Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 194104, 14 pages
http://dx.doi.org/10.1155/2014/194104

Research Article

Hindawi

Dynamics of a Delayed Model for the Transmission of
Malicious Objects in Computer Network

Zizhen Zhang"? and Huizhong Yang®

!'School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030, China
? Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China

Correspondence should be addressed to Huizhong Yang; yhz@jiangnan.edu.cn

Received 26 June 2014; Accepted 3 July 2014; Published 23 July 2014
Academic Editor: Luca Guerrini

Copyright © 2014 Z. Zhang and H. Yang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An SEIQRS model for the transmission of malicious objects in computer network with two delays is investigated in this paper.
We show that possible combination of the two delays can affect the stability of the model and make the model bifurcate periodic
solutions under some certain conditions. For further investigation, properties of the periodic solutions are studied by using the
normal form method and center manifold theory. Finally, some numerical simulations are given to justify the theoretical results.

1. Introduction

Computer viruses in network have posed a major threat
to our work and life with the rapid popularization of the
Internet. Many virus propagation models [1-4] have been
proposed to understand the way that computer viruses
propagate after Kephart and White [5] proposed the first
epidemiological model of computer viruses. In [1], Thommes
and Coates proposed a modified version of the SEI model
to predict the virus propagation in a network. In [3], Wen
and Zhong studied an SIR model on bipartite networks
and they proved the existence and the asymptotic stability
of the endemic equilibrium by applying the theory of the
multigroup model. In [4], Mishra and Jha proposed the
following SEIQRS model to describe the transmission of
malicious objects in computer network by introducing a new
compartment quarantine into the SEIRS model proposed in

[2]:

df{it) = A-BS@H)I(t)-dS(t) +nR (1),
% = BS(HI(E)—(d+u) E),
dI(t) _

e =uE@t)-(d+a+y+8)I(),

dQ(t) _ 8I(t)—(d+“+£)Q(t)’
dt
dl;ft) =yI(t) +eQ(t) - (d+n)R(t),

)

where S(t), E(t), I(t), Q(t), and R(t) denote the sizes of nodes
in the states susceptible, exposed, infectious, quarantined,
and recovered at time ¢, respectively. A is the rate at which
new computers are attached to the network. d is the rate at
which computers are disconnected to the network. « is the
crashing rate of computers due to the attack of malicious
objects. 8 is the transmission rate. y, y, 8, €, and # are the
state transition rates.

As is known, an infected computer becomes a recov-
ered one by using antimalicious software and the recovered
computer has a temporary immunity, and computer virus
models with delay have been studied by many scholars [6-
12]. In [6], Ren et al. investigated local and global stability of a
delayed viral infection model in computer virus propagation
model. In [8], Dong et al. proposed a delayed SEIR computer
virus model and studied the problem of Hopf bifurcation of
the model by regarding the delay as a bifurcating parameter.
Motivated by the work above, Liu [12] incorporated the time



delay due to the temporary immunity period into system (1)
and proposed the following SEIQRS model with time delay:

% = A-BS(I(t)-dS(t) +yR(t - 1),
% = BSO)I(t)— (d+w)E(t),
%:yE(t)—(d+(x+y+6)I(t), )
QW) _ 51— (d+a+e)Q),

dt
% = yI(t) +£Q (t) - dR (t) - R (t - 7),

where 7 > 0 is the time delay due to the temporary immunity
period. However, we know that an infected computer needs
a period to clean viruses by antivirus software and then
becomes a recovered one. Therefore, there is a time delay
before the infected computers develop themselves into the
recovered ones. And there have been some papers that deal
with the research of Hopf bifurcation of dynamical system
with multiple delays [13-18]. In [13], Xu and He considered
a two-neuron network with resonant bilinear terms and
two delays. They studied the problem of Hopf bifurcation
by regarding the sum of the two delays as a bifurcation
parameter. In [16], Meng et al. studied the Hopf bifurcation of
a three-species system with two delays by regarding possible
combination of the two delays as a bifurcation parameter.
Motivated by the work above, we consider the following
SEIQRS computer virus model with two delays in the present

paper:

% = A= BSW)I(t)-dS(t) +nR(t - 7,),

% = BS()I(®)~ (d+ ) E(1),

% =UE() - d+a+d) (O -yI(t-1,),

% =8I(H) - (d+a) Q1) - eQ(t 1),

dl;t(t) =9yI(t-1,) +eQ(t -1,) —dR(t) — R (t - 1,),

(3)

where 7, is the time delay due to the temporary immunity
period and 7, is the time delay due to the period that the
infected computer uses to clean viruses by antivirus software.

The main purpose of this paper is to investigate the effects
of the two delays on system (3) and the remainder of this
paper is organized as follows. Sufficient conditions for local
stability and existence of local Hopf bifurcation are obtained
by analyzing the distribution of the roots of the associated
characteristic equation in Section 2. Properties of the Hopf
bifurcation are further investigated by using the normal form
method and center manifold theory in Section 3. In Section 4,
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we give a numerical example to support the theoretical results
in the paper.

2. Local Stability and Existence of
Local Hopf Bifurcation

By a simple computation, it is easy to get that if R, =
AupBld(d+u)(a+68+y+d) > 1, then system (3) has a unique
positive equilibrium P*(S*, E*,I",Q", R"), where

5 (d+u)(d+a+d8+7y) E*_(d+oc+5+y)1*

>

vB w
e (d+n)d+a+e)(AuB-d(d+up)(d+a+d+7y))
ﬁ >
. 8r* Y eSI”
:—’ R = 5
Q d+a+e d+11+(d+11)(d+oc+s)

(4)

and R, is the basic reproduction number. It is easy to get the
linearization of system (3) at P*(S*, E*, I",Q", R"):

% =a;St) +al () +bsR(t—1)),
dE (1)
Cdt
dI ()
dt
dQ ()
dt
dR (1)
Cdt

=ayS(t) +aynE(t) +ayl(t),

=anE () +ail () + 631 (E—1,), )

= a;l () +a,Q (1) +cuQ(t-1,),

=assR(t) + bsR(t — 7)) + c53I (t — 75)

+54Q(t = 75),

where
ay =—(BI" +4d),
ap=-(d+u),

ap=—(d+a+9),

) = [’)I*’

as = W,

a3 = _ﬁS*’
dys = /38*’

ag =0, ay =—(d+a),

ass = —d, bis =1, bss = -1, Gz =~

Cq =~ C3 =7» Csq = &

(6)
Thus, the characteristic equation of system (5) is
X+ mAt + m A+ myA® + m A+ m,

4 3 2 —A
+(n4/\ + 17+ myA +n1A+n0)e n

+(PA" + psA’ 4 poAt 4 A+ Po) e
™)

—2A1,

-M1,+73)

+ (A + A+ A+ ro) e

(

+ (q3)\3 + qz/\2 +q A+ qo) e
(
( e—)t(‘rl+2‘rz) -0,

2
+ ($A° + 54 + so)
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where

my = (‘/111‘123“32 = 45105033 — a13a21(132) Ay4055,
my = (“44 + ass) (4130513, — “11“23“32) — Ay303,044055
+ Gy, 8y0330y, + G110y055 (33 + yy)
+ (33044055 (a7, + ay,)
My = ay3a3, (Ay) + Ay + Ass) — ass (a0, + a330,)
— Q130,03 — A1,y (G35 + Ayq) — 3304 (a1, + ay,)
—ass (ay + ay) (453 + ay)
My = a0y, + G330 + (A + ay) (a33 + Ayy) — 2303,
+ass (ay, +ay +as +ay),
my = —(ay +ay +as; +ay +ass),
ny = (%1“23“32 — A1105033 — al3“21“32) Ay4bss,
ny = ayaybss (53 + Ay) + 33034055 (ary + ay,)
+ G130, 035 b55 — Ay305,b55 (ary + ayy) s
1y = (ay303, — a1,Gy; — A33044) bss
= (ay +ay) (@55 + ay) bss,
My = bss (ay +ay + a3+ ay) s ny = —bss,
Po = (@183 — 130y, 03205564 — (44033 + A33644) A1 022855,
D1 = 411055635 (Ayy + As5) + 44055655 (g, + ayy)
+ 118y, (@53 + as5) — Ar3032644 (ar1 + as5)
+ A33055C4 (A1) + y) — 41305, 335Cus
D2 = y303,C4 — G () + Ay (agq + as5)
— G35 (@110 + a44055) — ¢y (a1 + ay,) (a3 + as5)
— Cyy (@110, + a33055) »
D3 = G55 (g + Ay + gy + ass) + €y (Gr) + Ay + a3 + as5),
Pa=—(c33+¢a), qo = A11022055C33C44> q3 = G3C4»
@1 = (@110 + 01,855 + Ayy055) G334
@y = — (a1 + ayy + as5) G364
To = Ay1032b;5 (AaaCs3 — Ag3Csq) = Ar1axbss (3304 + A44633)
= A3bs5Cyy (11003 + A13051)
1y = (A1105 + A1)y + A5y0,4) b5z — Ay Ciabyscs;

+ (ay,ay, + ay,G53 + ayya53) bssCyy + ay303,b5504,

ry == (ay +ay + as3) bsscy — (ay) + ay + ay) bsscss,
r3 = (033 + C44) bss, So = Ay1A3,015C44C53 — 1105565565504

s; = (ay) + ay) bssC3C44 8y = —bssCy304-

(8)
Casel(t; =1, =0). When 7, = 7, = 0, (7) becomes
N+A M+ AL+ ALV + A A+A =0,
Ay =mg+ny+ py+qy+7o+ Sp
Apn=my+n +p +q +r+5s,
Ap=my+m+p+q,+1,+5$), 9

Apz=my+n3+ps+qs+13
Ay =my+n,+p,

BI" +5d+2a+pu+8+e+y+n>0.

Letdet, = A,,. Obviously, det, > 0. Therefore, if the con-
dition (H,): (10) holds, then the positive equilibrium P*(S",
E*,I",Q",R") of system (3) is locally asymptotically stable
without delay. Consider

A 1

det, = | 14 >0,

2T A A

A, 1 0

det; = [A, A3 Ay|>0,
0 Ay Ap
A, 1 0 0
A, A, A 1

det, = 12 A3 Ay S0, (10)
Ay A Ap Ag
0 0 A, A,
A, 1 0 0 0
Ap A Ay 0

det; = Ay Ay Ay A Ayl >0
0 0 Ay Ay Ap
0 0 0 0 A

Case 2 (r; > 0, 7, = 0). When T,
following form:

0, (7) becomes the

2+ A0+ A23)t3 + A A+ AL+ Ay

+ (ByyA" + BysA® + BjyA? + By A + Byy) et =,
(11)



where

Ayy =My + Py + 9o Ay =my+py+4qp

Ay =my+ Py + 4y, Ay =mz + p3 + s,
Ay =my+ Py Byy =1y + 19 + 5y, (12)
B, =n,+r +5s), By, =n,+1,+s,,

B,y =n; + 13, B,, = n,.

Let A = iw, (w; > 0) be a root of (11). Then, we obtain

3\ . 4 2
(321‘01 - Bz3w1) sinT,w; + (324(01 - By,w] + Bzo) COS T; W,
2 4
= Ajw) — Ayw; — Ay,
B, @, — Byyw} — (By,w; — By + B,y ) si
2101 — Dy3Wy ) COS T 240y 220 20) SIN T W)
5 3
= —w; + Ayw] — Ay w,;.

(13)
It follows that
wio + 024“)}13 + 023“’? + c22“)411 + Czlwf +6 =0, (14)

with

Qo = Azzo - Bio’

Q1 = A221 - B§1 —2A0 Ay + 2By By,

Cpp = Ajy — B3y +2A50A5 — 245, Ay — 2ByoByy + 2By By,
G3 = A223 +2A5 —2A5 A, — B§3 +2B,, By,

2 2
Gy = A%y — By —2A,;.
(15)

Let wf = vy, then (14) becomes

V] + GV + CaV] + ¥ + gV + 6 =0. (16)

If all the parameters of system (3) are given, one can get
all the roots of (16) by the software package Matlab. In order
to give the main results in this paper, we make the following
assumption.

(H,,) (16) has at least one positive real root.

If the condition (H,,) holds, then there exists a v, such
that (11) has a pair of purely imaginary roots tiw,, = i/v .
For w,, the corresponding critical value of time delay is

8 6 4 2
PagWyg T PrsWig T Praig + Praip + Pao
T)p = ——arccos

8 3 1 2 >
Wi GogWip T QosWip T G24Wyy + G22Wiy t G2
(17)
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where

Pao = —AzBa» Doz = AygByy — Ay By + Ay By,
Paa = Ay By + ApByy — AyByy — Ay Byy — AyyByys

p26 = A22324 + A24BZZ - A23BZ3 - BZI’

2
Das = Bas — AyuBoy, 920 = By

2 2
9 = BZl - 2BZOBZZ’ doa = B22 + 2BZOBZ4 - ZBZIBZS’

2 2
Ga6 = By = 2By, By, Grs = By,

(18)

Taking the derivative of A with respect to 7, in (11), one can
obtain

[ dA ]—1 C L SMHAAN 434,07 + 24,0+ Ay
dr, AN AL AL+ AN AL A+ Ay)
4B, A> +3B,;A2 +2BuA+ B, 1
A(ByA* + BysA% + ByA2 + B,y A+ Byy) A
19)
Thus,
-1
Re [ﬂ]
dTl A=iwy,

fll (Vl*)
2 2°
(Byywy — Bz3wf0) + (Bz4w‘1*0 - Bzzw%o + By)
(20)

where f,(v;) = vf + “24‘/11 + Q3vf + (szf + ¢V + ¢ and
Vie = “’f(y

Obviously, if the condition (H,,) f|(v;,) # 0 holds, then
Re [d)»/d‘rl]/{iiww # 0. According to the Hopf bifurcation
theorem in [19], we have the following results for system (3).

Theorem 1. For system (3), if the conditions (H,, )-(H,,) hold,
then the positive equilibrium P*(S*, E*,1",Q",R") of system
(3) is asymptotically stable for v, € [0,7),) and system
(3) undergoes a Hopf bifurcation at the positive equilibrium
P*(S*,E*,I",Q",R") when 1, = 1y,.

Case 3 (1, = 0,7, > 0). When 7; =0, (7) becomes
XA M+ AL + ALV + A+ Ay
+ (334/\4 +ByA° + ByyA” + By A + Bzo) e (21)

+(CyA + CuA? + Cyg) e 47 = 0,
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where

Asy = my + 1y, Az =my +ny, Asy =my +ny,

Ay =my + 13, Az =my +ny, Bsy = po + 105

By = pi+ 1y By, = py 1y, B33 = ps +13,

B3y = pus C30 =40 + So» Gy =q1 +51

Cup=q+5$ Cs = g5

(22)
Multiplying e on both sides of (21), we have

By A* + BysA’ + By, A + By A + By,
+ (/\5 + AN ALV AL+ AL+ A30) e

+ (C33/\3 +Cu\ + C30) et =

(23)
Let A = iw, (w, > 0) be the root of (23), then we obtain
M;, sin Ty,w, + M3, cos T,w, = Mss,
(24)
M3, cos T,w, — M35 sin 1,0, = M;g,
where
4 2
My, = Ayw, +(Csy = Asgy) @y + Ayy = Cy,
5 3
M;, = w, - (As3 +Cs3) w, + (A3 +Cyp) wy,
3
M3 = B33w, — By w;,,
(25)

M, = 1‘\34“’;1 — (A5 +Cyy) w; + Az + Gy
M;s = wi ~ (A3 -Cs3) “-’; + (A3 = Cyy) w0y,

_ 2 4
M3 = B3,w; — B3yw, — Bs,.
Then, we obtain

8 3 4 2
P33, + P36, + P3y, + P35 + Pi

W0 + G ? + Gy S + Gt + Gay 2 + Gy
) T d3sW) T (36W) T 330, t (305 + (3

COS T,w, =

7 5 3
P37Wy + P35y + P33, + P30,

W0 + G108 + Gue 8 + Gayd + Gayw? + oy
) T q3sW) T q36W; + 340, T (305 + (3
(26)

sin,w, =

where

P30 = Az (C3o = By),

P31 = (A31 +Cy1) By = (A3 + Cyo) By,

P32 = B3 (Cs1 = Ayp) + AgyByg + AgyBsy — ByoCsy
= B3,Cyp5

P33 = Byy (Asy + Csp) + Byz (Azg + Csg) = Byg (Asz + Cs3)
— B3, (A3 +Cy),

P3a = B3 (As; = C33) + B3, (C3p = Asp) + Bys (A3, - Cyy)
+ By (Cyo = Asg) = AzyBsos

P3s = B3y (Ass + Cs3) + Byy (A3 + Csp) = Bys (A + Cyp)
= AzBy),

P3s = A3yByy + A3pBsy — A33Bsz — By + By Gy — B3y Gy,

P37 = A3yBss — By, — (As; + Cy3) By,

P3g = B3z = A34Csy5

30 = A230 - C§0> 932 = A231 - C;l = 243043, +2C30Csy,

2

2
934 = A32 - C32 - 2A30A34 + 2C31C33 - 2A31A33’

d36 = A233 - C§3 +2A5 —2A5A5, dss = A234 —2A;;.

(27)
Then, we obtain
w;o + ‘%9“’;8 * C38“’;6 + C37“-’;4 + C36w;2 + C35w§0
8 6 4 2 (28)
+ G340, + G330, + G, + G W) + 630 =0,
where
G0 = 430 ~ Pao» &1 = 250832 — 2P30P32 — Pops
G2 = @ap = Py + 230934 = 2P30P34 — 2P31 330
G5 = 2q30936 T 2432934 ~ 2P30P36 ~ 2P31P35
~2p3 P34 — Py
Csa = G — Poa + 23038 + 2d5236 ~ 2P30P3s
= 2P31P37 = 2P32P36 — 2P33P355
Gs = 243938 — 2P32P38 ~ 2P33P37 — 2P3aP36 ~ Pgs’
G = qgs - P§6 + 243438 + 2433 — 2P34 P38 — 2P35 37>
Gy = 234 + 2a6T33 — P3sP3s — Paps
Gg = Gag — P3s + 2036 Co = 233.
(29)



Let wg = v,, then (28) becomes

10 9 8 7 6 5
Vy GV, F GV, t GV, t GV, G5V,
(30)
4 3 2
+ GV, GV, GV, + GV Gy = 0.

Similar as in Case 2, we make the following assumption.
(Hj;) (30) has at least one positive real root. If the condition
(Hs;) holds, then there exists a v,, such that (23) has a pair
of purely imaginary roots +iw,, = =i /V,;. For w,, the
corresponding critical value of time delay is

T

3 6 4 2
P33Wyy t P3sWyy t P3aWy + P3Wsy + P3g
= ——arccos—g

3 5 1 2 .
Wy W)y t q38W50 T q36Wy0 T G34Wy0 + 3,050 + G390
(31)

Differentiating two sides of (23) with respect to 7,, we have

[ dA ]“ _ga WM +gnNe't gy Me't 1

d_Tz gss (V) e — 935 A) el N

(32)
where
g3 (A) = 4By, A° + 3B\ + 2By, A + By,
Gy A) =50  + 4A5,0° +3A5,0° + 24,0 + A,
g3 (X) = 3C33A2 + 2Cph + Gy,
G3s A) = CyAt + CuL° + Cy A% + Gy,

gzs (A) = A6+ A34/\5 + A33/\4 + A32/\3 + A31A2 + AjpA.
(33)

Thus,

_ PipQsp + P5Qs

, (34)
Rt Qi

-1
Re [ dr ]
dr, A=iwsy,

where
Py = (5w§0 -3(A3; +Cy3) Swgo + A+ C31) COS T,Wsg
+ (4A34w§0 +2(Cy - Ayy) wzo) sin Toowyq + By
~ 33305,
Py = (Swgo ~3(As - Cs3) 56050 + Az — C31) $in 7,000,
- (4A34w;’0 -2(A5 +Cyy) ‘Uzo) COS TopW,o + 2B, w5,

3
— 4B3, w5,
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4 6 2
Qsr = ((A33 +Cs3) wyy — wyy — (A3 +Cyy) “’20) COS Tty

- (A34“’§0 +(A;3 - Csy) wgo + (A3~ Cy) wzo)
X SIN T5W50,

Qs = ((Aas — Cy3) wyy — w3 — (A3 = Csy) wio) SN Ty Wy
+ (A34w§0 ~ (A5 +Cy) wgo + (A3 +Cy) wzo)

X COS T, W50
(35)

Obviously, if the condition (H;,) P3rQsg + P5;Qs; # 0
holds, then Re [d/\/drz];iiwzo # 0. According to the Hopf

bifurcation theorem in [19], we have the following results for
system (3).

Theorem 2. For system (3), if the conditions (H,)-(Hs;,) hold,
then the positive equilibrium P*(S*, E*,1",Q",R") of system
(3) is asymptotically stable for T, € [0,7,) and system

(3) undergoes a Hopf bifurcation at the positive equilibrium
P*(S",E*,I",Q",R") when 1, = 1,,.

Case4 (1, > 0,1, > 0, T, € (0,7,)). We consider system (3)
under the condition that 7, is in its stable interval and 7, is a
bifurcation parameter.

Let A = iw;, (w;, > 0) be the root of (7), then we obtain
My, sintyw,,, + My, cos 1w, = Mys,
(36)
My, costyw,, — My, sintw,, = My,
where
M. = _ 3 3
41 = MWy, = N30y, + (1MW, — 1307, ) COS THWy
2 .
- (ro - rzwl*) sin T,w;, + $;W;, COS 2T,w,,
2\ .
- (50 - szwl*) sin 2T,w, ,,
M. = 4 2 3\
42 = Ny, — MWy, + My + 10, — 130, ) SINTHW),
2 .
+ (ro - rzwl*) COS T,W; , + $;Wy, Sin 27,w;,
2
+ (so - szwl*) COS 2T, Wy,
_ 3 ~
M,; = (p3w1* - P1w1*)3m oWy,
4 2
— P4y, — oWy, + Py ) COS Ty,
3 i
T\ D@1 — q10)x ) SN 2THWy
2 2 4
+ QWi —qo) COS Wy, + MW, —Myw,, — My,
3
My, = (P3w1* - lel*)cos ToWy
4 2 .
T (Pa;, — oWy, + P ) SIN T,
; 2
T\ Q3@ — q1W14 ) COS 2TH Wy,
2 . 3 5
- qul* - qO SlnTZwl* + mSwl* - wl* - mlwl*‘

(37)
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Then, we can obtain

fao (@1,) + 214 (@1.) cos Tywy, + 24 (wy,) sin Ty,
+2f45 (wy,) cos 21,0, + 2 f4y (w;,) sin 27,0, ,
+2f45 (wy,) cos T,w;, cos 21,0,
+ 2 f46 (w1,) cos Tyw,, sin 21,0,

+2f47 (w;,) sin 1w, sin 27,0, ,

)

+2f45 (wy,) sin 0, cos2n,0,, =0,
(38)

where

fao (@) = wig + (””i - ”i + Pi - 2m3) wf*
+(m§—n§+p§+q§—r32+2m1 - 2mymy
+2myn, — 2P2P4) wf*
+(m§—n§+p§+q§—r§—s§+2m0m4
= 2mymy + 2ngny + 2nn3 = 2P, p3 — 24,43
+2r1r3) w‘f*
+(my —ni + pi +q) =1 = s{ - 2mgm,
+ 2191, = 2P Py — 2G04, + 21T,

2 2 2 2 2 2 2
+25052)w1* +my—ny+ pyt+qy— 1ty — So»

fur (@1,) = (mypy = p3) wf*
+ (M3 p3+py—y py— My py— N33+ 1y1) “’?*
+ (Mg py — 1My Py + My Py — M3 Py + 1y Py + 14T
— Myt + 5Ty — 1yT) w;l*
+ (my py = mop, —m, o+ ngry — myry
+1,75) wf* + My Py — Mgto»
fu (0,) = —p4a)?* + (s py — myps +nyrs + py) “’Z*
+ (mypy — My py — My Py + MyPy = 1y13
+ 137y = 11y — py) wf*
+ (my py = mops — M,y py +mspy + gt
— 1Ty + My = 157 “’f*
+ (mopy — my py — Nty + 1) @y,
fus (w,) = —q3wf* + (myqs —mygq, +q;) “-’f*
+(myq, — myqs — msqy +myq, + nys;) w‘f*

2
191 ~ Moy — Myqy — M1$1) Wi
+(myq, —myqs — Myqy — 1))

7
Jua(wy,) = QZ“’Z* + (135, —m3q, — q) “’f*
+ (myqy + myqy — ms, — mys) @y,
+ (1,50 —mqp) @y,
fas (@) = (P35 — pada) @',
+ P20+ Pado— D193~ D3y + 252 — 1351 @),
+ (P191~ Pod2= P20 =ToS2+ 1151 = T2%) @1,
* Poqo + oS0
fis (@1.) = =paqs@], + (P20 = Psda+ Padi+ 735,) @),
+ (P12 = Pod3 = P21 — P3do — 1152
11,8, — 135,) Wl
+(Pod1 — P10 — 150 — 1051) Wi
fir (@) = (345 = pas) @y,
+ (P2= 193~ P39y~ Pado—T252 + T351) @y,
+ (D191~ Poda— P20+ ToS2=T151+7280) @],
* Podo ~ TS0
fas (@1,) = Pags@], + (P3dz = P2ds = Pads — 73,) @y,
+(Pods = P1da + P2d1 — P3do + 1152
— 18] — 135) wf*
+(P1do + Pody + ToS1 — 115 @i
(39)

In order to give the main results in this paper, we make the
following assumption.

(Hy;) (38) has at least one positive real root. If the
conditions (Hy;) hold, then there exists a wj, such that (7)
has a pair of purely imaginary roots tiwy,. For wy,, the
corresponding critical value of time delay is

1 My My, + My M,
TI*O = —arccos 41 Mg 42143

(40)
Wio M, + Mj,

-
W14 =Wyg

Differentiating two sides of (7) with respect to 7, we have

dr 1™ i, i,
el (941 M)+ gy, (M) e +g43(M)e
1

+ Gag V) e 4 g, (V) e

~M1+27,)
Fgu e ) (a1
x (947 V) e+ Gag (A) e Hn)

_ -1
" (/1)6 /\(11+212))
3!

A >



where

g (A) = 5A% + 4m A’ + 3m3)t2 +2myA + my,

G V) = 4m, A + 3% + 2md + 1y,
9 V) = =1, p A" + (4p, = 1,p3) A+ (3ps — 1,p,) A
+(2py + T, p1) A+ p1 — To P
9 V) = 1,45 + (3¢5 - 72‘12)2 + (29, - 1p1) A
+ g, — 1,9 (42)
Gus A) = 1,557 + (25, — T,5,) A + 5, — Ty

Gas A) = 31307 + 2,1 + 1,

G A) = n X + At + myA° + A% + mh,
Gug (A) = rA A7+ A+ 1A,

Gao (A) = 5,17+ 5,07 + s\

Thus,

dr 1! P P
Re [ ] _ wRQur + ParQur ) (43)
A=iw

dr, Qi + Qi
where

% \4 * \2
Py = 5(“’10) - 3m3(a)10) +my
3
+ (2mywyy — 4ny(w;y)” + 21,0}, cos Tyw;,
* \2 . *
+ (37’3(«)10) - rl) sin T,w;,
+ (25, — 7,8,) wy, €OS 27, Wy,
% \2 in2 * . * ok
- (Tzsz(a)w) +8; - TZS()) sin Tzwm) sin 7,0y,
2 .
+ (n1 = 3n3(wyy)” + 21,05, sin 1wy,
% \2 *
+ (rl = 3r;(wy,) ) cos T,wy,
+ (28, — 1,81) wy, sin 27,0},
% \2 2 * *
+ (7252(“’10) +8 - TZSO) cos Tzww) cos T,wy,
* * \3 . *
+ ((2P2 —1,p1) wyp — (4ps = T2p3) (wyp) ) SIN T Wy
* \2 * \4
+ ((szz =3p3) (wiy)” — mpa(wyy) +py = szo)
*
X COS T,wy,

* 3 * . *
+ (72‘13(“’10) + (29, - 1,q1) “’10) $in 27wy,

% \2 *
+ ((Tz% -3g;) (wyo)" + 4y - Tz‘]o) €08 2T, W,
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* % \3 * *
Py = 2myw;, — 4my(w),)” + 2r,0;, cos T,wy,

+ ((373(wr0)2 -

+(2s, -

. *
rl) sin Ty,
* *
T,5,) Wy, €08 2T,y
* \2 in?2 * *
— (155(wyp)” + 51 = To8,) $in 27,0y ) cos Ty ),
% \2
+ (3”3(“’10) -m

% \2 *
- (rl = 3r3(wy,) )cos T,0),

_ (252 _

* . *
— 21w, Sin T,w;

T,5,) W), Sin 27,0y,

- (‘L’zsz(c:.)fo)2 +5, — Tzso) cos ZTzwfo) sin 7,05,
+ ((2P2 = ,p1) wyo — (4ps — T2P3) (wfo)3) €0 Ty,
- ((szz -3p3) (“’ro)z - sz4(wfo)4 tp- szo)
X sin 1,0y,
+ (72‘13(“’;0)3 + (24, - 741) “’;0) €08 27,0},

- ((Tzqo - 3q;) (‘Uro)z 9 - Tz%) sin 27,y
(44)
Qupr = (n4(w10) nz(ww) + nywy,
+ (r wyy — 1 (w5y) )cos T,
(r3(w10) -1 (wyy) )sm T,w},
+ (spy — Sy(wry) ) Ccos T,wy,

+3$ W) SN Tzww sm‘rwww

4 2 3\ .
+ (n3(@lo)” —m(wjy)” + (rowyy = ra(w]o)) sinmyw]y

+ (r(@]y)" = ry(w]y)?) cos Ty}
+ (sowfo - sz(wfo)a) sin 27,w;,

=5y (wyy)” cos TZwIO) COS T1(Wy»

3
n, (“)fo) + ”0“);0

Qur = (”4(“’?0)5 -

.
+( 7y (wy,) ) COS T, Wy,

rowyp —
r3(a)10) -n (wl()) )sm TZwIO
+ (spyy = $2(w]y)”) cos 2105,
( * )2 in2 * ) * ok
+5,(wy,)” sin 27,0, ) €O T;ywy,

- (”3 (“’fo)4 -

+ (rs(wi‘o)4 -

* \2 * *\3\ . *
m ()" + (7’0“’10 - 1y(wyy) ) SIN T,
% \2 *
r(@)’) cos ey
3\ .
+ (spwyy — sy(wyy)” ) sin 21,005,

— s, (@)’ cos 21,01y ) sin 77,
(45)
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Obviously, if the condition (Hy,) PyrQur + PyQu # 0
holds, then Re [d/'\/drl];iiwfo # 0. According to the Hopf
bifurcation theorem in [19], we have the following results for
system (3).

Theorem 3. For system (3), if the conditions (H,;)-(Hy,)
hold and T, € (0,7y), then the positive equilibrium
P*(S*,E*, I",Q",R") of system (3) is asymptotically stable for
7, € [0,7},) and system (3) undergoes a Hopf bifurcation at the
positive equilibrium P*(S*, E*,I",Q",R") when 1, = 1/,.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we determine the properties of the Hopf
bifurcation of system (3) with respect to 7, for 7, € (0, 7,).
Throughout this section, we assume that 7,, < 7}, where
T, € (0, Ty).

Let T, = 7;,+u, u € Rsothat u = 0is the Hopf bifurcation
value of system (3). Rescaling the time delay by t — (/7).
Letu,(t) = S(t) — S*, u,(t) = E(t) - E*, us(t) = I(t) - I",
uy(t) = Q(t) — Q", us(t) = R(t) — R*, then system (3) can be
written as a PDE in C = C([-1, 0], R®):

u(t) =Ly, + F(uu,), (46)

andL,:C — R’,F:RxC — R’ are given, respectively, by

L, = (r}y +4) (A’¢ ) +C' (—?) +B'¢ (—1)),

10

—B¢, (0) ¢5 (0)
Beby (0) 5 (0) (47)
F(u¢) = (10 + 1) 0 ,
0
0
with
a; 0 a3 0 O
Ay Gy a3 00
Al = 0 a, 0 0 0 |,

0 0 ay3 ay O

0 0 0 0 ag
0000 b
0000 0

B=l 0000 0 |[, (48)

0000 0
0000 by
000 00
000 00
C'=| 00c¢; 00
00 0 ¢, 0
00 ¢j3 ¢4 0

By the Riesz representation theorem, there exists a 5 x 5
matrix function #(0, u) : [-1,0] — R’ whose elements are
of bounded variation such that

0
Lo=| di.u)¢®), ¢cC. (49)
-1

In fact, we choose

(5, +u) (A" +B' +C'), 6=0,
(o (@+c).  oe|-2o).
T
7 (6 1) = 1 v
(0 + ) B, oc(-1-2).
Tio
o, 6=-1.
(50)
For ¢ € C([-1,0], R®), we define
%, -1<6<0,
AWe=19 ,
| an@we@®. 6=0
0, -1<0<0,
R =
©9={F gy, 520

Then system (46) can be transformed into the following
operator equation

u(t) = A(p)u +R(p) u,. (52)

For ¢ € C([-1,0], (R>)*), we define the adjoint operator A*
of A

de (s)
= 0<s<l,
s <s

A (p) =19 , (53)
J dr]T (5,009(=s), s=0,
-1

associated with a bilinear form
(9(s),9(0)) =9(0)$(0)

0 0
) J . Lzo‘_"“ ~0) dr (0) ¢ (§) dE,

o=
(54)

where #(0) = (0, 0).
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)@ be the eigenvector

D(1, p;,
P> PasPn *)e“io™o® be the eigenvector of A* corresponding to
—iw;,T;,- From the definition of A(0) and A*(0) and by a
simple computation, we obtain

Let p(6) = (L ps» ps: pas ps)
of A correspondmg to +iw;,T,, and let p*(s) =

The Scientific World Journal

Let

D= [1 + PaPy * P3P * PaPy + PsPs

* il Tr =% ® —iwl T
+T)0e Ps + Tye (57)

s . -1
X (P (c33p3 + Cs53p5) + Py (Caaps + Csaps)) ]

zzw) Then, (p*,p) = 1, {p*,p) = 0
1wy — dy Next, we can obtain the coefficients determining the
ay a5, proper.ties of the ngf bifurcation' by the algotitl}ms intro-
Ps =7 — Tt , duced in [19] and using a computation process similar to that
(iwfy — ay) (iwjy — cze™™io™) — ay3as in [20]:
4303
= - , _ Ty (5* 1) (3)
P iy = gy = Cyye i 920 = 2B1,D(p; = 1) p 7 (0) ™ (0),
- * Ty (5 —(1) (3) (1) =3
ps = Iy — Ay — ay3P3 g1 = BriD(p; — 1) (P ©p70)+p " (0)p (0)) ,
5 = o x
byse™ "o (55) D m =6
. (i’ ) pi 9o = 2B7,D (p5 - 1) (005 (0),
s dwptay »_ lwy +a5)p, =
P a, Ps as, > 9o = 2Pr,D (p; - 1)
1 —
_— wlOTZOp X <W1(11) (0) p(3) (0) + EWZ%) (0) p(3) (0)
& iwm gyt Cyye o X
(3) 1) Tw® —(1)
. blseiwforl*o + Wi (0)p (0) + 2W20 ©)p (0)>’
= PogE okt 58
& iwy + dss + bsse™ o (58)
with
From (54), we have W, (6) = i920P (O)Eir{‘ow;‘oe + igoP (O)E—ir;}]wfoe
20 - * * ok
T10%10 31wro
<P* (S) > P (9)> + EleZiTl*o“’IUG’
=D [1 + PaPs + P3Ps + PaPy + PsPs + Tfoeiiwroffoﬁ; Wy, (0) = —M@ir;"wﬂ’ + —lgl*lp EO) e mon® L p
(56) 10%10 T10%10
+ T;Oe_iwro'r;o (59)
x (7 ( tCaps) + 7 (Caupa + € ))] where E; and E, can be determined by the following
P3 \C33P3 + C53P5) + Py \CyaPs + C54pP5)) | - equations, respectively:
a, 0 &K 0 —byse 70T Egl)
~ay a4y (o] 0 0 Eiz)
E; =2 0 -ay ay; 0 0 o |
0 0 ~ay; a,, 0 0
0 0 _6536_21'“’;0720 _C54e_2i“’f07;0 aés 0
-1 1
a; 0 ap 0 bys E; :
A1 Gy Op3 0 0 Egz)
Ey=- 0 a5 & 0 0 0 g
0 0 ag aytcoy 0 0
0 0 &3 &y as5+bss 0

(60)
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1.8

1.6
14

0.1 1.2 S(t)

FIGURE 1: The phase plot of the states S, E, and I for 7, = 7.85 <
8.4755 = 1,,.

with
! _2. *
ay = 2l — dpys

! _2. *
Gy = 410y — Ay

[ —2iw;, Ty
G35 = 2iw) — C33€ ,
I ha —2iw; Ty
Oyq = 2iWyo — gy — Cyge ,
[ —2iw;, Ty,
ass = 2iw;, — ds5 — bsse , (61)

E{ = —pp™ (0) ¥ (0).
EY = o (0 p? (0),
E =B (p" ¥ 0+ p (077 (),

E;Z) — ﬁ (ﬁ(l) (0) p(3) (0) + p(l) (0) ﬁ(3) (0)) )

Then, we can get the following coefficients:

2
i - 2 |90z 921
C,(0) = —ZTl*owro (57115720 2|911| 3 ) + 5’

by = - Re {Cl (0)}
2 Re{MN (1)} (62)
B, =2Re{C, (0)},

Im{C, (0} +p, Im {2 (7},)}

2~ % ok .
T10%10

In conclusion, we have the following results.

Theorem 4. For system (3), if y, > 0 (u, < 0), the Hopf
bifurcation is supercritical (subcritical). If B, < 0 (f, > 0)
the bifurcating periodic solutions are stable (unstable). If T, >
0 (T, < 0), the period of the bifurcating periodic solutions
increases (decreases).

1

18y
164

144

S(t)

124 0

0.8

1 .
0.4

0.5 . .
0 0 R(t)

Q)

F1GURE 2: The phase plot of the states S, Q, and R for 7, = 7.85 <
8.4755 = 1,,.

E(t)

FIGURE 3: The phase plot of the states S, E, and I for 7, = 9.85 >
8.4755 = 1,,.

4. Numerical Simulation

In this section, we present some numerical simulations to
verify the theoretical results in Sections 2 and 3. Let A = 0.33,
B=075d=01,7=02p=03a=027y=0183 = 0.3,
€ = 0.3. Then, we get the following particular case of system

(3):

diz it) =0.33-0.758 () I (t) - 0.1S (t) + 0.2R (t - 71,
EO _ o755 (t)I(t) - 0.4E (1),
dt
% = 0.3E(t) - 0.681 (t) - 0.18I (t - 7,) ,
% =0.381(t) = 0.3Q (t) = 0.3Q (t - 7,),
dl;t(t) =0.18I(t - 7,) +0.3Q(t — 7,) — 0.1R (1),

-02R(t-1).
(63)
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S(t)

1

Q) 0.5

0502 © RO

FIGURE 4: The phase plot of the states S, Q, and R for 7, = 9.85 >
8.4755 = 1.

e 92 o 15 g

FIGURE 5: The phase plot of the states S, E, and I for 7, = 7.75 <
8.1081 = 7.

It is easy to verify that Ry = 2.1584 > 1. Then, we get
the unique positive equilibrium P*(1.5289,0.5656,0.1973,
0.1250, 0.2433) of system (63). Further, we can obtain det; =
2.4080 > 0, det, = 3.7619 > 0, det; = 2.2.0074 > 0,
det, = 0.1012 > 0, and det; = 0.0016 > 0. That is, the
condition (H,) holds.

For 7, > 0, 7, = 0. By some complex computation, we
obtain w,, = 1.3397, 1, = 8.4755, and f|(v;,) = 2.3102 >
0. That is, the conditions (H,;) and (H,,) hold. According
to Theorem 1, we can conclude that when 7, € [0,7y),
the positive equilibrium P*(1.5289,0.5656,0.1973,0.1250,
0.2433) of system (63) is asymptotically stable. However,
when the value of 7; passes through the critical value 7y,
the positive equilibrium P*(1.5289,0.5656,0.1973,0.1250,
0.2433) of system (63) will lose its stability and a Hopf
bifurcation occurs at the positive equilibrium of system (63).
This property can be illustrated by Figures 1-4. As can be seen
from Figures 1-2, if we choose 7; = 7.85 < 1y, it is easy to
see from Figures 1-2 that the positive equilibrium P*(1.5289,
0.5656,0.1973,0.1250, 0.2433) of system (63) is asymptot-
ically stable. However, if we choose 7, = 9.85 >
)0, then the positive equilibrium P*(1.5289,0.5656,0.1973,
0.1250,0.2433) loses its stability and a Hopf bifurcation
occurs, which can be illustrated by Figures 3-4. Similarly, we
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_ 0.5
Q(t) _1 0 R(t)

FIGURE 6: The phase plot of the states S, Q, and R for 7, = 7.75 <
8.1081 = 7.

E(t)

= 1.5
o 1 S(t)

FIGURE 7: The phase plot of the states S, E, and I for 7, = 9.37 >
8.1081 = 7.

have w,;, = 1.7690, 1), = 8.1081 and P;3Qsx + P5;Q;; =
0.0319 > 0. Namely, the conditions (Hs,) and (Hj,) hold. The
corresponding phase plots are shown in Figures 5, 6,7, and 8.

Fort, > 0,7, > Oand 7, = 525 € (0,7y). We
obtain w;, = 3.6529, 7;, = 5.6477 by some complex
computations. The corresponding phase plots are shown in
Figures 9-12. As illustrated by Figures 9-10, when 7, =
5.05 € (0,1,,), the positive equilibrium P*(1.5289, 0.5656,
0.1973,0.1250, 0.2433) of system (63) is asymptotically stable.
However, as can be seen from Figures 11-12, the positive
equilibrium P*(1.5289, 0.5656, 0.1973,0.1250, 0.2433) of sys-
tem (63) becomes unstable and a Hopf bifurcation occurs at
P*(1.5289,0.5656,0.1973,0.1250, 0.2433) when 7, = 6.25 >
1), This property is consistent with Theorem 3. In addition,
we have 1'(t7,) = 0.0493+0.0126i, C, (0) = —5.8133+2.5756i.
Thus, we have y, = 1179168 > 0, 3, = —-11.6266 < 0,
T, = —0.2711 < 0. From Theorem 4, we can conclude that the
Hopf bifurcation is supercritical and the bifurcating periodic
solutions are stable, and the period of the periodic solutions
decreases.
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254

S(t)

Q) B 0 ' R()

FIGURE 8: The phase plot of the states S, Q, and R for 7, = 9.37 >
8.1081 = T,

E(t)

2.5
2

: 1.5
I 0.
© : S(8)

FIGURE 9: The phase plot of the states S, E, and I for 7, = 5.05 <
5.6477 = 1), and 7, = 5.25 € (0, Ty).

0.5 .
0
QW) ° T R(t)

F1GUre 10: The phase plot of the states S, Q, and R for 7; = 5.05 <
5.6477 = 1), and 7, = 5.25 € (0, Ty).

5. Conclusions

This paper is concerned with a delayed SEIQRS model for
the transmission of malicious objects in computer network.
Compared with the literature [12], we consider not only the
time delay due to the temporary immunity period but also
the time delay due to the period that the infected computer
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2
1.5

It 0 05 ! S(t)

FIGURE 11: The phase plot of the states S, E, and I for 7, = 6.25 >
5.6477 = 71y and 7, = 5.25 € (0, Tyy).

0.5
Q) 0

FIGURE 12: The phase plot of the states S, Q, and R for 7, = 6.25 >
5.6477 = 71y and 7, = 5.25 € (0, ).

uses to clean viruses by antivirus software. That is, the system
we considered in this paper is more general than that in the
literature [12]. By considering the possible combination of the
two delays as a bifurcation parameter, we find that when the
delay is below the corresponding critical value, the positive
equilibrium of system (3) is locally asymptotically stable.
However, when the delay passes through the corresponding
critical value, the positive equilibrium of system (3) loses
its stability and system (3) undergoes a Hopf bifurcation,
which is not welcomed in networks. Furthermore, direction
of the Hopf bifurcation and stability of the bifurcating
periodic solutions are determined by using the normal form
method and center manifold theory. Numerical simulations
are presented to illustrate the theoretical analysis and results.
Since the occurrence of the Hopf bifurcation is not welcomed
in networks, we should control the Hopf bifurcation by some
bifurcation control strategies such as the state feedback and
parameter perturbation and so on. This is a further problem,
which can be studied in the future.
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