1.

Towfighian et al. [20] used these system parame-

ters to find a region of bi-stability in the range VDC =
[108,113] V. At VDC = 110 V, the controlled micro-

beam has five static equilibrium positions. These posi-

tions were determined by setting the time derivatives

in (2)–(4) equal to zero and solving the resulting alge-

braic system. The stability of each equilibrium point

was then determined by calculating the eigenvalues

of the Jacobian matrix of the system evaluated at the

given fixed position. Out of the five equilibrium po-

sitions, only four are physical. The fifth equilibrium

position is physical because it indicates a tip position

larger than 1 beyond the bottom electrode located at

d = 1. For the other four equilibrium positions, two

were found to be stable foci, while the other two were

Table 2 Stable positions and corresponding natural frequency

VAC Equilibrium position Natural frequency ωi Stability

2 V 0.371037 1.9742 Stable

0.681634 Unstable

0.863958 4.43694 Stable

0.984587 Unstable

2.5 V 0.371144 1.97343 Stable

0.681441 Unstable

0.864018 4.44096 Stable

0.984588 Unstable

3 V 0.371276 1.97250 Stable

0.681206 Unstable

0.864092 4.44586 Stable

0.984588 Unstable

3.5 V 0.371432 1.97139 Stable

0.680928 Unstable

0.864092 4.44586 Stable

0.984589 Unstable

4 V 0.371612 1.9701 Stable

0.680607 Unstable

0.86428 4.45832 Stable

0.98459 Unstable

found to be unstable saddles. Each of the two stable

equilibrium positions has its own natural frequency

which is dependent on the input DC voltage.

Bi-stability introduces rich dynamics to the system

response and increases the likelihood of chaos. In the

presence of a combined DC and AC input voltage,

the equilibrium positions and natural frequencies are

determined by the RMS value of the total actuation

voltage. The natural frequency of oscillations around

a given equilibrium position is equal to the imagi-

nary component of the complex pair of the eigen-

values of the Jacobian evaluated at that position. Ta-

ble 2 shows the equilibrium positions and the corre-

sponding natural frequencies for VDC = 110 V and

VAC = [2,2.5,3,3.5,4] V.

3 Analysis procedure

To investigate available dynamic regimes within the

parameter space, bifurcation diagrams are obtained at

five values of the excitation voltage amplitudes VAC



A chaotic MEMS resonator

with the frequency of excitation Ω acting as the con-

trol parameter. The bifurcation diagrams were gener-

ated using a two-sided Poincaré section at the plane

v = 0. The value of d at the intersection points with

this section represent the maximum and minimum po-

sitions of the beam tip, therefore allowing us to de-

scribe the relative location of the orbit as well as its

size. The procedure used to construct the bifurcation

diagrams is presented in Appendix A.

The Lyapunov exponents were calculated to verify

the existence of the chaotic attractors and to character-

ize them. The Lyapunov exponent is a measure of ex-

pansion or contraction of perturbations around a given

trajectory. A dissipative system becomes chaotic when

at least one Lyapunov exponent is positive [9] due to

the presence of an exponentially growing process in-

side the contracting space.

The non-autonomous system equations (2)–(4)

were transformed to an autonomous system by adding

a state variable θ and an equation to describe its evo-

lution over time:

ḋ = v (5)

v̇ = −µv +
−c3d − c4d

2 − c5d
3 + c6G

2(
√

α(VDC + VAC cos θ) − Vs)
2

c0 + c1d + d2

(6)

V̇s = −r

(

Vs − d

1 − d
Ψ

√
α

)

(7)

θ̇ = Ω (8)

The Lyapunov exponents were then calculated fol-

lowing the algorithm used in [9]. The complete proce-

dure for calculating the exponents is described in Ap-

pendix B. The Lyapunov exponents were calculated

for large branches of chaotic attractors. The value of

the maximum Lyapunov exponent was used to verify

the existence of chaos and to measure the relative ac-

tivity of the chaotic attractor.

4 Results

4.1 System response at VAC = 2 V

Figure 3 shows the bifurcation diagram for an AC am-

plitude of VAC = 2 V where solid lines represent sta-

ble orbits and dotted lines represent unstable orbits.

Fig. 3 The bifurcation diagram for VAC = 2 V

Fig. 4 The bifurcation diagram for the upper-well orbits at

VAC = 2 V

The presence of a two-well potential field is obvious

in the appearance of attractors limited to the lower-

well and others limited to the upper-well. No two-well

orbits were observed at this excitation level. The ef-

fect of the asymmetry in the two potential wells can

be seen obvious in the relative size and location along

the frequency spectrum of those attractors.

In the upper-well, Fig. 4, the orbits undergo sig-

nificant qualitative changes. Sweeping the frequency

down from Ω = 10, a branch of stable period-one or-

bits exists in the upper-well, this branch will be dubbed

branch A. The stable period-one orbits lose stabil-

ity via a supercritical period-doubling bifurcation at

Ω = 9.245. Beyond the period-doubling bifurcation

point, a stable period-two orbit coexists with an unsta-

ble period-one orbit. As shown in Fig. 5, the period-

two orbit deforms as the frequency decreases and in-

tersects the zero-velocity line only twice per period.

The reason for this anomaly is that the response of the

system at 2Ω continues to grow as the frequency de-

creases until it dominates the response at Ω = 9.07.
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Fig. 5 The phase

portrait (a) and the

time-history of the beam tip

velocity (b) for a

period-two orbit at

VAC = 2 V and Ω = 9

Fig. 6 (Color online) Bifurcation diagram of the super-har-

monic orbits in the upper-well at VAC = 2 V

As a result, each cycle sees only two velocity reversals

and appears in the bifurcation diagram as two points

instead of four. The stable period-two orbits undergo

a cascade of period-doubling bifurcations culminating

in chaos. Period four orbits appear at Ω = 7.231 and

the chaotic attractors start at Ω = 7.065. This attractor,

however, occupies a very small range in the frequency

spectrum Ω = [7.055,7.076].
The branch of period-one unstable orbits originat-

ing from branch A regains stability through a subcriti-

cal period-doubling bifurcation at Ω = 8.165 where a

new branch of stable orbits, dubbed branch B, starts.

This stable period-one orbit co-exists with an unsta-

ble period-two orbit born at the bifurcation point as

well as the stable orbits of branch A described above.

Sweeping the frequency down, branch B experiences

a cascade of supercritical period-doubling bifurca-

tions leading to chaos. Period-two orbits appear on

the branch at Ω = 4.589, period-four orbits appear at

Ω = 4.374, and chaos appears at Ω = 4.344.

At low excitation frequencies another set of

branches exist in the upper-well, Fig. 3. The first

branch of solutions, dubbed S2 and shown in blue solid

lines in Fig. 6, starts from a cyclic-fold bifurcation at

Ω = 2.833 due to the super-harmonic resonance of

order two. Figure 7 shows the phase portrait and the

FFT of an orbit on this branch at Ω = 2.2. The domi-

nant peak in the FFT is present at twice the excitation

frequency indicating a super-harmonic resonance of

culminating in with chaos. Period-two orbits start at

Ω = 2.132, period-four orbits start at Ω = 2.061, and

chaos starts at Ω = 2.05.

A branch of period-two periodic orbits dubbed P2,

shown in red solid lines in Fig. 6, coexists with

branch S2. This branch appears out of a cyclic-fold

bifurcation at Ω = 2.53. Figure 8 shows the phase

portraits of the coexisting orbits on branches S2 (solid

blue line) and P2 (dashed magenta line) at Ω =
2.5. While the orbits appear to intersect in the two-

dimensional projection of phase-space (d, v), shown

in Fig. 8, they do not intersect in the three-dimensional

phase-space (d, v,Vs ). The orbits on this branch ex-

perience a cascade of period-doubling bifurcation;

period-four orbits appear at Ω = 2.419 and chaos ap-

pears at Ω = 2.045. All of the chaotic attractors ob-

served here were restricted to the upper-well.

Similarly, branches of super-harmonic orbits of or-

der three S3, shown in solid golden lines, and four S4,

shown in solid green lines, are observed in the neigh-

borhoods of Ω ≈ 1
3
ω3 and Ω ≈ 1

4
ω3, Fig. 6. These or-

bits appear through cyclic-fold bifurcations and disap-

pear through a cascade of period-doubling bifurcations

ending in chaos. The last branch of orbits, shown in

Fig. 6 in solid blue lines, is born through a cyclic-fold

bifurcation at Ω = 0.94. The orbits on this branch cor-

respond to super-harmonic resonances of higher-order.

Due to the quick succession of these super-harmonic

resonances, the distinct branches of solutions merge in

one branch with each super-harmonic resonance tak-

ing over from the next lowest as the frequency is de-

creased. No period-doubling bifurcations appear along

this branch of solutions due to the weakness of these

higher-order super-harmonic resonances.

In the lower-well, one branch of orbits, dubbed

branch C, exists throughout the frequency spectrum,

Fig. 3, which undergoes dynamic amplification in the
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Fig. 7 The phase

portrait (a) and the FFT (b)

of an orbit at VAC = 2 V

and Ω = 2.2

Fig. 8 (Color online) The phase portraits of the coexisting or-

bits at VAC = 2 V and Ω = 2.5

neighborhood of the natural frequency of the lower

equilibrium position ω1.

4.2 System response at VAC = 2.5 V

Figure 9 shows the bifurcation diagram for an AC

amplitude VAC = 2.5 V. In the upper-well, branches

A and B are qualitatively similar to those appearing

at VAC = 2 V. Stable period-one orbits on branch

A looses stability through a supercritical period-

doubling bifurcation at Ω = 9.37 and a cascade of

period-doubling bifurcations takes place culminating

with chaos at Ω = 7.34. Branch B starts at Ω = 7.79

with a subcritical period-doubling bifurcation giving

birth to stable period-one orbits that loose stability

through a supercritical period-doubling bifurcation at

Ω = 5.09 followed by a cascade of period-doubling

bifurcations ending with chaos at Ω = 4.76.

The chaotic region on branch B is larger than any of

those realized in the upper-well for an AC amplitude of

VAC = 2 V. Figure 10 shows the bifurcation diagram of

that chaotic region. The chaotic attractor experiences

Fig. 9 The bifurcation diagram for VAC = 2.5 V

an interior crisis at Ω = 4.76, after which it expands

in size from a banded-attractor to a fully developed

attractor filling most of the upper-well. The chaotic re-

gion experiences an exterior crisis at Ω = 4.681. Be-

yond the chaotic attractor, the stable manifold of the

lower saddle re-injects the system response into the

lower-well where it lands on the period-one orbits of

branch C. It should be noted that this chaotic region

appear in the vicinity of the natural frequency of the

upper-well equilibrium position Ω ≈ ω3. None of the

super-harmonic resonances of the upper-well observed

at an AC amplitude of VAC = 2 V is present here.

The response in the lower-well, Fig. 9, is qualita-

tively similar to that for an excitation amplitude of

VAC = 2 V except in the vicinity of the natural fre-

quency of the lower equilibrium position Ω ≈ ω1.

Branch C is split into two branches, Fig. 11, C at

higher forcing frequencies and D at lower frequencies.

As the frequency is swept down, the stable period-one

orbits available on branch C experience a cascade of
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Fig. 10 The bifurcation diagram of the chaotic region on

branch B at VAC = 2.5 V

Fig. 11 Inset of Fig. 9

period-doubling bifurcations ending with chaos. The

first period-doubling occurs at Ω = 1.385, the second

at Ω = 1.363, the third at Ω = 1.359, and chaos ap-

pears at Ω = 1.352. Only the branch of period-two

orbits, subsequent to the first period-doubling bifur-

cation, is shown due to the small span of the higher-

order orbits. A homoclinic bifurcation was reported by

Najar et al. [17] to interrupt an incomplete cascade of

period-doubling bifurcations and to result in dynamic

pull-in of an open-loop electrostatic resonator. In our

case, the presence of the close-loop controller allows

the cascade of period-doubling bifurcation to continue

culminating in chaos due to a homoclinic entangle-

ment. Sweeping the frequency down over the bound-

ary of the chaotic region, the controller also re-injects

the system response to the lower-well after it leaves

the chaotic attractor to land on the period-one orbits of

branch D.

Branch D starts through a cyclic-fold bifurcation at

Ω = 1.48 that results in coexisting stable and unstable

period-one orbits. These orbits co-exist with branch C

Fig. 12 The bifurcation diagram for VAC = 3 V

in the interval Ω = [1.35,1.48] of the frequency spec-

trum. The orbits on branch D do not experience any

qualitative change except for the appearance of super-

harmonic resonance of order two of the lower-well in

the interval Ω = [0.55,0.86]. The structure of the sys-

tem response in the vicinity of the natural frequency of

the lower-well Ω ≈ ω1, Fig. 11, indicates a softening-

type behavior.

4.3 System response at VAC = 3 V

At this excitation amplitude, Fig. 12, minor changes

occur in the upper-well branches while major changes

occur in the lower-well branches. The only significant

change in the upper-well is that the stable period-two

orbits on branch B that originate from a supercritical

period-doubling bifurcation at Ω = 6, meet a branch

of unstable period-two orbits that originate from the

subcritical period-doubling bifurcation at the right end

of branch B at Ω = 7.1. Both of these orbits meet at

Ω = 5.78 and vanish in a cyclic-fold bifurcation. The

trend seen at VAC = 2.5 V continues at this forcing

level with the span of branch B shrinking in the fre-

quency spectrum. Branch A continues to demonstrate

a cascade of period-doubling bifurcations ending in

chaos was at Ω = 7.7.

Branch C, in the lower-well, continues to experi-

ence a cascade of period-doubling bifurcations that

ends in chaos. The bifurcations occur at higher forc-

ing frequencies with period-two orbits appearing at

Ω = 1.69, period-four orbits at Ω = 1.643, period-

eight orbits at Ω = 1.634, and chaos at Ω = 1.632.

The chaotic region, dubbed C1, grows significantly, as

shown in Fig. 13, to occupy a large frequency inter-

val compared to the chaotic region at VAC = 2.5 V.
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Fig. 13 The bifurcation diagram of the lower-well chaotic re-

gion at VAC = 3 V

The chaotic region starts with a banded chaotic at-

tractor that exists primarily in the lower-well with oc-

casional excursions over the lower saddle. Figure 14

shows the phase portrait and the FFT of the chaotic

attractor at Ω = 1.615. The broadband character of

the FFT around the spike corresponding to the forc-

ing frequency is a characteristic of chaotic motion [9].

At Ω = 1.612, the attractor experiences another inte-

rior crisis and expands abruptly to a fully-developed

two-well chaotic attractor. Figure 15 shows the phase

portrait and the FFT of the fully developed attractor at

Ω = 1.615. The asymmetry and relative size of the po-

tential wells can be seen in the phase portrait, Fig. 15a,

as the chaotic attractor wanders to fill the upper- and

lower-wells.

Figure 16 shows the maximum Lyapunov expo-

nent of the attractors in the frequency interval Ω =
[1.45,1.65]. The Lyapunov exponent corresponding

to the phase angle λθ was found to be alway equal

to zero. Excluding that exponent, the maximum Lya-

punov exponent was found to take negative values for

the periodic orbits preceding the chaotic region, to

be zero at bifurcation points, and to be positive for

Fig. 14 The phase

portrait (a) and the FFT (b)

of a banded chaotic

attractor at VAC = 3 V and

Ω = 1.615

Fig. 15 The phase

portrait (a) and the FFT (b)

of a fully developed chaotic

attractor at Ω = 1.55 and

VAC = 3 V
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Fig. 16 The maximum Lyapunov exponent of the chaotic at-

tractors at VAC = 3 V

Fig. 17 The uni-modal return map of the chaotic attractor at

Ω = 1.615

the chaotic attractors. The other two Lyapunov ex-

ponents were always negative. The figure shows that

chaos starts at Ω = 1.632 and ends at Ω = 1.494. The

magnitude of the maximum Lyapunov exponent grows

with the increase in the size of the banded-chaotic at-

tractor and settles in the neighborhood of λ1 ≈ 0.3 as

the fully-developed attractor sits in.

Periodic windows appear throughout the chaotic in-

terval of the frequency spectrum indicated by down-

ward spikes in the maximum Lyapunov exponent plot

Fig. 16. A period-six window appears at Ω = 1.627,

a period-five window appears at Ω = 1.618, period-

four windows appear at Ω = (1.585,1.574,1.522),

and a period-three window appears at Ω = 1.493.

This sequence of periodic windows was experimen-

tally observed by Simoyi et al. [24] in the Belousov–

Zhabotinskii chemical reaction. Figure 17 shows the

return map constructed from the phase portrait of

the chaotic attractor at Ω = 1.615 using a one-sided

Poincaré section at v = 0. The map is uni-modal in

accordance with the theoretical finding of Metropolis

et al. [25] that a system that going through a period-

doubling route to chaos will encounter dynamics sim-

ilar to a uni-modal map which, in turn, demonstrates

the aforementioned sequence of periodic windows.

The chaotic region ends with a boundary crisis at

Ω = 1.494. Transient chaos appears beyond the crisis

and the response settles down, over long-time, onto a

two-well periodic orbit, Fig. 13. In this region, chaotic

behavior is observed for more than 200 excitation pe-

riods before it settles onto the two-well periodic or-

bit. This orbit appears through a cyclic-fold bifurca-

tion at Ω = 1.493. The phase portraits of the transient

chaos and the two-well orbit at Ω = 1.442 are shown

Fig. 18 Transient chaos (a)

and the stable two-well

orbit (b) at VAC = 3 V and

Ω = 1.442
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Fig. 19 (Color online) The coexistence of two-well branch of

orbits and chaos with a stable one-well periodic orbit

Fig. 20 Two-well banded chaos co-existing with a one-well sta-

ble orbit at Ω = 1.25 and VAC = 3 V

in Fig. 18. The figure indicates that the two-well or-

bit resides completely outside the lower- and upper-

wells. Sweeping the frequency down, the two-well or-

bit experiences a cascade of period-doubling bifurca-

tions and ends at Ω = 1.26 with a region of banded

chaos dubbed C2. The chaotic region ends in a bound-

ary crisis and transient chaos appears in its place.

Branch D appears at Ω = 1.319 through a cyclic-

fold bifurcation and evolves over the frequency do-

main in a similar manner to that seen at lower ex-

citation amplitudes. In the frequency interval [1.242,

1.319], branch D, shown in blue lines in Fig. 19, co-

exists with the banded two-well chaotic region, shown

in red lines in the same figure. In Fig. 20, we show

phase portraits of the coexisting stable one-well orbit

Fig. 21 The bifurcation diagram for VAC = 3.5 V

Fig. 22 Bifurcation diagram for the chaotic regions at

VAC = 3.5 V

on branch D and two-well banded chaotic attractor at

Ω = 1.25.

4.4 System response at VAC = 3.5 V

Figure 21 shows the bifurcation diagram at an excita-

tion amplitude of VAC = 3.5 V. The frequency interval

of branch A continues to shrink, while the evolution of

the attractors on the branch over the frequency spec-

trum continue in a similar manner to that seen at lower

excitation levels. The branch of unstable period-one

orbits emerging from branch A does not regain sta-

bility, and as a result, branch B disappears from the

system response.

The cascade of period-doubling bifurcations and

the chaotic attractors on branch C appear at higher

excitation frequencies. The first period-doubling bi-

furcation takes place at Ω = 1.835 and chaos starts

at Ω = 1.775. The frequency interval occupied by

chaotic region C1 shrinks, while those occupied by the
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Fig. 23 The phase

portrait (a) and the FFT (b)

of a two-well chaotic

attractor at VAC = 3.5 V

and Ω = 1.2

Fig. 24 The maximum Lyapunov exponent of the chaotic attractors at VAC = 3.5 V

two-well orbit and the two-well chaotic region C2 ex-

pand. The bifurcation diagram of chaotic regions C1

and C2 is shown in Fig. 22. As the frequency inter-

val of chaotic region C2 increases, the banded chaotic

attractor evolving over the right-side of the region un-

dergoes an internal crisis and changes abruptly to a

fully developed chaotic attractor filling the region in

phase-space where the two-well orbit existed. Fig-

ure 23 shows the phase portrait and the FFT of a fully

developed two-well chaotic attractor in region C2 at

Ω = 1.2. We note that these attractors unlike those of

region C1 do not exhibit any oscillation in the upper-

well alone.

The maximum Lyapunov exponent, excluding λθ ,

for chaotic regions C1 and C2 is shown in Fig. 24a and

Fig. 24b, respectively. From the FFT and the Lyapunov

exponent plots, it can be seen that the fully developed

two-well chaotic attractors of regions C1 are more ac-

tive than those of region C2. The maximum Lyapunov

exponent for region C1 is λ1 ≈ 0.4 and for region C2

is λ1 ≈ 0.3.

Branch D appears at Ω = 1.185 out of a cyclic-

fold bifurcation, Fig. 21. It starts with stable lower-

well period-one orbits. Unlike the case at lower exci-

tation amplitudes, branches C and D do not co-exist.

As the frequency is increased past the cyclic fold

bifurcation, intermittency occurs with the resonator

visiting the ghost of the period-one orbit frequently

and bursting out into the upper-well occasionally. Fig-

ure 25 shows the phase portrait and time-history of

the intermittent system response at Ω = 1.186. The

ghost of the period-one orbit can be seen in the lower-

well while the bursts span the two wells. Therefore,

chaotic region C2 at this excitation amplitude changes

structure to appear through a period-doubling route

to chaos in a frequency down-sweep and an inter-

mittency of type-I route to chaos in a frequency up-

sweep.
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Fig. 25 Phase portrait (a)

and time-history of d (b) of

the resonator response

during intermittent behavior

at VAC = 3.5 V and

Ω = 1.186

As the excitation frequency decreases, the stable

period-one orbits on branch D experience a cascade

of period-doubling bifurcations ending in chaos at

Ω = 0.825. Chaos persists over the frequency range

Ω = [0.729,0.825], Fig. 26, this chaotic region will

be dubbed C3. The increase in the response ampli-

tude and the concomitant period-doubling cascade and

chaos occur as the frequency down-sweep approaches

the super-harmonic resonance of order two of the

lower-well Ω ≈ 1
2
ω1. Similar to chaotic region C2, re-

gion C3 appears through an intermittency of type-I in

a frequency up-sweep. Beyond the cyclic-fold bifur-

cation at the left boundary of chaotic region C3, ap-

pears a branch of two-well super-harmonic orbits of

order three. Higher-order super-harmonic resonances

of the lower-well Ω ≈ 1
n
ω1 continue to appear as the

frequency down-sweep proceeds. They have similar

structure to that of the super-harmonic resonance of or-

der two and their orbits are alternately lower-well for

odd-numbered super-harmonic resonances and two-

well for even-numbered super-harmonic resonances.

Typical orbits of the supper harmonic resonances of

orders two to five are shown in Fig. 27. The orbits

of the super-harmonic resonances of order two and

four are seen to exist completely in the lower-well,

while those of order three and five span the two wells.

Distinct chaotic regions can be seen within the super-

harmonic resonances of order three and four in Fig. 26.

4.5 System response at VAC = 4 V

The evolution of the system response at this excita-

tion amplitude is qualitatively similar to that at VAC =

Fig. 26 The bifurcation diagram of the superharmonic reso-

nances at VAC = 3.5 V

3.5 V except for the frequency interval below the

natural frequency of the lower equilibrium position

ω1 = 1.98. Figure 28 shows the bifurcation diagram

of the system response in that interval. Similar to the

case at VAC = 3.5 V, the cascade of period-doubling

bifurcation and chaotic attractors on branch C appear

at higher forcing frequencies, the frequency interval of

chaotic region C1 shrinks to Ω = [1.883,1.837], and

the frequency interval of chaotic region C2 expands

to Ω = [1.372,1.051]. However, the fully developed

chaotic attractors in region C1 become primarily one-

well attractors. Further, the two-well period-one orbit

starts at Ω = 1.85, thereby co-existing with a part of

chaotic region C1.

Similar to before, branch D starts with a cyclic-

fold bifurcation just after the chaotic region C2. The

frequency range over which the stable period-one or-

bits on branch D exists shrank and the chaotic re-

gions C2 and C3 became very close and can be re-
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Fig. 27 The phase portraits

of the super-harmonic orbits

of order (a) two Ω = 0.87,

(b) three Ω = 0.68, (c) four

Ω = 0.58, and (d) five

Ω = 0.44 at VAC = 3.5 V

Fig. 28 The bifurcation

diagram for the chaotic

regions at VAC = 4 V
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garded as one chaotic region. Super-harmonic res-

onances of the lower equilibrium natural frequency

ω1 continue to appear at forcing frequencies below

Ω = 0.5. This bifurcation diagram is appears as Tow-

fighian et al. [20] using a stroboscopic Poincaré sec-

tion.

4.6 Stability of the chaotic attractors

As mentioned in the Introduction, this chaotic oscil-

lator is designed as a platform for a mass sensor. The

basins of attraction of the chaotic attractors are stud-

ied to evaluate how realistic are the chances of landing

on the attractor in practical applications. The basins

of attraction of selected chaotic attractors in regions

C1 and C2 were generated to investigate the long-

term behavior of those attractors. The figures, repre-

senting the basin of attraction, were constructed by

holding Vs[0] = 0 and dividing (d, v) phase-space into

a (300 × 300) grid of initial conditions. Long time

integration was carried out from each grid point for

one hundred excitation periods to assure that tran-

sients have decayed and the system has settled on an

orbit. The maximum position in the last period was

recorded. The basin of attraction was then plotted as a

colored grid where the color intensity decreases with

the magnitude of the recorded position d . The color

changes from dark blue for d = 0 to light hue for

d = 1. In cases of pull-in, the value of d is assigned

equal to 1.

First, we test our basin construction technique us-

ing the three stable co-existing orbits at VAC = 2 V

and Ω = 7.5, Fig. 3. The basin of attraction for this

forcing level is shown in Fig. 29. The three stable

orbits available are a period-two orbit on branch A

with a maximum position of d = 0.910, a period-

one orbit on branch B with a maximum position of

d = 0.875, and a period-one orbit on branch C with a

maximum position of d = 0.374. The maximum of the

last two excitation periods was recorded to accommo-

date the period-two orbit. Initial conditions terminat-

ing in the upper-well orbit on branch A (d = 0.910)

and pull-in (d = 1) appear in a light hue. The upper-

well orbit on branch B (d = 0.875) appears in a darker

hue. The lower-well orbit on branch C (d = 0.374)

appears in blue. The basin of attraction shows the

separation of initial conditions into distinct strips as

the stable and unstable manifolds of the saddles de-

form.

Fig. 29 (Color online) The basin of attraction of the orbits at

VAC = 2 V and Ω = 7.5

Fig. 30 (Color online) The basin of attraction of a chaotic at-

tractor at VAC = 3 V and Ω = 1.62

Figure 30 shows the basin of attraction for a banded

primarily one-well chaotic attractor in region C1 at

VAC = 3 V and Ω = 1.62 (similar to that shown in

Fig. 14a). Figure 31 shows the basin of attraction for

a fully developed two-well chaotic attractor in regions

C2 at VAC = 3.5 V and Ω = 1.2 (shown in Fig. 23a).

In both cases, the initial conditions inside the poten-

tial wells and in their immediate vicinity land on the

chaotic attractors as indicated by the well mixed char-

acter of the color map. This is a characteristic n of the

chaotic attractor mixing actio. Initial conditions fur-
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Fig. 31 (Color online) The basin of attraction of a chaotic at-

tractor at VAC = 3.5 V and Ω = 1.2

ther away from the wells go to pull-in. Therefore, the

basins of attraction of both chaotic attractors encom-

pass a wider region in phase-space than the attractors

themselves, Figs. 14 and 23. The presence of a buffer

zone where initial conditions in the vicinity of the at-

tractor land on them ensures their stability under ex-

ternal disturbances.

5 Conclusion

At low excitation levels, the response of the elec-

trostatic actuator shows one branch of solutions in

the lower potential well and two branches of so-

lutions in the upper potential well. As the excita-

tion level increases, lower frequency branch disap-

pears from the upper well, while the higher frequency

branch shrinks. Meanwhile, two branches of solu-

tions appear and persist in the lower well. Super-

harmonic resonances were observed in both wells.

In the upper-well, super-harmonic resonances were

observed at low excitation levels, namely indepen-

dent branches of upper-well super-harmonic reso-

nances of order two, three, and four. All of these

branches start from a cyclic-fold bifurcation and end

in chaos through cascade of period-doubling bifur-

cations. Lower-well super-harmonic resonances were

observed at higher excitation levels. These resonances

lead to the appearance of distinct low frequency

chaotic regions.

In agreement with previous experimental and ana-

lytical reports of chaos in electrostatic MEMS [14, 15],

all the chaotic regions we found appeared through

period-doubling routes to chaos. We found that chaotic

region C1 disappears through a boundary crisis to

be replaced with transient chaos at lower excita-

tion frequencies. Further, for higher excitation levels

VAC ≥ 3.5 V, we found that chaotic region C2 and the

chaotic regions within super-harmonic resonances ap-

pear through an intermittency of type-I route to chaos

in frequency up-sweep.

This study provides qualitative insight into the us-

ability of the actuation parameter space for the various

uses of electrostatic micro-beam actuators. Orbits in

the upper-well, along branches A and B, are small in

size. They encounter zones in the frequency domain

where multi-valuedness occur and two orbits co-exist.

Further, the orbits come very close to pull-in where the

electrostatic force grows very fast, thereby undermin-

ing the orbit stability to external disturbances. There-

fore, we conclude that it is not suitable to operate pe-

riodic resonators along these branches.

The periodic orbits appearing along branch C pro-

vide the largest possible dynamic amplification in the

parameter space. Therefore, it is desirable to operate

periodic resonators along this branch provided that

the amplitude of AC excitation is maintained below

the threshold for the appearance of chaos, VAC =
2.5 V in this case. The regions in the parameter space

where super-harmonic resonances appear provide a

good opportunity to realize large period periodic os-

cillators. The lower-well super-harmonic resonances

provide better dynamic amplification, and therefore

less demands for voltage, than the upper-well super-

harmonic resonances. Again, the amplitude of excita-

tion has to be limited to a value below the threshold

where chaos appears with super-harmonic resonances;

VAC = 3 V in this case.

The availability of steady-state chaos over a wide

range in parameter space is a requirement for the use

of chaotic resonators in sensing applications. Steady-

state chaotic attractors were found at all the excitation

levels considered. The chaotic regions in the upper-

well were found to cover narrow bands in the fre-

quency spectrum, which render them unsuitable for

sensing purposes. On the other hand, chaotic regions

C1, C2, and C3 were found to cover wider bands in

the frequency spectrum and are, thus, more suitable

for sensing purposes.
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The bandwidth of chaotic region C1 increased as

the excitation amplitude is increased from VAC =
2.5 V to VAC = 3 V then decreased as the excitation

amplitude is continued to increase to VAC = 4 V. The

maximum bandwidth of this chaotic region exists in

the neighborhood of VAC = 3 V. Similarly, chaotic re-

gion C3, appearing for the first time at VAC = 3.5 V,

saw its bandwidth decreasing at VAC = 3 V, which

indicates that its maximum bandwidth exists in the

neighborhood of VAC = 3.5 V. On the other hand, the

bandwidth of chaotic region C2 increased consistently

from VAC = 3 V to VAC = 4 V. The chaotic attractors

of region C1 have the advantages of spending more

time away from the upper saddle, which lowers the

possibility of encountering pull-in, and being more ac-

tive than the chaotic attractors in regions C2 and C3.

On the other hand, the maximum bandwidth of chaotic

regions C2 and C3 is larger than that of region C1. The

primarily one-well part of chaotic region C1 seems to

be most suited for sensing purposes since that region

had the highest rate of change of the maximum Lya-

punov exponent.
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Appendix A: Procedure for constructing

bifurcation diagrams

The following procedure was used to construct the bi-

furcation diagrams shown in this paper:

1. At an excitation frequency Ω away from the sta-

ble natural frequencies ω1 and ω3, long time in-

tegration was performed until the system settled

on a stable period-one orbit. The numerical inte-

gration was carried out in Mathematica using the

Modified Adams method [26].

2. The states at an arbitrary point on the orbit were

recorded and used as an initial guess (do, vo,Vso)

for the shooting method. The shooting method

turns the problem of finding the closed orbits to

a boundary-value problem where the initial and

final points on the orbit, after one period, are

matched. It then uses an initial-value solver to in-

tegrate the system equations for a period and in-

terprets the difference between the initial and final

point as an error to be corrected iteratively.

3. The shooting method was implemented by inte-

grating the system equations for a period T = 2π
Ω

.

The difference between the initial guess and the

terminal point (df , vf ,Vsf ) is then used to cor-

rect the initial guess until the magnitude of the Eu-

clidean norm of the error vector is less than 10−3.

4. The monodromy matrix of the orbit was obtained

from numerical integration of the system of equa-

tions, augmented with the system of linearized

perturbations around the orbit, for a period start-

ing from an initial condition on the converged or-

bit [9].

5. The Floquet multipliers (the Eigenvalues of the

monodromy matrix) were calculated. Floquet the-

ory [9] was then used to determine the stability of

the orbits, based on the values of those multipli-

ers, and to determine the type of the bifurcation.

6. The excitation frequency was incremented to a

larger or smaller value depending on the fre-

quency sweep direction and a point on the con-

verged orbit at the previous frequency was used

as the initial guess for the shooting method.

7. Steps 3–6 were repeated until the tracked orbit lost

stability.

– Where stability was lost through a period-dou-

bling bifurcation, steps 3 to 6 were repeated and

the period of integration was doubled.

– Where stability was lost through a cyclic-fold

bifurcation, steps 1 to 6 were repeated while

searching for a new set of orbits.

8. Unstable orbits were tracked where relevant.

9. For every orbit, the intersections with the zero-

velocity line (v = 0) were recorded. A period-one

orbit is represented by two points, a period-two

orbit is represented by 4 points, etc.

10. The bifurcation diagram was then constructed by

stacking the Poincaré sections as a function of the

excitation frequency. Since the increment in fre-

quency is small, these discrete points appear as

continuous lines. For unstable orbits, one point ev-

ery ten points was plotted in order to appear as

dotted lines.

11. Because motion within a chaotic attractor is ape-

riodic, the shooting method fails there. Instead,

long-time integration was used and the intersec-

tions of the flow with the zero-velocity line were

recorded for one thousand periods of excitation.

The intersections were recorded after at least one
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hundred periods of integration to allow for the

transient response to decay.

Appendix B: Algorithm for calculating Lyapunov

exponents

The Lyapunov exponents of the four-dimensional

phase-space were calculated using the following pro-

cedure [9]:

1. The system equations (5)–(8) were augmented with

the system of linearized perturbations around the

orbit [y(t)], and integrated for a period of time Tf .

The initial conditions of the dynamic system were

chosen arbitrarily while the initial conditions of the

linearized perturbations [y(0)] were set equal to the

identity matrix.

2. The vectors y1(Tf ), y2(Tf ), y3(Tf ), and y4(Tf )

were obtained from the columns of [y(Tf )].
3. A new set of initial perturbation vectors was ob-

tained by ortho-normalization through the Graham–

Schmidt procedure:

ŷ1 = y1(Tf )

‖y1(Tf )‖ (9)

ŷ2 = y2(Tf ) − (y2(Tf ).ŷ1)ŷ1

‖y2(Tf ) − (y2(Tf ).ŷ1)ŷ1‖
(10)

ŷ3 = y3(Tf ) − (y3(Tf ).ŷ2)ŷ2 − (y3(Tf ).ŷ1)ŷ1

‖y3(Tf ) − (y3(Tf ).ŷ2)ŷ2 − (y3(Tf ).ŷ1)ŷ1‖
(11)

ŷ4 =
y4(Tf ) − (y4(Tf ).ŷ3)ŷ3 − (y4(Tf ).ŷ2)ŷ2 − (y4(Tf ).ŷ1)ŷ1

‖y4(Tf ) − (y4(Tf ).ŷ3)ŷ3 − (y4(Tf ).ŷ2)ŷ2 − (y4(Tf ).ŷ1)ŷ1‖
(12)

where (a.b) denotes the dot product.

4. The Lyapunov exponents were calculated as

λi = 1

rTf

r
∑

k=1

lnNk
i (13)

where N is the norm in the denominator of ŷi , the

subscript i refers to the ith vector, the superscript

k refers to the iteration number, and r is the total

number of iterations.

5. The augmented system was integrated again for a

period Tf where the state values and ŷi vectors at

t = Tf were used as initial conditions.

6. Steps 2–5 were repeated until the values of the Lya-

punov exponents asymptotically converged.
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