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Abstract A modified Reynolds equation for flow dynamically represented as incompressible is used to model the

dynamics of a thin film bearing with slip flow and a rapidly rotating coned rotor. Previous studies including a Navier

slip length shear condition on the bearing faces are extended to investigate applications with a coned bearing gap.

A modified Reynolds equation for the film flow is coupled, through the pressure exerted by the fluid film, to the

dynamic motion of the stator. Introducing a new variable leads to explicit analytical expressions for the pressure

field and force on the stator with the equation for the time-dependent face clearance transformed to a nonlinear

second-order non-autonomous ordinary differential equation. The face clearance for periodic axial motion of the

coned rotor is obtained using a stroboscopic map solver; a focus is investigating bearing behaviour under extreme

conditions. The coupled fluid flow and unsteady bearing dynamics are examined for a range of configurations to

evaluate potential face contact over a range of bearing surface conditions.

Keywords Bearing dynamics · Coned rotor · Film clearance · Reynolds equation · Slip length

1 Introduction

Thrust bearing technology typically utilises a thin fluid film to maintain a face clearance between the rotor and

stator, when subjected to external axial loads through generating changes in local film pressure from the differential

motion of the rotating and stationary elements.

N. Y. Bailey

University Technology Centre in Gas Turbine Transmission Systems, University of Nottingham,

Nottingham NG7 2RD, UK

e-mail: nicola.bailey@nottingham.ac.uk

K. A. Cliffe · S. Hibberd (B)

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK

e-mail: stephen.hibberd@nottingham.ac.uk

H. Power

Fuels and Power Technology Research Division, Faculty of Engineering, University of Nottingham,

Nottingham NG7 2RD, UK

e-mail: henry.power@nottingham.ac.uk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-015-9793-y&domain=pdf


2 N. Y. Bailey et al.

Typical bearing geometries include a journal bearing with a supporting cylindrical sleeve containing a rotating

cylindrical shaft separated by a thin air film, as studied by Belforte et al. [1]; a slider bearing comprising two

non-parallel moving plates separated by a thin lubricating air film, as considered by Witelski [2]; and a thrust

bearing which has an important significance dynamically in turbomachinery applications operating with very high

rotational speeds.

In advanced engineering applications, an increased lubrication force on the stator can be obtained by incorporating

a coned rotor. In early stability studies of coned bearings, Etison [3] studied the stability and response of a coned-face

seal in the presence of rotor axial runout and assembly misalignment. An optimal coning angle was identified, as

the one at which the stability is maximised. While examining a similar coned seal under a range of pressurisations,

Green and Etison [4] concluded that axial stability exists if the film converges in the direction of the pressure drop

or if there is a sufficiently high support stiffness in a divergent film. A divergent air film can lead to seal failure

in cases of low support stiffness, low pressure gradient or large coning angles. Green [5] extended the bearing

study, examining positive and negative coning angles consistent with a convergent air gap. To avoid face contact

and maintain positive stiffness, a critical angle exists depending on geometric restrictions. Green and Barnsby [6]

showed negative coning is resilient against hydrostatic instabilities, although still prone to dynamics instabilities.

Additional centrifugal inertia effects, which can be important in turbomachinery applications requiring operation

at higher rotational speeds, were studied by Garratt et al. [7] for a thrust bearing. The bearing dynamics were

investigated when one face undergoes prescribed periodic axial oscillations of amplitude smaller than the equilibrium

film thickness, and the other face moves axially in response to the film dynamics. Considering similar geometry

with incompressible flow and incorporating a coned rotor, Bailey et al. [8] provided more extensive analytical

investigations and examined the effect of prescribed axial oscillations with amplitude larger than the equilibrium

film thickness. Results indicated that the fluid film thickness can become very small causing the classical no-slip

velocity condition to become invalid. Therefore, a slip condition on the bearing faces is included in the analysis of

a parallel bearing with a small face clearance by Bailey et al. [9], with results giving no face contact, although the

bearing gap can become very thin. In this work, the case of a coned bearing with a small face clearance is analysed

to evaluate if contact can occur.

Fluid flows confined to micro- and nano scales are subject to surface effects beginning to dominate over volume-

related phenomena, requiring accurate details of the fluid–solid interaction. In the case of a gas film, the Knudsen

number Kn = l/ĥ0, with l as the mean free path and ĥ0 the characteristic fluid thickness, is usually used to classify

mathematical models for thin gas-flow regimes. The fluid is regarded as continuum for small Knudsen number

(Kn ≤ 10−3) where the no-slip boundary condition is valid. For larger Knudsen number between 10−3 and 10−1,

a continuum model is still valid, but slip boundary conditions are usually implemented, which is the flow regime

of interest in the present work. The flow is in a transition region for a Knudsen number between 10−1 and 10,

where a modified continuum model is required and in the case of a larger Knudsen number (Kn ≥ 10), the free

molecular flow can be modelled by molecular dynamics [10]. When classifying very thin flow regimes for a liquid,

the Knudsen number can be used, but with the mean free path replaced by the intermolecular distance between

molecules, giving exceedingly small fluid thickness using the above classification. When considering liquid flow

over a hydrophilic surface, even on a nano scale, the classical no-slip boundary condition appears to hold; however,

when considering a hydrophobic surface an apparent slip velocity has been observed just above the solid surface.

Slip flow has been studied in an inclined plain slider bearing by Burgdorfer [11] who devised a first-order slip

model where the boundary slip velocity was identified at a mean free path distance from the wall. A non-axisymmetric

thrust bearing with foil pads on the rotor face was examined by Park et al. [12] where the gas flow is coupled to

the bearing structure. A Reynolds equation with slip was derived, and the bearing dynamics were investigated for

rotor displacement of small amplitude in comparison to the film thickness, using existing perturbation analysis with

results given for the no-slip and slip conditions. More extensive details on previous bearing studies incorporating

slip flow are given in Bailey et al. [9].

The increasing performance advantages for bearings to operate with reduced gap between the rotor and stator

motivated the study of a thin film model valid for slip flow. This study extends the formulation, analysis and

predictions of the previous study of Bailey et al. [8] in which a coned thrust bearing is considered within a classical
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Dynamics of a high speed coned thrust bearing with a Navier slip boundary condition 3

no-slip condition which predicts that face contact will not occur, although a period of very close proximity may exist.

New bearing technologies are requiring bearing gap thicknesses to become very small and maintain appropriate

dynamic properties to sufficiently resist the possibility of face contact and maintain a minimum gap thickness. A

focus of this work is to incorporate a more general slip condition more relevant to modelling the fluid film under

extreme operating conditions and evaluating the corresponding film flow and bearing behaviour. A slip length model

is developed which couples the thrust bearing structure to flow dynamics induced by the fluid force exerted. An

extended bearing model incorporates high-speed rotational bearing operation through centrifugal fluid inertia. The

formulation of the coupled governing equations is presented in Sect. 2, including the Reynolds equation in terms

of a slip boundary condition characterised by a slip length parameter, and the stator displacement equation. A

representative single nonlinear second-order non-autonomous ordinary differential equation for the face clearance

is derived in Sect. 3. To solve for the periodic bearing face clearance iteratively, a stroboscopic map solver is

formulated and numerical procedure identified with an extension to the solver, identifying the value of slip length

corresponding to a prescribed minimum face clearance (MFC) in the period. Detailed evaluation of the steady

coned bearing is given in Sect. 4 and for the dynamic bearing in Sect. 5 to explore the dynamical behaviour and

influence of increasing effects of slip boundary conditions through selected parameter studies. The possibility of

contact through a parameter study, including the slip length and coning angle is examined in Sect. 6. To verify the

numerical solution in the limit of small face clearance asymptotic analysis is carried out, and two different symbolic

computations were used to verify the correctness of the lengthy algebra.

2 Geometric configuration

A simplified mathematical model of a fluid lubricated bearing containing a coned rotor, such as developed in Bailey

et al. [8], is extended by incorporating a slip condition on the bearing faces. The coaxial annular rotor and stator

have inner and outer dimensional radii of r̂I and r̂O, respectively, and the rotor has angular rotation �̂. The rotor has

a fixed coning angle, assumed to be small giving cos β̂ ≃ 1 and sin β̂ ≃ β̂, with cases of a positively and negatively

coned bearings considered, referred to as PCB and NCB, respectively. Pressures p̂I and p̂O are imposed at the inner

and outer radii of the bearing, respectively, allowing a pressure gradient to drive the radial flow.

The axisymmetric rotor–stator clearance is defined with reference to the point of minimum film thickness; at the

inside, radius for a PCB given by

ĥ(r̂ , β̂, t̂) = ĥs(t̂) − ĥr(r̂I, t̂) + (r̂ − r̂I) tan β̂ = ĥs(t̂) − ǫĥ0 sin(ω̂t̂) + (r̂ − r̂I) tan β̂, (1)

and at the outer, radius for an NCB is given by

ĥ(r̂ , β̂, t̂) = ĥs(t̂) − ĥr(r̂O, t̂) + (r̂ − r̂O) tan β̂ = ĥs(t̂) − ǫĥ0 sin(ω̂t̂) + (r̂ − r̂O) tan β̂. (2)

Here ĥs is the stator height, and the rotor height is given by ĥr = ĥr(r̂ j , t̂) − (r̂ − r̂ j ) tan β̂ with j = I, O for the

PCB and NCB, respectively, with a temporal dependence ĥr(r̂ j , t̂) at the reference height and a spatial dependence

(r̂ − r̂ j ) tan β̂. The prescribed axial motion of the rotor is modelled by ĥr(r̂ j , t̂) = ǫĥ0 sin
(

ω̂ t̂
)

, with amplitude

ǫĥ0 where ĥ0 is the equilibrium film thickness at the inner and outer radii for a PCB, NCB, respectively.

Deriving the velocity boundary conditions for a slip bearing requires the normal and tangential velocities on the

rotor and stator to be specified, due to the additional slip component on the bearing face. Both PCB and NCB are

considered separately in the coordinate system (ẑ, r̂ , θ̂ ) with velocities (ŵ, û, v̂). Configurations of the PCB and

NCB are shown in Fig. 1.

The PCB and NCB have the same normal and azimuthal tangent given by

n̂r = (cos β̂, sin β̂, 0), t̂2 = (0, 0, 1), (3)

respectively, whereas the axial tangents are given by

t̂1,+ = (− sin β̂, cos β̂, 0), t̂1,− = (sin β̂,− cos β̂, 0), (4)
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4 N. Y. Bailey et al.

Fig. 1 Axially symmetric geometry and notation of a bearing with a PCB β̂ > 0 and NCB β̂ < 0 with normal vector n̂r and two

orthogonal tangential components t1 and t2 on the face of the rotor with the origin of the coordinate system at the inner radius of the

annulus

for the PCB and NCB, respectively, requiring separate radial velocity boundary conditions to be derived.

The stator lies parallel to the radial direction, giving the normal vector n̂s in the negative ẑ direction and two

orthogonal tangential components, t3 and t4 on the face of the stator in the radial and azimuthal directions, respec-

tively.

A first-order Navier formulation slip model is implemented as used by Burgdorfer [11] for the case of an inclined,

plain slider bearing, where the slip velocity is proportional to the tangential component of the face shear. The velocity

boundary conditions comprise a jump in the tangential velocity across the fluid–solid interface, which is equal to

the slip velocity induced due to wall shear, and continuity of the normal velocity with a no flux condition. Thus, the

velocity boundary conditions on the rotor and stator are given by

û · t̂1 − ûr · t̂1 = 2l̂sêi j n̂ j t̂1,i , û · t̂2 − ûr · t̂2 = 2l̂sêi j n̂ j t̂2,i , û · n̂r − ûr · n̂r = 0 at ẑ = ĥr,

û · t̂3 − ûs · t̂3 = 2l̂sêi j n̂ j t̂3,i , û · t̂4 − ûs · t̂4 = 2l̂sêi j n̂ j t̂4,i , û · n̂s − ûs · n̂s = 0 at ẑ = ĥs.
(5)

The rotor velocity components denoted by superscript r, are given by ûr = (∂ ĥr/∂ t̂, 0, �̂r̂) corresponding to

prescribed axial motion and fixed azimuthal rotation. The stator is allowed to move axially due to the interaction

with the fluid, giving the stator velocity, denoted by superscript s, as ûs = (∂ ĥs/∂ t̂, 0, 0).

Velocity boundary conditions on the rotor in (5) are given by

û cos β̂ − ŵ sin β̂ = −
∂ ĥr

∂ t̂
sin β̂ + l̂s

((

∂ û

∂ ẑ
+

∂ŵ

∂ r̂

)

(

cos2 β̂ − sin2 β̂
)

+ 2

(

∂ û

∂ r̂
−

∂ŵ

∂ ẑ

)

cos β̂ sin β̂

)

,

v̂ − �̂r̂ = l̂s

(

r̂
∂

∂ r̂

(

v̂

r̂

)

sin β̂ +
∂v̂

∂ ẑ
cos β̂

)

,

ŵ cos β̂ + û sin β̂ =
∂ ĥr

∂t
cos β̂, (6)

using the normal and tangent vectors given in (3) and (4) and the rate of strain tensor components as given in

Batchelor [13, p. 602]. In an axisymmetric configuration, the azimuthal derivatives do not appear.

The velocity boundary conditions on the stator (5), give

û = −l̂s

(

∂ û

∂ ẑ
+

∂ŵ

∂ r̂

)

, v̂ = −2l̂s
∂v̂

∂ ẑ
, ŵ =

∂hs

∂ t̂
. (7)
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Dynamics of a high speed coned thrust bearing with a Navier slip boundary condition 5

A model for the incompressible fluid flow through the bearing is derived from the Navier–Stokes momentum and

continuity equations in axisymmetrical coordinates. Variables are non-dimensionalized with respect to the typical

bearing radius r̂0, rotor velocity �̂r̂ and time scale T̂ = 1/ω̂, with dimensionless time variable t = ω̂t̂ where ω̂ is the

angular frequency. Dimensionless velocities are taken to be û/Û , v̂/�̂r̂0 and ŵ/ĥ0T̂ −1 with dimensionless radius

and height given by r = r̂/r̂0 and z = ẑ/ĥ0, respectively. The dimensionless slip length is given by ls = l̂s/ĥ0.

The associated radial and azimuthal Reynolds numbers and relative ratio are given, respectively, by

ReU =
ρ̂r̂0Û

μ̂
, Re� =

ρ̂r̂2
0 �̂

μ̂
and Re∗ =

Re�

ReU

=
�̂r̂0

Û
. (8)

The aspect ratio δ0, squeeze number σ̃ and Froude number Fr are defined as

δ0 =
ĥ0

r̂0
, σ̃ =

r̂0

Û T̂
and Fr =

Û
√

ĝĥ0

, (9)

respectively, where ĝ is the acceleration due to gravity, ρ̂ the density and μ̂ the dynamic viscosity.

For thin film bearings δ0 ≪ 1 and to ensure that the effects of viscosity are retained at leading order, the

pressure is scaled as P̂ = μ̂r̂0Û/ĥ2
0. Classical lubrication theory neglects inertia due to the reduced Reynolds

number ReU δ2
0 ≪ 1; however, as was done in Garratt et al. [7], the centrifugal inertia is retained to include

cases of high rotational-speed bearing operations for which terms of the order ReU δ2
0(Re∗)2 are considered to be

of O(1), with (Re∗)2 ≫ 1. The squeeze number σ̃ characterises any time-dependent effects, whilst the Froude

number Fr parameterises the importance of the gravitational effects relative to the radial flow although gravity can

be neglected with ReU δ2
0Fr−2 ≪ 1; this is consistent with lubrication theory provided that the Froude number is

O(1). Importantly for more general application, it can be shown that under the present approximation, the flow

field with a very thin film air bearing (nano scale gap) the usual incompressible solenoidal condition remains valid

for compressible flow when the following conditions are satisfied:

Û 2

ĉ2
0

1

ReU δ0
2
σ̃ ≪ 1,

ĝĥ0

ĉ2
0

σ̃ ≪ 1,
�̂2r̂2

0

ĉ2
0

1

ReU δ2
0

≪ 1, (10)

as found in Bailey et al. [9].

To leading order, where terms of O(δ0) are neglected, the governing lubrication equations become

−
∂p

∂r
+

∂2u

∂z2
= −η

v2

r
,

∂2v

∂z2
= 0,

∂p

∂z
= 0, (11)

1

r

∂

∂r
(ru) + σ̃

∂w

∂z
= 0, (12)

where the speed parameter η = ReU δ2
0(Re∗)2 = ρ̂r̂0ĥ2

0�̂
2/μ̂Û characterises the importance of centrifugal inertia.

For the derivation, see Bailey et al. [8]. Using (11) and (12) and (63)–(65) from Appendix 1, analytic expressions

can be found for u, v and w in terms of the unknown stator position hs(t).

In the case of a small coning angle β with prescribed periodic oscillations, the dimensionless film thickness is

given by

h(r, β, t) = hs(t) − ǫ sin t + (r − a)β for β > 0,

h(r, β, t) = hs(t) − ǫ sin t + (r − 1)β for β < 0,
(13)

where hs(t) is the height of the axially displaced stator and a = r̂I/r̂0 is a measure of the bearing width, 0 < a < 1.

The coning angle is assumed small, giving sin β̂ ≃ β̂ = O(δ0) and cos β̂ = 1 + O(δ0) leading to the scaling

β̂ = βδ0 with β = O(1), giving consistency with the lubrication condition, such that ∂hr/∂r ≃ −β.
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6 N. Y. Bailey et al.

Under these conditions, the leading-order non-dimensional rotor and stator velocity boundary conditions given

in (6) and (7), respectively, become

u = ls
∂u

∂z
, v = r + ls

∂v

∂z
, w =

∂hr

∂t
−

u

σ̃
β at z = hr,

u = −ls
∂u

∂z
, v = −ls

∂v

∂z
, w =

∂hs

∂t
at z = hs.

(14)

The only dependence on the coning angle is given in the axial rotor velocity boundary condition.

The governing equation for flow in the bearing is obtained by integrating the continuity equation (12) between

the rotor and the stator, and applying the Leibniz integral rule gives

w(hs) − w(hr) = −
1

σr

(

∂

∂r

∫ hs

hr(r)

(ru)∂z +

(

ur
∂hr

∂r

)

z=hr

)

. (15)

To leading order, imposing the velocity boundary conditions from (14) and using the expression for the radial

velocity (63) gives the modified Reynolds equation

σ
∂h

∂t
−

1

r

∂

∂r

(

r
∂p

∂r
(h3 + 6lsh

2)

)

+
λ

r

∂

∂r

(

r2

(h + 2ls)2

(

h5 + 10h4ls +
70

3
h3l2

s + 20h2l3
s

))

= 0, (16)

where λ = 3η/10 and σ = 12σ̃ . The Reynolds equation (16) has no explicit dependence on the coning angle and

expresses the relationship between the pressure p and film thickness h. Pressure boundary conditions at the inner

and outer radii of the bearing are defined in dimensionless variables as

p = pI at r = a and p = pO at r = 1. (17)

Axial displacement of the stator is modelled using a spring-mass-damper model giving the axial position of the

stator in dimensional variables as

d2hs

dt2
+ Da

dhs

dt
+ Kz(hs − 1) = αF(t) for β > 0,

d2hs

dt2
+ Da

dhs

dt
+ Kz(hs − (1 − a)β − 1) = αF(t) for β < 0,

(18)

with hs(t) defined at the origin of reference as shown in Fig. 1 with the film thickness at the inner radius taken as

h = 1 to give the stator height hs = 1 for PCB and hs = 1 + (1 − a)β for an NCB. In (18), F(t) is the resultant

dimensionless axial force on the stator defined by

F(t) = 2π

∫ 1

a

(p − pa)r dr, (19)

where pa is the ambient pressure above the stator and the force coupling dimensionless parameter given by α =

μ̂Û/(m̂ω̂2δ3
0), considered to be of O(1). Bearing quantities Da = D̂a/(m̂ω̂) and Kz = K̂z/(m̂ω̂2) are coefficients

or dimensionless linear damping and effective restoring force, respectively, with D̂a and K̂z as their corresponding

dimensional values and m̂ the mass of the stator.

The corresponding radial flux through the bearing is obtained from the integration of the radial flow velocity

over an azimuthal bearing cross section and is given in Appendix 1, Eq. (66). The steady-state streamfunction along

a radial cross section is obtained from the integration of the velocity components (u, w) and is given by (67).

3 Bearing gap equation

Displacement of the stator is coupled by the periodic forcing of the rotor through the fluid film flow. To solve the

Reynolds equation (16) and stator equation (18) simultaneously, it is mathematically convenient to introduce a

measure of the bearing gap through the time-dependent magnitude of the MFC as
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Dynamics of a high speed coned thrust bearing with a Navier slip boundary condition 7

g(t) = hs(t) − ǫ sin t, (20)

occurring at the inner radius for a PCB and outer radius for an NCB. It is shown the system-dependent quantities

can be characterised by g(t) which is given as the solution of an explicit integro-differential equation.

Integrating the modified Reynolds equation (16) and imposing the pressure boundary conditions (17) gives

p(g(t), r) = pI + (pO − pI)
G(g(t), r)

G(g(t), 1)
+

σ

2

dg

dt

(

H(g(t), r) −
H(g(t), 1)

G(g(t), 1)
G(g(t), r)

)

+λ

(

L(g(t), r) −
L(g(t), 1)

G(g(t), 1)
G(g(t), r)

)

, (21)

where the integrals G(g, r), H(g, r) and L(g, r), for a PCB, are calculated from

G(g, r) =

∫ r

a

1

x((g + (x − a)β)3 + 6ls(g + (x − a)β)2)
dx, (22)

H(g, r) =

∫ r

a

x

(g + (x − a)β)3 + 6ls(g + (x − a)β)2
dx, (23)

L(g, r) =

∫ r

a

x
(

(g + (x − a)β)5 + 10(g + (x − a)β)4ls
)

((g + (x − a)β)3 + 6ls(g + (x − a)β)2)(g + (x − a)β + 2ls)2

+
x

(

70
3

(g + (x − a)β)3l2
s + 20(g + (x − a)β)2l3

s

)

((g + (x − a)β)3 + 6ls(g + (x − a)β)2)(g + (x − a)β + 2ls)2
dx,

(24)

with exact evaluations given in Appendix 2 as (69), (71) and (73). The pressure is a function of the parameters λ, β

and ls, and the functions G, H , and L are functions of β and ls. Similar expressions are derived for an NCB. In this

way, a complex closed form solution of the pressure field is obtained as a function of unknown stator position hs(t).

Separate calculations are needed for the limiting case of no-slip due to an apparent numerical singularity at ls = 0

in the expansion for G and H given in the Appendix. Full expressions for G, H and L are given in Appendix 2 as

(70), (72) and (74).

The force on the stator is obtained from the integration of the pressure field (21) using the force integral in (19),

giving

F(t) = π

(

A(g(t)) +
dg

dt
B(g(t))

)

. (25)

Expressions for A and B are defined as

A(g, λ, β, ls) = (1 − a2)(pI − pa) + 2(pO − pI)
GI

G(g, 1)
+ 2λ

(

L I −
L(g, 1)

G(g, 1)
GI

)

, (26)

B(g, β, ls) = σ

(

HI −
H(g, 1)

G(g, 1)
GI

)

. (27)

The integrals GI, HI and L I are given by

GI(g) =

∫ 1

a

rG(g, r)dr, HI(g) =

∫ 1

a

r H(g, r)dr, L I(g) =

∫ 1

a

r L(g, r)dr, (28)

with exact evaluations for a PCB given in Appendix 2, Eqs. (75)–(80) which are functions of the parameters λ, β

and ls. Separate expressions are given for the limiting case of no-slip ls = 0. Similar expressions are derived for an

NCB.

Substituting the force expression (25) and stator height from (20) into Eq. (18) gives a nonlinear second-order

non-autonomous ordinary differential equation for the periodic time-dependent minimum bearing gap as
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8 N. Y. Bailey et al.

d2g

dt2
+ D(g, β, ls)

dg

dt
+ S(g, λ, β, ls) = ϒ sin(t + φ), (29)

where

D(g, β, ls) = Da − απ B(g, β, ls),

S(g, λ, β, ls) = Kz(g − 1) − απ A(g, λ, β, ls),

ϒ sin(t + φ) = ǫ((1 − Kz) sin t − Da cos t),

(30)

for a PCB. An NCB only differs in the term; S(g, λ, β, ls) = Kz(g − (1 − a)β − 1) − απ A(g, λ, β, ls). In this

way, a simple ordinary differential equation is defined for the minimum bearing gap, as a function of the unknown

stator height, hs(t). Dynamically Eq. (29) corresponds to a harmonically forced oscillator with nonlinear damping

coefficient D(g, β, ls) and effective restoring force S(g, λ, β, ls).

The total stiffness of the system is defined as

KzT =
dS

dg
= Kz − απ

dA

dg
, (31)

comprising a structural component Kz and a fluid stiffness term

Kz f = −απ
dA(g, λ, β, ls)

dg

= −απ

(

2λ

(

∂L I

∂g
−

∂L(g, 1)

∂g

GI

G(g, 1)
−

∂GI

∂g

L(g, 1)

G(g, 1)
+

∂G(g, 1)

∂g

L(g, 1)

G(g, 1)2
GI

)

+2(PO − PI)

(

∂GI

∂g

1

G(g, 1)
−

GI

G(g, 1)2

∂G(g, 1)

∂g

))

, (32)

using the expression for A(g, λ, β, ls) in (26).

Details on solving Eq. (29) are given in the next subsection where a stroboscopic map solver is formulated, using

Newton’s method to find periodic solutions. To compute solutions for an increased value of the slip length ls +△ls,

an Euler–Newton scheme (parameter continuation) is developed. The Euler procedure can be directly extended to

find threshold values of the slip length corresponding to a minimum value of the MFC over the period, with the

limiting case of contact given by gmin = 0.

3.1 Numerical method

Solutions to Eq. (29) for a fixed bearing configuration are denoted by the vector g(g(t), z(t)), for a given initial

conditions g(t0) = g0, z(t0) = z0 and fixed value of slip length ls, and are sought from the equivalent system of

two first-order differential equations,

dg

dt
= z and

dz

dt
= −D(g)z − S(g) + Y sin(t + φ). (33)

It is anticipated that for a fixed value of slip length ls and period of prescribed rotor oscillation T , the system

of equations (33) has periodic solutions. Thus, a mapping is constructed which advances any initial condition g0

at time t0 by a time T , defining a stroboscopic map φ(T ; g0, t0). This R
2 → R

2 map, integrates the system of

equations (33) forward through one period of the forcing term. To identify periodic solutions, the fixed points of

the stroboscopic map g(t) = g(t + T ) are found iteratively, corresponding to the condition

g(T ) − g(t0) = φ(T ; g0, tt ) − g0 = G(φ(T ; g0, tt ), g0) = 0, (34)

giving periodic solutions g(g(t), z(t)).
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Solutions are found numerically from an iterative Newton’s method, given an initial guess value g̃0. Successively

improved iterates g0 are given from the numerical iterative scheme

g0n+1 = g̃0n − J (T )−1(g(T ) − g̃0n), (35)

where the Jacobian matrix is given by

J (T ) =
∂G(φ, g0)

∂g0

=

⎛

⎜

⎜

⎝

∂g(T )

∂g0
− 1

∂g(T )

∂z0

∂z(T )

∂g0

∂z(T )

∂z0
− 1

⎞

⎟

⎟

⎠

. (36)

To find the elements of the Jacobian matrix J (T ), the following auxiliary system of first-order differential equations

is defined;

∂

∂t

(

∂g

∂g0

)

=
∂z

∂g0
,

∂

∂t

(

∂z

∂g0

)

= −
∂ D

∂g

∂g

∂g0
z − D

∂z

∂g0
−

∂S

∂g

∂g

∂g0
,

∂

∂t

(

∂g

∂z0

)

=
∂z

∂z0
,

∂

∂t

(

∂z

∂z0

)

= −
∂ D

∂g

∂g

∂z0
z − D

∂z

∂z0
−

∂S

∂g

∂g

∂z0
,

(37)

with initial conditions

∂g

∂g0
= 1,

∂z

∂g0
= 0,

∂g

∂z0
= 0,

∂z

∂z0
= 1. (38)

The values of the elements of the Jacobian matrix are given by the values of the auxiliary variables at the end of the

forcing period, t = T , corresponding to the time at which periodicity is tested for.

Thus, for any given initial condition, a solution of the system of equations (33) and (37) for t0 ≤ t ≤ T can

be found using MATLAB’s ode15s routine. This procedure is repeated recursively, with the improved value of

g0 used in the system of equations (33). The scheme is successively repeated until a prescribed tolerance, tol, is

achieved, i.e. | g(T ) − g0(t0) |≤ tol and a periodic solution is obtained.

To find a periodic solution for increasing slip lengths ls + △ls, a new initial condition is needed. This is done

via parameter continuation, which means the solution is now defined with the slip length as a parameter; g(T ) =

φ(T ; g0, t0, ls0).

To define a new initial condition g0 for ls+△ls, first, the derivative of G(φ(T ; g0, tt ), g0) = φ(T ; g0, tt )−g0 = 0

is taken with respect to the slip parameter ls, i.e.

∂G

∂g0

∂g0

∂ls
+

∂φ

∂ls
= J (T )

∂g0

∂ls
+

∂g(T )

∂ls
= 0. (39)

Then an Euler predictor step is performed

g0(ls + △ls) = g0(ls) +
∂g0

∂ls
△ ls = g0(ls) − J (T )−1 ∂g(T )

∂ls
△ ls, (40)

and a new initial condition g0 for ls + △ls is defined. The inverse of the Jacobian matrix is as found previously, at

the value of ls for which a periodic solution was obtained.

To find the values of ∂g(T )/∂ls the following auxiliary system of first-order differential equations is defined;

∂

∂t

(

∂g

∂ls

)

=
∂z

∂ls
,

∂

∂t

(

∂z

∂ls

)

= −
∂ D

∂ls
z −

∂ D

∂g

∂g

∂ls
z − D

∂z

∂ls
−

∂S

∂ls
−

∂S

∂g

∂g

∂ls
, (41)

with initial conditions

∂g

∂ls
= 0,

∂z

∂ls
= 0. (42)

This system of equations can be coupled with the previous augmented system of equations and solved using the

same MATLAB routine.
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10 N. Y. Bailey et al.

The above Newton procedure is iterated until convergence is achieved and a periodic solution for ls + △ls is

found. To ensure Newton’s method converges it may be necessary to reduce the value of △ls; typically the initial

value of △ls was successively divided by two until a convergent solution was found.

A major advantage of the above numerical (Euler) procedure is that it can be directly extended to find threshold

values of the slip length ls corresponding to a minimum value of the MFC over the period, gmin, with the limiting

case of contact given by gmin = 0. In this approach, the slip length ls is taken as a new dependent variable in the

Newton scheme to determine the value of the unknown vector g = (g(T ), z(T ), ls) given an initial guess value

g0 = (g0, z0, ls0). Correspondingly additional constraint equation gmin −g∗ = 0 is added, with g∗ as the prescribed

gmin and the corresponding Jacobian matrix given by

J =

⎛

⎜

⎜

⎜

⎝

∂g(T )
∂g0

− 1
∂g(T )
∂z0

∂g(T )
∂ls

∂z(T )
∂g0

∂z(T )
∂z0

− 1 ∂z(T )
∂ls

∂gmin

∂g0
− 1

∂gmin

∂z0

∂gmin

∂ls

⎞

⎟

⎟

⎟

⎠

. (43)

The additional terms in the Jacobian matrix (43) with respect to (36), i.e. the last row and column in (43), are

obtained from the solution of the augmented system of first-order differential equation (37) and (41). The values

in the last row are determined at the time when gmin is achieved. The threshold slip length value, at the specified

gmin, can be stepped down successively to the point of contact, g∗ = 0. Continuation is used for a new value of the

specified g∗ to get

g0(g
∗ + △g∗) = g0(g

∗) − J−1 ∂g

∂g∗
△g∗, (44)

with the Jacobian matrix as defined in (43) and △g∗ < 0. The value of ∂g/∂g∗ is evaluated numerically by a first-

order forward finite difference approximation, in terms of the obtained solution g(g∗) and a new auxiliary solution

g(g̃∗), corresponding to a specified gmin, g̃∗ = g∗ + ǫ △ g∗, with ǫ ≪ 1. This leads to a new initial condition being

defined, allowing a periodic solution for a decreased gmin value g∗ + △g∗ to be found.

4 Effects of slip on steady-state bearing flow

In this section, the influences of the slip effects on the fluid flow in a steady-state bearing are examined. The stator is

fixed axially at hs = 1 and rotor axially fixed at hr = 0 at the inner or outer radius for a PCB or NCB, respectively,

with g = 1 and ǫ = 0. The rotor has constant azimuthal velocity. Two classes of bearing pressurisation with typical

values are used: internal pressurisation with pI = 2, pO = 1 and external pressurisation pI = 1, pO = 2. Results

reported here correspond to a = 0.2, i.e. a wide bearing of width 1−a = 0.8. Similar results occur for other values

of a, with smaller variations on the pressure profile and larger variations on the velocity profiles as the value of a

increases.

The pressure is investigated for the presence of non-monotonic behaviour by examining the derivative of the

pressure (21) with respect to r ,

∂p

∂r
=

(pO − pI)

G(1, 1)

∂G(1, r)

∂r
− λ

(

L(1, 1)

G(1, 1)

∂G(1, r)

∂r
−

∂L(1, r)

∂r

)

. (45)

A bearing with negligible inertia effects λ = 0, under ambient pressure (pI = pO) has pressure gradient ∂p/∂r = 0,

while under internal and external pressurisation the pressure field minima are dictated by ∂G/∂r = 0, with

∂G(1, r)

∂r
=

1

(1 + (r − a)β)2(1 + (r − a)β + 6ls)r
. (46)
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(a) (b)

Fig. 2 The radial position rmin and pressure value pmin at the minimum in the pressure field for increasing speed parameter 0 ≤ λ ≤ 10

and slip length 0 ≤ ls ≤ 106 in the case of a PCB under a external and b internal pressurisation; ǫ = 0, σ = 1

Thus, both PCB and NCB have a monotonic pressure field for finite slip lengths, as a minimum occurs only at

r = ∞. The location of the minima when including inertia effects λ �= 0 is given by ∂p/∂r = 0, requiring the

numerical evaluation of

1

G(1, 1)

(

pO − pI

λ
+ L(1, 1)

)

=
r2(Wr3 + Xr2 + Yr + Z)(1 + (r − a)β)2

(1 + (r − a)β + 2ls)2
, (47)

with

W = β3, X = β2(3 + 10ls − 3aβ), Y = β

(

3 + 20ls +
70

3
ls

2 − β(6a + 20lsa) + 3a2β2

)

,

Z = 1 + 10ls +
70

3
ls

2 + 20ls
3 − β

(

20als − 3a −
70

3
ls

2a

)

+ β2(10a2ls + 3a2 − a3β3), (48)

and G(1, 1) and L(1, 1) as given in Appendix 2. Figure 2 shows the minimum position rmin with the increasing

speed parameter for the case of a PCB under external and internal pressurisations. A monotonic pressure field exists

when inertia effects are negligible, i.e. λ = 0, independent of the slip length. Increasing the speed parameter, λ �= 0,

causes a minimum to develop at the inner and outer radii, for external and internal pressurisation respectively,

before moving into the bearing. The value of rmin decreases or increases with the increasing slip length in the case

of external or internal pressurisations, respectively. Substituting the location of the minimum rmin into the pressure

equation (21) gives the minimum pressure decreasing monotonically with the increasing speed parameter, which

can become negative. Increasing the slip length causes the pressure to increase, tending to the large finite slip length

limit.

The radial flux in a steady bearing can be examined by integrating the steady-state Reynolds equation from (16)

to give

− r
∂p

∂r
h2(h + 6ls) + λ

r2h2

(h + 2ls)2
(h3 + 10h2ls +

70

3
hls

2 + 20ls
3) = C. (49)

where the left-hand side of (49) is proportional to the flux (66). The constant C is obtained by substituting the steady

pressure field (21) into (49), giving the steady flux as

Q =
π

6G(1, 1, β, ls)
(pI − pO + λL(1, 1, β, ls)) . (50)

A bearing with negligible inertia effects λ = 0 and ambient pressure has zero flux, corresponding to azimuthal flow

only, as can be identified from velocity field expressions (63)–(65). Imposing internal or external pressurisation

across the bearing gives the radial flux as being unidirectional outward or inward flow, respectively. For non-zero

speeds λ �= 0, a critical value λc can arise where zero flux through the bearing is achieved; the flow driven by the
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12 N. Y. Bailey et al.

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 3 Streamlines for increasing slip length a ls = 0, b ls = 0.5 and c ls = 1 in the case of (1) PCB β = 0.2, and (2) NCB β = −0.2,

under external pressurisation; ǫ = 0, λ = λc(ls = 0) = 2.0833, σ = 1

pressure gradient exactly balances the flow due to high speed rotation. The critical speed parameter λc, found from

(50), is given by

λc =
pO − pI

L(1, 1, β, ls)
, (51)

with L(1, 1, β, ls) in (73). Numerical evaluations give L(1, 1, β, ls) > 0 for the range of parameters used, giving

zero flux existing for an externally pressurised bearing only, with low speed parameters λ < λc having negative

flux and high speed parameters λ > λc having positive flux.

The streamlines in Fig. 3 give the radial path of the fluid flow through the bearing for an externally pressurised

PCB and NCB. Choosing the critical speed parameter for a no-slip bearing, which is consistent with the estimated

value, λc(ls = 0), gives zero flux through the bearing. Increasing the slip length, but keeping the same speed

parameter, results in a negative flux in the bearing, increasing in magnitude as the slip length increases. In Fig. 3, a

comparison for slip length ls = 1, shows that an NCB has unidirectional flow but a PCB retains some recirculation.

Due to the algebraic complexity of the equations, the fluid flow is studied by examining the velocity field in the

asymptotic limit of a large finite slip length. To leading order the radial, azimuthal and axial velocity components

are given by

u =
1

12rh(r, β)Gls(1, 1, β, ls)

(

−pO + pI +
5λ

12
(1 − a2)

)

, v =
r

2
,

w = −
rβ(z − hs)

σ 2r2h(r, β)2Gls(1, 1, β, ls)

(

−pO + pI +
5λ

12
(1 − a2)

)

, (52)

with Gls given by

Gls+(1, 1, β, ls) =
1

6ls(1 − aβ)

(

1

(1 − aβ)
ln

(

1

a(1 + (1 − a)β)

)

+
1

1 + (1 − a)β
− 1

)

, (53)
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Gls−(1, 1, β, ls) =
1

6ls(1 − β)

(

1

(1 − β)
ln

(

1 − (1 − a)β

a

)

+ 1 −
1

1 − (1 − a)β

)

, (54)

where subscripts + and − denote a PCB and NCB, respectively. Expressions in (53) and (54) have dependence on β

and ls and are non-negative. The azimuthal velocity has rigid body motion taking the value of the average between

the azimuthal velocity of the rotor and the stationary stator. The radial and axial velocity are proportional to the

slip length, with the radial velocity independent of the axial coordinates and the axial velocity the only component

to change sign with a PCB and NCB, since Gls > 0 always. These limits match the numerical analysis of the full

expressions.

Examining the flux in the limit of large slip length gives

Q =
π

6Gls(1, 1, β, ls)

(

−pO + pI +
5λ

12
(1 − a2)

)

, (55)

which gives the flux proportional to slip length through Gls , as given in (53) and (54) for PCB and NCB, respectively.

The corresponding critical speed parameter is given by

λc =
12(pO − pI)

5(1 − a2)
, (56)

confirming only an externally pressurised bearing as having zero flux. Equation (56) is consistent with (51) in the

limit of large ls, with the limit of L as Lls = 5(1 − a2)/12, which has been verified by the use of two different

symbolic computations.

5 Parametric study of the bearing motion dynamics

This section investigates a parameter study of the dynamical behaviour of a bearing with slip effects for large

amplitudes of the prescribed rotor oscillations and with the stator free to move axially in response to the fluid film

dynamics; dynamical results for a bearing with a no-slip condition ls = 0, are given in Bailey et al. [8].

Figure 4 shows the periodic fluid stiffness, total damping, force, stator height and MFC for varying coning angle

under external pressurisation in the case of a wide annulus 1 − a = 0.8 with parameter values ls = 0.1, ǫ = 1.2,

λ = 1, α = 1, Kz = 10, σ = 1 and Da = 1. An NCB has smaller gmin than a PCB, with all cases having a

very small MFC which is approximately constant during the time interval 1 < t < 2.5, where the total damping

and fluid stiffness have a local maximum and extrema, respectively. The fluid stiffness has a maximum of small

magnitude for a PCB and minimum of large magnitude for an NCB. The damping has a maximum, with largest

amplitude in the case of an NCB. We note that the stator has larger amplitudes of oscillation for a NCB than a PCB

of the same value of coning angle and the force extrema occurring when the MFC is small, with an NCB having

larger oscillations than a PCB. Increasing the bearing parameters, such as the amplitude of the rotor oscillations,

slip length or bearing width give appropriate modified values but overall similar dynamics.

A main focus of this work is to examine the MFC gmin with a selection of values for the main bearing characteristics

of parameters coning angle, slip length, speed parameter. Table 1 shows the obtained values of gmin for a wide

a = 0.2 and narrow a = 0.8 annulus in the case of external pressurisation and large amplitude rotor oscillations,

ǫ = 1.2. A corresponding table for internal pressurisation is given in Appendix 4, Table 4. Under all pressurisations

considered, values of gmin are larger in a bearing with a wide annulus than with a narrow annulus for a given bearing

configuration. An exception is the case of a PCB under internal pressurisation with large coning angle and speed

parameter, as is the case of β = 0.3, ls = 0 and λ = 5 in Table 4. In this last case, for sufficiently large coning

angle and speed parameter values, and since inertial effects are more significant in a wide annulus than a narrow

one, it follows that gmin is smaller in the case of a wide annulus. In all cases, increasing the magnitude of coning

angle and slip length decreases the value of gmin; face contact is possible for some parameter choices, denoted by ∗.

Under external pressurisation a PCB generally has larger values of gmin than a NCB for a given set of parameters,

an exception is a wide annulus with large speed parameter is considered, as shown in Table 1 for λ = 5. In this case,

the increased inertia effects dominates over the differential pressure, giving larger values of gmin for an NCB. This
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14 N. Y. Bailey et al.

Fig. 4 Fluid stiffness, total damping, force, stator height and MFC for varying coning angle −0.2 ≤ β ≤ 0.2 in the case of external

pressurisation and wide annulus 1 − a = 0.8; ls = 0.1, ǫ = 1.2, a = 0.2, λ = 1, α = 1, Kz = 10, σ = 1 and Da = 1

Table 1 Values of gmin for an NCB and PCB under external pressurisation in the case a narrow a = 0.8 and wide a = 0.2 annulus

with increasing speed parameter 0 ≤ λ ≤ 5 and slip length 0 ≤ ls ≤ 0.1; ǫ = 1.2, σ = 1, Kz = 10, α = 1 and Da = 1

λ = 0 λ = 1 λ = 5

ls = 0 ls = 0.01 ls = 0.1 ls = 0 ls = 0.01 ls = 0.1 ls = 0 ls = 0.01 ls = 0.1

Wide, a = 0.2

β = −0.1 0.158 0.147 0.0945 0.151 0.139 0.0870 0.141 0.104 0.0654

β = −0.2 0.102 0.0896 0.0329 0.101 0.0883 0.0338 0.0982 0.0850 0.0370

β = −0.3 0.0529 0.0392 ∗ 0.0569 0.0433 ∗ 0.0715 0.0581 0.0148

β = 0.1 0.203 0.194 0.150 0.182 0.177 0.129 0.114 0.102 0.0555

β = 0.2 0.190 0.182 0.141 0.163 0.155 0.114 0.0740 0.0625 0.0187

β = 0.3 0.178 0.171 0.132 0.147 0.142 0.101 0.0400 0.0287 ∗

Narrow, a = 0.8

β = −0.1 0.0313 0.0192 ∗ 0.0315 0.0194 ∗ 0.0323 0.0203 ∗

β = −0.2 0.0195 0.00766 ∗ 0.0200 0.00815 ∗ 0.219 0.0101 ∗

β = −0.3 0.00915 ∗ ∗ 0.00981 ∗ ∗ 0.0125 0.00164 ∗

β = 0.1 0.0379 0.0260 0.00310 0.0375 0.0256 0.00300 0.0355 0.0236 0.00164

β = 0.2 0.0322 0.0207 ∗ 0.0314 0.0198 ∗ 0.0280 0.0164 ∗

β = 0.3 0.0271 0.0159 ∗ 0.0259 0.0148 ∗ 0.0212 0.00999 ∗

Entries denoted ∗ correspond to predicted contact
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effect is minimal in a narrow annulus. In contrast with the case of external pressurisation, a bearing under internal

pressurisation gives an NCB having a larger value of gmin than a PCB.

Increasing the speed parameter for a narrow annulus causes an NCB to have increasing gmin, while a PCB has

the situation reversed. In the case of a wide annulus, a similar trend occurs. However, an NCB with small angle

has decreasing gmin for the increasing speed parameter; this is italicised in Tables 1 and 4. Results are consistent

with the expectation that, for the decreasing coning angle, both PCB and NCB should have common dynamics. A

bearing with narrow annulus follows a similar trend to the wide annulus, but inertia effects are less pronounced.

The change in behaviour with the increasing speed parameter occurs for smaller coning angle than those shown in

Table 1.

6 Influence of slip effects on gmin

An important aspect in bearing operation is the impact of a slip effect on maintaining a face clearance when the

rotor is subjected to axial disturbances. Bearing gap behaviour has been investigated by Bailey et al. [8] to identify

no contact occurs with a no-slip condition for amplitudes of the axial rotor displacement similar to or larger than the

equilibrium MFC. Additional consideration is given to the dynamics of a parallel bearing to investigate if contact

occurs for a wide range of slip lengths. Figure 5 shows a log–log plot of gmin against increasing slip length within the

range 10−4 ≤ ls ≤ 106, relative to a typical bearing gap, for axial rotor oscillations of amplitude 1.0 ≤ ǫ ≤ 1.2. The

bearing has two distinctly different asymptotic behaviours for increasing slip length depending on the magnitude

of axial rotor oscillations ǫ. In region I, ǫ < 1.05325, gmin approaches a constant value for increasing slip length

values. In region II ǫ > 1.05325, the plot of gmin decreases approximately linearly as the slip length increases

with gradient −1, giving contact occurring only in the limit of ls → ∞. The values for gmin are obtained from the

stroboscopic map solver at each value of the rotor oscillation ǫ, with increasing discrete values of the slip length

between 10−4 ≤ ls ≤ 106. Investigation is extended to evaluate if, in general, contact can occur with a slip effect.

Figure 6 compares gmin against slip length for varying coning angle −0.2 ≤ β ≤ 0.2 in the case of a wide

and narrow bearing under external pressurisation. A narrow bearing has contact in all cases, with an NCB having

contact at smaller slip lengths than a PCB of the same angle, and coning angles of larger magnitude give contact at

Fig. 5 gmin against increasing slip lengths 10−4 ≤ ls ≤ 106 for increasing rotor amplitudes 1.00 ≤ ǫ ≤ 1.10 in the case of a parallel

bearing with a wide annulus under internal pressurisation; a = 0.2, λ = 1, α = 1, Kz = 10, σ = 1 and Da = 1
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(a) (b)

Fig. 6 gmin against slip length for various coning angles β = −0.3,−0.2,−0.1, 0.1, 0.2, 0.3 in the case of a narrow; a = 0.8 and b

wide; a = 0.2 bearing under external pressurisation; ǫ = 1.2, λ = 1, σ = 1, α = 1, Kz = 10 and Da = 1

Table 2 Slip length values when face contact first occurs for an NCB and a PCB under external pressurisation in the case of a wide

a = 0.2 and narrow a = 0.8 annulus with the increasing speed parameter 0 ≤ λ ≤ 5; ǫ = 1.2, σ = 1, Kz = 10, α = 1 and Da = 1

Wide, a = 0.2 Narrow, a = 0.8

λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5

β = −0.1 1.31 1.44 2.94 0.0783 0.0817 0.0992

β = −0.2 0.230 0.275 1.16 0.0250 0.0266 0.0337

β = −0.3 0.0602 0.0754 0.323 0.00809 0.00896 0.0131

β = 0.1 o o 0.574 0.155 0.154 0.139

β = 0.2 o o 0.190 0.0740 0.0725 0.0607

β = 0.3 o o 0.0617 0.0446 0.0431 0.0330

Entries denoted o correspond to no face contact for ls ≤ 4.5

Table 3 Slip length values when face contact first occurs for an NCB and a PCB under internal pressurisation in the case of a wide

a = 0.2 and narrow a = 0.8 annulus with increasing speed parameter 0 ≤ λ ≤ 5; ǫ = 1.2, σ = 1, Kz = 10, α = 1 and Da = 1

Wide, a = 0.2 Narrow, a = 0.8

λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5

β = −0.1 2.94 3.18 4.21 0.157 0.158 0.162

β = −0.2 1.15 1.35 3.17 0.0679 0.0706 0.0743

β = −0.3 0.304 0.697 2.10 0.0273 0.0313 0.0426

β = 0.1 0.571 0.362 0.101 0.0810 0.0770 0.0638

β = 0.2 0.202 0.117 0.0179 0.0322 0.0301 0.0231

β = 0.3 0.0914 0.0414 0.000762 0.0150 0.0136 0.00882

smaller slip lengths. A wide bearing has contact only in an NCB for ls ≤ 4.5, as a PCB has gmin ∼ 0.03 at ls = 4.5

for all angles.

The values of slip length associated with face contact are examined for a PCB and an NCB in the case of a wide

a = 0.2 and narrow a = 0.8 annulus with the increasing speed parameter 0 ≤ λ ≤ 5 are shown in Tables 2 and 3

for external and internal pressurisations, respectively. For values of ls larger than these values, contact will always

occur. It is interesting to observe that a bearing under external pressurisation can have no contact for a PCB in the

case of a wide annulus, denoted by o in Table 2. In all the cases considered, a bearing with wide annulus has contact
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Dynamics of a high speed coned thrust bearing with a Navier slip boundary condition 17

at larger slip lengths than the one with a narrow annulus. An exception is a wide PCB under internal pressurisation

with large speed parameter, italicised in Table 3. In this case, the large inertia effect is more significant in a wide

annulus than a narrow annulus, giving gmin smaller in a wide annulus for a sufficiently large coning angle. Increasing

the magnitude of the coning angle decreases the values of slip length at contact and increasing the speed parameter

gives the increase in the slip length value at contact in an NCB, but a decreased one in the case of a PCB.

As expected in the case of internal pressurisation, an NCB has a larger slip length value at contact than a PCB,

while for external pressurisation this situation is reversed, except for the case of a wide bearing with large values

of λ where inertial effects dominate the pressure gradient effects, italicised in Table 2.

7 Small face clearance in limit g(t) ≪ 1

To further investigate the case when the MFC is small and also verify the numerical solution, an asymptotic analysis

is undertaken. At near contact, it is assumed that g ≪ β in the limit g(t) ≪ 1, so a new variable f = g/β is

introduced, giving the limit to be examined for f ≪ 1. Rewriting the equations in term of f gives G and H of

O( f −1) and L and L I of O(1) for both a PCB and NCB, whilst GI and HI are of O( f −1) for a PCB and O(1) for

an NCB.

The damping coefficient D as defined in (30) in the limit of f ≪ 1, is given for a PCB, denoted by subscript +

and NCB, denoted by subscript −, by

D+ = Da −
απσ

2β4(6ls − aβ)

(

ln

(

(1 − a)β + 6ls

6ls

)

(36ls
2 − 24lsβa + 4β2a2) + a2β2 ln a + β(1 − a)(aβ − 6ls)

)

,

D− = Da −
απσ

2β4(6ls − β)

(

ln

(

6ls

−(1 − a)β + 6ls

)

(36ls
2 − 24lsβ + 4β2) + β2 ln a + β(1 − a)(β − 6ls)

)

, (57)

which are both of O(1) to leading order.

The effective restoring force S as defined in (30), in the limit of f ≪ 1 to leading order is given by

S = A± =

{

Kz + απ
(

(1 − a2)(pO − pa) + 2λL̄
)

if β > 0,

Kz(1 + (1 − a)β) + απ
(

(1 − a2)(pI − pa) + 2λL−I

)

if β < 0.
(58)

In the above, L̄ and L−I are given in Appendix 3, by Eqs. (81) and (82), respectively, which are of O(1), giving

the effective restoring force of O(1).

In the limit of small face clearance g/β ≪ 1, the nonlinear second-order non-autonomous ordinary differential

equation (29) becomes a linear ordinary differential equation with constant coefficients, given to leading order by

d2g

dt2
+ D±

dg

dt
− A± = ǫ((1 − Kz) sin t − Da cos t)). (59)

Solving Eq. (59) in the limit g/β ≪ 1 with initial conditions g(t0) = g0 and dg(t0)/dt = −ξ , with ξ > 0 say,

gives

g(t) = C1 + C2e−D±t +
A±

D±
t − ǫ

(

(D±Da + 1 − Kz)

D±
2 + 1

sin t −
(D±(1 − Kz) − Da)

D±
2 + 1

cos t

)

, (60)

with constants of integration

C1 = g0 −
ξ

D±
−

A±

D±

(

t0 +
1

D±

)

+ ǫ
Da

D±
sin t0 + ǫ

(1 − Kz)

D±
cos t0,
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18 N. Y. Bailey et al.

Fig. 7 Numerical and composite solutions of the MFC for rotor amplitude ǫ = 1.20 in the case of an NCB with a wide annulus under

internal pressurisation; a = 0.2, β = −0.2, λ = 1, α = 1, Kz = 10, σ = 1, Da = 1, ls = 0.13, g0 = 0.03 and t0 = 1.194

C2 =
eD±t0

D±

(

ξ +
A±

D±
− ǫ

(Da D± + 1 − Kz)

D±
2 + 1

cos t0 + ǫ
(D±(1 − Kz) − Da)

D±
2 + 1

sin t0

)

. (61)

The dependence of ls on the MFC is given by the coefficients D± and A± only.

An NCB under internal pressurisation is examined since a PCB under external pressurisation does not have

contact for large amplitude and slip lengths ls ≤ 4.5, see Fig. 6b. Rotor amplitude ǫ = 1.2 and slip length ls = 0.13

are used, giving a close comparison of the numerical solution and the asymptotic composite solution of the MFC

as shown in Fig. 7, in the region 0.8 < t < 2.2. The composite solution has increasing discrepancy with the

numerical solution as the gap grows, consistent with the asymptotics approximations; region III was not included

in the analysis.

On the other hand, in the limit of increasing ls an asymptotic evaluation for g(t) ≪ 1 gives the same form as the

asymptotic equation in (59). In this case, the damping coefficient D and the effective restoring force S are given,

respectively, as

D = Da,

S = A± =

⎧

⎨

⎩

Kz + απ
(

(1 − a2)(pO − pa) − 5λ
24

(1 − a2)2
)

if β > 0,

Kz(1 + (1 − a)β) + απ
(

(1 − a2)(pI − pa) + 5λ
24

(1 − a2)2
)

if β < 0,
(62)

to leading order.

In this limit, the solution takes the same form as Eq. (60) with constants given by (61), and using D± = Da and

modified values for A± as given in (62), which are all independent of ls. In consequence in the limit, the value of

the MFC cannot depend on the slip length. This behaviour is shown in Fig. 6 when gmin asymptotes of to a constant

value when contact does not occur.

8 Summary and conclusions

Previous work by Bailey et al. [8] for a coned thrust bearing showed for axial disturbances a fluid film gap was

maintained when subject to a no-slip condition, although this gap may become extremely small. This work identifies

for a more general case, where a slip flow is relevant, that contact may occur, and for more practical purposes,

maintaining a minimum gap thickness will depend on the coning angle, slip length, amplitude of rotor oscillations

disturbance amplitude and direction of pressurisation.

A modified Reynolds equation is derived for a bearing containing a rigid coned rotor and a slip boundary condition

imposed on the bearing faces characterised by a slip length, ls. An axisymmetric lubrication approximation is used

and leading-order effects of centrifugal inertia are retained, which is relevant for very high-speed bearing rotation

and flows that are dynamically incompressible. Axial structural response of the rotor are formulated corresponding

to the stator motion, induced by periodic axial displacement of the rotor, through the fluid flow, acting as a spring-

mass-damper structure.

The fully coupled unsteady bearing motion is examined where the stator displacement is coupled to the film

dynamics via the axial force exerted on the stator by the fluid film. Rewriting the modified Reynolds equation and
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the stator equation in terms of the time-dependent MFC g(t) allows for explicit analytic expressions for the pressure

field and force on the stator. Bearing solutions are obtained from solving a nonlinear second-order non-autonomous

ordinary differential equation using a stroboscopic map to find periodic solutions. Subsequent calculations give the

force on the stator, stator height, total damping and fluid stiffness.

A steady bearing case with axially fixed rotor and stator was investigated to examine the existence of non-

monotonic behaviour in the pressure field for increasing slip length. Results tending to the limit of large slip length

are given for representative bearing parameter choices, showing an externally pressurised bearing can exist with no

overall flux through the bearing at a critical speed parameter, corresponding physically to pressure effects directly

balancing inertial effects.

The dynamics of the bearing are investigated for rotor displacement, in particular with amplitude larger than the

equilibrium gap between a coupled rotor and stator system, simulating possible destabilising behaviour. Results

show that if the rotor is forced into close proximity of the stator and a very thin fluid film is maintained, as the

rotor continues on its forced path, the stator follows the rotor closely for a significant part of the periodic motion,

preserving the fluid film. Dynamically the total damping, fluid stiffness and force are effectively constant for most

of the time period, unless the MFC becomes small. Here, an enhanced localised force and a maximum in the total

damping resist plate contact. Numerical solution of bearing dynamics is supported by asymptotic analysis.

Evaluation of possible contact occurring in a bearing is carried out when the rotor is subject to large axial

disturbances. Increasing the coning angle decreases the value of slip length when contact first occurs, whereas

increasing the speed parameter gives the slip length values at contact increasing for NCB but decreasing for a PCB.

In general, a wide annulus has contact at larger slip lengths than a narrow annulus, with a wide annulus under

external pressurisation having no contact for certain bearing configurations.
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Appendix 1: Velocities, flux and streamfunction

The radial, azimuthal and axial velocities are

u =
1

2

∂p

∂r
(z2 − (hs + hr)z + hshr − lsh)

−
5λr

18(h + 2ls)2

(

(z − hr)(z − hs)(z
2 + (hr − 3hs)z + 3h2

s − 3hshr + h2
r )

+ ls((z − hs)(−4(z − hs)
2 + 6h2) − h3) + l2

s (6(z − hs)(z − hr) − 6h2), − 6hl3
s

)

, (63)

v = −
r

(h + 2ls)
(z − hs − ls), (64)

w =
∂hr

∂t
−

1

σr

((

∂p

∂r
+ r

∂2 p

∂r2

)

(2(z − hr)
3 − 3(z − hr)

2h − 6(z − hr)hls)

+ r
∂p

∂r

(

(6(z − hr)
2 − 6(z − hr)h − 6hls)β −(3(z − hr)

2 + 6(z − hr)ls)β
))

+
λ

3σr

((

2r

(h + 2ls)2
−

2r2

(h + 2ls)3
β

)

(

2(z − hr)
5 − 10(z − hr)

4h + 20(z − hr)
3h2 − 15(z − hr)

2h3

+10ls(−(z − hr)
4 + 4(z − hr)

3h − 3(z − hr)
2h2 − 3(z − hr)h

3) + 10l2
s (2(z − hr)

3
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− 3(z − hr)
2h − 6(z − hr)h

2) + 10l3
s (−6(z − hr)h))

)

+
r2β

(h + 2ls)2

(

(15(z − hr)
2h2 − 30(z − hr)h

3 + 10ls(6(z − hr)
2h

−15(z − hr)h
2 − 3h3) + 10l2

s (3(z − hr)
2 − 18(z − hr)h − 6h2) − 60l3

s ((z − hr) + h
))

, (65)

respectively.

The radial flux through the bearing is given by

Q = 2π

∫ hs

hr

rudz =
π

6

(

λr2

(h + 2ls)2
(h5 + 10h4ls +

70

3
h3ls

2 + 20h2ls
3) − r

∂p

∂r
h2(h + 6ls)

)

. (66)

The steady-state streamfunction is

�(r, z) =
r

12

∂p

∂r
(2(z − hr)

3 − 3(z − hr)
2h − 6(z − hr)hls)

−
λr2

36(h + 2ls)2

(

2(z − hr)
5 − 10(z − hr)

4h + 20(z − hr)
3h2 − 15(z − hr)

2h3)

+ 10ls(−(z − hr)
4 + 4(z − hr)

3h − 3(z − hr)
2h2 − 3(z − hr)h

3)

+ 10l2
s (2(z − hr)

3 − 3(z − hr)
2h − 6(z − hr)h

2) + 10l3
s (−6(z − hr)h)

)

, (67)

found using Eqs. (63) and (65).

The film thickness in terms of the variable g(t) is given by

h(r, β, t) = g(t) + (r − a)β for β > 0,

h(r, β, t) = g(t) + (r − 1)β for β < 0.
(68)

Appendix 2: Analytical evaluation of integral functions

Expressions for G, H and L are given, with separate equations for no slip ls = 0, denoted by subscript ls = 0;

G(r) =

∫ r

a

1

x((g + (x − a)β)3 + 6ls(g + (x − a)β)2)
dx

=
1

g − aβ + 6ls

(

1

(g − aβ)2
ln

(

gr

a(g + (r − a)β

)

+
1

g − aβ

(

1

g
−

1

g + (r − a)β

)

+
1

36l2
s

(

ln

(

g(g + (1 − a)β + 6ls)

(g + (1 − a)β)(g + 6ls)

)

+ 6ls

(

1

g + (r − a)β
−

1

g

)))

, (69)

G(ls=0)(r) =

∫ r

a

1

x(g + (x − a)β)3
dx =

1

(g − aβ)3
ln

(

gr

a(g + (r − a)β)

)

+
1

2(g − aβ)2

(

3g + (2r − 3a)β

(g + (r − a)β)2
−

3g − aβ

g2

)

, (70)

H(r) =

∫ r

a

x

(g + (x − a)β)3 + 6ls(g + (x − a)β)2
dx

=
1

β2

((

1

g
−

1

g + (r − a)β

)

+
g − aβ + 6ls

36l2
s

(

ln

(

g(g + (1 − a)β + 6ls)

(g + (1 − a)β)(g + 6ls)

)

+6ls

(

1

g + (r − a)β
−

1

g

)))

, (71)
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H(ls=0)(r) =

∫ r

a

x

(g + (x − a)β)3
dx =

1

β2

(

−
1

g + (r − a)β
+

g − aβ

2(g + (r − a)β)2
+

g + aβ

2g2

)

, (72)

and

L(r) =

∫ r

a

x
(

(g + (x − a)β)5 + 10(g + (x − a)β)4ls
)

((g + (x − a)β)3 + 6ls(g + (x − a)β)2)(g + (x − a)β + 2ls)2

+
x

(

70
3

(g + (x − a)β)3l2
s + 20(g + (x − a)β)2l3

s

)

((g + (x − a)β)3 + 6ls(g + (x − a)β)2)(g + (x − a)β + 2ls)2
dx

=
r2 − a2

2
+

ls

β2

(

4

3
ls(g − aβ + 2ls)

(

1

g + (r − a)β + 2ls
−

1

g + 2ls

)

+
3

2
(g − aβ + 6ls) ln

(

(g + 6ls)(g + (r − a)β + 2ls)

(g + 2ls)(g + (r − a)β + 6ls)

)

−
14

3
ls ln

(

g + (r − a)β + 2ls

g + 2ls

))

, (73)

L(ls=0)(r) =

∫ r

a

x(g + (x − a)β)5

(g + (x − a)β)3(g + (x − a)β)2
dx =

r2 − a2

2
. (74)

The integrals GI, HI and L I are given below with those for no slip denoted with subscript ls = 0;

GI =

∫ 1

a

rG(r) dr

=
1

g − aβ + 6ls

(

−
1

2(g − aβ)2
ln

(

a(g + (1 − a)β)

g

)

+
(1 − a)(g − aβ − β)

2βg((g − aβ)

+
1

72β2l2
s

(

6ls(1 − a)β

(

g − aβ − β

g

)

+
(

(g − aβ + 6ls)
2 − β2

)

ln

(

g(g + (1 − a)β + 6ls)

(g + (1 − a)β)(g + 6ls)

)))

, (75)

G(ls=0)I =

∫ 1

a

rG(ls=0)(r)dr

=
1

2(g − aβ)3
ln

(

g

a(g + (1 − a)β)

)

+
1

2(g − aβ)2

(

(1 − a)

β
−

(1 − a2)(3g − aβ)

2g2

)

+
1

2β2

(

1

g + (1 − a)β
−

1

g

)

, (76)

HI =

∫ 1

a

r H(r)dr

=
1

β2

(

−
(1 − a)(2g − (1 + a)β)

2βg
+

3(g − aβ + 2ls)

2β2
ln

(

g + (1 − a)β

g

)

+
g − aβ + 6ls

72β2l2
s

[

6ls(1 − a)β(g − (1 + a)β)

g

+
(

(g − aβ + 6ls)
2 − β2

)

ln

(

g(g + (1 − a)β + 6ls)

(g + (1 − a)β)(g + 6ls)

)])

, (77)

H(ls=0)I =

∫ 1

a

r H(ls=0)(r)dr
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=
1

β2

(

a − 1

β
+

(1 − a2)(g + aβ)

4g2
+

3(g − aβ)

2β2
ln

(

g + (1 − a)β

g

)

+
(g − aβ)2

2β2

(

1

(g + (1 − a)β)
−

1

g

))

, (78)

and

L I =

∫ 1

a

r L(r)dr

=
(1 − a2)2

8
+

2ls
2a(1 − a2)

3β(g + 2ls)
+

ls
2

2β2
(8a + 1 − 9a2) −

4(1 − a)ls
2

β3
(g + 5ls)

+ ln

(

g + 6ls

g + (1 − a)β + 6ls

)(

−
3lsa(1 − a2)

4β

3ls

4β2
(g + 6ls)(1 − 3a2)

+
9lsa

4β3
(g + 6ls)

2 −
3ls

4β4
(g3 + 18lsg2 + 108ls

2g + 216ls
3)

)

+ ln

(

g + (1 − a)β + 2ls

g + 2ls

) (

−
3lsa(1 − a2)

4β

ls

12β2
(9g + 26ls)(1 − 3a2)

−
lsa

4β3
(9g2 + 52gls + 68ls

2) +
ls

4β4
(3g3 + 26lsg2 + 68ls

2g + 56ls
3)

)

, (79)

L(ls=0)I =

∫ 1

a

r L(ls=0)(r) dr =
1

8
(1 − 2a2 + a4). (80)

The asymptotic limit as ls → 0 in all the equations has been found and matches those for the no-slip condition.

Appendix 3: Asymptotic equations in the limit g ≪ 1

The asymptotic equation includes either L̄ or L−I for a PCB or NCB, respectively, which are given by

L̄ = −
(1 − a2)2

8
+

lsa(1 − a2)

3β
+

ls
2(8a + 1 − 9a2)

2β2
−

20ls
3(1 − a)

β3

+ ln

(

6ls

(1 − a)β + 6ls

) (

3lsa(1 − a2)

4β
−

9ls
2(1 + a2)

2β2
+

81ls
3a

β3
−

162ls
4

β4

)

+ ln

(

(1 − a)β + 2ls

2ls

) (

3lsa(1 − a2)

4β
−

13ls
2(1 + a2)

6β2
+

17ls
3a

β3
−

14ls
4

β4

)

−
ls(1 − a2)

3β2
(8ls − 4βa)

(

1

(1 − a)β + 2ls
−

1

2ls

)

, (81)

L−I =
(1 − a2)2

8
+

2ls
2a(1 − a2)

3β(−(1 − a)β + 2ls)
+

ls
2

2β2
(8a + 1 − 9a2) −

4(1 − a)ls
2

β3
(−(1 − a)β + 5ls)

+ ln

(

−(1 − a)β + 6ls

6ls

) (

−
3lsa(1 − a2)

4β
+

3ls

4β2
(−(1 − a)β + 6ls) (1 − 3a2)

+
9lsa

4β3
(−(1 − a)β + 6ls)

2 −
3ls

4

(

−
(1 − a)3

β
+

18ls(1 − a)2

β2
+

−108ls
2(1 − a)

β3
+

216ls
3

β4

))

+ ln

(

2ls

−(1 − a)β + 2ls

) (

−
3lsa(1 − a2)

4β
+

ls

12β2
(−9(1 − a)β + 26ls) (1 − 3a2)
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+
lsa

4

(

9(1 − a)2

β
−

52ls(1 − a)

β2
+

68ls
2

β3

)

−
ls

4

(

−
3(1 − a)3

β
+

26ls(1 − a)2

β2
−

68ls
2(1 − a)

β3
+

56ls
3

β4

))

. (82)

Appendix 4: Additional table

Table 4 Values of gmin for an NCB and a PCB under internal pressurisation in the case of a narrow a = 0.8 and wide a = 0.2 annulus

with the increasing speed parameter 0 ≤ λ ≤ 5 and slip length 0 ≤ ls ≤ 0.1; ǫ = 1.2, σ = 1, Kz = 10, α = 1 and Da = 1

λ = 0 λ = 1 λ = 5

ls = 0 ls = 0.01 ls = 0.1 ls = 0 ls = 0.01 ls = 0.1 ls = 0 ls = 0.01 ls = 0.1

Wide, a = 0.2

β = −0.1 0.131 0.118 0.0657 0.126 0.113 0.0618 0.111 0.0970 0.0507

β = −0.2 0.0986 0.0854 0.0367 0.0981 0.0848 0.0376 0.0969 0.0834 0.0415

β = −0.3 0.0686 0.0552 0.0130 0.0720 0.0586 0.0175 0.0836 0.0702 0.0324

β = 0.1 0.126 0.114 0.0597 0.112 0.0990 0.0442 0.0699 0.0552 0.000347

β = 0.2 0.0900 0.0786 0.0252 0.0711 0.0588 0.00516 0.0230 0.00824 ∗

β = 0.3 0.0586 0.0476 ∗ 0.0366 0.0246 ∗ 0.000463 ∗ ∗

Narrow a = 0.8

β = −0.1 0.0336 0.0217 0.00230 0.0338 0.0219 0.00263 0.0346 0.0228 0.00315

β = −0.2 0.0250 0.0135 ∗ 0.0255 0.0140 ∗ 0.0275 0.0162 ∗

β = −0.3 0.0169 0.00618 ∗ 0.0177 0.00461 ∗ 0.0208 0.0101 ∗

β = 0.1 0.0327 0.0205 ∗ 0.0322 0.0200 ∗ 0.0304 0.0183 ∗

β = 0.2 0.0233 0.0112 ∗ 0.0225 0.0105 ∗ 0.0196 0.00761 ∗

β = 0.3 0.0148 0.00324 ∗ 0.0139 0.00234 ∗ 0.0102 ∗ ∗

Entries denoted ∗ correspond to predicted contact
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