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We propose a fractional order model in this paper to describe the dynamics of human immunode�ciency virus (HIV) infection.
In the model, the infection transmission process is modeled by a speci�c functional response. First, we show that the model is
mathematically and biologically well posed. Second, the local and global stabilities of the equilibria are investigated. Finally, some
numerical simulations are presented in order to illustrate our theoretical results.

1. Introduction

Fractional order di	erential equations (FDEs) are a general-
ization of ordinary di	erential equations (ODEs) and they
have many applications in various �elds such as mechanics,
image processing, viscoelasticity, bioengineering, �nance,
psychology, and control theory [1–7]. In addition, it has been
deduced that the membranes of cells of biological organisms
have fractional order electrical conductance [8].

Modeling by FDEs has more advantages to describe
the dynamics of phenomena with memory which exists in
most biological systems, because fractional order derivatives
depend not only on local conditions but also on the past.
More precisely, calculating the time-fractional derivative of
a function �(�) at some time � = �1 requires all the previous
history, that is, all �(�) from � = 0 to � = �1. In addition,
the region of stability of FDEs is larger than that of ODEs.
Moreover, some previous study compared between the results
of the fractional ordermodel, the results of the integermodel,
and the measured real data obtained from 10 patients during
primary HIV infection [9]. �is study proved that the results
of the fractional order model give predictions to the plasma
virus load of the patients better than those of the integer
model.

From the above biological and mathematical reasons, we
propose a fractional order model to describe the dynamics of
HIV infection that is given by��� (�) = � − �� − ��	1 + 
1� + 
2	 + 
3�	 + ��,

��� (�) = ��	1 + 
1� + 
2	 + 
3�	 − (� + �) �,��	 (�) = �� − �	,
(1)

where �(�), �(�), and 	(�) represent the concentrations
of uninfected CD4+ T-cells, infected cells, and free virus
particles at time �, respectively. Uninfected cells are assumed
to be produced at a constant rate �, die at the rate ��, and
become infected by a virus at the rate ��	/(1 + 
1� +
2	 + 
3�	), where 
1, 
2, 
3 ≥ 0 are the saturation factors
measuring the psychological or inhibitory e	ect. Infected
cells die at the rate �� and return to the uninfected state by loss
of all covalently closed circular DNA (cccDNA) from their
nucleus at the rate ��. Free virus particles are produced from
infected cells at the rate �� and cleared at the rate �	.

�e fractional order derivative used in system (1) is in the
sense of Caputo. We use this Caputo fractional derivative for
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two reasons: the �rst reason is that the fractional derivative
of a constant is zero and the second reason is that the initial
value problems depend on the integer order derivative only.
In addition, we choose 0 < 
 ≤ 1 in order to have the same
initial conditions as ODE systems.

On the other hand, system (1) generalizes many special
cases existing in the literature. For example, when 
1 = 
2 =
3 = 0, we get themodel of Arafa et al. [10]. Further, we obtain
the model of Liu et al. [11] when 
3 = 0. It is very important
to note that when 
 = 1, system (1) becomes a model with an
ordinary derivative which is the generalization of the ODE
models presented in [12–15].

�e rest of the paper is organized as follows. In the
next section, we give some preliminary results. In Section 3,
equilibria and their local stability are investigated. In Sec-
tion 4, the global stability of the two equilibria is established.
Numerical simulations of our theoretical results are presented
in Section 5. Finally, the paper ends with conclusion in
Section 6.

2. Preliminary Results

We �rst recall the de�nitions of the fractional order integral,
Caputo fractional derivative, andMittag-Le�er function that
are given in [16].

De
nition 1. �e fractional integral of order 
 > 0 of a
function � : R+ → R is de�ned as follows:��� (�) = 1Γ (
) ∫�

0
(� − �)�−1 � (�) ��, (2)

where Γ(⋅) is the Gamma function.

De
nition 2. �e Caputo fractional derivative of order 
 > 0
of a continuous function � : R+ → R is given by��� (�) = ��−���� (�) , (3)

where� = �/�� and � − 1 < 
 ≤ �, � ∈ N.
In particular, when 0 < 
 ≤ 1, we have��� (�) = 1Γ (1 − 
) ∫�

0

�� (�)(� − �)� ��. (4)

De
nition 3. Let 
 > 0. �e function ��, de�ned by�� (�) = ∞∑
�=0

��Γ (
� + 1) , (5)

is called the Mittag-Le�er function of parameter 
.
Let � : R� → R

� with � ≥ 1. Consider the fractional
order system ��� (�) = � (�) ,� (�0) = �0, (6)

with 0 < 
 ≤ 1, �0 ∈ R, and �0 ∈ R
�. For the global existence

of solution of system (6), we need the following lemma.

Lemma 4. Assume that � satis
es the following conditions:

(i) �(�) and (��/��)(�) are continuous for all � ∈ R
�.

(ii) ‖�(�)‖ ≤ ! + �‖�‖ for all � ∈ R
�, where ! and � are

two positive constants.

�en, system (6) has a unique solution on [�0, +∞).
�e proof of this lemma follows immediately from [17].

For biological reasons, we assume that the initial conditions
of system (1) satisfy � (0) = #1 (0) ≥ 0,� (0) = #2 (0) ≥ 0,	 (0) = #3 (0) ≥ 0. (7)

In order to establish the nonnegativity of solutionswith initial
conditions (7), we need also the following lemmas.

Lemma5 (see [18]). Suppose that$(�) ∈ %[�, &] and��$(�) ∈%[�, &] for 0 < 
 ≤ 1; then, one has$ (�) = $ (�) + 1Γ (
)��$ (') (� − �)� ,� < ' < �, ∀� ∈ (�, &] . (8)

Lemma 6 (see [18]). Suppose that $(�) ∈ %[�, &] and��$(�) ∈ %[�, &] for 0 < 
 ≤ 1. If��$(�) ≥ 0 ∀� ∈ [�, &], then$(�) is nondecreasing for each � ∈ [�, &]. If ��$(�) ≤ 0 ∀� ∈[�, &], then $(�) is nonincreasing for each � ∈ [�, &].
�eorem 7. For any initial conditions satisfying (7), system
(1) has a unique solution on [0, +∞). Moreover, this solution
remains nonnegative and bounded for all � ≥ 0. In addition,
one has

(i) -(�) ≤ -(0) + �/2,
(ii) 	(�) ≤ 	(0) + (�/�)‖�‖∞,

where-(�) = �(�) + �(�) and 2 = min{�, �}.
Proof. It is easy to see that the vector function of system (1)
satis�es the �rst condition of Lemma 4. It remains to prove
the second condition. Let

3 (�) = (� (�)� (�)	 (�)) ,
7 = (�00) . (9)

To this end, we discuss four cases:

(i) If 
1 ̸= 0, then system (1) can be written as follows:��3 (�) = 7 + 913 + 
1�1 + 
1� + 
2	 + 
3�	923, (10)



International Journal of Di	erential Equations 3

where

91 = (−� � 00 − (� + �) 00 � −�) ,
92 = (0 0 − �
10 0 �
10 0 0 ). (11)

Moreover, we have@@@@��3 (�)@@@@ ≤ @@@@7@@@@ + (@@@@91@@@@ + @@@@92@@@@) ‖3‖ . (12)

(ii) If 
2 ̸= 0, we have��3 (�) = 7 + 913 + 
2�1 + 
1� + 
2	 + 
3�	933, (13)

where

93 = (0 0 − �
20 0 �
20 0 0 ). (14)

�en,@@@@��3 (�)@@@@ ≤ @@@@7@@@@ + (@@@@91@@@@ + @@@@93@@@@) ‖3‖ . (15)

(iii) If 
3 ̸= 0, we have��3 (�) = 7 + 913 + 
3�	1 + 
1� + 
2	 + 
3�	94, (16)

where

94 = (− �
3�
30 ). (17)

�en,@@@@��3 (�)@@@@ ≤ (@@@@7@@@@ + @@@@94@@@@) + @@@@91@@@@ ‖3‖ . (18)

(iv) If 
1 = 
2 = 
3 = 0, we have��3 (�) = 7 + 913 + 	953, (19)

where

95 = (−� 0 0� 0 00 0 0) . (20)

�en,@@@@��3 (�)@@@@ ≤ @@@@7@@@@ + (‖	‖ @@@@95@@@@ + @@@@91@@@@) ‖3‖ . (21)

�us, the second condition of Lemma 4 is satis�ed. �en,
system (1) has a unique solution on [0, +∞). Next, we show
that this solution is nonnegative. From (1), we have��� (�)AAAA�=0 = � + �� ≥ 0,��� (�)AAAA	=0 = ��	1 + 
1� + 
2	 + 
3�	 ≥ 0,��	 (�)AAAA
=0 = �� ≥ 0. (22)

According to Lemmas 5 and 6, we deduce that the solution of
(1) is nonnegative.

Finally, we prove that the solution is bounded. By adding
the �rst two equations of system (1), we get��-(�) ≤ � − 2- (�) . (23)

Hence,-(�) ≤ - (0) �� (−2��) + �2 [1 − �� (−2��)] . (24)

Since 0 ≤ ��(−2��) ≤ 1, we have-(�) ≤ - (0) + �2 . (25)

�e third equation of system (1) implies that	 (�) = 	 (0) �� (−���)+ �∫�
0
� (D) 
 (� − D)�−1 ����D (−� (� − D)�) �D. (26)

�en,	 (�) ≤ 	 (0) �� (−���) + � ‖�‖∞� (1 − �� (−���)) . (27)

Consequently, 	 (�) ≤ 	 (0) + � ‖�‖∞� . (28)

�is completes the proof.

3. Equilibria and Their Local Stability

It is easy to see that system (1) always has a disease-free
equilibrium �0(�/�, 0, 0). �erefore, the basic reproduction
number of our system (1) is given byE0 = ���� (� + �) (� + �
1) . (29)

Biologically, this basic reproduction number represents the
average number of secondary infections produced by one
infected cell during the period of infection when all cells are
uninfected. Further, it is not hard to get the following result.
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�eorem 8. (i) If E0 ≤ 1, system (1) has a unique disease-
free equilibrium of the form �0(�0, 0, 0), where �0 = �/�.
(ii) If E0 > 1, the disease-free equilibrium is still present and
system (1) has a unique chronic infection equilibrium of the
form �1(�1, (� − ��1)/�, �(� − ��1)/��), where �1 = 2(� +�)(��+
2��)/(���+ (�+�)(
2��−
1��−
3��)+√2)with2 = (��� + (� + �) (
2�� − 
1�� − 
3��))2+ 4
3�� (� + �)2 (�� + 
2��) . (30)

Next, we investigate the local stability of equilibria. Let��(�, �, 	) be an arbitrary equilibrium of system (1). �en,
the characteristic equation at �� is given byAAAAAAAAAAAAAAAAAAAAAAA

−� − 	 ���� − ' � −	 ���	 − � (�, 	)	 ���� − (� + �) − ' 	 ���	 + � (�, 	)0 � −� − '
AAAAAAAAAAAAAAAAAAAAAAA= 0,

(31)

where � (�, 	) = ��1 + 
1� + 
2	 + 
3�	. (32)

We recall that the equilibrium �� is locally asymptotically
stable if all roots '� of (31) satisfy the following condition [19]:AAAAarg ('�)AAAA > 
H2 . (33)

�eorem 9. (i) If E0 < 1, then �0 is locally asymptotically
stable. (ii) If E0 > 1, then �0 is unstable.
Proof. Evaluating (31) at �0, we have(� + ') ['2 + (� + � + �) ' + � (� + �) (1 − E0)] = 0. (34)

Obviously, the roots of (34) are'1 = −�,'2
= − (� + � + �) − √(� + � + �)2 − 4� (� + �) (1 − E0)2 ,'3
= − (� + � + �) + √(� + � + �)2 − 4L (� + �) (1 − E0)2 .

(35)

It is clear that '1 and '2 are negative. However, '3 is negative
if E0 < 1 and it is positive if E0 > 1. �erefore, �0 is locally
asymptotically stable if E0 < 1 and unstable if E0 > 1.

Now, we focus on the local stability of the chronic infec-
tion equilibrium�1. It follows from (31) that the characteristic
equation at �1 is given byM (') fl '3 + �1'2 + �2' + �3 = 0, (36)

where�1 = � + � + � + � + �	1 (1 + 
2	1)(1 + 
1�1 + 
2	1 + 
3�1	1)2 ,�2 = � (� + � + �)+ �	1 [(� + �) (1 + 
2	1) + ��1 (
2 + 
3�1)](1 + 
1�1 + 
2	1 + 
3�1	1)2 ,
�3 = �	1 [�� (1 + 
2	1) + ���1 (
2 + 
3�1)](1 + 
1�1 + 
2	1 + 
3�1	1)2 .

(37)

It is obvious that �1 > 0, �2 > 0, and �3 > 0. Further, we have�1�2 − �3 = �(� (� + � + �)
+ �	1 [� (1 + 
2	1) + ��1 (
2 + 
3�1)](1 + 
1�1 + 
2	1 + 
3�1	1)2 )
+ �(� (� + � + �)
+ (� + �) �	1 (1 + 
2	1)(1 + 
1�1 + 
2	1 + 
3�1	1)2) + (� + �
+ �	1 (1 + 
2	1)(1 + 
1�1 + 
2	1 + 
3�1	1)2)ℎ2 > 0.

(38)

So, Routh–Hurwitz conditions are satis�ed. Let�(M) denote
the discriminant of the polynomial M given by (36); then,� (M) = 18�1�2�3 + (�1�2)2 − 4�3�31 − 4�32 − 27�23 . (39)

Using the results in [19], we easily obtain the following result.

�eorem 10. Assume that E0 > 1.
(i) If �(M) > 0, then �1 is locally asymptotically stable for

all 
 ∈ (0, 1].
(ii) If �(M) < 0 and 
 < 2/3, then �1 is locally

asymptotically stable.

4. Global Stability

In this section, we study the global stability of the disease-free
equilibrium �0 and the chronic infection equilibrium �1.
�eorem 11. If E0 ≤ 1, then the disease-free equilibrium �0 is
globally asymptotically stable.
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Proof. De�ne Lyapunov functional T0(�) as follows:T0 (�) = �01 + 
1�0Φ( ��0)+ �2 (1 + 
1�0) (� + �) �0 (� − �0 + �)2
+ � + �� 	,

(40)

whereΦ(�) = � − 1 − ln(�), � > 0. Calculating the derivative
of T0(�) along solutions of system (1) and using the results in
[20], we get��T0 (�) ≤ 11 + 
1�0 (1 − �0� )��� + ���⋅ �(1 + 
1�0) (� + �) �0 (� − �0 + �)

⋅ (��� + ���) + � + �� ��	.
(41)

Using � = ��0, we obtain��T0 (�)≤ − � (� − �0)2(1 + 
1�0) � − 11 + 
1�0 (1 − �0� )� (�, 	)	
+ �1 + 
1�0 (1 − �0� ) � + � (�, 	)	
− �� (� − �0)2(� + �) �0 (1 + 
1�0)− ���2(� + �) �0 (1 + 
1�0)+ ��0 (1 + 
1�0)� (�0 − �) − (� + �) �� 	,��T0 (�)≤ −( 1� + �(� + �) �0) � (� − �0)21 + 
1�0− �� (� − �0)2��0 (1 + 
1�0) − ���2(� + �) �0 (1 + 
1�0)+ (� + �) �� (E0 − 1)	
− ��0 (
2 + 
3�)(1 + 
1�0) (1 + 
1� + 
2	 + 
3�	)	2.

(42)

Hence, if E0 ≤ 1, then ��T0(�) ≤ 0. Furthermore, it is clear
that the largest invariant set of {(�, �, 	) ∈ � : ��T0(�) = 0} is
the singleton {�0}.�erefore, by LaSalle’s invariance principle
[21], �0 is globally asymptotically stable.

�eorem 12. �e chronic infection equilibrium �1 is globally
asymptotically stable if E0 > 1 andE0 ≤ 1 + � (� + �) (�
2� + ��) + ��2
3��� (� + �) (� + �
1) . (43)

Proof. De�ne Lyapunov functional T1(�) as follows:T1 (�) = 1 + 
2	11 + 
1�1 + 
2	1 + 
3�1	1�1Φ( ��1)+ �1Φ( ��1) + � + �� 	1Φ( 		1)+ � (1 + 
2	1)2�1 (� + �) (1 + 
1�1 + 
2	1 + 
3�1	1) (�− �1 + � − �1)2 .
(44)

�en, we have��T1 (�) ≤ 1 + 
2	11 + 
1�1 + 
2	1 + 
3�1	1 (1 − �1� )
⋅ ��� + (1 − �1� )���
⋅ � (1 + 
2	1)�1 (� + �) (1 + 
1�1 + 
2	1 + 
3�1	1) (� − �1+ � − �1) (��� + ���) + � + �� (1 − 	1	 )��	.

(45)

Using � = ��1+��1,�(�1, 	1)	1 = (�+�)�1, �/� = �1/	1,
and 1 − �(�1, 	1)/�(�, 	1) = ((1 + 
2	1)/(1 + 
1�1 + 
2	1 +
3�1	1))(1 − �1/�), we get��T1 (�) ≤ �(1 − � (�1, 	1)� (�, 	1) ) (�1 − �) + (� + �)

⋅ �1 (4 − � (�1, 	1)� (�, 	1) − �1� 		1 � (�, 	)� (�1, 	1) − ��1 	1	− � (�, 	1)� (�, 	) ) + (� + �) �1 (−1 − 		1 + � (�, 	1)� (�, 	)+ 		1 � (�, 	)� (�, 	1))− �� (1 + 
2	1)�1 (� + �) (1 + 
1�1 + 
2	1 + 
3�1	1) (�− �1)2− �� (1 + 
2	1)�1 (� + �) (1 + 
1�1 + 
2	1 + 
3�1	1) (� − �1)2
− � (1 + 
2	1)��1 (1 + 
1�1 + 
2	1 + 
3�1	1) (� − �1)2 (�− �1) .

(46)
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Figure 1: Stability of the disease-free equilibrium �0.
�us,��T1 (�)≤ − (1 + 
2	1) (� − �1)2��1 (1 + 
1�1 + 
2	1 + 
3�1	1) ((��1 − ��1)+ ���� + � + ��) − (� + �) �1

⋅ (1 + 
1�) (
2 + 
3�) (	 − 	1)2	1 (1 + 
1� + 
2	 + 
3�	) (1 + 
1� + 
2	1 + 
3�	1)− (� + �) �1 (Φ(� (�1, 	1)� (�, 	1) ) + Φ(�1� 		1 � (�, 	)� (�1, 	1))+ Φ( ��1 	1	 ) + Φ(� (�,	1)� (�, 	) ))
− �� (1 + 
2	1)�1 (� + �) (1 + 
1�1 + 
2	1 + 
3�1	1) (� − �1)2 .

(47)

It is clear that Φ(�) ≥ 0. Consequently, ��T1(�) ≤ 0 if��1 ≥ ��1. In addition, it is easy to see that this condition
is equivalent to (43). Further, the largest invariant set of{(�, �, 	) ∈ � : ��T1(�) = 0} is the singleton {�1}. By

LaSalle’s invariance principle, �1 is globally asymptotically
stable.

It is important to see that

lim
→0

� (� + �) (�
2� + ��) + ��2
3��� (� + �) (� + �
1) = +∞. (48)

According to�eorem 12, we obtain the following result.

Corollary 13. �e chronic infection equilibrium �1 is globally
asymptotically stable when E0 > 1 and � is suciently small.

5. Numerical Simulations

In this section, we give some numerical simulations in order
to illustrate our theoretical results. We discretize system (1)
by using fractional Euler’s method presented in [22]. Firstly,
we take the parameter values as shown in Table 1.

By calculation, we have E0 = 0.9283 < 1. �en,
system (1) has a disease-free equilibrium �0(719.4245, 0, 0).
By �eorem 11, the solution of (1) converges to �0 (see
Figure 1). Consequently, the virus is cleared and the infection
dies out.
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Figure 2: Stability of the chronic infection equilibrium �1.
Table 1: Parameter values of system (1).

Parameters Values� 10� 0.0139� 0.00024� 0.01� 0.5� 600L 3
1 0.1
2 0.01
3 0.00001

Now, we choose � = 0.001 and we keep the other
parameter values. In this case, E0 = 3.8678 and

1 + � (� + �) (�
2� + ��) + ��2
3��� (� + �) (� + �
1) = 415.885. (49)

Hence, condition (43) is satis�ed. �erefore, the chronic
infection equilibrium �1(130.1613, 16.3815, 3276.3) is glob-
ally asymptotically stable. Figure 2 demonstrates this result.

6. Conclusion

In this paper, we have proposed a fractional order model
of HIV infection with speci�c functional response and cure
rate. �is functional response covers the most functional
responses used by several authors such as the saturated inci-
dence rate, the Beddington-DeAngelis functional response,
and the Crowley-Martin functional response.We have shown
that the proposed model has a bounded and nonnegative
solution as desired in any population dynamics. By using
stability analysis of fractional order system, we have proved
that if the basic reproduction number E0 ≤ 1, the disease-
free equilibrium�0 is globally asymptotically stable for all
 ∈(0, 1], which means that the virus is cleared and the infection
dies out. However, when E0 > 1, the disease-free equilibrium�0 becomes unstable and there exists another biological
equilibrium, namely, chronic infection equilibrium �1, that
is globally asymptotically stable provided that condition (43)
is satis�ed. In this case, the HIV virus persists in the host
and the infection becomes chronic. Furthermore, we have
remarked that if the cure rate � is equal to zero or is
su�ciently small, condition (43) is satis�ed and the global
stability of �1 is only characterized by E0 > 1.

According to the above theoretical analysis, we deduce
that the global dynamics of the model are fully determined
by the basic reproduction number E0. In addition, we see
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that the fractional order parameter 
 has no e	ect on the
global dynamics of our model, but it can a	ect the time for
arriving at both steady states (see Figures 1 and 2). Moreover,
the fractional order model and main results presented by Liu
et al. in [11] are generalized and improved.
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