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Abstract

In this paper, a delayed phytoplankton-zooplankton system with Crowley-Martin

functional response is investigated analytically. We study the permanence and

analyze the stability of the both boundary and positive equilibrium points for the

system with delay as well as the system without delay. The global asymptotic stability

is discussed by constructing a suitable Lyapunov functional. Numerical analysis

indicates that the delay does not change the stability of the positive equilibrium

point. Furthermore, we also show that due to the increase of the delay there occurs a

Hopf bifurcation of periodic solutions. It is found that population fluctuations will not

appear under the condition of certain parameters. In addition, we determine the

direction of the Hopf bifurcation and the stability of bifurcating periodic solutions by

applying a normal form method and center manifold theory. Finally, some numerical

simulations are carried out to support our theoretical analysis results.
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1 Introduction

Plankton plays an important role in the ocean and the climate because of their participa-

tion in the global carbon cycle at the base of the food chain []. There are two forms of

plankton, the plant forms of the plankton community are known as phytoplankton and the

animals in the plankton community are known as zooplankton. Phytoplankton biomass

has the characteristics of rapid proliferation, this change is called bloom []. Under some

circumstances, however, phytoplankton bloom can appear and affect the ecological bal-

ance, and it even can endanger human life and health. Therefore, a better understanding

of mechanisms that determine the plankton dynamics is of considerable interest [].

In recent years, there were many experimental ecologists as well as mathematical ecol-

ogists who have paid more attention to the phenomena of phytoplankton blooms. And

many scholars proposed different deterministicmodels to study the dynamical behavior of

the plankton system and tried to explain the dynamic mechanism of phytoplankton in dif-

ferent ways [–]. Abbas et al. [] considered the two species competitive delay plankton

allelopathy stimulatory deterministic model and investigated the existence and unique-

ness of the solution as well as the persistence and the stability properties of the model,

which is very useful and meaningful for the study of plankton bloom. Chakraborty and
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Das [] investigated some properties of a two-zooplankton one-phytoplankton system

that exhibits a Holling type II functional response in the presence of toxicity, the results

they obtained can provide great help for researching the dynamic complexity of plank-

ton systems. Kartal et al. [] proposed a phytoplankton-zooplankton system via a new

approach by using a system of differential equations with piecewise constant arguments

and studied the biological dynamics of the bloom in the plankton system. It is significant

that they explained the plankton bloom depended on three different parameters, namely

θ (rate of toxin production per phytoplankton), β (zooplankton growth efficiency) and K

(environmental carrying capacity of phytoplankton), which can effectively promote the

research process of the plankton bloom. However, a clear understanding of the mecha-

nisms that cause the plankton blooms is still lacking. Hence, by establishing a differential

equation model to study the ecological problems and a suitable model to study the dy-

namic relationship between the phytoplankton and zooplankton is still very important. In

the work of [] and [], Stomp et al. and Rhee et al. have indicated that there exist many

factors affecting the dynamics of plankton.

The functional response is one of the factors affecting the dynamic properties of plank-

ton. Sklaski and Gilliam [] pointed out that predator-dependent functional responses

such as described by Beddington-DeAngelis, Crowley-Martin, andHassel-Varley can pro-

vide a better description of predator feeding over a range of predator-prey abundance

settings. In the above three functional responses, the Crowley-Martin [] functional re-

sponse is predator dependent and the per capita feeding rate is given by

f (x, y) =
ωx

 + kx + ky + kkxy
, ()

where ω, k, and k are positive parameters that describe the effects of the capture rate,

handling time, and the magnitude of interference among predators, respectively, on the

feeding rate. It is obvious that the following two cases are possible. () If k >  and k = ,

then the response reduces to a Michaelis-Menten (or Holling type II) functional response

[]. () If k =  and k = , then the Crowley-Martin response reduces to a linear mass-

action (or Holling type I) functional response [].

It is interesting to study the dynamic properties of plankton systems with different func-

tional responses [, ]. To the best of our knowledge, few studies of phytoplankton-

zooplankton systems have applied a Crowley-Martin functional response. Based on the

above discussion and the previous work of [], we consider the following system:

⎧

⎨

⎩

dP(t)
dt

= rP(t)( – P(t)
k
) – ωP(t)Z(t)

+kP(t)+kZ(t)+kkP(t)Z(t)
,

dZ(t)
dt

= γ
ωP(t)Z(t)

+kP(t)+kZ(t)+kkP(t)Z(t)
–μZ(t).

()

For this system, in order to investigate the dynamics of the phytoplankton and zooplank-

ton, we present the following major assumptions:

(I) It is assumed that P(t) and Z(t) are the concentrations of phytoplankton and zooplank-

ton populations, respectively.

(I) It is assumed that k(ugl–) is the carrying capacity, r(day–) is the maximum growth

rate, μ(day–) is the zooplankton death rate and γ is the conversion efficiency [].

(I) It is assumed that ω is the effects of the capture rate, k is the handing time and k is

the magnitude of interference among predator (zooplankton) [].
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(I) From a biological point of view, all the parameters in () assume only positive values

and will be considered as constants throughout our discussion.

Let Z̄ = Z, P̄ = kP, and t̄ = rt. Dropping the bars for simplicity, then () leads to the

following dimensionless equations:

⎧

⎨

⎩

dP(t)
dt

= P(t)( – aP(t)) – bP(t)Z(t)
+cP(t)+dZ(t)+eP(t)Z(t)

= P(t)f(P(t),Z(t)),

dZ(t)
dt

=
gP(t)Z(t)

+cP(t)+dZ(t)+eP(t)Z(t)
– hZ(t) = Z(t)f(P(t),Z(t)).

()

With P() = P >  and Z() = Z > , where a = 
k
, b = ω

r
, c = k

k
, d = k, e =

kk
k
, h = μ

r
,

g = γω

k
.

On the other hand, it is well known that biological systems governed by delay-differential

equations exhibit richer dynamics than ordinary differential systems [–]. Many ordi-

nary differential models of plankton ignore the zooplankton from birth to have the ability

to hunt and breed, it takes some time. Hence, a time delay factor is taken into account in

the ecosystem so it will be more realistic. That is to say, in order to better understand the

mechanisms that determine the plankton, it is necessary to study the dynamic behaviors

for a phytoplankton-zooplankton systemwith consider the effect of a time delay. In recent

years, the impact of different delays (such as maturation and gestation etc.) on plankton

ecosystems has been extensively studied [–]. In this work, we assume that reproduc-

tion in a zooplankton population after predating on phytoplankton is not instantaneous,

but is arbitrated by some constant time lag τ because of phytoplankton handling and di-

gesting. Under the same basic assumptions as taken for system (), the dimensionless form

of the delayed phytoplankton-zooplankton system is

⎧

⎨

⎩

dP(t)
dt

= P(t)( – aP(t)) – bP(t)Z(t)
+cP(t)+dZ(t)+eP(t)Z(t)

,

dZ(t)
dt

=
gP(t–τ )Z(t–τ )

+cP(t–τ )+dZ(t–τ )+eP(t–τ )Z(t–τ )
– hZ(t),

()

subject to the initial conditions P = ζ(θ ) > , Z = ζ(θ ) > , θ ∈ [–τ , ], where ζi ∈
C([–τ , ] → R+) for i = ,  are given functions and τ is a positive constant.

The main purpose of this paper is to study the dynamic behaviors of system () and (),

especially, how the time delay affects the plankton system. We shall also compare all pos-

sible dynamics between the non-delayed system () and its corresponding delayed system

(). The remainder of the paper is organized as follows. In Section , we consider results

for the non-delayed system (), and we discuss the properties of positivity and bounded-

ness, conditions for the existence of a positive equilibrium as well as the condition for the

persistence, and the stability of various equilibrium points. Section  presents analogous

results for the delayed system () and considers the stability and direction of the Hopf

bifurcation. In Section , we present some numerical results supporting our analytical

findings. Section  discusses the results and draws some conclusions.

2 Non-delayed system

In this section, our analysis shows the positivity and boundedness of the solutions, dis-

sipativity, the persistence, local and global stability of both zooplankton-free equilibrium

and positive equilibrium points for system ().
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2.1 Positivity and boundedness of solutions

Let R+ denote the set of all non-negative real numbers and Rn
+ = {P ∈ Rn : P = (P · · ·Pn)},

where {Pi ∈ R+,∀i = , , . . . ,n}. If we denote the function on the right-hand side of (),

by F = (F,F), it is clear that F ∈ C(R
+). Thus, F : R

+ → R is locally Lipschitz on R
+ =

((P,Z) : P ≥ ,Z ≥ ). Hence, the fundamental theorem of the existence and uniqueness

ensures the existence and uniqueness of a solution for () with the given initial conditions.

The state space for the system is a non-negative cone R
+ = {(P,Z) : P ≥ ,Z ≥ }.

Lemma . The positive quadrant (Int(R
+)) is invariant for system ().

Now we consider the conservation of overall energy or biomass flow, and we search for

the existence of some region in the dynamical space within which system () is bounded.

Lemma . ([]) Consider s(t) as an absolutely continuous function satisfying the differ-

ential inequality

d(s(t))

dt
+ us(t)≤ u s.t. t > ,

where (u,u) ∈ R, u �= . Then for all t ≥ T̂ ≥  we have

s(t)≤ u

u
–

(

u

u
– s(T̂)

)

e–u(t–T̂).

Theorem . All the solutions of () starting in R
+ are confined to the region D =

{(P(t),Z(t)) ∈ R
+ :  ≤ P(t) ≤ 

a
,  ≤ ψ(t) ≤ (h+)

ah
} as t → ∞ for all positive initial values

(P(),Z()) ∈ R
+, where

ψ(t) = P(t) +
b

g
Z(t).

Proof We define the function

ψ(t) = P(t) +
b

g
Z(t).

Differentiating ψ(t) with respect to time t along the solution for system (), we obtain

dψ(t)

dt
=

dP(t)

dt
+
b

g

dZ(t)

dt

= P(t)
(

 – aP(t)
)

–
bP(t)Z(t)

 + cP(t) + dZ(t) + eP(t)Z(t)

+
b

g

(

gP(t)Z(t)

 + cP(t) + dZ(t) + eP(t)Z(t)
– hZ(t)

)

= –h

(

P(t) +
b

g
Z(t)

)

–
(

aP(t) – (h + )P(t)
)

≤ –hψ(t) +
(h + )

a
.
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Thus, we have

dψ(t)

dt
+ hψ(t)≤ (h + )

a
.

Using Lemma ., we have ψ(t) ≤ (h+)

ah
as t → +∞. Therefore, all the solutions for ()

are uniformly bounded with an ultimate bound. �

2.2 Dissipativity and permanence

In this section, we analyze the dissipativity, persistence, and permanence behavior of sys-

tem (). To prove our results, we first present the following definitions.

Definition . ([]) System () is said to beweakly persistent if every solution (P(t),Z(t))

satisfies two conditions:

() P(t) ≥ , Z(t) ≥ , ∀t ≥ .

() lim supt→+∞ P(t) > , lim supt→+∞ Z(t) > .

System () is said to be strongly persistent if every solution (P(t),Z(t)) satisfies the fol-

lowing condition along with the first condition for the weak persistence: lim inft→+∞ P(t) >

, lim inft→+∞ Z(t) > .

Definition . ([]) System () is said to be permanent if there exists positive constants

m andM, with  <m <M such that

min
{

lim inf
t→+∞

P(t), lim inf
t→+∞

Z(t)
}

≥ m,

max
{

lim sup
t→+∞

P(t), lim sup
t→+∞

Z(t)
}

≤ M,

for all solutions (P(t),Z(t)) of system () with positive initial values. System () is said to

be non-permanent if there is a positive solution (P(t),Z(t)) of system () such that

min
{

lim inf
t→+∞

P(t), lim inf
t→+∞

Z(t)
}

= .

Lemma . ([]) If P > , q >  and du
dt

≤ (≥)u(t)(q – pu(t)), u(t) > , then we have

lim supt→+∞ u(t) ≤ q
p
(lim inft→+∞ u(t) ≥ q

p
). As the dependent variables are positive, from

the phytoplankton equation in system (), we have

dP(t)

dt
≤ P(t)

(

 – aP(t)
)

.

Using Lemma .,

lim sup
t→+∞

P(t) ≤ 

a
≡m.

Thus, for arbitrary ε >  there exists a positive real number T such that

P(t) ≤m + ε, ∀t ≥ T.



Liao et al. Advances in Difference Equations  ( 2017)  2017:5 Page 6 of 30

It is easy to see that

dP(t)

dt
≥ P(t)

((

 –
b

d

)

– aP(t)

)

.

Applying Lemma ., we have

lim inf
t→+∞

P(t) ≥ d – b

ad
≡m provided d > b.

For arbitrary ε >  there exists a positive real number T such that

P(t) ≥m – ε, ∀t ≥ T.

From the zooplankton equation in system (), we have

dZ(t)

dt
≤ Z(t)

(

g(m + ε)

 + c(m – ε) + dZ(t) + e(m – ε)Z(t)
– h

)

= Z(t)

(

(m + ε)g – h – ch(m – ε) – Z(t)(dh + eh(m – ε))

 + c(m – ε) + dZ(t) + e(m – ε)Z(t)

)

≤ Z(t)

(

(m + ε)g – h – ch(m – ε) – Z(t)(dh + eh(m – ε))

 + c(m – ε)

)

.

Applying Lemma . yields

lim sup
t→+∞

Z(t)≤ mg – h – chm

dh + ehm

≡Q provided h <
mg

 + cm

.

Similarly, we can obtain

lim inf
t→+∞

Z(t) ≥ mg – h – chm

dh + ehm

≡Q provided h <
mg

 + cm

.

The above results can be summarized in the following theorem.

Theorem . For system (), if h <
gm

+cm
, then

lim sup
t→+∞

P(t) ≤ 

a
≡m,

lim sup
t→+∞

Z(t)≤ mg – h – chm

dh + ehm

≡Q.

Theorem . For system (), if d > b and h <
gm
+cm

, then

lim inf
t→+∞

P(t) ≥ d – b

ad
≡m,

lim inf
t→+∞

Z(t) ≥ gm – h – chm

dh + ehm

≡Q.
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Remark . Under Definition ., Theorem . results, whereby system () is weakly

persistent (dissipative), holding provided h <
mg

+cm
. Theorem . along with Definition .

ensures that system () is strongly persistent provided the conditions d > b and h <
gm
+cm

hold.

The conditions d > b, h <
gm

+cm
, and h <

gm
+cm

ensure that m > , Q > , and Q > ,

respectively. Sincem >  and
gm

+cm
>

gm
+cm

, when h <
gm
+cm

holds, this ensures thatQ > 

and Q > . Thus, we arrive at the following result.

Theorem . System () is permanent if it satisfies any of the following two conditions:

(H) d > b, (H) h <
gm
+cm

.

2.3 Biomass equilibrium

We consider the following three equilibrium solutions of system ():

(i) The trivial equilibrium E = (, ).

(ii) The boundary equilibrium E = ( 
a
, ).

(iii) The coexistence equilibrium (interior equilibrium) E∗ = (P∗,Z∗).

Equilibria E and E always exist, and the coexistence equilibrium E∗ = (P∗,Z∗) is the

point of intersection of zero growth rate isoclines for phytoplankton (i.e. when dP(t)
dt

= )

and zooplankton (i.e. when dZ(t)
dt

= ), given by

⎧

⎨

⎩

 – aP – bZ
+cP+dZ+ePZ

= ,

gP

+cP+dZ+ePZ
– h = ,

()

where Z =
gP(–aP)

bh
, and P is the root of the following equation:

P +AP
 +AP +A = , ()

where

A =
adg – eg

age
, A =

gb – chb – dg

age
, A = –

hb

age
< .

From Lemma . of Song et al. [], since A < , we see that equation () has at least

one positive root. We only consider that equation () has one positive root denoted by P∗.

Furthermore, for this value of P∗, the corresponding value of Z∗ is given by Z∗ = gP∗(–aP∗)
bh

.

2.4 Dynamical behavior: stability analysis

In this section, we deal with the local stability, global stability, and bifurcation of system ().

.. Behavior of system () around E = (, )

The variational matrix for system () at E takes the form

J
(

E
)

=

(

 

 –h

)

.

We observe that the Jacobianmatrix of system () at E has eigenvalues  and –h. There-

fore, system () is always unstable around E, which is in fact a saddle point.
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.. Behavior of system () around E = ( 
a
, )

The variational matrix for system () at E takes the form

J
(

E
)

=

(

– – b
a+c


g

a+c
– h

)

.

The eigenvalues of the variational matrix J(E) at the equilibrium solution E are - and
g

a+c
– h. Hence, for h >

g

a+c
system () is stable around E, for which the P-Z plane is at

stable manifold. Conversely, for h <
g

a+c
, system () is always unstable around E, which is,

in fact, a saddle point.

From the above analysis, we have the following result.

Theorem . For system ():

(i) E is a saddle point.

(ii) Eis a saddle point if h <
g

a+c
, and it is a stable node if h >

g

a+c
.

Theorem . The equilibrium solution E = ( 
a
, ) is globally asymptotically stable if

h≥ g

a
.

We prove the result for the delayed system. The proof for system () is similar.

.. Behavior of system () around E∗ = (P∗,Z∗)

Let P(t) = P∗ + x(t), Z(t) = Z∗ + y(t). Then the linearized system for () around the positive

equilibrium E∗ = (P∗,Z∗) is

⎧

⎨

⎩

dx(t)
dt

= P∗fPx(t) + P∗fZy(t),
dy(t)
dt

= Z∗fPx(t) + Z∗fZy(t).
()

The variationalmatrix for linearization of system () aroundE∗ after simplification using

the equilibrium equations for system () is given by

J
(

E∗) =

(

J J

J J

)

,

where

J = P∗fP = –aP∗ +
bZ∗(cP∗ + eP∗Z∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

J = P∗fZ = –
bP∗( + cP∗)

( + cP∗ + dZ∗ + eP∗Z∗)
< ,

J = Z∗fP =
gZ∗( + dZ∗)

( + cP∗ + dZ∗ + eP∗Z∗)
> ,

J = Z∗fZ = –
gP∗(dZ∗ + eP∗Z∗)

( + cP∗ + dZ∗ + eP∗Z∗)
< .

The characteristic polynomial for J(E∗) is λ – tr(J(E∗))λ + det(J(E∗)), where tr denotes

trace and det stands for determinant. Applying the Routh-Hurwitz criteria, the character-

istic polynomial will have either negative real roots or a pair of complex conjugate root
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with negative real part if tr(J(E∗)) <  and det(J(E∗)) > . Since tr(J(E∗)) = J + J and

det(J(E∗)) = JJ – JJ, we have tr(J(E∗)) <  and det(J(E∗)) >  if J < , in other words,

system () is stable in a small neighborhood of the non-trivial equilibrium E∗ if

a >
bZ∗(c + eZ∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

that is, if

fP < . ()

Furthermore, we have the equilibrium equation (see the phytoplankton equation for

system ())

 + cP∗ + dZ∗ + eP∗Z∗ =
bZ∗

 – aP∗ . ()

Using (), equation () takes the form

abZ∗ >
(

c + eZ∗)( – aP∗). ()

Solving () for Z∗, we have

Z∗ =
( + cP∗)( – aP∗)

b – ( – aP∗)(d + eP∗)
. ()

Using (), then inequality () takes the form

ab( + cP∗)( – aP∗)

b – ( – aP∗)(d + eP∗)
>

(

c + eZ∗)( – aP∗). ()

From (), we have b – ( – aP∗)(d + eP∗) >  and P∗ ≤ 
a
. Thus, equation () must hold

provided

(

 + cP∗)(ab – e
(

 – aP∗)) > c
(

b –
(

 – aP∗)(d + eP∗)). ()

After some simple algebraic manipulations, equation () gives

(abc – cad + ae)P∗ + ab – cd + cd – e > . ()

Hence, if b > d and ab > cb – cd + e, then () is satisfied. Thus, we have the following

result.

Theorem . If b > d and ab > cb – cd + e hold, then the positive equilibrium is locally

asymptotically stable.

.. Global stability of the interior equilibrium E∗ = (P∗,Z∗) of system ()

Theorem . If (H)-(H) hold and ( + eQ)( – aP∗) < a, then the interior equilibrium

solution E∗ is globally asymptotically stable.
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Proof We prove Theorem . by constructing a suitable Lyapunov functional. Consider

the functional V (P,Z) : R
+ → R such that

V (P,Z) = V(P) + uV(Z), ()

where V(P) = (P–P∗ –P∗ ln( P
P∗ )), V(Z) = (Z–Z∗ –Z∗ ln( Z

Z∗ )), and u is a positive constant

to be defined below. We evaluate the time derivative of the positive definite scalar valued

function () along the solutions for system ():

dV

dt
=

(

P – P∗) dP

Pdt

=
(

P – P∗)
(

–a
(

P – P∗) +
bZ∗

 + cP∗ + dZ∗ + eP∗Z∗ –
bZ

 + cP + dZ + ePZ

)

,

dV

dt
= u

(

Z – Z∗) dZ

Zdt

= u
(

Z – Z∗)
(

gP

 + cP + dZ + ePZ
–

gP∗

 + cP∗ + dZ∗ + eP∗Z∗

)

.

We define N(P,Z) = ( + cP + dZ + ePZ)( + cP∗ + dZ∗ + eP∗Z∗). Differentiating () and

inserting values of dV
dt

and dV
dt

, algebraic manipulation yields

dV

dt
=

(

P – P∗)
{

–a
(

P – P∗) +
b(Z∗ – Z) + bc(PZ∗ – ZP∗) + beZZ∗(P – P∗)

N(P,Z)

}

+ u
(

Z – Z∗)
{

g(P – P∗) + gd(PZ∗ – ZP∗) + gePP∗(Z∗ – Z)

N(P,Z)

}

=
(

P – P∗)

×
{

–a
(

P – P∗) +
b(Z∗ – Z) + bc(Z∗(P – P∗) – P∗(Z – Z∗)) + beZZ∗(P – P∗)

N(P,Z)

}

+ u
(

Z – Z∗)
{

g(P – P∗) + gd(Z∗(P – P∗) – P∗(Z – Z∗)) + gePP∗(Z∗ – Z)

N(P,Z)

}

=

(

–a +
bcZ∗ + beZZ∗

N(P,Z)

)

(

P – P∗) +
(gduZ∗ + gu – (b + P∗))

N(P,Z)

(

P – P∗)(Z – Z∗)

–
(gdP∗u + ugePP∗)

N(P,Z)

(

Z – Z∗).

Using Theorems . and . and choosing u such that u(g dZ∗ + g) = b + P∗, we have

dV

dt
< –

[

a –
bZ∗(c + eQ)

N(P,Z)

]

(

P – P∗) –

[

u(g dP∗ + gePP∗)

N(P,Z)

]

(

Z – Z∗). ()

The coefficient for (Z – Z∗) in () is always negative under the hypotheses of Theo-

rem .. After inserting value of N(P,Z), the coefficient for (P – P∗) takes the following

form:

–a +
bZ∗(c + eQ)

( + cP + dZ + ePZ)( + cP∗ + dZ∗ + eP∗Z∗)

≤ –a +
bZ∗(c + eQ)

 + cP∗ + dZ∗ + eP∗Z∗ = –a + (c + eQ)
(

 – aP∗).
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We conclude that if the hypotheses of Theorem . are satisfied, then dV
dt

<  along

all the trajectories in R
+ except E∗ = (P∗,Z∗). Thus, the functional V (P,Z) satisfies all the

properties of a Lyapunov functional. Therefore, E∗ = (P∗,Z∗) is globally asymptotically

stable under the conditions of Theorem .. This completes the proof. �

3 Delayed system

In this section, we analytically prove positivity and boundedness of the solutions, the per-

sistence, local and global stability, existence of the Hopf bifurcation by analyzing the asso-

ciated characteristic transcendental equation for the model with a delay. Furthermore, we

also discuss stability and direction of the Hopf bifurcation by means of the normal form

method and center manifold theory.

3.1 Positivity and boundedness of system (4)

First we prove the positivity of system (). We can write the phytoplankton equation in

system () as

dP

P
=

(

 – aP –
bZ

 + cP + dZ + ePZ

)

dt.

Integrating from  to t, we obtain the following result:

P(t) = P()e
[
∫ t
{–aP(ϕ)– bZ(ϕ)

+cP(ϕ)+dZ(ϕ)+eP(ϕ)Z(ϕ)
}dϕ]

,

which implies that P(t) >  for all t when P() > .

Using the zooplankton equation in system (), we can write

Z(t) = Z()e
[
∫ t
{ gP(ϕ–τ )Z(ϕ–τ )

Z(ϕ)[+cP(ϕ–τ )+dZ(ϕ–τ )+eP(ϕ–τ )Z(ϕ–τ )]
–h}dϕ]

,

which implies that Z(t) >  for all t when Z() > . Hence the interior of the first quadrant

is an invariant set for the delayed system ().

Theorem . All solutions for system () starting in R
+ are confined to the region D∗ =

{(P,Z) ∈ R
+ :  ≤ φ(t) ≤ (h+)

ah
} as t → +∞ for all positive initial values (P(θ ),Z(θ )) ∈ R

+,

where φ(t) = P(t – τ ) + b
g
Z(t).

Proof We define the function φ(t) = P(t – τ ) + b
g
Z(t). Differentiating φ(t) with respect to

time t along the solution for system (), we obtain

dφ(t)

dt
=

dP(t – τ )

dt
+
b

g

dZ(t)

dt

= P(t – τ )
(

 – aP(t – τ )
)

–
bP(t – τ )Z(t – τ )

 + cP(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ )

+
b

g

{

gP(t – τ )Z(t – τ )

 + cP(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ )
– hZ(t)

}

= P(t – τ ) – aP(t – τ ) –
bh

g
Z(t)
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= –h

(

P(t – τ ) +
b

g
Z(t)

)

+ (h + )P(t – τ ) – aP(t – τ )

≤ –hφ(t) +
(h + )

a
.

Thus, we have

dφ(t)

dt
+ hφ(t) ≤ (h + )

a
.

Using Lemma ., we have φ(t) ≤ (h+)

ah
. Thus all the solutions for system () are uni-

formly bounded with an ultimate bound. �

3.2 Permanence

Now we establish the persistence and permanence behavior of the delayed model using

the positivity of the dependent variables.

In Section , we showed the following relations for the phytoplankton equation in sys-

tem ():

lim sup
t→+∞

P(t) ≤ 

a
≡m

and

lim inf
t→+∞

P(t) ≥ d – b

ad
≡m.

From the zooplankton equation in system (), we have

dZ

dt
≤ gmZ(t – τ )

 + cm + dZ(t – τ ) + emZ(t – τ )
– hZ(t)

≤ gm

d + em

– hZ(t). ()

Solving (), we have

lim sup
t→+∞

Z(t)≤ gm

(d + em)h
.

Because
gm

(d+em)h
>

gm–h–cmh

(d+em)h
≡Q, we obtain lim supt→+∞ Z(t) ≤ Q.

Similarly, we have

dZ

dt
≥ gmZ(t – τ )

 + cm + dZ(t – τ ) + emZ(t – τ )
– hZ(t)

≥ gm

d + em

– hZ(t). ()

Solving (), we have

lim inf
t→+∞

Z(t) ≥ gm

(d + em)h
>
gm – h – cmh

(d + em)h
≡Q.

The above results can be summarized as follows.
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Theorem . Any positive solution {P(t),Z(t)} of system () satisfies

m ≤ lim inf
t→+∞

P(t) ≤ lim sup
t→+∞

P(t) ≤ m,

Q ≤ lim inf
t→+∞

Z(t)≤ lim sup
t→+∞

Z(t) ≤ Q,

when d > b and h <
mg

+cm
.

Using the definitions of lim sup and lim inf, we can claim that there exist four positive

constants ti (i = , , , ) such that

m ≤ P(t), ∀t ≥ t, P(t) ≤ m, ∀t > t,

Q ≤ Z(t), ∀t ≥ t, Z(t)≤ Q, ∀t > t.

If we defineN∗ = min{m,Q}, L∗ = max{m,Q}, andT∗ = max{t, t, t, t}, thenwehave
N∗ < {P(t),Z(t)} < L∗ for t > T∗, and we can state the permanence result for system ().

Theorem . The delayed system () is permanent if d > b and h <
gm
+cm

.

3.3 Local stability and Hopf-bifurcation analysis

In this sectionwediscuss the local stability of the positive equilibrium E∗ and the boundary

equilibrium E for system () and establish the existence of the Hopf bifurcation at E∗.

We recall the following result, which provides the conditions for the absence of a delay-

induced switch from stability to instability.

Theorem . ([]) The set of necessary and sufficient conditions for E∗ to be asymptoti-

cally stable for all τ ≥  is as follows:

(i) The real parts of all the roots of D(λ, ) =  are negative.

(ii) For any real Z and any τ ≥ , D(iZ, ) �= , where i =
√
–, and D(λ, τ ) denotes the

characteristic equation associated with ().

We can rewrite system () as dW (t)
dt

= F(W (t),W (t – τ )), where W (t) = [P(t),Z(t)]T and

W (t–τ ) = [P(t–τ ),Z(t–τ )]T . Let P(t) = P∗+x(t),Z(t) = Z∗+y(t). Then, linearizing system

() about the interior equilibrium E∗ = (P∗,Z∗), we have

dϕ(t)

dt
=GU(t) +HU(t – τ ), ()

where G = ( ∂F
∂W (t)

)W∗ , H = ( ∂F
∂W (t–τ )

)W∗ ,W ∗ = (P∗,Z∗), and ϕ(t) = (x(t), y(t)).

Thus, the variational matrix for system () at E∗ is given by J(E∗) =G +He–λτ , where

G =

(

j j

 j

)

,

H =

(

 

j j

)

,
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with

j = –aP∗ +
bZ∗(cP∗ + eP∗Z∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

j = –
bP∗( + cP∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

j =
gZ∗( + dZ∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

j =
gP∗( + cP∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

j = –h.

The variational matrix of system () at E is given by

J
(

E
)

=

(

– – b
a+c

 –h +
g

a+c
e–λτ

)

,

and its corresponding characteristic equation is

det

(

– – λ – b
a+c


g

a+c
e–λτ – h – λ

)

= ,

where λ = – is a negative eigenvalue. Hence, we only need to concentrate on the equation

λ = –h +
g

a + c
e–λτ . ()

It is clear that when τ =  and h >
g

a+c
, the equilibrium point E is locally asymptotically

stable. Substituting λ = iω into equation () and equating the real and imaginary parts,

we obtain

cosωτ =
h(a + c)

g
, sinωτ = –

ω(a + c)

g
. ()

Solving the above two equations, we have

ω =

(

g

a + c

)

– h. ()

Equation () has a positive root ω+ if
g

a+c
> h. Thus, there is a positive constant τ̂ such

that, for τ > τ̂ , E becomes unstable.

The characteristic equation for system () at the positive equilibrium E∗ takes the form

D(λ, τ ) = det
(

G +He–λτ – λI
)

= det

(

j – λ j

je
–λτ –

g

b
je

–λτ – h – λ

)

= .

Then we have the following transcendental equation:

λ + (h – j)λ – hj = j

(

j +
g

b
j –

g

b
λ

)

e–λτ , ()
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which has been extensively studied [, ]. Here D(λ, ) = λ + (h – j)λ – hj – j(j +
g

b
j –

g

b
λ). Hence, the constant term in D(λ, ) =  is negative if h + j

g

b
> j and j(j +

g

b
j) + hj < . Therefore, regardless of the sign for λ, D(λ, ) =  always has a unique

positive root. Consequently, Theorem . fails to ensure the stability of system () with

positive delay τ > .We now determine the conditions under which the system undergoes

a Hopf bifurcation near the coexistence equilibrium E∗ and the local stability of E∗. We

take the discrete time delay τ as the bifurcation parameter. We know that the sign for

the real parts of the solution for () characterize the stability behavior of E∗. Therefore,

putting λ = μ + iω into () and separating the real and imaginary parts, we obtain the

following system of equations:

μ –ω + hμ – jμ – hj

=

(

jj +
g

b
jj –

g

b
jμ

)

e–μτ cosωτ –
g

b
je

–μτω sinωτ ,

μω +ωh – jω

= –
g

b
jωe

–μτ cosωτ – e–μτ

(

jj +
g

b
jj –

g

b
jμ

)

sinωτ .

()

The necessary condition for a change in stability of the interior equilibrium point E∗

is that equation () should have purely imaginary roots, that is, stability switches for

increasing τ in I = [, τ ∗) may occur only with a pair of roots λ = ±iω(τ ). Let τ = τ̂ be the

particular magnitude of τ for which μ(τ̂ ) =  and ω(τ̂ ) = ω̂. Hence, to obtain the stability

criterion, substituting τ = τ̂ , μ = , and ω = ω̂ in (), we obtain

ω̂ + hj = –

(

jj +
g

b
jj

)

cos ω̂τ̂ +
g

b
jω̂ sin ω̂τ̂ ,

(j – h)ω̂ =
g

b
jω̂ cos ω̂τ̂ + sin ω̂τ̂

(

jj +
g

b
jj

)

.

()

Solving () for cos ω̂τ̂ and sin ω̂τ̂ , we obtain

cos ω̂τ̂ =
ω̂(j – h)

g

b
– (ω̂ + hj)(j +

g

b
j)

j[(j +
g

b
j) + (

g

b
ω̂)]

,

sin ω̂τ̂ =
ω̂(j – h)(j +

g

b
j) + (ω̂ + hj)

g

b
ω̂

j[(j +
g

b
j) + (

g

b
ω̂)]

.

()

By squaring and adding the above two equations, we obtain a third order algebraic equa-

tion in ω̂ of the form

aξ
 + aξ

 + aξ + a = , ()

where

ξ = ω̂, a =
g

b
,

a = 
g

b

(

jj +
g

b
j – hj

)

+

(

g

b
h + j

)

–
g

b
j,
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a =

(

jj +
g

b
j – hj

)

+ 

(

g

b
h + j

)(

hjj +
g

b
jh

)

– 

(

j
g

b

(

j +
g

b
j

))

,

a =

(

hjj +
g

b
jh

)

– j

(

j +
g

b
j

)

.

Let ξ be a real positive root of the cubic equation

ax
 + ax

 + ax + a = . ()

Letting v = ax + a, then equation () can be rewritten as

h(v) = v + ev + e, ()

where

e = aa – a , e = aa – aaa + a .

From Lemma . of Wang et al. [] we know that: (s) If e < , equation () has one

positive root. (s) If e >  and e < , equation () has two positive roots when e+e

 < 

and has a positive root of multiplicity two when e + e = . (s) If e =  and e < ,

equation () has one positive root.

The required value of ω̂, for which equation () has a pair of purely imaginary roots is

the positive root of (). From (), the critical magnitude of the delay parameter corre-

sponding to ω̂ is given by

τ̂n =


ω̂
arccos

ω̂ g

b
(j – h) – (ω̂ + hj)(j +

g

b
j)

j[(j +
g

b
j) + (

g

b
ω̂)]

+
nπ

ω̂
,

for n = , , , . . . . If E∗ is locally asymptotically stable for τ = , then by Butler’s lemma

(see Appendix  in []), E∗ remains stable for τ < τ̂ . The transversality condition for the

Hopf bifurcation at τ = τ̂ is [ dμ

dτ
]τ=τ̂ > . Differentiating () with respect to τ and setting

τ = τ̂ , ω = ω̂, and μ = , we obtain

β

[

dμ

dτ

]

τ=τ̂

– α

[

dω

dτ

]

τ=τ̂

= β, β

[

dμ

dτ

]

τ=τ̂

+ α

[

dω

dτ

]

τ=τ̂

= α,

where

β = h – j + j cos ω̂τ̂

(

g

b
+ jτ̂ +

g

b
jτ̂

)

–
g

b
ω̂τ̂ j sin ω̂τ̂ ,

α = –

(

j sin ω̂τ̂

(

g

b
+ jτ̂ +

g

b
jτ̂

)

+
g

b
ω̂τ̂ j cos ω̂τ̂ – ω̂

)

,

β = –j

(

g

b
ω̂ cos ω̂τ̂ + ω̂ sin ω̂τ̂

(

j +
g

b
j

))

,

α = j

(

g

b
ω̂ sin ω̂τ̂ – ω̂ cos ω̂τ̂

(

j +
g

b
j

))

.
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Thus, we have

[

dμ

dτ

]

τ=τ̂

=
ββ + αα

β
 + α



. ()

From () it is obvious that the transversality condition [ dμ

dτ
]τ=τ̂ >  for the occurrence

of the Hopf bifurcation at τ = τ̂ is well satisfied provided ββ + αα > . Summarizing,

we have established the following result for switching the stability behavior of system ()

around E∗.

Theorem .

(i) Let E∗be locally asymptotically stable for system () with τ =  and let

–hj – j(j +
g

b
j) < . Then there exists τ = τ̂ such that E∗ is locally asymptotically

stable for τ < τ̂ and unstable for τ > τ̂ , where τ̂ >  is the smallest value for which

there is a solution to equation () for which the real part is zero. Furthermore, as τ

exceeds τ̂ , E∗ bifurcates into periodic solutions, provided ββ + αα > .

(ii) If h + j
g

b
> j, j(j +

g

b
j) + hj < , and (s) or (s) or (s) hold, then E∗ for system

() is locally asymptotically stable for all τ > .

3.4 Global stability of system (4) around E
1 and E

∗

We discuss the global stability of E and E∗. Let (P(t),Z(t)) be any positive solution for ()

and let E = ( 
a
, ) = (P̄, ). We consider the function

V = P – P̄ – P̄ ln
P

P̄
+
b

g
Z. ()

The time derivative of () along the positive solution of system () is

dV

dt
=
P – P̄

P

dP

dt
+
b

g

dZ

dt

= (P – P̄)

[

( – aP) –
bZ

 + cP + dZ + ePZ

]

+
bP(t – τ )Z(t – τ )

 + cP(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ )
–
bh

g
Z

= –a(P – P̄) –
bPZ

 + cP + dZ + ePZ
+

b
a
Z

 + cP + dZ + ePZ

+
bP(t – τ )Z(t – τ )

 + cP(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ )
–
bh

g
Z. ()

We introduce a functional V for () such that

V = V + b

∫ t

t–τ

P(s)Z(s)

 + cP(s) + dZ(s) + eP(s)Z(s)
ds. ()

Calculating dV
dt

along the solution for system (), we have

dV

dt
=

dV

dt
+

bPZ

 + cP + dZ + ePZ

–
bP(t – τ )Z(t – τ )

 + cP(t – τ ) + dZ(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ )
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= –a(P – P̄) +
b
a
Z

 + cP + dZ + ePZ
–
bh

g
Z ()

≤ –a(P – P̄) +

(

b

a
–
b

g
h

)

Z. ()

If h >
g

a
or h =

g

a
, then from () we have dV

dt
<  except at (P(t),Z(t)) = (P̄, ) and

also dV
dt

=  if and only if (P(t),Z(t)) = (P̄, ) (see the equation of ()). Hence Lyapunov-

Lasalle’s invariance principle implies the global asymptotic stability of E.

We summarize the result in the following theorem.

Theorem. The equilibrium solution E = ( 
a
, ) for system () is globally asymptotically

stable if h ≥ g

a
.

Theorem . If (H)-(H), a > bZ∗(c + eQ), and the conditions

(i) W =
gQP

∗(d + em)

Qϕ

–
Q( + gdZ∗)

Qϕ

–
gm( + cP∗)

Qϕ

> ,

(ii) Qϕ

(

b
(

 + cP∗))K – QWϕ


(

a – bcZ∗ – beQZ
∗)K

– Wϕϕgm

(

 + cP∗) ≤ ,

hold, then system () has a globally asymptotically stable equilibrium E∗.

Proof Consider the set η = {(P,Z) :m < P <m,Q < Z <Q}. It is clear that η is a compact

and bounded region in R
+ and is at a positive distance from the coordinate axes. There

exists T , such that, for t > T , every solution for system () with τ >  enters and remains

in region η.

Using the equations for system (), we can express system () as

dP

dt
= P

(

–a
(

P – P∗) +
bZ∗

 + cP∗ + dZ∗ + eP∗Z∗ –
bZ

 + cP + dZ + ePZ

)

,

dZ

dt
= Z

(

gP(t – τ )Z(t – τ )

Z( + cP(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ ))
()

–
gP∗

 + cP∗ + dZ∗ + eP∗Z∗

)

.

Motivated by (), to study the global stability of the interior solution E∗(P∗,Z∗), we

introduce the functional V (t) such that

V (t) = u

∫ P–P∗



s

s + P∗ ds + u

∫ Z–Z∗



s

s + Z∗ ds

+ R

∫ t

t–τ

(

P(s) – P∗) ds,

where u and u are positive constants defined below and R =
ugm(+cP

∗)
Qϕ

, with ϕ =

ϕ(m,Q), ϕ = ϕ(m,Q), and ϕ(P,Z) = ( + cP∗ + dZ∗ + eP∗Z∗)( + cP + dZ + ePZ).

Differentiating V (t) along the solution for system () and using

PZ∗ – P∗Z = Z∗(P – P∗) + P∗(Z∗ – Z
)

,



Liao et al. Advances in Difference Equations  ( 2017)  2017:5 Page 19 of 30

Z∗P(t – τ ) – P∗Z = Z∗(P(t – τ ) – P∗) + P∗(Z∗ – Z
)

,

ab ≤ a + b


,

we have

dV

dt
= u

(

P – P∗)
{

–a(P – P∗) + b(Z∗ – Z) + bc(PZ∗ – ZP∗) + beZZ∗(P – P∗)

ϕ(P,Z)

}

+ u
(

Z – Z∗)
{

g(P(t – τ )Z(t – τ ) – P∗Z) + gcP∗P(t – τ )(Z(t – τ ) – Z)

Zϕ(P(t – τ ),Z(t – τ ))

}

+ u
(

Z – Z∗)
{

g dZ(t – τ )(Z∗P(t – τ ) – P∗Z) + geP∗P(t – τ )Z(t – τ )(Z∗ – Z)

Zϕ(P(t – τ ),Z(t – τ ))

}

+ R
(

P(t) – P∗) – R
(

P(t – τ ) – P∗)

=
(ubcZ

∗ – au + ubeZZ
∗)(P – P∗) – (bu + ubcP

∗)(Z – Z∗)(P – P∗)

ϕ(P,Z)

+

{

(guP(t – τ ) + ugcP
∗P(t – τ ))(Z(t – τ ) – Z)(Z – Z∗)

Zϕ(P(t – τ ),Z(t – τ ))

}

+

{

(uZ + ug dZ
∗Z(t – τ ))(P(t – τ ) – P∗)(Z – Z∗)

Zϕ(P(t – ϕ),Z(t – τ ))

}

–

{

(uP
∗g dZ(t – τ ) + ugeP

∗P(t – τ )Z(t – τ ))(Z – Z∗)

Zϕ(P(t – τ ),Z(t – τ ))

}

+ R
(

P(t) – P∗) – R
(

P(t – τ ) – P∗)

≤ –

{

u(a – bcZ∗ – beQZ
∗)

ϕ

– R

}

(

P – P∗)

–

{

bu( + cP∗)

ϕ

}

(

Z – Z∗)(P – P∗)

–

{

ugQP
∗(d + em)

Qϕ

–
uQ( + gdZ∗)

Qϕ

–
gum( + cP∗)

Qϕ

}

(

Z – Z∗).

The right-hand side of the above expression should be considered as a quadratic form in

the variables (P – P∗) and (Z – Z∗), that is, negative definite if the matrix G is

G =

(

u(a–bcZ
∗–beQZ

∗)
ϕ

– R bu(+cP
∗)

ϕ
bu(+cP

∗)
ϕ

gQP
∗(d+em)
Qϕ

–
Q(+gdZ

∗)
Qϕ

–
gm(+cP

∗)
Qϕ

)

.

We define W =
gQP

∗(d+em)
Qϕ

–
Q(+g dZ

∗)
Qϕ

–
gm(+cP

∗)
Qϕ

and K =
ϕgm(+cP

∗)
Qϕ(a–bcZ∗–beQZ∗) . If we

choose u = Ku, then the matrix G is positive definite if a > bZ∗(c + eQ), W > , and

W {K (a–bcZ∗–beQZ
∗)

ϕ
–

gm(+cP
∗)

Qϕ
} ≥ b(+cP∗)

ϕ
, that is, Qϕ(b( + cP∗))K – QWϕ

 (a –

bcZ∗ – beQZ
∗)K – Wϕϕgm( + cP∗) ≤ . The result follows. �

Remark . If h≥ gP∗, the sufficient conditions for global asymptotic stability of the pos-

itive solution E∗ for non-delayed system () imply that the interior equilibrium solution

E∗ for the delayed system is globally asymptotic stable if E∗ for non-delayed system () is

globally asymptotic stable and conditions (i) and (ii) of Theorem . hold.
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3.5 Stability and direction of Hopf bifurcation

Here we describe the process for computing the direction of the Hopf bifurcation and

the stability of bifurcating periodic solutions using the normal form method and center

manifold theory introduced by Hassard et al. []. Without loss of generality, we always

assume that system () undergoes a Hopf bifurcation in the state E∗ for one of the critical

values τ = τ̂j = τ̂ , where j = , , , . . . and ±iω are the only purely imaginary roots of the

characteristic equation at E∗.

Let σ = τ – τ̂ . Then σ =  is a Hopf-bifurcation value of system (). Letting P = x + P∗,

Z = y + Z∗, and t = tτ , system () is transformed into

ẋ(t) = ax(t) + ay(t) +
∑

i+j≥



i!j!
F
()
ij x

i(t)yj(t),

ẏ(t) = ax(t – τ ) + ay(t – τ ) + ay(t) ()

+
∑

i+j+l≥



i!j!l!
F
()
ijl x

i(t – τ )yj(t – τ )yl(t),

where

F () = P( – aP) –
bPZ

 + cP + dZ + ePZ
,

F () =
gP(t – τ )Z(t – τ )

 + cP(t – τ ) + dZ(t – τ ) + eP(t – τ )Z(t – τ )
– hZ,

F
()
ij =

∂ i+jF ()

∂Pi ∂Zj

∣

∣

∣

∣

E∗
,

F
()
ijl =

∂ i+j+lF ()

∂Pi(t – τ ) ∂Zj(t – τ ) ∂Zl

∣

∣

∣

∣

E∗
,

a = –P∗a +
bZ∗(cP∗ + eP∗Z∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

a = –
bP∗( + cP∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

a =
gZ∗( + dZ∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

a =
gP∗( + cP∗)

( + cP∗ + dZ∗ + eP∗Z∗)
,

a = –h.

We can write equation () as the following functional differential equation in C =

C([–, ),R):

ẋ(t) = Lσ (xt) + F(a,xt), ()

where x(t) = (x(t),x(t))
T ∈ R, Lσ : C → R, and F : R×C → R are given by

Lσ (φ) = (τ̂ + σ )Sφ() + (τ̂ + σ )Sφ(–) ()
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and

F(σ ,φ) = (τ̂ + σ )

(

∑

i+j≥

i!j!
F
()
ij φi

()φ
j
()

∑

i+j+l≥


i!j!l!
F
()
ijl φi

(–)φ
j
(–)φ

l
()

)

, ()

for which φ(θ ) = (φ(θ ),φ(θ ))
T ∈ C, B, B, and F(σ ,xt) are defined in the form

S =

(

j j

 j

)

,

S =

(

 

j j

)

, ()

F(σ ,φ) = (τ̂ + σ )

(

F
()
φ

 () + F
()
 φ()φ() + F

()
φ


 ()

F
()
φ


 (–) + F

()
φ(–)φ(–) + F

()
φ


 (–)

)

.

By the Riesz representation theorem [], there exists a function η(θ ,σ ) of bounded

variation for θ ∈ [–, ] such that

Lσ (φ) =

∫ 

–

dη(θ , )φ(θ ), φ ∈ C. ()

In fact, we can choose

η(θ ,σ ) = (τ̂ + σ )S =

(

j j

 j

)

δ(θ ) – (τ̂ + σ )

(

 

j j

)

δ(θ + ), ()

where δ is the Dirac delta function. For φ ∈ ([–, ],R), we define

A(σ )φ =

⎧

⎨

⎩

dφ(θ )
dθ

, for θ ∈ [–, ),
∫ 

–
dη(σ , v)φ(v), for θ = ,

()

and

R(σ )φ =

⎧

⎨

⎩

, for θ ∈ [–, ),

f (σ ,φ), for θ = .
()

Then system () is equivalent to

ẋt = A(σ )xt + R(σ ), ()

where xt(θ ) = x(t + θ ) for θ ∈ (–, ].

For κ ∈ C([, ], (R)∗), we define

A∗κ(v) =

⎧

⎨

⎩

– dκ(v)
dv

, for v ∈ (, ],
∫ 

–
dηT (t, )φ(–t), for v = .

()
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To construct the co-ordinates to describeC near , for κ ∈ [–τ , ], we define the bilinear

inner product

〈

κ(v),φ(θ )
〉

= κ̄()φ() –

∫ 

–

∫ θ

ξ=

κ̄(ξ – θ )dη(θ )φ(ξ )dξ , ()

where η(θ ) = η(θ , ). Then 〈κ ,Aφ〉 = 〈A∗κ ,φ〉 and henceA() andA∗ are adjoint operators.

From the discussion in the previous subsection and the foregoing assumption, we know

that ±ω̂τ̂ are eigenvalues of A(). Hence, they are also eigenvalues of A∗. We first need to

compute the eigenvectors of A() and A∗ corresponding to iω̂τ̂ and –iω̂τ̂ .

We can see that

q(θ ) = (,ρ)Teiω̂θ
(

θ ∈ [–, )
)

,

q∗(s) =D
(

,ρ∗)eiω̂s
(

s ∈ (, τ ]
)

,

are the eigenvectors of A() and A∗ corresponding to iω̂τ̂ and –iω̂τ̂ , where

ρ =
iω̂ – a

a
, ρ∗ =

iω̂ – a

ae–iω̂τ̂
,

D =


 + ρ̄ρ∗ – ρ∗τ̂ (a + aρ̄)eiω̂τ̂
,

such that 〈q∗(s),q(θ )〉 =  and 〈q∗(s), q̄(θ )〉 = .

Following the same algorithms and using a similar computation process to that of Tri-

pathi et al. [], we obtain the coefficients for the important parameters:

g = τ̂ D̄
(

F
()
 + F

()
 ρ + σ̄

(

F
()
e

–iω̂τ̂ + F
()
ρe

–iω̂τ̂
))

,

g = τ̂ D̄
(

F
()
 + F

()
 Re{ρ} + ρ̄∗(F ()

 + F
()
 Re{ρ}

))

,

g = τ̂ D̄
(

F
()
 + F

()
 ρ̄ + ρ̄∗(F ()

e
iω̂τ̂ + F

()
ρ̄e

iω̂τ̂
))

,

g = τ̂ D̄
(

F
()
 W

()
 () + F

()
 W

()
 ()ρ̄

)

+ τ̂ D̄ρ̄∗(F ()


(

W
()
 (–)ρ̄e

iω̂τ̂ +W
()
 (–)e

iω̂τ̂

+ W
()
 (–)ρe

–iω̂τ̂ + W
()
 (–)e

–iω̂τ̂
))

,

where

W(θ ) =
ig

ω̂τ̂
q()eiω̂τ̂ θ +

iḡ

ω̂τ̂
q̄()e–iω̂τ̂ θ + Ee

iω̂τ̂ θ ,

W(θ ) = –
ig

ω̂τ̂
q()eiω̂τ̂ +

iḡ

ω̂τ̂
q̄()e–iω̂τ̂ + E,

E =

(

E
()


E
()


)

,

E =

(

E
()


E
()


)

,

E
()
 =



�

∣

∣

∣

∣

∣

c –a

c iω̂ + h + eZ∗ + ae
–iω̂τ̂

∣

∣

∣

∣

∣

,
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E
()
 =



�

∣

∣

∣

∣

∣

iω̂ – a c

–ae
–iω̂τ̂ c

∣

∣

∣

∣

∣

,

E
()
 = –



�∗

∣

∣

∣

∣

∣

c a

c –h – a

∣

∣

∣

∣

∣

,

E
()
 = –



�∗

∣

∣

∣

∣

∣

a d

a d

∣

∣

∣

∣

∣

,

� =

∣

∣

∣

∣

∣

iω̂ – a –a

–ae
iω̂τ̂ iω̂ + ae

–iω̂τ̂

∣

∣

∣

∣

∣

,

�∗ = –�|θ=,ω̂=,

c = F
()
 + F

()
 ρ + F

()
ρ

,

c = F
()
e

–iω̂τ̂ + F
()
ρe

–iω̂τ̂ + F
()
ρ

e–iω̂τ̂ ,

d = F
()
 + F

()
 Re(ρ) + F

()
 |ρ|,

d = F
()
 + F

()
 Re(ρ) + F

()
|ρ|.

Consequently, g can be expressed explicitly. Thus, we can compute the following val-

ues:

c() =
i

ω̂τ̂

(

gg – |g| –
|g|


)

+
g


,

μ = –
Re{c()}
Re dλ(τ̂ )

dτ

,

β = Re
{

c()
}

,

T = –
Im{c()} +μ Im{ dλ(τ̂ )

dτ
}

ω̂τ̂
.

According to Hassard et al. [] and using the quantity analysis above, the Hopf-

bifurcation properties are determined using the following theorem.

Theorem . The Hopf-bifurcation properties at the critical value τ = τ̂ are derived, as

follows:

(i) If μ >  (< ), the Hopf bifurcation is supercritical (subcritical).

(ii) If β <  (> ), the bifurcated periodic solutions are stable (unstable).

(iii) If T >  (< ), period of the bifurcating periodic solution increases (decreases).

4 Numerical simulations

In the previous sections, a detailed theoretical analysis has been carried out and some

interesting results of the research of system have been obtained. In order to prove the

feasibility and effectiveness of the theoretical analysis results as well as to provide a more

in-depth understanding of the results of the analysis, in particular, the time delay influ-

encing the complex dynamics of phytoplankton-zooplankton system, we perform some

numerical simulations.
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The numerical solutions are given considering the following parameter values: a = , b =

, c = , d = , e = ., h = ., and g = . For this choice, it is easy to show that the param-

eters can satisfy the conditions of Theorem . when τ = . And thus the positive equilib-

rium point E∗ = (., .) has global attractivity, which implies that

the phytoplankton and zooplankton populationsmay have lasting coexistence, as shown in

Figure . In addition, these parameters can also satisfy the conditions of Theorem.when

we take τ = ., and the positive equilibrium point E∗ = (., .)

and this also shows global attractivity in the phytoplankton-zooplankton system with a

time delay (see Figure ). Furthermore, it is interesting to compare Figure  and Figure ,

especially in Figure (c) and Figure (c), where it can be seen that the phase diagram of

Figure  becomes finer, which indicates that the delay does not change the stability of the

positive equilibrium point, but it can also accelerate the process of its stability. To further

illustrate the point, we plot phase portraits with the same initial value, and when τ = .

and τ =  in Figure , and the time series diagram for six different values of delay: , .,

., , ., and  in Figure  are taken, this explicitly depicts that the time delay does not

affect the stability of the positive equilibrium point.

Next, the direction of the Hopf bifurcation for the corresponding delayed system ()

is also investigated by a numerical simulation. We take a = , b = , c = ., d = .,

e = ., h = ., and g = , then it is not difficult to obtain ω̂ = .,

ββ + αα > , τ̂ = .. It is easy to verify that the positive equilibrium

Figure 1 The global attractivity of system (3). (a)-(b) Time series. (c) Phase portrait. We take the

parameters a = 1, b = 5, c = 2, d = 6, e = 0.001, h = 0.3, and g = 5, and we obtain ten sets of different initial

values (0.01, 0.01), (0.02, 0.02), (0.03, 0.03), (0.04, 0.04), (0.63, 0.01), (1.3, 0.01), (2.3, 0.01), (2.56, 0.02), (2.80, 0.05),

and (2.85, 0.03). Numerical simulations show for system (3) the positive equilibrium point E∗ has global
attractivity when τ = 0.
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Figure 2 The global attractivity of system (4). (a)-(b) Time series. (c) Phase portrait. The parameters and

initial values are the same as given in Figure 1. Numerical simulations show that for system (4) the positive

equilibrium point E∗ has global attractivity when τ = 2.5.

Figure 3 The phase portrait shows the effect of the delay on the stability of the coexistence

equilibrium point E∗ .

E∗ = (.,.) for system () is locally asymptotically stable when

τ < τ̂ , the case of τ = . is illustrated in Figure . More interesting, when τ passes

through the critical value τ̂ , the positive equilibrium E∗ = (.,.)

for system () loses its stability and a Hopf bifurcation occurs. Moreover, there exists a

positive period- solution caused by the Hopf bifurcation, the case of τ = . is shown
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Figure 4 The effects of different time delays on the stability of the solution.We take the same

parameters as in Figure 1 and obtain six different values of the delay, 0, 0.5, 2.5, 5, 7.5, and 12. The green line is

for τ = 0, the red line for τ = 0.5, the black line for τ = 2.5, the cyan line for τ = 5, the pinkish red line for

τ = 7.5, and the yellow line for τ = 12. (a) The time series of the phytoplankton. (b) The time series of the

zooplankton.

Figure 5 The local stability of the solution of system (4). (a)-(b) Time series. (c) Phase portrait. We take the

parameters a = 1, b = 8, c = 3.09, d = 1.2, e = 0.0005, h = 1.1, and g = 8. Numerical simulations show that for

system (4) the positive equilibrium point E∗ is locally asymptotically stable for τ = 0.11 < τ̂ = 0.4422694125.

in Figure . The model simulation also shows that the delay can enhance the amplitude

of the periodic solution when the periodic solutions exist, which means that the delay has

a large effect on the dynamics of system (), as proved in Figure . In additional, from

Section ., we can easily obtain c() = –. + .i, μ = . > ,

β = –. < , and T = –. < , which shows that the Hopf bifurcation is

supercritical and the bifurcation periodic solutions are stable with decreasing period.



Liao et al. Advances in Difference Equations  ( 2017)  2017:5 Page 27 of 30

Figure 6 The stability of periodic solutions of system (4). (a)-(b) Time series. (c) Phase portrait. The

parameters are the same as given in Figure 5. Numerical simulation shows that for system (4) the positive

equilibrium point E∗ is unstable for τ = 0.59 > τ̂ = 0.4422694125 and the periodic phenomenon caused by a

Hopf bifurcation occurs. There exists a positive period-1 solution of system (4).

Figure 7 The effects of different time delays on the existence of periodic solutions.We take the same

parameters as in Figure 5. The black line is for τ = 0.59, the red dashed line for τ = 0.75, and the green line for

τ = 0.95. (a) The time series of the phytoplankton. (b) The time series of the zooplankton.

5 Discussion and conclusion

Over the two decades, a great deal of research has been devoted to the dynamics of the

plankton ecosystem, however, a clear understanding of the mechanisms that cause the

plankton blooms is still lacking and, therefore, it has been remained an interesting area of

research for many ecologists and mathematical biologists []. In this paper, an attempt

has been made to study the dynamic behaviors of a phytoplankton-zooplankton system
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with a Crowley-Martin functional response and its corresponding delayed version. In or-

der to see how the length of gestation delay affects the dynamical behavior, we have first

analyzed the systemwithout delay and obtained the parameters conditions for the perma-

nence (Theorem .). That is, if (H) and (H) hold, the phytoplankton and zooplankton

populations of the systemwill have lasting coexistence. It is also derived that the system in

the absence of delay remains locally asymptotically stable when b > d and ab > cb – cd + e

(Theorem.), whichmeans that phytoplankton bloomswill not occur.More interesting,

it can be concluded that the positive interior equilibrium of the system without delay is

globally asymptotically stable under the conditions of Theorem . (see Figure ). From

the biological point of view, it leads the phytoplankton and zooplankton populations to

coexist.

Next we have presented analogous results for the delayed system and considered the

stability and direction of the Hopf bifurcation. It is should be noted that the system in the

presence of delay is also globally asymptotically stable if (H)-(H), a > bZ∗(c + eQ), and

(i)-(ii) hold (see Figure ). In the work of [, , , , , ], one showed that the time

delay can cause a stable equilibrium to become unstable and even a switching of stabilities

in their system, in other words, a time delay which incorporates in a biological ecosystem

can lead to the ecosystem’s steady state switch from stable to unstable. In particular, in [],

the authors also investigated the dynamical behavior of a phytoplankton-zooplankton sys-

tem with a gestation delay, they observed that the gestation delay has a destabilizing effect

on the system dynamics. However, in the present paper, based on the comparative anal-

ysis of the global stability of the numerical simulation results, it was found that the delay

(gestation) did not change the stability of the system (Figure (a) and (b) and Figure (a)

and (b), Figures  and ). In [], where the global stability and the Hopf bifurcation in

a zooplankton-phytoplankton system was studied, the obtained results also showed that

the time delay did not change the stability of the system. Additionally, our results also

indicated that the delay can accelerate the process of its stability (Figures (c) and (c)).

Although the delay cannot change the stability of the system, it should be emphasized

that the delays were bound to influence the process. These results may be very meaning-

ful to study the dynamics of phytoplankton-zooplankton interaction and may have great

importance for research on plankton bloom.

In addition, it has also been shown that the time delay can induce instability and

oscillations via a Hopf bifurcation in the system in the case of the presence of delay,

and thereafter, switching of stability occurs. In other words, the stability of system ()

can be changed by the delay. More specifically, we have established that when τ < τ̂ =

., the positive interior equilibrium E∗ is stable under certain parametric re-

strictions mentioned in Theorem .. However, when the time delay τ exceeds the thresh-

old value τ̂ = ., the delayed phytoplankton-zooplankton systemwill undergo

a Hopf bifurcation and exhibit a periodic orbit around the coexisting equilibrium point E∗

(see Figure ). It should be noted that gestation delay can enhance the population fluctu-

ations when the delay is long enough, however, our analytical results demonstrated that

population fluctuationswill not appear if h+ j
g

b
> j, j(j+

g

b
j)+hj <  and any of (s),

(s), (s) hold (Theorem .). From the biological point of view, it implies the disappear-

ance of bloom of plankton populations. Consequently, the gestation delay on Crowley-

Martin functional response of the zooplankton can ensure some mechanism for control-

ling the plankton bloom. This may be helpful to study the problem of plankton bloom.
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Furthermore, by virtue of the normal form method and center manifold theory, we have

derived that a Hopf bifurcation is supercritical (μ > ) and the bifurcation periodic solu-

tions are stable with decreasing period (β <  and T < ).

Finally, although the study of the problems of the limit in theory study, the data of nu-

merical simulations are not based on real world survey, it can be seen that numerical sim-

ulation results support our analytical findings. Hence, our work may be helpful to field

investigation and experimental research in the real situation, as well as may also be help-

ful for qualitative research into similar real systems in nature. Nevertheless, in the real

world, the environment of the planktonic creature is random, we also believe that our the-

oretical results will be useful in the study of delayed Crowley-Martin-type phytoplankton-

zooplankton model systems in a stochastic environment, which we leave for future work.
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