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ABSTRACT

This study was motivated by the need to design the thermal shield in

reactor internals and other system components to avoid detrimental flow-

induced vibrations. The system component is modeled as two coaxial shells

separated by a viscous fluid. In the analysis, Flugge's shell equations

of motion and linearized Navier-Stokes equation for viscous fluid are

employed. First, a traveling-wave type solution is taken for shells and

fluid. Then, from the interface conditions between the shells and fluid,

the solution for the fluid medium is expressed in terms of shell displace-

ments. Finally, using the shell equations of notion gives the frequency

equation, from which the natural frequency, mode shape, am*, modal damping

ratio of coupled modes can be calculated. The analytical results show a

fairly good qualitative agreement with the published experimental data.

With the presented analysis and results, the frequency and damping

characteristics can be analyzed and design parameters can be related to

frequency and damping.



INTRODUCTION

In this paper, the dynamics of a system of two concentric cylindrical

shells coupled by a viscous fluid is studied analytically. The objective

is to investigate the effect of fluid viscosity on fluid structure inter-

actions.

This study was motivated by the need to design reactor system components

to avoid detrimental flow-induced vibrations. Several reactor systea

components consist of nominally circular cylindrical shells coupled to

other shells through a fluid. Examples include shrouds and thermal liners.

Those components are subject to various excitation sources including flaid

flow and structural borne disturbance. To design a component such that over

the design life its performance will not be affected by vibrations, one

must understand che system characteristics.

Vibrations of two coaxial shells separated by a fluid have been studied

recently [1-AJ. However, all those investigations omit the effect of fluid

viscosity. Although for many practical applications, the viscosity is small and

the fluid may be considered inviscid as a first approximation, near the Interface

of the structure and fluid there exists a thin layer of rotational flow.

This flow regime in which the viscous effect is significant is of great

concern to the dynamic response of coupled shell systems. In particular,

when the annular gap is small, the fluid viscous effect becomes more

pronounced.

In this study, FlUgge's shell equations of motion and the linearized

Navier-Stokes equation for fluid are employed. First, a traveling-wave

type solution is taken for shells and fluid. Then, from the interface

conditions between the shells and fluid, the solution for fluid medium



is expressed in terms of shell displacements. Finally, using the shell

equations of motion gives the frequency equation from which the natural

frequency, mode shape, and the modal damping ratio can be calculated.

The analytical results are also compared with an experimental investigation

for two concentric shells coupled by water.



I . GOVERNING EQUATIONS OF MOTION

Consider two concentric circular cylindrical shells separated by a

viscous fluid annulus as shown in Fig. 1. The motion of the shells is

described by the following Fliigge's shell equation [5]:

2R2
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where the index i denotes the variables associated with the inner shell

(i *> 1) and outer shell (i - 2); u., v., w, are the displacement components

of the shell middle surfaces, z, 9, and r are cylindrical coordinates;

p -i» Pa.. and P . are the surface loading components per unit area, and

t is the time. The physical characteristics of shells are defined by the

mean radius R , wall thickness h., mass density p.. Young's modulus E and

Poisson's ratio \> .

For a non-steady, small-amplitude oscillatory motion, the equations of

notion for the contained viscous fluid can be expressed as follows [6]:

3V 1 A t -•

3s

where p and p are the mean and instantaneous fluid mass densities, v
o o

and v' are the kineaatic and second viscosities of the fluid, C is the
o o

speed of sound in fluid, p is fluid pressure and $ is fluid velocity

vector.



At the interfaces between the shells and fluid, the following condi-

tions must be satisfied:

3u_, 3v 3w
- 3 ~ ; and vl - - ^ ^^ i . i and 2. (3)

The surface loading acting on the shells is given by

P U " Tr£ and P.- * -T_ol with £»z,8, and r,

-ri K
where r - R. + h /2 and r • R - h 2/2 are the interface radii, and

T -> i «» ancl T ^re the fluid stresses:rr rO rz

dV

3V

Here p is fluid viscosity.

Equations (1) through (5) are the complete mathematical statement of

the coupled viscous fluid/shell system.



II. ANALYSIS

Letting V = V v ty + V$ and inserting it into equations (2) yields

o,

4v

where 5 ,
Wo = C o / ( 3 V o + Vo> •

Equation (7) shows that the fluid pressure is not affected by the waves

produced from the vector potential, <j>, whic'i is associated with the fluid

viscosity.

In cylindrical coordinates, equation (6) yields:

<f £ - v2) *z
 = ° •

<vL Tt " 7 ) * e + -I--T iT
o r r

and x 3 2 *r 2 3lil
( ~ I ? " 7)*r + 1 + 1 3T
o r r

Solutions of the following form are assumed for the shells:

u i * •* " i c o s ^ n 9 ^ exp[j(ut - kz)] ,

Vi * ^ i s l n ^n 6 ^ exPtJ(^t ~ kz)] » (10)

w = w. cos(n e ) exp [j(wt - kz)] ,



where j = /-T, n is the circumferential wave number, <u is the

circular frequency, k is the axial wave number, and u,, v, and w.

are arbitrary constants to be determined.

Similarly, the fluid velocity potential may be assumed as follows:

cos n 9 - kz)] ,

<i> « ̂  (r) sin n 9 exp[J0»it - kz)] ,
z z

c o s n6exp[j(<ot -

i = j iji (r) sin n6exp[j(ut - kz)]

Substituting Eqs. (11) into (8) and (9) gives the following forms

of Bessel's equations:

(11)

Tr V

2
r

*

(12)

where 2,_ 2
1/2

(13)

;7~-:r>;r&u<3*:ii:Te-^^^



The general solutions of equations (12) are

(14)

•r(r)

where A. are arbitrary constants and F and G are the n-th order Bessel
1 J n n

he

(1)

functions. F and G can be either the first and second kind Bessel functions,
n n

J and Y , or the Hankel functions Hn n n and H v . The selection of then

functions mainly depends on the computational consideration.

Substituting equations (10), (1.1), and (14) into the interface condi-

tions, Eq. (3), gives six linear, algebraic equations:

6

q-l
a A
pq q

» p to 6 (15)

where
r = r_ for p = 1, 2, and 3, r = r_ for p *= 4,5,6

A
U, u,

A
u.

A A - A
,, u_ = vo, and u, = wo

and the expression of a is given in the appendix.

Now we are in the position to calculate the loading stresses on the

shell surfaces. Here only the dynamic quantity is of interest and thus the

reference pressure p will not be considered. Equation (5) is used to obtain

the fluid stresses. Define the new variables P ., ?„., and P . as follows:

and

2 =
zi

pei " % u 2 pei

Pri = Po ^ Pri

exp[j(ut -

- kz)J .

(16)
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Substituting equation (16) into (4) and using (11) and (14) yield

another six linear, algebraic equations:

S A
I h A - P , P - 1 to 6, (17)

q = l ^ s

w h e r e /y _ /v _ A _ A , _ A . _ A _
p — p P = P P = P P s P P s P P s s P

Pl Pzl' 2 61' P3 rl» 4 z2» P5 62' *6 r2'

and the expression of h is given in the appendix.

pq

Using equations (15) and (17) gives the surface loading expressed in

terms of the interface radii and the shell displacement as

P = J a r u , P = l t o 6 , (18)
p q^x pq q q

where

pq pq pq

The coefficient a is proportional to the dynamic fluid stress

acting on a shell surface due to its own movement; while the others,

a for p 4 q, are proportional to the dynamic fluid stresses acting on

a shell surface in one direction due to the movement in another

direction.

The fluid stresses acting on the shells are linear functions of

shell motions. In general, the coefficients a are complex. The fluid

stress can be separated into two components: one proportional to Re(a )
pq

is in phase with the shell accelerations and is related to the added mass

effect, while the other, proportional to Im(ct ), is opposing to the movement
pq

of the shells and is related to damping mechanism. If the fluid is inviscid,

the second component of the stress opposing shell motion will be 2ero.
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The. dynamic fluid stress coefficient matrix a is a function of the
J pq

radius ratio, r»/r1, the circumferential wave number, n, the axial wave
« r. co r^

number, a-, the Mach number Mo. = —z—, the Reynolds number, Re, = — ,
l j. t-o J. v o

and the ratio of the fluid viscosities v'/v . It should be noted that the
o o

circular frequency u> and so Mach number Mo^ and Reynolds number Re^ are in

general complex numbers. The Mach number Mo, is considered to include the

compressibility effects of the fluid. However, the analysis is valid for

a small compressible effect or a small Mach number Mo,. The Reynolds number
Re, and viscosity ratio v'/v are the additional function parameters associated
l o o

with fluid viscosity. The viscous effect is discussed in detail in the study.

For the case of potential flow where v = 0, and vr = 0, Che

Reynolds number Re and viscous ratio v*/v are no longer defined and

the coefficient is a function of ro/r,, n, a. and Mo, only. Furthermore,

i. X X X

all the elements of the coefficient matrix are zero except the real parts
of the four elements: Re{a_Q}, Re{a_,}, Re{a£_}, and Re{a,,}, s.nd no

JJ JO CO DO

damping is introduced to the system by the incompressible ideal fluid [1].

With respect to fluid shell interaction, substituting eqs. (10), (16),

and (18) into the shell eq. (1) gives six linear algebraic homogeneous

equations

6
I b u = 0, p - 1 to 6, (20)

q=l *H q

where

»,q = 1, 2 and 3 ,b =
pq

-

sr

=s

c
pq

<

c
pq

- ^

( • <
\ pq

f <5 H
^ pq

Spq + w

r
1- u —

r i

i + p .

l Q pq )

pqj

• )
pq/

?a )

f o r p = *• 2' a n d 3 •
and q = 4, 5, and 6 ,

f o r P = *. 5, and 6 ,

and q = 1, 2, and 3 ,

f ° r P'*l = 4» 5» a n d 6 »



11

if.ni

6 = 1 for p = q, otherwise 6 = 0 ,

and the expression of C is given in the Appendix.

The frequency equation of the coupled fluid/shell system is obtained

by setting the determinant of the coefficient matrix b in equation (20)

equal to zero; it can be vritten as |b | = 0 or in the function form as

/ r ^ M o ^ e j ^ v V v ^ n , ^ , ^ ^ ) = 0 . (21)

In contrast with the incompres.sible potential flow theory, the stress coef-

ficient for a given physical condition is a function of the frequency parameter,u>,

which in general is a complex number. Therefore, in order to determine

the natural frequency and the damping ratio of the coupled system, an

iteration procedure is in general required.

It should be noted that, 2or the case of an incompressible viscous fluid, the

dynamic fluid stress is not only a function of n, r-/r_, and a- but also a

function of the vibrational Reynolds number Re... This additional parameter

Re. makes the simulation of a scaled model test for a coupled viscous fluid/

shell system to be very difficult when fluid viscosity effect is important.

In a reduced-scale model test, the geometrical simulation commonly employed

tends to overestimate the fluid damping and thus the test result may not

be conservative.
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III. NUMERICAL EXAMPLES

The preceding analysis can be used to evaluate the stress coefficient

matrix, a , for two concentric shells separated by viscous fluid for any
pq.

given set of input parameters n, r_/r^,o , Mo., Re., and v'/w •

Some numerical examples of the stress coefficients were obtained and shown

in Table 1 and Figs. 2 to 4. All examples given are for incompressible fluid

(Mo. « 0), the length of both shells equal to radius rj (o^ - it), and v^ - 0.

Also the circular frequency <D is limited to a purely real number. That is,

Im(u) • Im(Rej) « 0.
Table 1 shows the stress coefficient matrix for a. • v, n * 3, r_/r. • 1.2

and Ho. - 0. Each element is specified by a real part (upper number) and an

imaginary part (lower nunber). In Table la all the values of a ere very small except

Re{a,,} = 0.324, Re{a,,} « Re{a,,} = -0.234, and Re{a,,} - 0.318. In this
JJ JO OJ OO

case, the Reynolds number is large (Re. * 10 ); as expected the imaginery

part of a is not important. The results are consistent with the solutions
pq

of the potential flow [1], which shows a,_ • 0.324, a,, " a,, * -0.234,
JJ jo oJ

a - 0.318 and all others are zero. However, for the case of small Reynolds
oo

number, the viscous effect becomes important; the imaginary part of a becomes
pq

more important and, in some cases, the imaginary part may be larger than the ;

real part. This can be seen from Table lb for Re., - 10, the imaginary parts j

1
of a are, indeed, much larger than their real parts. !

Figure 2 shows the stress coefficient a.- as a function of Reynolds ]

I
number Rej as well as n for Oj = IT, r?/r = 1.1 and Mo • 0,0 . j

a decreases as the Reynolds number Re. increases; this behavior is the J

same as thst of a vibrating rod in confined viscous fluids [7]. For fixed i

values of r^t T^ and v , Re{a } decreases with an increasing u; this

behavior is consistent with the experimental observations [8J. It is
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TABLE 1. Dymniic Stress Coefficient Matrix a for a^ • n, n - 3,

- 1.2 and - 0.0 .

(a)

R^-1010

(b)

Rex - 10

v>
1

2

3

4

5

6

1

2

3

4

5

6

7
-7

-7
7

5.
-5.

4.
-1.

-1.
-7.

-2.
2.

7.
-3.

-1.
-6.

1.
-2.

1

.07E-6

.07E-6

0
0

.19E-6

.19E-6

0
0

0
0

20E-6
20E-6

14E-2
49E 0

67E-2
32E-1

13E-2
3*»E 0

46E-3
33E-1

59E-2
21E-1

25E-2
60E 0

7
-7

6
6

4.
-4.

-1.
-7.

4.
-1.

-2.
2.

2

0
0

.07E-6

.O7E-6

.86E-6

.86E-6

0
0

0
0

97E-6
97E-6

67E-2
32E-1

64E-2
42E 0

22E-2
03E 0

-1.61E-2
-6.64E-1

1.
-1.

1.
-2.

20E-2
52E-1

25E-2
34E 0

7

-6
6

1
-2

-5
S

-4
4.

-2.
2.

-2.
2.

-2.
2.

3.
-9.

-1.
2.

-1.
2.

-2.
8.

3

.19E-6

.19E-6

.86E-6

.86E-6

.24E-1

.15E-5

.20E-6

.20E-6

14E-6
14E-6

34E-1
O3E-5

13E-2
32E 0

22E-2
03E 0

85E-1
38E 0

28E-2
47E 0

02E-?
06E 0

91E-1
93E 0

-5.
5.

5.
-5.

7.
-7.

7.
-3.

-1.
-6.

-1.
2.

3.
-1.

-1.
-6.

2.
-2.

4

0
0

0
0

20E-6
20E-6

89E-6
89E-6

0
0

05E-6
05E-6

46E-3
33E-1

61E-2
64E-1

28E-2
47E 0

48E-2
20E 0

41E-2
11E-1

24E-2
20E 0

-4
4

5
-5

5
-5

-1
-6

1
-1

-1
2

-1.
-6.

5

0
0

0
0

.14E-6

.14E-6

0
0

.89E-6

.89E-6

.61E-6

.61E-6

.59E-2

.21E-1

.20E-2

.52E-.1

.02E-2
,06E 0

411 -2
J.1E-1

3.86E-2
-9.20E-1

1.
-1.

66E-2
89E 0

6

5.20E-6
-5.20E-6

4.97E-6
-4.97E-6

-2.34E-1
2.O3E-5

7.05E-6
-7.05E-6

5.61E-6
-5.61E-6

3.18E-1
-2.11E-5

1.25E-2
-2.60E 0

1.25E-2
-2.34E 0

-2.91E-1
8.93E 0

2.24E-2
-2.20E 0

1.66E-2
1.89E 0

3.78E-1
-8.87E 0



interesting to note that the sensitivity of all Re{a } with respect to
pq

Ke. is much smaller than In{a }, although both Re{a } and lm{a } increase
1 pq pq pq

with decreasing Re.. Figure 2 also shows chat both Re{a__} and Im{-a__}

are the decreasing function of n.

Figures 3 and 4 show the stress coefficients a., and a,, as
a ot>

functions of X2^XV n* an<* Rel *or al " * an<* **°l * ®'

In all cases, as the values of r./r. increase, a__ approaches a constant

value while a,- monotonically decreases. The different behaviors between

o__ and a,, is attributed to the choice of inner radius r., (rather than

r») as a reference lengch scale. As the value of r^/r. becomes large,

the movement of either shell is less dependent on the existence of the

other and the stress coefficients are expected to approach a constant

value if all other parameters for the shell are kept unchanged. However,

the present example is set to keep <*., Re,, and Mo. unchanged, and so

a., Re. and Mo,, which are the important parameters for the outer shell

are increased as r./r^ increases. This means there will be a larger

three-dimensional effect, a larger compressibility effect and a smaller vis-

cous effect for the outer shell as r./r̂ . Increases, although these effects

are relatively constant for the inner shell.

For r./r. > 2.0 the outer shell has practically no effects on a,_

and the effect of the inner shell on the outer shell seems no longer

important and the decrease of o&6 is primarily due to the increase of a.^

or the decrease of length/radius for the outer shell. With respect to

the dependence of n, both a., and a,, decrease as n increases.

Also the decreasing rate for Re{a__} and Re{afi,} is smaller as

Re, increases, while this behavior for In>{-a,-> and Im[-a,£] is morel 3J oo

pronounced.



Note Chat the example given here is for Mo. - 0. For case ol Mo^ > 0,

the value of a is expected to be smaller. It can be concluded that the
PI

stress coefficient is a decreasing function of the parameters a.» Ho ,

Re,, and r./r. and in most cases it is a decreasing function of n.

For a specific numerical example of a coupled fluid/shell systev, consider

the following dimensional values: ̂ -86.52 cm (34.0625 in.), ̂  - 88.74 em (34.9375in.),

hx » 0.635 cm (0.25 in.), h2 - 1.5875 cm (0.625 in.), Ej - E, - 1.896 x 10
UPa

(2.75 x 107 psi), vx - v2 - 0.27, Pj,' (>2
m 7.986 x 103 kg/m3 (0.2885 lb«/in.3),

Po - 9.217 x 10
2 kg/m3 (0.0333 lbm/in.3), V Q - 7.432 x 10"

7 n»2/a
—6 2

(8.0 x 10 ft /sec), v^ - 0 and C Q - ». This is the same example as that

given in Ref. 1, with the exception that, in the present case, there is no

fluid i. side the inner shell and the fluid is viscous in the annulus region.

The fluid is considered to be incompressible, Mo. - 0, and the shell is

assumed to be simply supported at both ends.

The frequencies of the system depend on the axial wave number a. and

circumferential wave number n. The lowest frequency is associated with

the lowest axial wave number, i.e., the wavelength is equal to twice the

shell length which is assumed to be 104.14 cm (41 in.).

The natural frequencies for the cases of viscous fluid are shown in

Fig. 5. For comparison, f^ur related cases are also shown: (1) the inner

shell in vacuo; (2) the outer shell in vacuo; (3) the shell system with

rigid outer shell; and (4) the shell system with rigid inner shell. It

can be seen from Fig. 5 that natural frequencies of the system decrease

due to the existence of the fluid and for each circumferential wavenumber

n the natural frequencies for the first coupled modes (out-of-phase nodes)
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are lower than either of the uncoupled natural frequencies, while the 1

i
frequencies for the second coupled modes {tn-phase modes) are higher than I

either of Che uncoupled natural frequencies. '

Calculations for an inviscid fluid are also made. It is found that these

natural frequencies are practically independent of the fluid viscosity.

However, as shown in Fig. 6, the related modal damping ratio is noticeably

increased in some cases when the fluid viscosity is included. These results

are expected since the fluid viscosity (related to Re.) has a smaller effect
on Re{o } and has a larger effect on Im{ct >. The decrease in natural

PI P<1

frequencies is due to fluid inertia effect, which is proportional to Re{a },

while the increase in damping is mainly attributed to fluid drag, which is

proportional to Im{« }.

The effects of fluid viscosity on coupled and uncoupled modes are

clearly shown. For the coupled shell systems the effects are mostly pronounced

for the out-of-phase modes, but these effects are much smaller and in fact are

considered to be negligible for the in-phase modes. However, for the uncoupled ;
i
j

vibrations, the effects of fluid viscosity remain comparable for both shells. j

The reason for large damping ratios on out-of-phase modes and small damping

ratios on in-phase modes can be seen from the differences of the vibrational

mode-shapes which are shown in Fig. 7. For in-phase modes, both shells as

well as the fluid in the annular region are moved almost in the same way

(i.e., amplitude ratios = 1.0) and so the existence of the fluid is hardly

noticed by the shells. However, for the out-of-phase modes, two shells

are moved in opposite directions and the existence of the fluid is mostly

detected by the shells. Also, the frequencies and so the vibrational Reynolds

number Re., for the in-phase modes are much higher than for the out-phase modes.
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Thus the medal damping is much smaller for the in-phase modes

than for the out-phase modes. For n > 6 the movement of inner shell is

much larger than of outer shell and the result is close to that of un-

coupled shell system with rigid outer shell. For n £ 2 or n >. 11 the

in-phase mode data were not presented because of the high natural frequencies.

Additional calculations also have been made to understand the effect

of fluid compressibility. It is found that the effeo.t of fluid compressibility,

in general, is very small on natural frequency and damping, and in practical

applications for structural vibrations, the compressibility of the fluid

may be neglected. On the other hand, if the propagation of waves in the

system is of interest, fluid compressibility has to be included.
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TV. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

An experimental study on a related problem was repo d recently by

Chung et al. [9J. In the experiment, a steel shell free at the top edge

and soldered to a disc at the bottom was tested. The fluid gap was provided

by using a thick concrete shell as the outer cylinder and the fluid is water.

A series of tests was made for four different fluid gap sizes: 2.616 cm

(1.03 in.), 1.367 cm (0.538 in.), 0.643 cm (0.253 in.), and 0.384 cm (0.151 in.).

The analytical and experimental results are given in Fig. 8. The general

behavior of the theoretical fluid damping is similar to the experimental data.

Quantitatively, the agreement is good for circumferential wave number n - 5

and 6 and small gaps, and fair for large gaps. However, the experimental

values for n » 4 are much larger than the analytical results. One of the

reasons for the discrepancy is attributed to the boundary conditions; the

theoretical model is assumed to be simply supported at both ends while the

shell tested is fixed at the bottom and free at the top. Since the theoretical

and experimental models have different boundary conditions, and the added

mass and viscous damping depend on vibrational mode shape, the two models are

not expected to give identical results. Another reason is probably associated

with the difficulty in determining the damping ratio for a system with high

modal de-'ty.

In a similar study for tubes vibrating in a viscous fluid annulus,

the analytical results based on the linear viscous theory are in good agree-

ment with the experimental results for damping and added mass [7]. Since

the same theory is used here, as long as the motion is small,

the analytical results based on the linear viscous theory are expected to

be reliable.
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V- CONCLUDING REMARKS

In this paper , an analysis is presented for coupled vibrations of

two concentric shells separated by a viscous fluid. The coupling effects

are accounted for usin~; fluid stress coefficient matrix of concentric

shells. With this analysis, aatural frequencies and modal damping of

coupled concentric shells in viscous fluid can readily be obtained.

In the analysis the three-dimensional, linearized, Navier-Stoltes

equations gov2rning the motion of viscous fluids are used. The displace-

ments of the shells are assumed to be small such that the equations of

state and motion can be linearized. The analytical results are in reasonable

agreement with the published experimental data.

Numerical results are presented for a few selected problems for an

incompressible fluid. It is shown that the fluid stress coefficient is

always a decreasing function of ct_, Mo., Re., and r./r. and in most cases

it will decrease as n increases. The sensitivity of Re. on Re{ct } is
1 pq

much smaller than that on lm{a }. For general cases, the magnitude of

Re{a } is larger than the magnitude of Im{ct }; however when Re, is
pq pq 1

sufficiently small, the magnitude of Im{ct } could be much larger than

that of Re{a }<tnd the damping ratio of the system can therefore be vary

large.

The lowest natural frequency of the coupled shell system with fluid

is significantly lower than those of the individual shells. The frequencies

for the first coupled modes (out-of-phase atcdes) are lower than either of

the uncoupled natural frequencies. The effect of the fluid viscosity on

the system natural frequencies is negligibly small in most practical

systems. However, the modal damping ratio is noticeably increased for

some cases when the fluid viscosity is included, especially for the lower
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1
1

frequency cases. For a coupled shell system the viscous effects are mostly

pronounced for the out-of-phase modes, but these effects are considered

to be negligible for the in-phase mode.

Finally, it should be pointed out that results from scaled models,

frequently used in practices for design evaluation, may not be conservative

if the vibration Reynolds number is not simulated. If the gap is small,

or the fluid viscosity Js relatively high, the simulation of the vibration

Reynolds number Re., should be included to ensure that modal damping of

the model is properly accounted for.
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APPENDIX

(1) Matrix a
pq

312 = "

a15 * -h W * a16

a22 " "n W ' a23

a24 ' h V l ^ ^ " n ^ ^ l ^ a2ii - a35

a26 = a36 = "l W V a31

32 B n ^^i) " YX V l ^ ^ a33 = a Fn(Bl}

a34 * n W and ai = k ri' h = k2ri' Yi = kiri '

The expression of a for p = 4,5,6 is similar to those for p = 1,2,3
pq

snd can be obtained by replacing a., £L, and Yi by ce?, g , and Yn-

(2) Matrix h
pq

" 2 Sl

h12 = 2 Sl V " '" ' " ~

w
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h 2 2 = - T

-s2 {[
2n(n-l

24

'25

26

h31 = l

2 S

h32 =

h33 =

(2

T T — - < 2 s i

2S

ZS1
Yl

'34

h35

h36

and

2

- 2

Sl

01

S2°:

s2o.

= i

= o.

2[Gn

VI2

Rel

L/yl

h2
S2 " x RiJ
°2 =

Mo,

u Re, V3o 3.

u r.
Re, =
1

, Mo,

Again, the expression of h for p = 4,5, and 6 is also omitted here

since it is similar to those of p = 1, 2, and 3; they can be obtained by

replacing B, and Y , by B2 and Y2»
 a n d multiplied by -1 [e.g., h^3 =
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(3) Matrix C
pq

2 ( &l[1 +
1 + v

C12 = C21 = —2~ V •

a3

l

R2
1 2 2 2 2

3j [1 - 2n + <c^ + n ) ]

The expression of C for the outer shell can be obtained easily by
p q * •>

replacing a. and & by a and 6_ and changing the subscript for C from 1,2, and

3 to 4, 5, and 6 respectively.
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