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Abstract. In this paper we analyse the dynamics of a family of rational operators
coming from a fourth-order family of root-finding algorithms. We first show that
it may be convenient to redefine the parameters to prevent redundancies and un-
boundedness of problematic parameters. After reparametrization, we observe that
these rational maps belong to a more general family Oa,n,k of degree n+k operators,
which includes several other families of maps obtained from other numerical meth-
ods. We study the dynamics of Oa,n,k and discuss for which parameters n and k these
operators would be suitable from the numerical point of view.
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1 Introduction

Iterative methods are the most usual tool to approximate solutions of non linear
equations. These methods require at least one initial estimate close enough
of the solution sought. It is known that the methods converge if the initial
estimation is chosen suitably. Hence, the search of such initial conditions has
became an important part in the study of iterative methods. To achieve this
goal we analyse these methods as discrete dynamical systems.

The application of iterative methods to find solutions of equations of the
form f(z) = 0, where f : Ĉ → Ĉ and Ĉ denotes the Riemann sphere, gives
rise to discrete dynamical systems given by the iteration of rational functions.
The best known numerical algorithm is Newton’s method, whose dynamics has
been widely studied (see for instance [6, 17]). Indeed, there are several results
about the dynamical plane as well as the parameter plane of Newton’s method
applied to some concrete families of polynomials. The most studied case is
Newton’s method of cubic polynomials q(z) = z(z − 1)(z − α), α ∈ Ĉ (see for
instance [16, 19] and references therein).

Recently, this dynamical study has been enlarged to other numerical meth-
ods (see, for example, [9, 10, 11, 12, 13] and references therein). The dynamical
properties related to an iterative method give important information about its
stability. In recent studies, many authors (see [1,7,8,10,14], for example) have
found interesting results from a dynamical point of view. One of the main
interests in these papers has been the study of the parameter spaces associated
to the families of iterative methods applied on low degree polynomials, which
allows to distinguish the different dynamical behaviour.

In this paper, we consider an optimal fourth-order family of methods pre-
sented by R. Behl in [4], whose dynamics is partially studied by K. Argyros
and A. Magreñán in [1]. The family of methods is given by

yn = xn − 2

3

f(xn)

f ′(xn)
,

xn+1 = xn − ((b2 − 22b− 27)f ′(xn) + 3(b2 + 10b+ 5)f ′(yn))f(xn)

2(bf ′(xn) + 3f ′(yn))(3(b+ 1)f ′(yn)− (b+ 5)f ′(xn))
, (1.1)

where b is a complex parameter. When applying these methods on quadratic
polynomials of the form z2+ c (compare with Section 2) we obtain an operator
which is conjugate to

Ob(z) = z4
−11− 6b+ b2 + (−3 + 2b+ b2)z

−3 + 2b+ b2 + (−11− 6b+ b2)z
.

In this paper we analyse the main dynamical properties of this operator.
Before, we provide a short introduction to complex dynamics. We refer to
[3, 5, 15] for a more detailed introduction to the topic.

We consider the dynamical system given by the iteration of a rational map
R : Ĉ → Ĉ. A point z0 ∈ Ĉ is called fixed if R (z0) = z0, and periodic of
period p > 1 if Rp (z0) = z0 and Rl(z0) 6= z0 for 1 ≤ l < p. Fixed points
are classified depending on their multiplier λ = R′(z0). A fixed point z0 is
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called attractor if |λ| < 1 (superattractor if λ = 0), repulsor if |λ| > 1, and
indifferent or neutral if |λ| = 1. An indifferent fixed point is called rationally
indifferent (or parabolic) if λ = e2πip/q, where p, q ∈ N. Each attractive or
rationally indifferent point z0 has associated a basin of attraction, denoted by
A(z0), consisting of points z ∈ Ĉ whose orbit converges to z0 under iteration
of R(z). The same classification can be used for periodic points of any given
period p since they are fixed points of the map Rp(z).

The Fatou set, F (R), of a rational map R(z) consists of the points z ∈ Ĉ

such that the family of iterates, {R(z), R2(z), . . . , Rn(z), . . .}, is normal in some
open neighborhood U of z. Its complement, the Julia set J (R), consists of the
points where the dynamics of R(z) is chaotic. The connected components of
the Fatou set are called Fatou components and are mapped among themselves
under iteration.

A point c ∈ Ĉ is called a critical point of R(z) if R′(c) = 0. Critical points
are relevant in holomorphic dynamics since all periodic Fatou components are
related to critical points. In particular, the basins of attraction of attracting
and rationally indifferent points contain, at least, one critical point (see, for
example, [3, 15]).

When we apply a numerical method to find the solutions of a given equation
we obtain an iterative method. If the equation is a polynomial, the operator
associated with the iterative method is a rational map. The solutions of the
equation are attractive fixed points of this map. However, it may happen that
an initial condition converges under iteration to an attracting cycle different
from the solution of the equation. In that case, we consider that the numerical
method fails. We call such attracting cycles strange attractors. Hence, when we
study if a numerical method works adequately we need to analyse the existence
of strange attractors. This can be done by studying the asymptotic behaviour
of the iterates of the critical points. If such an strange attractor exists, the
orbit of, at least, a critical point will accumulate on it. Therefore, in order to
draw parameter planes we can iterate the different critical points and analyse
their asymptotic behaviour. In Figure 1 we show the parameter plane of the
operator Ob. In this figure we plot in black parameters for which a critical
orbit does not converge to any of the solutions of the original equation and,
hence, there may be an strange attractor. See Section 2.3 for a more detailed
explanation on how this figure is produced.

In order to understand the dynamics of the operator Ob, we analyse the
parameter plane shown in Figure 1. In Section 2 we carry out this study.
We obtain all the strange fixed points, that is, all fixed points which do not
correspond to the solutions of the quadratic equation. We also find the analytic
expressions of the regions in the parameter plane of the operator Ob where these
strange fixed points are attractive and we locate these regions in the parameter
space.

Once this initial study is done, we focus on two unwanted properties of the
parameter plane of the family Ob. First, due to the fact that the coefficients of
the rational map are quadratic (there are terms in b2) two different parameters
b1 and b2 may lead to the same operatorOb1 = Ob2 . This is usually an unwanted
feature when studying a parameter plane. Because of this, in Section 2.3 we
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a) n = 2, k = 2 b) n = 3, k = 2

Figure 1. Parameter plane of the operator Ob (a) and a zoom in (b).

show how to reparametrize this family, obtaining a new operator

Oa(z) = z4(z − a)/(1− az).

The other unwanted feature of the dynamical plane of the operator Ob is
the unboundedness of ‘bad’ parameters. In Figure 1 we can see an ‘antenna’ of
parameters that spreads through the negative real axis for which a critical orbit
does not converge to the solutions of the equation. This is an unwanted fea-
ture since may leave out of the numerical picture parameters for which relevant
dynamics, such as convergence to strange attractors, take place. In Section 3
we prove that the antenna observed in the parameter plane of Ob is actually
unbounded. However, this unbounded antenna becomes a bounded set of pa-
rameters for Oa (see Proposition 9 and Figure 3). Hence, the reparametrised
operator Oa possesses none of the unwanted features of the operator Ob and,
therefore, is a much better model to study the dynamics of the family of meth-
ods presented by R. Behl in [4]. In Section 3 we also study the dynamics of
the operator Oa and analyse the relation between the parameter planes of Ob

and Oa. To finish the paper, in Section 4, we study the dynamics of a gen-
eralised version of the operator Oa. We study this generalised operator since
Oa is somehow similar to other operators that may be obtained from applying
numerical methods to quadratic polynomials. We considered the generalised
family of operators

Oa,n,k (z) = zn
(

z − a

1− az

)k

.

The map Oa,n,k coincides with Oa for n = 4 and k = 1. Moreover, for
n = 3 and k = 1 this operator is obtained from the Chebyshev-Halley family
of numerical methods (see [13]). This operator is also obtained from a family
of root finding algorithms for n = 6 and k = 2 in [2]. For certain combinations
of n and k, the dynamics of Oa,n,k is very similar to the one of Oa. However,
if n − k ≤ 1 the operator Oa,n,k possesses some complicated dynamics which
would not be desirable if obtained from a numerical method. We finish the
section proving that the operators Oa,n,k do not have Herman rings. This is an
important characteristic since Herman rings would provide open sets of initial
conditions for which the numerical method fails.

Math. Model. Anal., 26(2):188–208, 2021.
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2 The optimal fourth-order family Ob (z)

In this section we carry out a dynamical study of the optimal fourth-order
family of methods presented by R. Behl [4] (see Equation (1.1)).

We study the dynamics of this family applied on a degree two polynomial
p(z) = z2 + c, c ∈ C. The operator we obtain is conjugate to

Ob(z) = z4
−11− 6b+ b2 + (−3 + 2b+ b2)z

−3 + 2b+ b2 + (−11− 6b+ b2)z
(2.1)

by means of the conjugation map h(z) = z+i
√
c

z−i
√
c
. This conjugation map sends

one of the roots of the polynomial p(z) to zero and the other one to infinity.
Moreover, h(∞) = 1. Recall that b ∈ C is the parameter of Behl’s family.

Let us observe that the expression of the operator (2.1) is simplified when
−3+2b+b2 = 0, and when −3+2b+b2 = ±(−11−6b+b2). Then, the operator
(2.1) has degree five, except for the following cases:

• For b = −3 or b = 1, we have that O1(z) = z3 and O−3(z) = z3; in these
cases, the operator has degree three.

• For b = −1 or b = 1± 2
√
2 we have that O−1(z) = z4 and O1±2

√
2(z) =

−z4; in these cases, the operator has degree four.

Moreover, there exist values of the parameters for which the operator in-
creases its order of convergence:

Proposition 1. The operator (2.1) has order of convergence 5 for b = 3±2
√
5.

2.1 Fixed points

The first step in the dynamical study of operator Ob (z) consists of calculating
its fixed and critical points. As we will see, the number and the stability of
the fixed and critical points depend on the parameter b. It is known that any
rational map of degree d has d+1 fixed points and 2d−2 critical points (counting
multiplicity) (see [3], for example). Therefore, our operator has 6 fixed and 8
critical points, except for the values of the parameters studied above that lead
to an operator of lower degree.

The fixed points, given by Ob (z) = z, are z = 0, z = ∞, z = 1 (if
b 6= 1± 2

√
2), z = −1 (if b 6= −1), and

z± =
11 + 6b− b2 ±

√
(5 + 10b+ b2)(17 + 2b− 3b2)

2(b− 1)(b+ 3)

if b 6= −3 and b 6= 1. The points z = 0 and z = ∞ are associated to the roots
of the quadratic polynomial p(z) = z2 + c and are superattractive fixed points
for all parameter values. The other fixed points z = ±1 and z = z± are called
strange fixed points, since they do not correspond to the roots of the original
polynomial. We can observe that z+z− = 1. The next proposition describes
the parameters for which z+ and z− collide and, hence, the number of strange
fixed points decreases.
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Proposition 2. The number of fixed points of operator (2.1) decreases for b =
1
3 (1± 2

√
13) and for b = −5± 2

√
5.

In addition, if b = −1 we have that O−1(z) = z4 and that z = −1 is a pre-
periodic point of the fixed point z = 1. If b = 1± 2

√
2, then O1±2

√
2(z) = −z4

and z = 1 is a pre-periodic point of z = −1. The stability of such fixed points
is studied in the following propositions using the derivative of the operator,
which is given by:

O′
b (z) = 4z3

(
(b− 1)(b+ 3)(−11− 6b+ b2) + 2(51 + 42b+ 4b2 − 2b3 + b4)z

+ (b−1)(b+3)(−11−6b+b2)z2)
)
/
(
(b−1)(b+3)+(−11−6b+b2)z)2

)
. (2.2)

Proposition 3. Let us write b = α+ iβ and

ν(α) =

√
−81− 14α− α2 + 4

√
2(7 + α)(29 + 5α).

For b 6= −1, the strange fixed point z = −1 satisfies the following statements.

a) The fixed point z = −1 is attractive if

α ∈
(
−9− 2

√
17,−5− 2

√
2
)
∪
(
−5 + 2

√
2,−9 + 2

√
17
)

and β ∈ (−ν(α), ν(α)). It is a superattractor if b = −7± 2
√
10.

b) The point z = −1 is indifferent if

α ∈
[
−9− 2

√
17,−5− 2

√
2
]
∪
[
−5 + 2

√
2,−9 + 2

√
17
]

and β = ±ν(α).

c) The fixed point z = −1 is repulsive for any other value of b ∈ C.

Proof. The fixed point z = −1 is indifferent on the curve defined by

|O′
b (−1)| = 1, that is

∣∣∣∣
9 + 14b+ b2

4 + 4b

∣∣∣∣ = 1.

Writing b = α+ iβ and simplifying the previous expression we obtain

65 + 220α+ 198α2 + 28α3 + α4 + (162 + 28α+ 2α2)β2 + β4 = 0.

For b = −7 ± 2
√
10 we have that O′

b (−1) = 0 and z = −1 is a superattractor
for this value of b. As this value is inside the curve previously defined, the fixed
point z = −1 is attractive inside the curve defined by the previous expression
and it is repulsive outside the curve and the above statements are proved. ⊓⊔

The proofs of the next propositions are analogous to the one of Proposi-
tion 3.

Math. Model. Anal., 26(2):188–208, 2021.
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Proposition 4. Let us write b = α+ iβ and

ν(α) =

√
−95 + 14α− 15α2 + 4

√
2(35− 160α+ 173α2)

15
.

For b 6= 1±2
√
2, the strange fixed point z = 1 satisfies the following statements.

a) The fixed point z = 1 is attractive if

α ∈
(
1

3

(
1− 2

√
13
)
,
1

5

(
3− 2

√
41
))

∪
(
1

3

(
1 + 2

√
13
)
,
1

5

(
3 + 2

√
41
))

and β ∈ (−ν(α), ν(α)). It is a superattractor if b = −2 or b = 3.

b) The fixed point z = 1 is indifferent if

α ∈
[
1

3

(
1− 2

√
13

)
,
1

5

(
3− 2

√
41
)]

∪
[
1

3

(
1 + 2

√
13
)
,
1

5

(
3 + 2

√
41
)]

and β = ±ν(α).

c) The fixed point z = 1 is repulsive for any other value of b ∈ C.

Proposition 5. Let us write b = α + iβ. For b 6= −3 and b 6= 1, the strange
fixed points z± are indifferent if

(5+10α+ α2)(−17−2α+3α2)(−67− 204α−26α2+36α3 + 5α4) + 4(8259

+ 5994α+1225α2−4α3+709α4 + 186α5 + 15α6)β2 + 2(6069 + 1508α

+ 1606α2 + 372α3 + 45α4)β4 + 4(299 + 62α+ 15α2)β6 + 15β8 = 0

-15 -10 -5

-4

-2

2

4

Β

Figure 2. Regions of stability of the strange fixed points for the operator Ob.

The regions defined in the previous propositions can be observed in Figures 1
and 2. In Figure 2, the red curves correspond to |O′

b (−1) | = 1, the blue curves
to |O′

b (1) | = 1, and the magenta curves to |O′
b (z±) | = 1. The strange fixed

points z± are attractive for values of the parameter b inside the magenta curves.

Indeed, they are superattractors for the points b = −2+
√
5±

√
10− 2

√
5 and

b = −2 −
√
5 ±

√
10 + 2

√
5, which are inside these curves. Moreover, for

b = 1
3

(
1± 2

√
13
)
we have z± = 1 and for b = −5 ± 2

√
5 we have z± = −1.

These are the values where the magenta and blue curves coincide and where
the magenta and red curves coincide, respectively.
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2.2 Critical points

As every attractor has a critical point in its basin of attraction, the iteration
of free critical points tells us the existence of strange attractors. Hence, to be
able to draw the parameter plane it is important to locate all critical points.

Critical points satisfy O′
b (z) = 0. The expression of O′

b is given in (2.2).
We obtain that the fixed points z = 0 and z = ∞ are also critical points of
multiplicity three and, consequently, these fixed points (that are associated to
the roots of the quadratic family) are superattractive. We also obtain other
two critical points that are free critical points: they are not tied to any fixed
(or periodic) point. Their expression is

c± =
−51−42b−4b2+2b3−b4±2

√
(b−3)(b+1)(b+2)(b2−2b−7)(b2+14b+9)

(b−1)(b+3)(b2−6b−11)

for b 6= 1, b 6= −3 and b 6= 3±2
√
5. They satisfy c+ = 1/c−. Since the operator

Ob is conjugate to itself by the map I(z) = 1/z (see Lemma 1), it follows that
the orbits of both critical points have the same asymptotic behaviour. Hence,
it is enough to iterate one of the critical points to draw the parameter plane.

2.3 The parameter plane

As mentioned before, we can draw the parameter plane of the operator by
iterating one of the free critical points and studying its asymptotic behaviour.
In this paper, parameter planes are done as follows. We take a grid of 1501×
1501 points (3001 × 1501 for Figure 1 (a)). Then we iterate the critical point
c+ up to 100 times. If before reaching 100 iterations the iterated point w is
close enough to z = 0 or z = ∞ (|w| < 10−8 or |w| > 108), then we conclude
that the critical orbit converges to one of the roots of the polynomial and plot
the parameter using a scaling from pallid blue to green to yellow and to red
depending on the number of iterates taken before escaping. If the critical orbit
has not escaped to z = 0 or z = ∞ in less than 100 iterates, then we point
the parameter in black. Black parameters are, precisely, those parameters for
which the critical orbit may have accumulated on an strange attractor. Hence,
black parameters are not desirable for the stability of the numerical method.

In Figure 1 (a) we show the parameter plane of the operator Ob. In Figure 1
(b) we do a zoom in so that the little regions corresponding to parameters for
which the strange fixed points are attractors can be observed.

Let us point out that the big black region in Figure 1 (a) corresponds to
values of the parameter b where z = −1 is attractive, the black region to its right
corresponds to values of the parameter where z± are attractive, and the big
black region located on its left corresponds to parameters where an attractive
periodic orbit of period two appears. The bigger black disk in Figure 1 (b)
corresponds to a region of parameters for which z = 1 is attractive.

Another important feature to point out from Figure 1 is the unbounded set
of ‘bad’ parameters which appears following the negative real axis. This set of
parameters, that we shall call antenna, corresponds to parameters for which
the orbits of the critical points do not converge to z = 0 nor to z = ∞. In

Math. Model. Anal., 26(2):188–208, 2021.
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Proposition 9 we analyse why this antenna appears and prove that it is actually
unbounded.

We have also noticed a duplicity in the dynamical information obtained in
this section. This duplicity appears from the terms in b2 in Equation (2.1).
Because of this term, one can find two different parameters b1 and b2 which
lead to the same operator (Ob1 = Ob2). In order to avoid this phenomenon we
introduce the parameter a = a(b) given by

a = (11 + 6b− b2)/(−3 + 2b+ b2). (2.3)

With this parameter, the operator (2.1) is expressed as

Oa(z) = z4(z − a)/(1− az). (2.4)

Given that (11 + 6b − b2)/(−3 + 2b + b2) is a rational map of degree two,
for every parameter a there exist two parameters b1 and b2 such that a =
a(b1) = a(b2). In Figure 4 we show this (2-1)-correspondence for the case of
real parameters.

3 Dynamical study of the family Oa (z)

The goal of this section is to provide a brief study of the dynamics of the
operator Oa (2.4) and to analyse the existence of antennas in the parameter
plane.

The operator Oa has degree five except for a = 1 and a = −1, parameters
for which the degree is four: O1(z) = −z4, O−1(z) = z4. Moreover, if a = 0
then O0(z) = z5. For a 6= ±1, the fixed points of operator (2.4) are 0 and ∞,
that corresponds to the roots of the polynomial x2 + c, and the strange fixed

points 1,−1, and z± = a±
√
a2−4
2 . Its free critical points are given by

c± =
(
5 + 3a2 ±

√
(a+ 1)(a− 1)(3a− 5)(3a+ 5)

)
/(8a).

The next lemma provides a symmetry in the dynamical plane.

Lemma 1. Let I(z) = 1/z. Then, fixed any a ∈ C and z ∈ Ĉ, z 6= 0, we have
that

Oa ◦ I(z) = I ◦Oa(z).

Proof.

Oa ◦ I(z) =
(
1

z

)4
1/z − a

1− a/z
· z
z
=

1

z4 z−a
1−az

= I ◦Oa(z).

⊓⊔

The importance of this lemma comes from the fact that it ties the dynamics
of all pairs of points v and w such that v = 1/w. It follows from the lemma
that Oa(v) = Oa(I(w)) = I(Oa(w)) = 1/Oa(w). Iterating this relation we
have that On

a (v) = 1/On
a (w), for all n ∈ N. We can apply this property to

the critical points since c+ = 1/c−. We can conclude that if one critical orbit
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converges to z = 0 then the other one converges to z = ∞. This implies that
it is enough to analyse the asymptotic behaviour of one of the critical orbits in
order to study the existence of attractors different of the roots.

The following lemma shows a symmetry in the parameter plane (see Fig-
ure 3). More specifically, it shows that the operators Oa and O−a are conjugate.

Lemma 2. Let h(z) = −z. Then, fixed any a ∈ C and z ∈ Ĉ, z 6= 0, we have
that

h−1 ◦O−a ◦ h = Oa.

Proof.

h−1 ◦O−a ◦ h(z) = h−1 (−O−a(−z)) = −(−z)4
−z + a

1− az
= Oa(z).

⊓⊔

Figure 3. Parameter plane of the operator Oa.

In Figure 3, the two big black regions inside the collar correspond to values
of the parameter where z = 1 and z = −1 are attractive and the two big
black regions outside the collar correspond to values of the parameter where

the strange fixed points z± = a±
√
a2−4
2 are attractive. In the next propositions

we state rigorously these claims. Their proofs are analogous to the one of
Proposition 3.

Proposition 6. The strange fixed point z = 1 satisfies the following state-
ments.

a) The point z = 1 is attractive if
∣∣a− 7

4

∣∣ < 1
4 and it is a superattractor for

a = 5
3 .

b) If
∣∣a− 7

4

∣∣ = 1
4 , then z = 1 is an indifferent fixed point.

c) The point z = 1 is repulsive for any other value of a ∈ C.

Math. Model. Anal., 26(2):188–208, 2021.
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From the conjugacy h(z) = −z between Oa and O−a described in Lemma 2,
we obtain the region of parameters for which z = −1 is attractive.

Proposition 7. The strange fixed point z = −1 satisfies the following state-
ments.

a) The point z = −1 is attractive if
∣∣a+ 7

4

∣∣ < 1
4 and it is a superattractor for

a = − 5
3 .

b) If
∣∣a+ 7

4

∣∣ = 1
4 , then z = −1 is an indifferent fixed point.

c) The point z = −1 is repulsive for any other value of a ∈ C.

For the other strange fixed points, we have the following result.

Proposition 8. Let us write a = α+ iβ and ν(α) =
√

−5− α2 +
√
1 + 20α2.

The strange fixed points z± = a±
√
a2−4
2 satisfy the following statements.

a) The points z± are attractive if α ∈ (−
√
6,−2) ∪ (2,

√
6), β ∈ (−ν(α), ν(α)).

They are superattractors if a = ±
√
5.

b) The points z± are indifferent fixed points if α ∈ [−
√
6,−2] ∪ [2,

√
6] and

β = ±ν(α).

c) The points z± are repulsive for any other value of a ∈ C.

By undoing the change of parameters, it is easy to check that the regions
of attraction of the strange fixed points obtained in Propositions 6, 7 and 8
correspond to the attraction regions obtained in Propositions 3, 4 and 5. Let
us highlight that the number of these regions has been halved.

3.1 The antennas on the real line

We study now the antennas on the real line in the parameter planes. We analyse
how the change of parameter explains the duplicity in the parameter plane of
the original family and the existence of an infinite antenna for the operator Ob.

First, we prove that the operator Oa (2.4) maps the unit circle into itself if
a ∈ R.

Lemma 3. If a ∈ R, then the operator Oa leaves the unit circle S
1 invariant.

Proof. Let z = eiθ ∈ S
1 be a point of the unit circle. Then,

Oa

(
eiθ

)
= e4iθ

eiθ − a

1− aeiθ
= e4iθ

eiθ(1− ae−iθ)

1− aeiθ
.

Using that 1− aeiθ and 1− ae−iθ are complex conjugate if a ∈ R, we conclude
that Oa

(
eiθ

)
is also in the unit circle:

|Oa

(
eiθ

)
| =

∣∣e4iθ
∣∣ ∣∣eiθ

∣∣
∣∣∣∣
1− ae−iθ

1− aeiθ

∣∣∣∣ = 1.

⊓⊔
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Proposition 9. There is an infinite antenna on the real line in the parameter
plane of operator Ob(z), that corresponds to a finite antenna located in the
interval

(
− 5

3 ,−1
)
in the parameter plane of operator Oa(z).

Proof. For a real, the critical points

c± =
(
5 + 3a2 ±

√
(a2 − 1) (9a2 − 25)

)
/(8a)

ofOa are real if a ∈
(
−∞,− 5

3

)
∪(−1, 1)∪

(
5
3 ,∞

)
. For a ∈

(
− 5

3 ,−1
)
∪
(
1, 5

3

)
these

critical points are complex conjugate. Using that they also satisfy c+ = 1/c−
we conclude that they are in the unit circle:

c+ = c̄− = 1/c− ⇒ |c+| = |c−| = 1.

As Oa leaves the unit circle invariant for a ∈ R, the orbits of the critical
points remain in the unit circle for a ∈

(
− 5

3 ,−1
)
∪
(
1, 5

3

)
. This fact explains

the existence of bounded antennas of parameters for which the critical points
cannot be in the basins of attraction of 0 nor ∞ for the operator Oa (see
Figure 3). Recall that for a = ±1, the operator Oa degenerates to a degree
4 map. On the other hand, for a = 5

3 (resp. a = − 5
3 ) the strange fixed point

z = 1 (resp. z = −1) is superattractive.
We can use the relation between the parameter a and the parameter b

given by Equation (2.3) (Figure 4 illustrates this relation for real parame-
ters) to obtain the analogous antennas in the parameter space of Ob. On
the one hand, the parameters a ∈

(
1, 5

3

)
correspond to b ∈

(
−2, 1− 2

√
2
)
∪(

3, 1 + 2
√
2
)
. On the other hand, the parameters a ∈

(
− 5

3 ,−1
)
correspond to

b ∈
(
−∞,−7− 2

√
10

)
∪
(
−1,−7 + 2

√
10
)
. The unbounded interval is obtained

from the fact that if b → −∞ then a → −1. ⊓⊔

Figure 4. Relation between the parameters a and b for b real.

4 Dynamical study of the generalised family

In this section we study a generalization of the family of operators Oa. More
specifically, we consider the family of operators Oa,n,k given by

Oa,n,k (z) = zn
(

z − a

1− az

)k

, (4.1)
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where a ∈ C, n ≥ 2 and k ≥ 1. We study this generalised family given that
it can be obtained, for different parameters n and k, from several root-finding
families of numerical methods. The operator Oa,4,1 coincides with the map Oa,
which we studied in the previous section. Notice that this case was studied
first in [1]. Also, the operator of the Chebyshev-Halley family of numerical
methods acting on the polynomials z2 + c can be transformed into Oa,n,k for
n = 3 and k = 1 (see [13]). Another example of appearance of the family Oa,n,k

is obtained [2], where the case n = 6 and k = 2 is studied.
We start de dynamical study of the operator Oa,n,k by analysing the fixed

points which are superattractive independently of the parameter. From the
term zn of the operator Oa,n,k and the fact that (z − a)/(1− az) 6= 1/z for all
a ∈ C, we conclude that the points z = 0 and z = ∞ are superattractive fixed
points of local degree, at least, n. Actually, the idea behind the generalised
operator Oa,n,k is that, when obtained from a numerical method, the points
z = 0 and z = ∞ would correspond to the solutions of a quadratic equation.
In that case, the method would have order of convergence n to the solutions.

In order to be able to draw the parameter planes of the family Oa,n,k it is
important to know the expressions of the critical points, which are the zeros of

O′
a,n,k (z) = zn−1 (z − a)

k−1 (−anz2 + ((n+ k) + a2(n− k))z − an
)

(1− az)k+1
.

As all degree n + k rational maps, the operator Oa,n,k has 2(n + k) − 2
critical points. Since the points z = 0 and z = ∞ are superattracting fixed
points of local degree n, they are critical points of multiplicity n−1. The points
z = a and z = 1/a are mapped with degree k to z = 0 and z = ∞, respectively.
Hence, they are critical points of multiplicity k− 1 (they are not critical points
if k = 1). Up to now we have counted 2(n+ k)− 4 critical points. To find the
remaining 2 critical points we have to look for points at which O′

a,n,k vanishes.
We obtain two critical points c± given by

c± =
(n+ k) + (n− k)a2 ±

√
(a2 − 1)((n− k)2a2 − (n+ k)2)

2na
.

We call c± free critical points since they are the only critical points whose
dynamics may vary. Indeed, z = 0 and z = ∞ are superattractive fixed points
(they have their own basins of attraction) while z = a and z = 1/a are preim-
ages of z = 0 and z = ∞, respectively.

Lemma 4. Let I(z) = 1/z. Then, fixed any a ∈ C and z ∈ Ĉ, z 6= 0, we have
that

Oa,n,k (z) ◦ I(z) = I ◦Oa,n,k (z) .

By Lemma 4, since c+ = 1/c−, we can relate the orbits of c+ and c−.
Indeed, we have that Om

a,n,k(c+) = 1/Om
a,n,k(c−) for all m > 0. In particular, if

one critical orbit converges to z = 0 then the other one converges to z = ∞.
This implies that it is enough to analyse the asymptotic behaviour of one of
the critical orbits to study the existence of any attractor other than the basins
of attraction of 0 and ∞.
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In Figure 5 we show the parameter planes of the operator Oa,n,k for different
values of n and k. These drawings are done by iterating a critical point as
explained in Section 2.3. We observe in black the regions of parameters for
which the critical points do not converge to the roots. In Figure 5 (a) and (b)
we can observe how, when |n − k| ≤ 1, we obtain unbounded black regions.
These unbounded regions can be understood by analysing the stability of the
points z = 1 and z = −1. The point z = 1 is a fixed point for all values of the
parameters. Moreover, Oa,n,k (−1) = (−1)

n+k
, so z = −1 is a fixed point if

n+ k is odd and a pre-fixed point if n+ k is even. In the following lemmas we
study the stability of the points z = 1 and z = −1. The proofs are analogous
to the one of Proposition 3.

Proposition 10. For |n− k| 6= 0, 1, the fixed point z = 1 satisfies the following
statements.

a) The point z = 1 is attractive if
∣∣∣a− n2−k2−1

(n−k)2−1

∣∣∣ < 2k
(n−k)2−1

and it is a super-

attractor for a = n+k
n−k .

b) If
∣∣∣a− n2−k2−1

(n−k)2−1

∣∣∣ = 2k
(n−k)2−1

then z = 1 is an indifferent fixed point.

c) The point z = 1 is repulsive for any other value of a ∈ C.

For n + k odd, the point z = −1 is a fixed point. In this case, the set
of parameters where it is attractive can be directly obtained from the follow-
ing lemma, which provides a symmetry of the parameter plane for n + k odd
(compare with Figure 5).

Lemma 5. Let h(z) = −z and assume that is n+ k odd. Then, for a ∈ C and

z ∈ Ĉ we have

h−1 ◦O−a,n,k ◦ h = Oa,n,k.

Using Lemma 5, we can now provide the corresponding proposition for
z = −1.

Proposition 11. For n+k odd and |n− k| 6= 1, the fixed point z = −1 satisfies
the following statements.

a) The point z = −1 is attractive if
∣∣∣a+ n2−k2−1

(n−k)2−1

∣∣∣ < 2k
(n−k)2−1

and it is a

superattractor for a = −n+k
n−k .

b) If
∣∣∣a+ n2−k2−1

(n−k)2−1

∣∣∣ = 2k
(n−k)2−1

then z = −1 is an indifferent fixed point.

c) The point z = −1 is repulsive for any other value of a ∈ C.

Propositions 10 and 11 describe the sets of parameters for which the hyper-
bolic regions in the parameter planes corresponding to parameters for which
z = 1 or z = −1 are attractive are bounded. The next two propositions describe
the degeneracy cases for which these regions are unbounded.
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a) n = 2, k = 2. b) n = 3, k = 2.

c) n = 4, k = 2. d) n = 7, k = 2.

e) n = 3, k = 5. f) n = 3, k = 6.

Figure 5. Parameter planes of Oa,n,k(z) for several values of n and k.

Proposition 12. Let a = α + iβ. Then, for |n− k| = 1 the following state-
ments hold.

a) For k − n = 1, the fixed point z = 1 is an attractor if α < −n and z = −1
is an attractor if α > n;

b) For n− k = 1, the fixed point z = 1 is an attractor if α > n and z = −1 is
an attractor if α < −n.
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Proposition 13. For n = k the fixed point z = 1 is an attractor if |a− 1| > 2k,
it is an indifferent point if |a− 1| = 2k and it is a repulsor if |a− 1| < 2k.

It follows from Proposition 12 that if |n− k| = 1 the sets of parameters for
which the strange fixed points z = 1 and z = −1 are attracting are two half
planes (see Figure 5 (b)). Also, it follows from Proposition 13 that if n = k
the sets of parameters for which the strange fixed point z = 1 is attracting
corresponds to the complement of a round disk (see Figure 5 (a)).

After analysing the stability of the points z = 1 and z = −1, we focus on the
antennas in the parameter planes. Similarly to what happens for the operator
Oa, the maps Oa,n,k posses antennas. These antennas correspond to real sets of
parameters for which the orbits of the critical points cannot converge to z = 0
and z = ∞. We prove this phenomenon in the next two results. First we show
that, if a ∈ R, then Oa,n,k leaves the unit circle invariant.

Lemma 6. If a ∈ R, the operator Oa,n,k leaves the unit circle S
1 invariant.

Proof. Let z = eiθ ∈ S
1 and a ∈ R. Using that 1 − aeiθ and 1 − ae−iθ are

complex conjugate when a is real we have
∣∣Oa,n,k

(
eiθ

)∣∣ = 1. Hence, the image
of a point of the unit circle is also in the unit circle. ⊓⊔

We can now analyse the antennas. They are described in the next proposi-
tion as a real set of parameters (actually, the union of two intervals) for which
c± ∈ S

1. In that case, by Lemma 6, we know that the orbits of the free criti-
cal points cannot exit the unit circle and, hence, cannot converge to z = 0 or
z = ∞. These intervals are obtained by analysing for which real parameters
the radical of the quadratic equation that provides c± is not positive. In that
case, the free critical points are complex conjugate and lie in S

1.

Proposition 14. If n 6= k and a ∈
(
−
∣∣∣n+k
n−k

∣∣∣ ,−1
)
∪
(
1,
∣∣∣n+k
n−k

∣∣∣
)
, then the crit-

ical points c± of Oa,n,k satisfy c± ∈ S
1. Furthermore, the following statements

hold.

a) If a = ±1, the operator Oa,n,k decreases its degree by k. Moreover, O1,n,k =
zn and O−1,n,k = (−1)kzn.

b) If n 6= k and a = n+k
n−k , then c+ = c− = 1 and z = 1 is a superattractive fixed

point.

c) If n 6= k and a = −n+k
n−k , then c+ = c− = −1. Moreover, if n+ k is odd then

z = −1 is a superattracive fixed point.

Let us notice that, for n > k + 1 both antennas are inside the collar-like
sets that appear in the parameter planes (see Figure 5 (c) and (d), see also
Figure 3).

To finish this section we demonstrate the non-existence of Herman rings
for the operator Oa,n,k. Herman rings are doubly connected sets of points
where the map is conjugate to a rigid rotation (see [15]). Herman rings are
not related to fixed points, so their existence is more difficult to determine.
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However, if there would be a Herman ring for an operator coming from a
numerical method, it would provide a positive measure set of initial conditions
for which the method fails which would not be related to strange attractors.

Theorem 1. The operator Oa,n,k has no Herman rings for a ∈ C, n ≥ 2, and
k ≥ 1.

Proof. The idea of the proof is to semiconjugate the operator Oa,n,k with a
rational map Sa,n,k of the same degree with a single free critical orbit which
cannot have Herman rings.

The first step is to conjugate Oa,n,k with a rational map Ra,n,k using the
Mbius transformation h(z) = (z + 1)/(z − 1). This Mbius transformation
sends ∞ to 1, 0 to −1, and 1 to ∞. Moreover, h−1(z) = h(z). The map
Ra,n,k = h−1 ◦Oa,n,k ◦ h is given by

Ra,n,k(z) =
(z + 1)n (z(1− a) + 1 + a)

k
+ (z − 1)n (z(1− a)− 1− a)

k

(z + 1)n (z(1− a) + 1 + a)
k − (z − 1)n (z(1− a)− 1− a)

k
.

Given that h sends ∞ to 1 and 0 to −1, it follows that 1 and −1 are
superattractive fixed points of local degree n. A simple computation shows
that Ra,n,k(z) = −Ra,n,k(−z). We conclude that R(z) is an odd function.

Therefore, (Ra,n,k(z))
2
is an even function and there exists a map Sa,n,k of the

same degree than Ra,n,k such that Sa,n,k(z
2) = (Ra,n,k(z))

2
. In order to find

the critical points of Sa,n,k we need to find the zeros of S′
a,n,k. Derivating the

previous equation we obtain

S′
a,n,k(z

2) · 2z = 2Ra,n,k(z) ·R′
a,n,k(z).

Hence, the critical points of Sa,n,k are given by points c2 where c is a critical
point of Ra,n,k and points z20 , where z0 is a zero or a pole of Ra,n,k.

The critical points which come from zeros and poles of Ra,n,k(z) are not
free. Indeed, ∞ is a fixed point of Ra,n,k(z). On the other hand, h sends the
point −1 to 0. Since −1 is either a preimage of ∞ or a fixed point under Oa,n,k,
it follows that 0 is either a preimage of ∞ or a fixed point.

We need to analyse the critical points of the form c2 where c is a critical
point of Ra,n,k. The free critical points of Ra,n,k, denoted by c̃±, are the image
under h of the free critical points c± of Oa,n,k. Using that c± satisfy c+ ·c− = 1
we can conclude that c̃± = (c± + 1)/(c± − 1) satisfy c̃+ = −c̃−:

c+ + 1

c+ − 1
= −c− + 1

c− − 1
⇔ c+ · c− − 1 = −c+ · c− + 1 ⇔ c+ · c− = 1.

We conclude that Sa,n,k has a single free critical point given by c̃2+ = c̃2−.
Since a Herman ring requires, at least, two different critical orbits that accu-
mulate on its boundary (see [18] and [20]), it follows that Sa,n,k cannot have
Herman rings, and neither can Oa,n,k. ⊓⊔



Dynamics of a Family of Rational Operators of Arbitrary Degree 205

5 Conclusions

The operator Ob (2.1), as stated in [1], presents two unwanted features that
can difficult the study of its dynamics. The first one is the duplicity of the
information in the parameter plane: we can find two different parameters b1 and
b2 such that Ob1 = Ob2 . The other unwanted feature is the unboundedness of
‘bad’ parameters: there is an ‘antenna’ of parameters that spreads through the
negative real axis for which the corresponding critical orbits do not converge to
the solutions of the equations. This property hinders the study of problematic
dynamics.

We avoid these two facts by re-defining the parameter, obtaining the op-
erator Oa (2.4). This operator belongs to a more general family of operators
Oa,n,k (4.1) given by

Oa,n,k (z) = zn
(

z − a

1− az

)k

, a ∈ C.

This family also includes operators coming from other root finding algorithms
applied to quadratic polynomials. In the case where Oa,n,k actually comes from
a root finding algorithm, the number n corresponds to the order of convergence
to the roots. Hence, n is to be considered at least 2.

If n > k + 1, the region of parameters for which there may be strange
attractors seems to be bounded (see Figure 3 and Figure 5 (c) and (d)). In
Figure 6 (a) we can observe the dynamical plane of Oa,4,1 for a parameter a in
the ‘unbounded’ hyperbolic region. We observe that the basin of attraction of
z = 0 (in blue) has some holes in red corresponding to points which converge
to z = ∞. These holes come from the pole z = 1/a. We want to point out that
this is not very bad news since these holes seem to decrease its diameter very
fast when a → ∞ if n > k + 1. In Figure 6 (b) we also show the dynamical
plane of O5/3,4,1. For this operator z = 1 is superattractive. Despite that, the
basins of attraction of z = 0 and z = ∞ remain big.

On the other hand, if n ≤ k + 1 unwanted dynamical features appear. For
instance, if |n − k| ≤ 1 there are unbounded regions in the parameter plane
corresponding to parameters for which the operator has strange attractors.
Also, if n < k− 1 quite complicated structures appear in the parameter planes
(see Figure 5 (e) and (f)). Furthermore, if n ≤ k+ 1 the size of the immediate
basin of attraction of z = 0 (the connected component of the basin of attraction
that contains z = 0) can become quite small. Numerical experiments show that
the bigger is k compared to n the smaller is this immediate basin (see Figure 6
(c), (d), (e), and (f)). For instance, for n = 3, k = 5 and a = −10 the diameter
of his component is smaller than 10−2. From the dynamical point of view,
this would be a terrible feature if the operator actually came from a numerical
method. We would like to remark that the red component which appears very
close to z = 0 in Figure 6 (e) comes from the the pole 1/a = −1/10. Notice
that this red component of points which converge to z = ∞ is much bigger
than the immediate basin of attraction of z = 0.

We can conclude that if the operator is obtained from a numerical method,
then n and k should satisfy n > k + 1. Also, since k ≥ 1, n should be at least
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a) a = 3, n = 4, k = 1. b) a = 5/3, n = 4, k = 1.

c) a = 5, n = 3, k = 2. d) a = 5, n = 3, k = 3.

e) a = −10, n = 3, k = 5. f) Zoom in on figure (e).

Figure 6. Dynamical planes of Oa,n,k(z) for different values of n, k and a. Blue points
converge under iteration to z = 0, red points converge to z = ∞ and black points converge

to strange attractors.

3. For such parameters, even if there may be strange attractors, the dynamics
of the operator would be suitable from the point of view of numerical methods.
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