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Abstract: Dynamics of a dry-rebounding drop was stud-

ied experimentally, numerically, and theoretically. Exper-

imental results were reproduced by our computational

�uid dynamics simulations, from which time series of ki-

netic energy, potential energy, and surface energy were

obtained. The time series of these energies quantitatively

clari�ed the energy conversion and loss during the dry-

rebound. These results were interpreted by using an imag-

inary springmodel and a spherical harmonic analysis. The

spring model explained the vertical deformation of the

drop, however, could not completely explain the energy

loss; the timings of the energy loss did not match. From

a viewpoint of the spherical harmonic deformation of a

drop, the deformation of the drop after the impact was

found to be a combination of two vibrationalmotions. One

of the two vibrationalmotions is an inertialmotionderived

from the free-fall and the another is a pressure-induced

motion derived from a pressure surge due to the sudden

stop of the bottom part of the drop at the impact. The ex-

istence of the pressure surge at the impact was con�rmed

in the simulated results. The pressure-induced motion re-

sists the inertial motion and consequently dumps the ki-

netic energy of the drop.
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1 Introduction

Adrop on a superheated surface, ofwhich the temperature

is higher than a critical point, �oats on a stable vapor �lm

generated by evaporation of the drop. This is referred to

as the Leidenfrost e�ect, named after the person who �rst

discovered it [1, 2]. We will thus refer to such a drop as a

Leidenfrost drop.

The drop can be regarded as completely �oating and

non-wetting on the surface [3] and the heat �ux from the

surface towards the drop is su�ciently small that changes

in the �uid properties are negligible due to the heat insu-

lating e�ect of the vapor [4, 5]. If the drop falls from a cer-

tain height towards the heated surface, it bounces on the

surface similar to a bouncing ball, which is referred to as a

dry rebound [5]. In a dry rebound, the drop falls while con-

verting the initial potential energy to kinetic energy, then

impacts on the surface while converting the kinetic energy

to surface energy by deformation to a disk-like shape, and

then shrinkswhile converting the surface energy to kinetic

energy again. In these dynamics, the drop behaves similar

to an elastic spring. As such, the spring model has helped

to reveal interesting characteristics of the drop [4, 6].

A small amount (in the order of 100 ppm) of poly-

mer additives in the drop is known to change the dynamic

behavior and energy loss of the drop during the bounce

[5, 7–10]. However, the energy conversion and loss of a dry-

rebounding drop, evenwithout the polymer additive, have

remained unclear [4].

An e�cient approach to understand the drop char-

acteristics is a numerical simulation of the drop under a

completely non-wetting condition, which has successfully

reproduced the experimental drop results [11]. Computa-

tional �uid dynamics (CFD) not only enables unknown

phenomena to be expected, but also facilitates clari�ca-

tion of detailed physical information regarding complex

�uidic phenomena. Previous studies [12–14] have shown

that the volume of �uid (VOF) method provides reliable

and reasonable results on two-phase �ows. For example,

an impactingmercury drop [12], a cavitation around a two-

dimensional hydrofoil [13], and a drop impacting onto a
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liquid layer of �nite thickness [14] have been simulated

with the VOF method.

In the present study, dynamics of a dry-rebounding

drop is observedby ahigh-speed camera, numerically sim-

ulated with a CFD solver, and theoretically modeled with

a damped spring model. We focus on the �rst few bounces

whose time span (∼ 0.1 s) is much shorter than the life

time of a Leidenfrost drop on a hot plate at a tempera-

ture of 380 ∘C (∼ 100 s) [3], thus the volume change due

to the evaporation is negligible. In the experiments (Sec-

tion 2), drops falling from di�erent heights were captured

with a high-speed camera and the videos were analyzed

to measure the geometrical properties of the drops. CFD

simulations of the dry-rebounding drops were then per-

formed using a two-phase solver under a completely non-

wetting condition on a �at plate (Section 3). In Section 4,

the numerical results were assessed by comparison with

the experimental result, and then time evolutions of the

kinetic energy, potential energy, and surface energy of the

dropwere calculated. An imaginary damped springmodel

and a spherical harmonic analysis were introduced to elu-

cidate themechanism for the energy loss of the drop. Final

conclusions are described in Section 5.

2 Experiment

The experimental setup is shown inFigure 1. An aluminum

plate (100 mm × 100 mm × 5 mm) was heated on a ce-

ramic hot plate (As one, CHP-170DN) to 400 ∘C, which is

su�ciently higher than the Leidenfrost temperature and

the boiling point of water. A drop of distilled water was

dropped from a pipette (inner diameter: 1mm). Averaged

diameter of the drop in all the experiments was 3.69 mm

Aluminum plate

LED Light
High-speed camera

Pipette

Ceramic hot plate

880 mm

14-90 mm

Syringe

Figure 1: Experimental setup used to capture drop impact on a

superheated flat surface. The drop was generated at the tip of a

pipette and captured with a high-speed camera.

with the standard error of 0.10mm. Experimentswere con-

ducted under the room conditions; the temperature was

23.9 ± 0.3 ∘C and the humidity was 80 ± 4 %RH.

To characterize the drop, the Weber number We was

used, which is a non-dimensional number that gives the

ratio of kinetic energy to the surface energy of the drop and

thus represents the stability of a drop. Weber number es-

pecially for a drop at impact is referred to as the dynamic

Weber number, and can be expressed as

We =
ρU2

impactD0

σ
, (1)

where ρ is the density of the drop, Uimpact is the velocity

of the drop just before impact, D0 is the initial diameter of

the drop, and σ is the surface tension coe�cient between

air and the internal �uid of the drop.

The height of the pipette tip above the plate was ad-

justed from 9 mm to 25 mm at 1 mm increments to change

the impact velocity of the drop, Uimpact.

The drop impact on the plate was captured using a

high-speed camera (Casio, EXILIMEX-F1)with a frame rate

of 1200 fps and a resolution of 336×96 pixels. Experiments

were performed three times for each initial height.

Table 1: Boundary conditions used in the calculation. "Bottom

patch" is the patch on which the drop impacts and "Other patches"

are placed at the left, the right, the back, the front, and the upper

sides of the drop. Under condition #1, the gradient value of the

boundary �eld is �xed to zero, except on the tangential component

which is set to 0 for inflow. Under condition #2, the velocity �eld on

the patch is evaluated from the flux, switching zero gradient, and

the �xed value, depending on the direction of velocity with respect

to the boundary. Under condition #3, the pressure gradient was

adjusted depending on the flux.

Variable Bottom patch Other patches

U #1 #1

α non-wetting condition #2

p − ρgh #3 �xed value (10 kPa)

Captured videos were processed using an image pro-

cessing pipeline that was written in Python [17] and using

OpenCV [18], an open source computer vision library. The

imageswereprocessed intobinary images that indicate the

interior or exterior of thedrop, and from thebinary images,

contours for the drop edge were obtained. The geometric

properties of the drop were obtained from the image pro-

cessing pipeline (Figure 2): top height x1, bottom height

x2, and width D.
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Figure 2: Schematic diagram of a drop and the imaginary damped

spring model prior to impact, in regime I, and in regime II. The ge-

ometric properties of the drops were measured using an image-

processing pipeline. The spring has two mass points (each one is

half the weight of the drop) at both ends.
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Figure 3: Schematic diagram of the CFD setup. (a) System size and

initial setup of the volume fraction of water, α. The grid mesh from

(b) top and bottom views, and (c) side views. The central cubic do-

main has the �nest and unity resolution, otherwise domain has

reduced resolution with expanding cell size outward.

3 Numerical method

3.1 Finite volume method and volume of

fluid method

The drop was simulated using a two-phase solver, inter-

Foam [19] of OpenFOAM (version 3.0.x) [15, 20], a CFD

toolkit software that can be used and exploited under

the GNU General Public License (GPL) [16]. The interFoam

solver is based on the �nite volume method (FVM). In

the FVM, the domain of calculation is divided into �nite-

volume cells which are referred to as control volumes, and

physical values (e.g., velocity and pressure) are assigned

to the centroid or faces of each cell.

A type of VOF method is used in interFoam to model

two-phase �ow and to track the free surface. In the present

simulation, the two phases of water and air were consid-

ered. Note that in the two-phase �ow, the volume fraction

of liquid, αl = α, determines the volume fraction of gas,

αg = 1 − α.

3.2 Interface capturing

An e�cient method is required to simulate a multiphase

�ow and capture a sharp interface between the two immis-

cible phases. VOFmethods have a problemwith respect to

the di�usive interface between two phases. In VOF meth-

ods, the volume fraction of each phase is tracked through

every control volume. The volume fraction of each phase

is expressed by a scalar function, which is referred to as

a volume function or a color function. To reproduce the

interface between immiscible phases, the volume func-

tion needs to keep a steep gradient at the interface. How-

ever, the steep gradient readily dissipates because VOF

methods solve a momentum equation for a mixture of im-

miscible phases. Therefore, a special treatment is needed

for the interface of volume functions. The relative veloc-

ity, Ur, is used to compress the interface between the two

phases. Weller [21] proposed a relative velocity between

two phases, Ur, as follows:

Ur = min(Cα|U|,max(|U|)) ∇α|∇α| , (2)

where U is the velocity �eld, and Cα is a coe�cient set to

1 in the present simulation. This method has proven to be

reliable in maintaining a sharp interface [21].
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Figure 4: Sequential images of experimental drops (upper rows) and simulated drops (lower rows) captured every 5ms forWe = 7 (top),

We = 15 (middle), andWe = 23 (bottom).

3.3 Surface tension force

Surface tension force is calculated using the continuum

surface force (CSF) model [22]:

Fσ = σκ∇α, (3)

where σ is the surface tension coe�cient and κ is the cur-

vature of the interface between the liquid and gas. κ is

given by

κ = −
(

∇ · n̂
)

, (4)

in which n̂ is the gradient vector at the face, which is given

by

n̂ =
∇α

|∇α| + δn
, (5)

where δn is a stabilization factor depending on the volume

of grid cells. The typical value of δn in our simulation is

1.0 × 10−5m−1.

3.4 Velocity-pressure coupling

The momentum equation is given by

∂

∂t
(ρU) +∇ · (ρUU) =

−∇p +∇ · τ + (g · h)∇ρ + Fσ ,
(6)

where ρ is the mixture density, p is the pressure, g is the

gravity vector, h is the position vector in the vertical direc-

tion, (g·h)∇ρ is the buoyancy force, and τ is the deviatoric
stress. The interFoam solver uses the PIMPLE method,

which is a combined velocity-pressure coupling algorithm

of the SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) and PISO (Pressure Implicit with Splitting of

Operator) algorithm [23]. The PIMPLE algorithm is summa-

rized as the following routine.

1. Momentum prediction: Predict the velocity �eld us-

ing the momentum equation.

2. Pressure solution: Solve the pressure equation and

correct �ux.

3. Explicit velocity correction: Correct the velocity �eld

with the solved pressure �eld.

The routine is repeated for certain number of times, which

was two times in the present simulation.

3.5 Computation and post-processing

A diameter given by the average diameter of 51 experimen-

tal drops was adopted as the initial diameter of the numer-

ical drop,D0 = 3.7 mm. The initial velocity of the dropwas

determined using the conservation of mechanical energy:

Uimpact =
√

2gxc,0, (7)

where g is the gravitational acceleration, and xc,0 is the

initial height of the centroid of the drop. The viscosities

of water and air were set to 1.0 × 10−3 Pa · s and 1.84 ×

10−5 Pa · s, respectively. The �eld of the initial volume

fraction of water was set to α = 1.0 at the interior of the

drop and α = 0.0 at the outside of the drop. The sur-

face tension coe�cient σ, between water and air was set

to 0.07 N ·m−1.

The boundary conditions used for the calculation are

shown in Table 1. The contact angle between water and air

on the bottompatch onwhich the drop impactedwas set to

180∘ (a perfectly hydrophobic surface), which means that

the gradient of α on the bottom boundary is determined

as the negative normal vector of the boundary patch. The

schematic diagram of the CFD setup is shown in Figure 3.

The calculation domain was in the shape of a cube, 1.5 cm
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Figure 5: Time series of width for experimental and numerically

simulated drops with (A)We = 7, (B)We = 15, and (C)We = 23. The

�rst expansion and contraction (0-20ms) have good agreement.

on a side (Figure 3(a)). A spherical drop of 3.8mmdiameter

was placed at a height of 5mmabove the bottomboundary

(Figure 3(a)). To improve e�ciency of the calculation, the

resolution of the mesh is uniform and �nest at the interior

of the central rectangular column covering the drop, while

it becomes coarser toward the exterior, where the dropwill

never enter (Figures 3(b) and 3(c)). Number of grid cells

above 1.0 cm from the bottompatchwas reduced to 30%of

the �nest region, and number of grid cells outside a square

with a side length 1.0 cm and a center of the drop was re-

duced to 50 % of the �nest region. From the �nest grid

cells towards boundaries except the bottom, the length of

edge of grid cells are expanded with the expansion ratio

of smallest length to largest length of the edge length of

grid cells. The expansion ratios are 2.81 towards the left,

the right, the front, the back patches of the drop and 6.26

towards the upper patch. Two resolutions of the mesh, 5

and 10 grid cells mm−1 at the �nest part of the mesh, were

used to validate the e�ect of the resolution.

The simulations were performed on a computer

equipped with an Intel® CoreTM i7-3960X CPU and with

32GB RAM. The simulation results were rendered as

movies using ParaView [24]. The interface between water

and air was determined by thresholding the volume frac-

tion of water at α = 0.5 to capture the center of transitional

region between water and air. Rendered movies were pro-

cessed using the image processing pipeline that was also

used to process the experimental results.

4 Results and discussion

4.1 Assessment of the numerical result

Here, the numerical results are assessed by comparison

with the experimental results.

Before assessment of the results from a physical per-

spective, the e�ect of the mesh design was validated by

evaluating the dependency on the mesh resolution. No

particular di�erences were observed in the results for the

two di�erent resolutions, which indicates that the mesh

resolutionhas no signi�cant e�ect on the result. To inspect

the numerical result with the �ne resolution, results cal-

culated with the �ner mesh (10 cells / mm) were used for

further analysis.

Figure 4 shows sequential images of the experimen-

tal and simulated drops. The experimental and simulated

drops were comparable in that each drop exhibited a sta-

ble rebound. The sequence of the deformation (spreading

after �rst impact, forming a disk-shape, shrinking, mak-
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Figure 6: Time series of top height, middle height, and bottom

height for experimental and numerically simulated drops with (A)

We = 7, (B)We = 15, and (C)We = 23. The di�erence between the

top and bottom heights represents deformation in the vertical di-

rection and the middle height represents the approximate potential

energy of the drop.

ing a head at the center of the disk, lift-o�, shaking of

the shape while in the air, and impacting again) was also

reproduced in the calculation. For high Weber numbers

(We ≥ 15), the experimental result �uctuated, possibly due

to asymmetrical expansion and contraction, while the nu-

merical result was stable and had symmetrical expansion

and contraction. Deformation for the experimental drop

was so sensitive that no symmetrical deformation could be

achieved.

Time evolutions of the height and width of the drop

are expected to provide vibrational patterns of the defor-

mation process. Time evolutions of relative diameter D/D0

for both experimental and simulated drops with di�erent

Weber numbers were compared (Figure 5), and the top,

middle, and bottom heights of the drops, x1, xc, and x2,

respectively (Figure 2 and Figure 6), show that both sets

of results have the same vibrational patterns, although for

highWeber numbers, the time spans between the �rst and

second expansions and between the �rst and second im-

pacts for the numerically simulated drops were slightly

wider than those for the experimental drops. The time se-

ries for the horizontal diameter of the drop during the im-

pact approximately represents howmuch kinetic energy is

converted to surface energy (Figure 5). The time series for

the middle height can be considered to represent approx-

imately the potential energy of the drop. Thus, as shown

in Figure 6, the time series for the potential energy of the

drop for both the experiments and the simulations can be

considered to be in agreement.

The dissipated energy during the rebound is very di�-

cult to determine because both the velocity and the surface

area of the drop are unknown [25]. One e�ective way to ex-

perimentally estimate the dissipatedmechanical energy is

to calculate the ratio of the maximum height after the �rst

impact to the initial height, as a ratio ofmechanical energy

at the maximum height to the initial mechanical energy:

Emech,hmax

Emech,impact
=
Hmax

H0
, (8)

by assuming that the potential energy is equal to the me-

chanical energy when the drop is at the highest position.

The ratio ofmechanical energyat themaximumheight

to the initial mechanical energy for each Weber number

is shown in Figure 7. Both the numerical and experimen-

tal results showed a decrease with an increase of the We-

ber number. The energy loss for the experimental result

with highWeber numbers is considered to �uctuate due to

asymmetrical deformation during the rebound (Figure 4).

Through the assessment performed here, the numeri-

cal result is considered to be reasonably reliable with re-

spect to the deformation and dissipated energy.
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Figure 7:Weber number and the ratio of the mechanical energy

of the drop at the maximum height after the impact to the initial

mechanical energy. Both the numerical and experimental results

showed a decrease in the ratio with an increase of the Weber num-

ber.

4.2 Quantitation of the energy conversion

Kinetic energy and potential energy were calculated using

the following respective equations:

Ekin =

∫

Ω

1

2
ρU2dV , (9)

Epot =

∫

Ω

ρghdV , (10)

where V is the volume and Ω is the entire domain for the

calculation. Under the condition that the width of the in-

terface between water and air is asymptotically limited to

zero, the integral over the interface can be reformulated by

a volumewith the gradient of the volume fraction,∇α [22].
Thus, the surface energy can be calculated using

Esurf =

∫

Ω

σ|∇α|dV . (11)

The sum of the kinetic and potential energies is the me-

chanical energy:

Emech = Ekin + Epot. (12)

In this system, the pressure and volume are considered to

be constant, and the energy of interest is the sum of the

mechanical and surface energies:

Ems = Emech + Esurf . (13)

Figure 8 shows the time evolution of the energies cal-

culated from the numerical results. At the impact (t =

0 ms), the mechanical energy begins to decrease rapidly

and the surface energy simultaneously begins to increase.

When the surface energy reaches a maximum (t ≈ 8 ms),

the kinetic energy has a localminimum. After reaching the

maximumsurface energy, themechanical energy begins to

increase while the surface energy decreases. After takeo�

of the drop (t ≈ 15 ms), as evident for high Weber num-

bers, the conversion between the mechanical energy and

surface energy still continues, which is considered to be

caused by vibration of the drop in the air. Interestingly, the

changes of these energies cancel each other out and are

considered to be conserved in the form of the sum of the

mechanical and surface energies.

4.3 Imaginary damped spring model

A poorly elastic shock of a Leidenfrost drop has beenmod-

eled by an imaginary spring [4, 6], which is a linear spring

model with twomass points that represent the mass of the

drop at both ends of the spring. Here, we extend the imag-

inary spring model by adding a damping term:















1

2
m
d2x1
dt2

= −
1

2
mg − kϵ − c

dϵ

dt
(14a)

1

2
m
d2x2
dt2

= −
1

2
mg + kϵ + c

dϵ

dt
+ F, (14b)

where x1 and x2 are the heights of the bottom and top of

the spring above the plate respectively, and

ϵ = x1 − x2 − D0 (15)

is the strain of the spring, m is the mass of the drop, D0

is the initial vertical length of the drop, k is the sti�ness

of the spring, c is the damping coe�cient of the spring

(c ≥ 0), and F is the external force loaded at the bottom

of the spring. Figure 2 shows a schematic diagram of the

imaginary damped spring model. Note that by combining

Eqs. (14a) and (14b), the momentum equation for the cen-

troid of the spring, xc =
1
2 (x1 + x2), can be represented as

m
d2xc
dt2

= −mg + F, (16)

which plots the free-fall and bounce-back of the spring.

Let us de�ne the regime inwhich the drop is in contact

with the vapor �lm over the plate as regime I. In regime I,

the height of the bottom of the spring is considered to be

�xed (x2 = 0); therefore,

d2x1
dt2

=
d2ϵI
dt2

, (17)
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Figure 8: Kinetic, potential, and surface energies of drops as a func-

tion of t, the time after impact, with (A)We = 7, (B)We = 15, and

(C)We = 23. The dashed line represents the transition point from

regime I to regime II.

and
d2x2
dt2

= 0, (18)

where ϵI is the strain in regime I. Equations (14a) and (14b)

then become:














d2ϵI
dt2

= −g −
kI
m
ϵI −

cI
m

dϵI
dt

(19a)

F =
1

2

(

mg − kIϵI − cI
dϵI
dt

)

, (19b)

where

kI = 2k, cI = 2c. (20)

By solving Eq. (19a), we obtain

ϵI = −AIe
−ζIωI tIsin

(

ωd,ItI + ψI

)

−
mg

kI
, (21)

where tI is the time after the impact, AI is the initial am-

plitude of the oscillation, ζI =
cI

2
√
mkI

is the damping ra-

tio, ωI =

√

kI
m is the undamped angular frequency of the

spring, ωd,I =
√

1 − ζ 2I ωI is the under-damped harmonic

oscillator, and ψI is the phase at the impact.

The time span from the lift-up to the next impact of

the drop is de�ned as regime II. In regime II, the bottom

height of the spring is no longer �xed (x2 ≥ 0) and there is

no external force loaded on the bottommass point (F = 0).

Di�erentiation of Eq. (15) gives

d2ϵII
dt2

=
d2x1
dt2

−
d2x2
dt2

, (22)

where ϵII is the strain in regime II. The combination of Eqs.

(14a), (14b), and (22) gives

d2ϵII
dt2

= −
kII
m
ϵII −

cII
m

dϵII
dt

, (23)

where

kII = 4k, cII = 4c. (24)

By solving Eq. (23), we obtain

ϵII = AIIe
−ζIIωII tIIcos

(

ωId,ItII + ψII

)

, (25)

where tII is the time after the lift-up, AII is the amplitude

of the oscillation, ζII =
cII

2
√
mkII

is the damping ratio, ωII =
√

kII
m is the undamped angular frequency of the spring,

ωId,I =
√

1 − ζ 2IIωII is the under-damped harmonic oscil-

lator, and ψII is the phase at lift-o�.

The coe�cients were obtained according to the de-

scription given in Appendix A. The damping coe�cient for

regime I, cI, was determined to be 0.7 × 10−3 kgs−1 us-

ing Eq. (A.5) with the result for We = 7 and was reason-

ably assigned for all Weber numbers in this study, while
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Figure 9: Time series of drop’s vertical strain for the experiment,

simulation, and the spring model withWe = 7.

that for regime II, cII, was determined to be half the value

of cI. This di�erence of the damping coe�cient indicates

that the mechanism for energy loss is di�erent between

regimes I and II. The sti�ness k, determined by Eq. (A.6),

tends to decrease with an increase of the Weber number.

The sum of the kinetic, potential, and elastic energies

as the surface energy of the springmodel can be calculated

for each regime:

Ems,I =
1

4
m

(

dϵI
dt

)2

+
1

2
mg(D0 + ϵI)

+
1

4
kIϵ

2
I + σπD

2
0,

(26)

Ems,II =
1

2
m

(

dxc,II
dt

)2

+
1

8
m

(

dϵII
dtII

)2

+ mgxc,II

+
1

8
kIIϵ

2
II + σπD

2
0,

(27)

where Ems,I and Ems,II are sums of the mechanical energy

and the surface energy in regime I and regime II, respec-

tively. These energies are shown in Figure 10 with We =

7, 15, 23.

The overall energy loss rate in regime I is expressed as

λI = 1 −
Ems,I(tII = 0)

Ems,I(tI = 0)
, (28)

and the energy loss rate over 1 cycle of oscillation in regime

II,

λII = 1 −
Ems,II(tII = TId,I)

Ems,II(tII = 0)
, (29)
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Figure 10: Time series for the sum of kinetic, potential, and sur-

face energies from the simulation and spring model results. Each

dashed line represents the transitional time from regime I to regime

II. Major energy losses were observed at two moments, 2 ms and 12

ms after the impact as indicated by the "*" marks. The dash-dotted

line shows t = D0/Uimpact, which predicts the start time of the

second energy decay of the drop.

corresponds well for both the simulation and the spring

model (Figure 11).

While the vertical strain and energy loss rates of the

drop were well explained by the spring model (Figures 9

and 11), the second decrease of the spring model lagged

that of the simulated drop (Figure 10). This time lag indi-

cates that true damping factor has an other period than the

damping term of the spring model.

4.4 Spherical harmonic analysis

A water drop on an oscillating plate [26–28] or on a super-

heated plate [29] is known to show spherical harmonic os-

cillation due to the surface tension force. We will compare

the deformations of the drop on the impact with the spher-

ical harmonic oscillation.

Anoscillatingdrop canbe represented as a linear com-

bination of spherical harmonic functions as [30–32]

r(t, θ, ϕ) = R +
∑

n,m

An(t)Y
m
n (θ, ϕ), (30)

where R is the radius of an unperturbed sphere-shape

drop, An(t) = ancos(ωn t+ψn) are intensities of themodes,

and Ymn are Laplace’s spherical harmonics with orders n =

0, 1, 2, · · · , and degrees m = −n, −(n − 1), · · · , n − 1, n.
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Figure 11: Energy loss rates over regime I λI, and the energy loss

rate over 1 cycle of oscillation in regime II λII, with the simulated

drop and the spring model.

The deformation of the drop in this study is radially

symmetric, thus we only consider Laplace’s spherical har-

monics with 0 degree, Y0n . Furthermore, we assume that

the deformation of the impacting drop is aligned in verti-

cal or radial axes, so oscillation modes can be narrowed

down to n = 1 and n = 2. Therefore Eq. (30) is simpli�ed

as

r(t, θ, ϕ) = R + A1(t)Y
0
1 (θ, ϕ) + A2(t)Y

0
2 (θ, ϕ). (31)

Both of Y01 and Y
0
2 modes are radially symmetric, but

Y02 is horizontally symmetric while Y01 is horizontally an-

tisymmetric, as shown in sequential images of R + A1Y
0
1

and R + A2Y
0
2 in Figure 12(a). Using this di�erence, har-

monic phase shifts of these two modes, ψ1 and ψ2 are de-

termined by discriminating the symmetry of deformations

of the drop.

Immediately after the impact (t = 0 ms), the drop is

in a spherical shape, thus the phase of mode n = 2 must

be π
2 or −

π
2 . After impacting on the plate, the drop spreads

radially and forms into a disk-shape,which corresponds to

A2 < 0, therefore ψ2 =
π
2 .

The determination of the harmonic phase of the Y1
mode is more di�cult than the Y2 mode. At the moment

of the maximum width of spreading drop, the drop is in

a disk-shape which is horizontally symmetric, therefore

A1 = 0. From this moment to the lift-o�, the drop forms an

antisymmetricmatryoshka-shape,which indicatesA1 < 0.

After the lift-o�, the drop forms into a vertical peanut-

shape (e.g. 25 ms) which is horizontally symmetric thus

A1 = 0. By extrapolating from these conditions, A1 must

be a positive value at t = 0. By looking carefully at energy

decay curves in Figure 10,we found that the second energy

decay starts slightly earlier at increasing Weber number.

Let us consider a free end re�ection of the drop as a pulse

over the vertical axis on the bottom plate as a free end. We

envisage that after the impact the drop receives the re�ec-

tion of its impact velocity and induces a vertical uplift (i.e.

A1 > 0), until the pulse passes over the end. Therefore, a

length of the time duringwhich the drop passes over its di-

ameter with the impact velocity, D0/Uimpact, is considered

to characterize the phase of the Y01 mode. As shown by the

dash-dotted line in Figure 10, t = D0/Uimpact predicts be-

ginning time of the second decay well.

The deformation of Eq. (31) with determined phases

ψ1 and ψ2 together with experimental and simulated

drops is shown in Figure 12(a). The deformation sequence

of spherical shape, disk-shape, matrioshka-shape, and

peanut-shape, is reproduced by Eq. (31).

A1 and A2 as functions of time after the impact are

shown in Figure 12(b). Actually, the imaginary spring

model represents the Y02 mode: A2 has same vibration

mode with the drop’s vertical strains, ϵ, which is shown

in Figure 9. This is because the vertical strain of a Y01 mode

is always zero and thus height of the shape represented by

Eq. (31) only depends on the Y02 mode.

One of the most important insights from the spheri-

cal harmonic analysis is the existence of an another vibra-

tional mode, Y01 in the deformation of the impacting drop,

which is not considered in the spring model.

4.5 Energy loss upon the impact

Time series of A1 and A2 were compared with that of the

total energy Ems of the simulated drop with We = 7 (Fig-

ures 12(b) and 12(c)). We found that the cycle of the Y01
mode is synchronous with that of the repetitive energy de-

cay. At the time spans when Y01 increases its amplitude

(
∣

∣

∣

dA1

dt

∣

∣

∣
> 0), the energy starts an exponential decay. Fig-

ure 10 shows that the damped imaginary springmodel pre-

dicts lagged second decay behind the simulated drop. As

mentioned in section 4.4, the spring model represents the

Y02 mode. Considering that the cycle of the energy decay

depends on the Y01 mode and the spring model does not

consider the Y01 mode, the mismatch of the decay timing

can be explained.

When the drop impacts at the bottom plate, the bot-

tom part of the drop is forced to stop and the vertical ve-

locity is forced to be zero suddenly. This sudden change
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Figure 12: A sequential analysis of the deformation of the impacting drop with shared time axis, withWe = 7. (a) Spherical harmonic defor-

mations represented by R + A1Y
0
1 + A2Y

0
2 , R + A1Y

0
1 , and R + A2Y

0
2 with R = 1.85mm, a1 = 2mm, and a2 = 2mm, together with that of

drops of the experiment (Exp.) and the CFD simulation (Sim.). (b) Intensities of Y01 and Y
0
2 , A1 and A2, respectively, are plotted as functions

of the time after the �rst impact, t. (c) Sum of mechanical and surface tension of simulated drop is plotted as a funcion of t. Dashed lines in

(b) indicates moments of A1 = 0, at which exponentially energy decays starts as shown in (c).

of the velocity induces the pressure surge (i.e., stagnation

pressure). Figure 13(a) shows that a pressure surge occurs

at the beginning of the impact. The amount of the pres-

sure surge is roughly estimated as ρD0Uimpact/∆t ∼ 200

Pa, where ∆t ≈ D0/Uimpact ∼ 10 ms is the time span to

stop the free-fall motion of the drop. This phenomenon is

similar to a water hammer with slow valve closure (slower

than sound propagation), in which a pressure surge oc-

curs when a �uid in motion is forced to stop. The pressure

surge accompanies a pressure-gradient force, which is ex-

pressed by the term −∇p in the Eq. (6).
In many cases of �uid dynamics, a pressure-gradient

force is a driving force of a �ow (e.g., a channel �ow). How-

ever, in this case, thepressure-gradient force consequently

dumps the motion inside the drop. The pressure-induced

force associated with the stagnation pressure is an impor-

tant factor in the Drop Deformation and Breakup (DDB)

model [33, 34] introduced by Ibrahim et al., which success-

fully predicts the deformation of spray drops.

The pressure-gradient force generated at the impact

induces an upward �ow inside the drop in the time span

of D0/Uimpact from the impact. The upward �ow is sub-

sequently re�ected at the end of the drop due to the sur-

face tension. Therefore, the �ow induced by the pressure-

gradient force generates a vertical vibrational motion. The

Y01 mode found in our spherical harmonics analysis repre-

sents this vertical vibrational motion.
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Figure 13: Pressure (left) and magnitude of the velocity (right) in-

side the drop, from a cross-sectional lateral view at the drop center

(We = 7). (a) At the beginning of the impact (t = 2ms), a pressure

surge occurs at the bottom part of the drop, where magnitude of

the velocity is nearly zero. and (b) At the retraction from the disk-

shaped drop (t = 12ms), the pressure-induced motion suppresses

the retracting motion.
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Figure 14: The viscous force∇ · τ, pressure-gradient force −∇p, and

the external forces (right-hand side of Eq. (6)) damping the motion

of the drop for the vertical and radial directions were obtained from

the simulated results (We = 7). The dashed line represents the tran-

sition point from regime I to regime II. The pressure-gradient force

dominates the external force and the contribution of the viscous

force is fairly small. At the two major energy losses (*), the external

forces damp the velocity, the former against the vertical direction

and the latter against the radial direction.

Meanwhile after the impact, a major part of the free-

fall motion of the drop is converted to radially spreading

motion, which is also subsequently re�ected at the end

of the drop due to the surface tension. This motion forms

a vibrational motion represented by the Y02 mode. There-

fore, the free-fall motion of the drop before the impact is

converted to two motions after the impact, the pressure-

induced motion and inertial motion, represented by Y01
and Y02 modes, respectively.

To investigate the breakdown of the force acting to

dump inside the drop, viscous force, pressure-gradient

force, and total external force (viscous force, pressure-

gradient force, surface tension force, and gravitational

force) were summed inside the drop of the CFD simula-

tion for each time step. Speci�cally, we calculated an α-

weighted summation of each force over grid cells with a

negative value of inner product of a force and velocity, as

expressed in
∑

i,fi ·Ui<0
αifi, where i is an index of grid cells,

fi is a force at i-th cell, Ui is velocity at i-th cell, and αi is

the volume fraction of water phase at i-th cell. Consider-

ing the deformation of the bounce of the 3D drop where

spreading and shrinking in vertical and radial directions,

these forceswere split into vertical and radial components.

The radial force component showsmajor forces within the

drop in a disk-shape, while the vertical component shows

ones within the drop in a cylinder-shape. Figure 14 shows

that amongst the forces damping the motion of the drop,

the pressure-gradient force dominates the external forces

(right-hand side of Eq. (6)) and the viscosity e�ect is fairly

small. The small impact of the viscosity on the drop defor-

mation was also reported by Renardy et al. [11].

The pressure-induced motion resists the free-fall iner-

tial motion at the beginning of the impact (t = 2ms), and

then resists the inertial motion when the drop is retract-

ing from the disk-shape (t = 12 ms). Figure 14 shows that

the pressure-gradient force dominantly resists the motion

of the drop at these two timings. At the retraction of the

drop, the direction of the pressure-induced motion is in-

herently downward, however, due to the disk-shaped drop

as a �ow �eld and the existence of the bottom plate, it is

forced to advance radially (Figure 13(b)). As the result, the

retracting inertial motion of the drop is dumped by this ra-

dially spreading pressure-induced motion.

Most part of the pressure-induced motion decays dur-

ing the two resistances to the inertialmotion, however, still

remains with a small intensity after the lift-o�, causing a

small energy loss starting at t = 25ms as shown in Figures

10 and 12(c).

Note that we have considered just the �rst dry-

rebound. Biance et al. [4] have shown restitution coe�-

cients of successive dry-rebounds of a drop with diame-

ter of 1 mm. They reported that the restitution coe�cient

e is relatively low at the �rst impact (e ∼ We
−1/2, called

as poorly elastic shocks) but very close to 1 after multiple
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bounces (called as quasi-elastic shocks). With lower We-

ber number, the energy loss tends to be small as shown

in Figure 7. Thus, one reason of the small energy loss af-

ter multiple bounce is the lowWeber number. Biance et al.

also reported that in the quasi-elastic shocks the vibration

of drop’s diameter is in phase with the �ight of the drop.

The other reason of the small energy loss after multiple

bounce is considered that the pressure surge disappears

due to the inertial motion synchronized with the bounce

of the drop. The synchronized Y02 mode, which suppresses

the impact velocity, avoids the sudden stop at the bottom

and generating the pressure surge.

5 Conclusion

The dynamics of a dry-rebounding dropwas quantitatively

obtained from numerically simulated results that were as-

sessed with respect to experimental results. The dynamics

was quantitatively explained with an imaginary damped

springmodel, however, the second energy decay predicted

by the spring model was lagged behind the simulated

drop, which indicates that the true damping factor is other

than the damping term of the spring model.

From the analysis of the spherical harmonic deforma-

tion, we found that the deformation is a combination of Y01
and Y02 modes. The cycle of the Y01 mode was synchronous

with that of the energy decay, which indicates that the de-

cay timing depends on the Y01 mode, rather than the Y02
mode represented by the spring model.

At the beginning of the impact, the bottom part of

the drop is forced to stop suddenly, which induces a pres-

sure surge. From the simulated results, the pressure surge

was actually found. The pressure-gradient force associ-

ated with the pressure surge induces a upward motion. At

the same time, the free-fall motion is converted to the ra-

dially spreading motion. These two motions form two dif-

ferent vibrational modes due to the surface tension. The

pressure-induced motion and inertial motion correspond

to the Y01 and Y
0
2 modes, respectively.

Analysis of the forces damping the motion of the drop

suggested that the viscous impact on the drop is fairly

small. Considering that the Y01 mode was synchronous

with the repetitive exponential decay of the energy and the

pressure-gradient force dominantly resists the motion of

the drop, we conclude that the pressure-induced motion

dumps the inertial motion.
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A Coe�cients of the imaginary

damped spring model

To conserve the kinetic energy at impact, the impact speed

of the spring, U*
impact, is recalculated from the impact

speed of the drop, Uimpact, and applied for mass point 1

because mass point 2 cannot move:

U*
impact =

√
2Uimpact. (A.1)

Assuming that the strain of the spring has a maxi-

mal value at lift-o�, the under-damped angular frequency,

ωd,I, can be obtained by the period, Td,I, which is equal to

twice the length of time from the minimum ϵ to the maxi-

mum ϵ:

ωd,I =
2π

Td,I
. (A.2)

The time derivative of the strain at impact is equal to

the impact speed:

dϵI
dt

∣

∣

∣

∣

tI=0

= −U*
impact, (A.3)

which leads, by assuming sin(ψI) ≈ 0 and cos(ψI) ≈ 1, to

the amplitude

AI =
U*
impact

ωd,I
. (A.4)

At the �rst moment of impact, assuming that mass

point 1 continues to move at U*
impact, then

d2ϵI
dt2

= 0, and

then from Eq. (19a), we obtain

cI =
mg

U*
impact

. (A.5)

The sti�ness, kI, can be obtained from

kI =
1

2



mω2
d,I +

√

m2ω4
d,I

+
c4I
4m2



 . (A.6)

At the start of contact of the bottom mass point of the

spring (tI = 0), the strain is considered to be zero (ϵI = 0);

therefore, the value of ψI can be obtained:

ψI = arcsin

(

−
mg

kIAI

)

. (A.7)

Assuming that the strain reaches a maximum at lift-o�

(tII = 0),
dϵII
dt

= 0, (A.8)

we obtain

ψII = 0. (A.9)

The centroid of the spring in regime II, xc,II, is

xc,II = Uli�-off tII −
1

2
gt2II + xc,li�-off , (A.10)

and the velocity of the centroid of the spring is

dxc,II
dt

= Uli�-off tII − gtII, (A.11)

where Uli�-off and xc,li�-off are respectively the velocity and

the position of the centroid of the spring at lift-o�. Uli�-off

was obtained from

Uli�-off =
1√
2

dϵI
dt

∣

∣

∣

∣

tII=0

. (A.12)
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