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Background

�e dynamic relationship between predators and their preys has long been and will con-

tinue to be one of the dominant themes in both ecology and mathematical ecology due 

to its universal existence and importance. Leslie (1948, 1958) introduced the following 

two species Leslie–Gower predator–prey model:

where x(t), y(t) stand for the population (the density) of the prey and the predator at time 

t, respectively. �e parameters r1 and r2 are the intrinsic growth rates of the prey and 

the predator, respectively. b1 measures the strength of competition among individuals 

of species x. �e value r1
b1

 is the carrying capacity of the prey in the absence of predation. 

�e predator consumes the prey according to the functional response p(x) and grows 

logistically with growth rate r2 and carrying capacity r2x
a2

 proportional to the population 

size of the prey (or prey abundance). �e parameter a2 is a measure of the food quantity 

that the prey provides and converted to predator birth. �e term y/x is the Leslie–Gower 

term which measures the loss in the predator population due to rarity (per capita y/x) of 

its favorite food. Leslie model is a predator–prey model where the carrying capacity of 

the predator is proportional to the number of prey, stressing the fact that there are upper 

limits to the rates of increase in both prey x and predator y, which are not recognized in 

the Lotka–Volterra model.

(1)







ẋ(t) = (r1 − b1x)x − p(x)y,

ẏ(t) =
�

r2 −
a2y
x

�

y,

Abstract 

We propose a modified Leslie–Gower predator–prey model with Holling-type II 

schemes and a prey refuge. The structure of equilibria and their linearized stability is 

investigated. By using the iterative technique and further precise analysis, sufficient 

conditions on the global attractivity of a positive equilibrium are obtained. Our results 

not only supplement but also improve some existing ones. Numerical simulations 

show the feasibility of our results.
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As was pointed out by Aziz-Alaoui and Daher (2003), in the case of severe scarcity, 

y can switch over to other populations but its growth will be limited by the fact that its 

most favorite food x is not available in abundance. In order to solve such deficiency in 

system (1), Aziz-Alaoui and Daher (2003) proposed and studied the following predator–

prey model with modified Leslie–Gower and Holling-type II schemes:

where r1, b1, r2, a2 have the samemeaning as in system (1). a1 is the maximum value 

which per capita reduction rate of x can attain; k1 and k2 measure the extent to which 

environment provides protection to prey x and to predator y respectively. �ey obtained 

the boundedness and global stability of positive equilibrium of system (1). Since then, 

many scholars considered system (2) and its non-autonomous versions by incorporating 

delay, impulses, harvesting, stochastic perturbation and so on (see, for example, Yu 2012; 

Nindjin et al. 2006; Yafia et al. 2007, 2008; Nindjin and Aziz-Alaoui 2008; Gakkhar and 

Singh 2006; Guo and Song 2008; Song and Li 2008; Zhu and Wang 2011; Liu and Wang 

2013; Kar and Ghorai 2011; Huo et al. 2011; Li et al. 2012; Liu et al. 2013; Gupta and 

Chandra 2013; Ji et al. 2009, 2011; Yu 2014; Yu and Chen 2014; Yue 2015). In particular, 

Yu (2012) studied the structure, linearized stability and the global asymptotic stability of 

equilibria of (2) and obtained the following result (see �eorem 3.1 in Yu 2012):

�eorem 1 Assume that

hold, where M =
r1k1−a1L

b1k1
 and L =

r1r2+b1r2k2
a2b1

, then system (2) has a unique positive equi-

librium which is globally attractive.

As was pointed out by Kar (2005), mite predator–prey interactions often exhibit spa-

tial refugia which afford the prey some degree of protection from predation and reduce 

the chance of extinction due to predation. In Kar (2005), Tapan Kumar Kar had con-

sidered a predator–prey model with Holling type II response function and a prey ref-

uge. �e author obtained conditions on persistent criteria and stability of the equilibria 

and limit cycle for the system. For more works on this direction, one could refer to Kar 

(2005), Srinivasu and Gayatri (2005), Ko and Ryu (2006), Huang et al. (2006), Kar (2006), 

González-Olivares and Ramos-Jiliberto (2003), Ma et al. (2009), Chen et al. (2009, 2010, 

2012), Ji and Wu (2010), Tao et al. (2011) and the references cited therein.

Although many authors have considered the dynamic behaviors of the modified Les-

lie–Gower model (Yu 2012; Nindjin et al. 2006; Yafia et al. 2007, 2008; Nindjin and Aziz-

Alaoui 2008; Gakkhar and Singh 2006; Guo and Song 2008; Song and Li 2008; Zhu and 

Wang 2011; Liu and Wang 2013; Kar and Ghorai 2011; Huo et al. 2011; Li et al. 2012; Liu 

et al. 2013; Gupta and Chandra 2013; Ji et al. 2009, 2011; Yu 2014; Yu and Chen 2014; 

Yue 2015) and predator–prey with a prey refuge (Kar 2005; Srinivasu and Gayatri 2005; 

(2)















ẋ(t) =

�

r1 − b1x −
a1y
x+k1

�

x,

ẏ(t) =

�

r2 −
a2y
x+k2

�

y,

a1r1r2 + a1b1r2k2 < a2b1r1k1, (C1)

2a2b1M + (a2b1k1 − a2r1 − a1r2) > 0, (C2)
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Ko and Ryu 2006; Huang et al. 2006; Kar 2006; González-Olivares and Ramos-Jiliberto 

2003; Ma et al. 2009; Chen et al. 2009, 2010, 2012; Ji and Wu 2010; Tao et al. 2011), as far 

as we know, there are almost no literatures discussing the modified Leslie–Gower model 

with a prey refuge. Stimulated by the works of Kar (2005), Srinivasu and Gayatri (2005), 

Ko and Ryu (2006), Huang et al. (2006), Kar (2006), González-Olivares and Ramos-Jilib-

erto (2003), Ma et al. (2009), Chen et al. (2009, 2010, 2012), Ji and Wu (2010), Tao et al. 

(2011), we will extend model (2) by incorporating a refuge protecting mx of the prey, 

where m ∈ [0, 1) is constant. �is leaves (1 − m)x of the prey available to the predator, 

and modifying system (2) accordingly to the system:

system (2) is the special case of (3) with m = 0, i.e. there is no prey refuge. By using itera-

tive technique and further precise analysis, we finally obtain the following main results:

�eorem 2 Suppose that

holds, then system (3) has a unique positive equilibrium (x∗, y∗) which is globally 

attractive.

�eorem 2 shows that limt→∞ x(t) = x∗, limt→∞ y(t) = y∗. Notice that x∗ and y∗ are 

only dependent with the coefficients of system (3), and independent of the solution of 

system (3). �us we can get the following result:

Corollary 1 Suppose that C3 holds, then system (2) is permanent.

When m = 0 that is there is no prey refuge, (3) becomes to (2) and C3 becomes to C1, 

so as a direct corollary of �eorem 2, we have:

Corollary 2 Suppose that C1 holds, then system (2) has a unique positive equilibrium 

which is globally attractive.

Comparing with �eorem 1, it follows from Corollary 2 that C2 is superfluous, so our 

results improve the main results in Yu (2012). Moreover, when consider the case of no 

alternate prey, so k2 = 0 (this is often called the Holling-Tanner model), by the similar 

proof of �eorem 2, we can obtain:

Corollary 3 Suppose that

holds, then system (3) with k2 = 0 has a unique positive equilibrium (x∗, y∗) which is glob-

ally attractive.

(3)















ẋ(t) =

�

r1 − b1x −
a1(1−m)y

(1−m)x+k1

�

x,

ẏ(t) =

�

r2 −
a2y

(1−m)x+k2

�

y.

a1(1 − m)2r1r2 + a1(1 − m)b1r2k2 < a2b1r1k1, (C3)

a1(1 − m)2r1r2 < a2b1r1k1, (C4)
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�e remaining part of this paper is organized as follows. In section “Nonnegative equi-

libria and their linearized stability”, we discuss the structure of nonnegative equilibria 

to  (3) and their linearized stability. We prove the main result (i.e. �eorem  2) of this 

paper in section “Global attractivity of a positive equilibrium”. �en, in section “Exam-

ples and numeric simulations”, a suitable example together with its numeric simulations 

is given to illustrate the feasibility of the main results. We end this paper by a briefly 

discussion.

Nonnegative equilibria and their linearized stability

Obviously, (3) has three boundary equilibria, E0 = (0, 0), E1 = (
r1
b1
, 0) , and  

E2 =

(

0,
r2k2
a2

)

. Set B � a1r2(1 − m)2 − a2r1(1 − m) + a2b1k1 and � � B
2
− 4(1 − m)

a2b1[(1 − m)a1r2k2 − a2r1k1]. As for the existence of positive equilibria and linearized 

stability of equilibria, similar to the discussion in Yu (2012), we have the following 

results:

Case 1. Suppose one of the following conditions holds.

(i)  m > 1 −

a2r1k1
a1r2k2

.

(ii)  m = 1 −
a2r1k1
a1r2k2

and B < 0.

(iii) m < 1 −
a2r1k1
a1r2k2

, B < 0, and � = 0.

�en (3) has a unique positive equilibrium E3,1 = (x3,1, y3,1) with x3,1 = −B+
√

�
2(1−m)a2b1

 and 

y3,1 =
r2((1−m)x3,1+k2)

a2
.

Case 2. If m < 1 −

a2r1k1
a1r2k2

, B  <  0, and � > 0, then (3) has two positive equilibria 

E3,± = (x3,±, y3,±), where x3,± = −B±
√

�
2(1−m)a2b1

 and y3,± =
r2((1−m)x3,±+k2)

a2
.

Case 3. If no condition in Case 1 or Case 2 holds, then (3) has no positive equilibrium.

Proposition 1 (i)      Both E0 and E1 are unstable.

(ii)         E2 is locally asymptotically stable if m < 1 −

a2r1k1
a1r2k2

 while it is unstable if 

m > 1 −

a2r1k1
a1r2k2

.

(iii)        �e positive equilibrium E3,1 in Case 1(i)(ii) is stable if 2b1(1 − m)

x
2
3,1

− (r1(1 − m) − r2(1 − m) − b1k1)x3,1 + k1r2 > 0.

(iv)        �e positive equilibrium E3,− is unstable while the posi-

tive equilibrium E3,+ = (x3,+, y3,+) is stable if 2b1(1 − m)

x
2
3,+

− (r1(1 − m) − r2(1 − m) − b1k1)x3,+ + k1r2 > 0.

When m = 0 that is there is no prey refuge, Proposition 1 becomes to Propositions 2.1 

and 2.2 in Yu (2012). �us our results supplement the exist ones. In the coming section, 

we will prove the main result (i.e. �eorem 2) of this paper.

Global attractivity of a positive equilibrium

In this section, we first introduce several lemmas which will be useful in proving the 

main result (i.e. �eorem 2) of this paper.
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Lemma 1 (Chen et  al. 2007) If a > 0, b > 0 and ẋ ≥ x(b − ax), when t ≥ 0 and 

x(0) > 0, we have:

If a > 0, b > 0 and ẋ ≤ x(b − ax), when t ≥ 0 and x(0) > 0, we have:

Now, we prove the main result of this paper.

Proof of �eorem 2 Let (x(t), y(t))T be any positive solution of (3). From condition (C3), 

we can choose a small enough ε > 0 such that

�e first equation of (3) yields

By applying Lemma 1 to (5) leads to

Hence, for above ε > 0, there exists a T1 > 0 such that

(6) together with the second equation of (3) leads to

From (7), according to Lemma 1, we can obtain

�us, for above ε, there exists a T2 ≥ T1, such that

lim inf
t→+∞

x(t) ≥
b

a
.

lim sup
t→+∞

x(t) ≤
b

a
.

(4)

a2b1r1k1 − a1(1 − m)2r1r2 − a1(1 − m)b1r2k2

a2b1k1

−

(

a1(1 − m)2r2

a2k1
+

a1(1 − m)

k1

)

ε > 0.

(5)ẋ(t) ≤ (r1 − b1x)x.

lim sup
t→+∞

x(t) ≤
r1

b1
.

(6)x(t) ≤
r1

b1
+ ε

�

=M
(1)
1

.

(7)ẏ(t) ≤

(

r2 −
a2y

(1 − m)M
(1)
1 + k2

)

y, for all t ≥ T1.

lim sup
t→+∞

y(t) ≤

r2

(

(1 − m)M
(1)
1 + k2

)

a2
.

(8)y(t) ≤

r2

(

(1 − m)M
(1)
1 + k2

)

a2
+ ε

�

=M
(1)
2 , for all t ≥ T2.
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(8) together with the first equation of (3) leads to

According to (4), we can obtain

�erefore, by Lemma 1 and (9), we have

Hence, for above ε, there exists a T3 ≥ T2, such that

From (11) and the second equation of system (3), we know that for t ≥ T3,

Applying Lemma 1 to (12) leads to

�at is, for above ε, there exists a T4 > T3 such that

From (6), (8), (11) and (13), for t ≥ T4, we have

(9)ẋ(t) ≥

(

r1 − b1x −
a1(1 − m)M

(1)
2

k1

)

x, for all t ≥ T2.

(10)

r1 −
a1(1 − m)M

(1)
2

k1
= r1 −

a1(1 − m)r2

a2k1

(

(1 − m)r1

b1
+ k2

)

−
a1(1 − m)

k1

(

r2(1 − m)

a2
+ 1

)

ε

=
a2b1r1k1 − a1(1 − m)2r1r2 − a1(1 − m)b1r2k2

a2b1k1

−

(

a1(1 − m)2r2

a2k1
+

a1(1 − m)

k1

)

ε > 0,

lim inf
t→+∞

x(t) ≥
r1 −

a1(1−m)M
(1)
2

k1

b1
.

(11)x(t) ≥

r1 −
a1(1−m)M

(1)
2

k1

b1
− ε

�

=m
(1)
1 , for all t ≥ T3.

(12)ẏ(t) ≥

(

r2 −
a2y

(1 − m)m
(1)
1

+ k2

)

y.

lim inf
t→+∞

y(t) ≥

r2

(

(1 − m)m
(1)
1

+ k l
2

)

a2
.

(13)y(t) ≥

r2

(

(1 − m)m
(1)
1 + k2

)

a2
− ε

�

=m
(1)
2 , for all t ≥ T4.

(14)0 < m
(1)
1

≤ x(t) ≤ M
(1)
1

, 0 < m
(1)
2

≤ y(t) ≤ M
(1)
2

.
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(14) together with the first equation of (3) leads to

From (10) and (14), we have

�erefore, similarly to the analysis of (5–6), for above ε, there exists a T5 > T4 such that

Compare (6) with (15), one can get

Substituting (15) into the second equation of system (3), we have

Applying Lemma 1 to the above inequality leads to

�us, for above ε, there exists a T6 ≥ T5, such that

From (8), (16) and (18) , we have

Substituting (11) and (18) into the first equation of system (3), we obtain

ẋ(t) ≤

(

r1 − b1x −
a1(1 − m)m

(1)
2

(1 − m)M
(1)
1 + k1

)

x, for all t ≥ T4.

r1 −
a1(1 − m)m

(1)
2

(1 − m)M
(1)
1

+ k1

> r1 −
a1(1 − m)m

(1)
2

k1
≥ r1 −

a1(1 − m)M
(1)
2

k1
> 0.

(15)
x(t) ≤

r1 −
a1(1−m)m

(1)
2

(1−m)M
(1)
1

+k1

b1
+

ε

2

�

=M
(2)
1

.

(16)M
(2)
1

< M
(1)
1

.

(17)ẏ(t) ≤

(

r2 −
a2y

(1 − m)M
(2)
1 + k2

)

y, for all t ≥ T5.

lim sup
t→+∞

y(t) ≤

r2

(

(1 − m)M
(2)
1 + k2

)

a2
.

(18)y(t) ≤

r2

(

(1 − m)M
(2)
1 + k2

)

a2
+

ε

2

�

=M
(2)
2 , for all t ≥ T6.

(19)M
(2)
2

< M
(1)
2

.

ẋ(t) ≥

(

r1 − b1x −
a1(1 − m)M

(2)
2

(1 − m)m
(1)
1 + k1

)

x, for all t ≥ T6.
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According to (10) and (19), we have

�us, similarly to the above analysis, for above ε, there exists a T7 ≥ T6, such that

From (11), (19) and (20) , we have

It follows from (20) and the second equation of system (3) that

�us, similarly to the above analysis, for above ε, there exists a T8 ≥ T7, such that

From (13), (21) and (23) , we have

�erefore, it follows from (14), (16), (19), (21) and (24) that

Repeating the above procedure, we get four sequences M
(n)
i

, m
(n)
i

, i = 1, 2, n = 1, 2, . . ., 

such that

Now, We go to show that the sequences M
(n)
i

 are non-increasing, and the sequences m
(n)
i

, 

are non-decreasing for i = 1, 2 by induction. Firstly, from (25), we immediately get

r1 −
a1(1 − m)M

(2)
2

(1 − m)m
(1)
1

+ k1

> r1 −
a1(1 − m)M

(1)
2

k1
> 0

(20)
x(t) ≥

r1 −
a1(1−m)M

(2)
2

(1−m)m
(1)
1

+k1

b1
−

ε

2

�

=m
(2)
1 , for all t ≥ T7.

(21)m
(1)
1

< m
(2)
1
.

(22)ẏ(t) ≥

(

r2 −
a2y

(1 − m)m
(2)
1 + k2

)

y, for all t ≥ T7.

(23)y(t) ≥

r2

(

(1 − m)m
(2)
1 + k2

)

a2
−

ε

2

�

=m
(2)
2 , for all t ≥ T8.

(24)m
(1)
2

< m
(2)
2
.

(25)

0 < m
(1)
1 < m

(2)
1 ≤ x(t) < M

(2)
1 ≤ M

(1)
1 ,

0 < m
(1)
2 < m

(2)
2 ≤ y(t) ≤ M

(2)
2 < M

(1)
2 , for all t ≥ T8.

(26)

M
(n)
1

=

r1 −
a1(1−m)m

(n−1)
2

(1−m)M
(n−1)
1

+k1

b1
+

ε

n
, M

(n)
2

=

r2

(

(1 − m)M
(n)
1

+ k2

)

a2
+

ε

n

m
(n)
1

=

r1 −
a1(1−m)M

(n)
2

(1−m)m
(n−1)
1

+k1

b1
−

ε

n
, m

(n)
2

=

r2

(

(1 − m)m
(n)
1

+ k2

)

a2
−

ε

n

M
(2)
i

< M
(1)
i

, m
(2)
i

> m
(1)
i
, i = 1, 2.
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Let us suppose that for n,

By direct computation, one can obtain

�erefore, we have that

Hence, the limits of M
(n)
i

 and m
(n)
i

, i = 1, 2, n = 1, 2, . . . exist. Denote that

Hence x ≥ x, y ≥ y. Letting n → +∞ in (26), we immediately

It follows from (28) that

Multiplying the second equality of (29) by −1 and adding it to the first equality of (29), we 

have

We claim x = x. Otherwise, x �= x and

M
(n)
i

< M
(n−1)
i

, m
(n)
i

> m
(n−1)
i

, i = 1, 2.

(27)

M
(n+1)
1

=

r1 −
a1(1−m)m

(n)
2

(1−m)M
(n)
1

+k1

b1
+

ε

n + 1
<

r1 −
a1(1−m)m

(n−1)
2

(1−m)M
(n−1)
1

+k1

b1
+

ε

n
= M

(n)
1

M
(n+1)
2

=

r2

(

(1 − m)M
(n+1)
1

+ k2

)

a2
+

ε

n + 1
<

r2

(

(1 − m)M
(n)
1

+ k2

)

a2
+

ε

n
= M

(n)
2

m
(n+1)
1

=

r1 −
a1(1−m)M

(n+1)
2

(1−m)m
(n)
1

+k1

b1
−

ε

n + 1
<

r1 −
a1(1−m)M

(n)
2

(1−m)m
(n−1)
1

+k1

b1
−

ε

n
= m

(n)
1

m
(n+1)
2

=

r2

(

(1 − m)m
(n+1)
1

+ k2

)

a2
−

ε

n + 1
<

r2

(

(1 − m)m
(n)
1

+ k2

)

a2
−

ε

n
= m

(n)
2

0 < m
(1)
1

< m
(2)
1

< · · · < m
(n)
1

< x(t) < M
(n)
1

< · · · < M
(2)
1

< M
(1)
1

,

0 < m
(1)
2

< m
(2)
2

< · · · < m
(n)
2

< y(t) < M
(n)
2

< · · · < M
(2)
2

< M
(1)
2

,

lim
n→+∞

M
(n)
1 = x, lim

n→+∞
m

(n)
1 = x, lim

n→+∞
M

(n)
2 = y, lim

n→+∞
m

(n)
2 = y.

(28)

r1 − b1x −

a1(1 − m)y

(1 − m)x + k1
= 0, r2 −

a2y

(1 − m)x + k2
= 0

r1 − b1x −
a1(1 − m)y

(1 − m)x + k1
= 0, r2 −

a2y

(1 − m)x + k2
= 0

(29)

a2(r1 − b1x)((1 − m)x + k1) = a1r2(1 − m)((1 − m)x + k2),

a2(r1 − b1x)((1 − m)x + k1) = a1r2(1 − m)((1 − m)x + k2).

(x − x)

(

a1r2(1 − m)2 + a2r1(1 − m) − a2b1k1 − a2b1(1 − m)(x + x)

)

= 0.

(30)a2b1(1 − m)(x + x) = a1r2(1 − m)2 + a2r1(1 − m) − a2b1k1
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Substituting (30) into (29), we have

�us, x and x are two positive solutions of the following equation

Simplifying (31), one can get

where D = a2(a1(1−m)2r1r2+a1(1−m)b1r2k2−a2b1r1k1)+a1r2(1−m)(a1r2(1−m)2

−a2b1k1). (H1) shows that a1(1 − m)2r1r2 + a1(1 − m)b1r2k2 − a2b1r1k1 < 0 and 

a1r2(1 − m)2 − a2b1k1 < 0. Hence, D < 0, that is, Eq. (31) does not have two positive solu-

tions. So x = x and consequently, y = y. Obviously, C3 implies a1(1 − m)r2k2 < a2r1k1 or 

m > 1 −

a2r1k1
a1r2k2

, that is, condition (i) of Case 1 holds. �us (3) has a unique positive equi-

librium (x∗, y∗) and (x∗, y∗) also satisfies (28). �erefor x = x = x
∗ and y = y = y∗, that is 

to say

and this completes the proof.  �

Examples and numeric simulations

Consider the following example:

In this case, we have r1 = 11, b1 = 5, a1 = 4,m = 0.4, k1 = 6.5, r2 = 8, a2 = 2, k2 = 2 

and B = a1r2(1−m)2−a2r1(1−m)+a2b1k1 = 63.32,� = B2−4(1−m)a2b1[(1−m)

a1r2k2 − a2r1k1] = 6519.8, so

By simple computation, we also have

�us, conditions in �eorem  2 are satisfied, hence, system (33) has a unique positive 

equilibrium E∗
= (x∗, y∗) which is globally attractive. Numerical simulation also con-

firms our result (see Fig. 1).

a
2
2b1(r1 − b1x)((1 − m)x + k1) = a1r2(1 − m)(a1r2(1 − m)2 + a2r1(1 − m)

− a2b1k1 + a2b1k2 − a2b1(1 − m)x),

a
2
2b1(r1 − b1x)((1 − m)x + k1) = a1r2(1 − m)(a1r2(1 − m)2 + a2r1(1 − m)

− a2b1k1 + a2b1k2 − a2b1(1 − m)x).

(31)

a
2

2b1(r1 − b1x)((1 − m)x + k1) = a1r2(1 − m)(a1r2(1 − m)2 + a2r1(1 − m)

− a2b1k1 + a2b1k2 − a2b1(1 − m)x).

(32)a
2
2b

2
1(1 − m)x2 + a2b1(a2b1k1 − a2r1(1 − m) − a1r2(1 − m)2)x + D = 0,

lim
t→∞

x(t) = x∗
, lim

t→∞

y(t) = y∗
.

(33)

ẋ =

(

11 − 5x −
2.4y

0.6x + 6.5

)

x,

ẏ =

(

8 −
2y

0.6x + 2

)

y.

x∗ =
−B +

√
�

2(1 − m)a2b1
≈ 1.4521, y∗ =

r2((1 − m)x∗ + k2)

a2
≈ 11.485.

a1(1 − m)2r1r2 + a1(1 − m)b1r2k2 − a2b1r1k1 = −396.28 < 0.
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Conclusion

In this paper, we consider a modified Leslie–Gower predator–prey model with Hol-

ling-type II schemes and a prey refuge. �e structure of equilibria and their linearized 

stability is investigated. Morever, by using the iterative technique and further pre-

cise analysis, sufficient conditions on the global attractivity of a positive equilibrium 

are obtained. When m = 0 that is there is no prey refuge, (3) we discussed reduces to 

(2) which was studied by Yu (2012). Yu (2012) have provided a sufficient condition on 

the global asymptotic stability of a positive equilibrium by employing the Fluctuation 

Lemma and obtained �eorem 1. By comparing �eorems 1 with Corollary 2, we find 

that the condition C2 in �eorem 1 is redundant. �us our results not only supplement 

but also improve some existing ones. �e numerical simulation of system (33) verify our 

main results. It follows from �eorem 2 and condition C3 that increasing the amount of 

refuge can ensure the coexistence and attractivity of the two species more easily. �is 

is rational, since the existence of alternate prey can prevent the predator from extinc-

tion and increasing the amount of refuge could protect more prey from predation and 

become permanent. Note that for the diffusion/PDE model where refuge can be spatial, 

whether refuge can change global attractivity of the interior equilibrium? �is is a fur-

ther problem, which can be studied in the future.
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Fig. 1 Dynamic behavior of the system (33) with the initial condition (x(0), y(0)) = (3, 12)T, (1, 30)T, (10, 0.3)T,  

(8, 15)T and (30, 50)T, respectively



Page 12 of 12Yue  SpringerPlus  (2016) 5:461 

References

Aziz-Alaoui MA, Daher OM (2003) Boundedness and global stability for a predator–prey model with modified Leslie–

Gower and Holling-type II schemes. Appl Math Lett 16(7):1069–1075

Chen F, Li Z, Huang Y (2007) Note on the permanence of a competitive system with infinite delay and feedback controls. 

Nonlinear Anal Real World Appl 8(2):680–687

Chen F, Chen L, Xie X (2009) On a Leslie–Gower predator–prey model incorporating a prey refuge. Nonlinear Anal Real 

World Appl 10(5):2905–2908

Chen L, Chen F, Chen L (2010) Qualitative analysis of a predator–prey model with Holling type II functional response 

incorporating a constant prey refuge. Nonlinear Anal Real World Appl 11(1):246–252

Chen F, Wu Y, Ma Z (2012) Stability property for the predator-free equilibrium point of predator–prey systems with a class 

of functional response and prey refuges. Discrete Dyn Nat Soc 2012. Article ID 148942

Gakkhar S, Singh B (2006) Dynamics of modified Leslie–Gower-type prey–predator model with seasonally varying 

parameters. Chaos Solitons Fractals 27(5):1239–1255

González-Olivares E, Ramos-Jiliberto R (2003) Dynamic consequences of prey refuges in a simple model system: more 

prey, fewer predators and enhanced stability. Ecol Model 166(1–2):135–146

Guo H, Song X (2008) An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. 

Chaos Solitons Fractals 36(5):1320–1331

Gupta R, Chandra P (2013) Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten 

type prey harvesting. J Math Anal Appl 398(1):278–295

Huang Y, Chen Y, Li Z (2006) Stability analysis of a prey–predator model with Holling type III response function incorpo-

rating a prey refuge. Appl Math Comput 182(1):672–683

Huo H, Wang X, Chavez C (2011) Dynamics of a stage-structured Leslie–Gower predator–prey model. Math Probl Eng 

2011 (2011). Article ID 149341

Ji C, Jiang D, Shi N (2009) Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes 

with stochastic perturbation. J Math Anal Appl 359(2):482–498

Ji C, Jiang D, Shi N (2011) A note on a predator–prey model with modified Leslie–Gower and Holling-type II schemes 

with stochastic perturbation. J Math Anal Appl 377(1):435–440

Ji L, Wu C (2010) Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a con-

stant prey refuge. Nonlinear Anal Real World Appl 11(4):2285–2295

Kar TK (2005) Stability analysis of a prey–predator model incorporating a prey refuge. Commun Nonlinear Sci Numer 

Simul 10(6):681–691

Kar TK (2006) Modelling and analysis of a harvested prey–predator system incorporating a prey refuge. J Comput Appl 

Math 185(1):19–33

Kar TK, Ghorai A (2011) Dynamic behaviour of a delayed predator–prey model with harvesting. Appl Math Comput 

217(22):9085–9104

Ko W, Ryu K (2006) Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a 

prey refuge. J Differ Eq. 231(2):534–550

Leslie PH (1948) Some further notes on the use of matrices in population mathematics. Biometrika 35(3–4):213–245

Leslie PH (1958) A stochastic model for studying the properties of certain biological systems by numerical methods. 

Biometrika 45(1–2):16–31

Li Z, Han M, Chen F (2012) Global stability of a stage-structured predator–prey model with modified Leslie–Gower and 

Holling-type II schemes. Int J Biomath 5:1250057

Liu M, Wang K (2013) Dynamics of a Leslie–Gower Holling-type II predator–prey system with Lévy jumps. Nonlinear Anal 

85:204–213

Liu C, Zhang Q, Huang J (2013) Stability analysis of a harvested prey–predator model with stage structure and matura-

tion delay. Math Probl Eng 2013. doi:10.1155/2013/329592. Article ID 329592

Ma Z, Li W, Zhao Y, Wang W, Zhang H, Li Z (2009) Effects of prey refuges on a predator–prey model with a class of func-

tional responses: the role of refuges. Math Biosci 218(2):73–79

Nindjin AF, Aziz-Alaoui MA, Cadivel M (2006) Analysis of a predator–prey model with modified Leslie–Gower and Holling-

type II schemes with time delay. Nonlinear Anal Real World Appl 7(5):1104–1118

Nindjin AF, Aziz-Alaoui MA (2008) Persistence and global stability in a delayed Leslie–Gower type three species food 

chain. J Math Anal Appl 340(1):340–357

Song X, Li Y (2008) Dynamic behaviors of the periodic predator–prey model with modified Leslie–Gower Holling-type II 

schemes and impulsive effect. Nonlinear Anal Real World Appl 9(1):64–79

Srinivasu P, Gayatri I (2005) Influence of prey reserve capacity on predator–prey dynamics. Ecol Model 181(2–3):191–202

Tao Y, Wang X, Song X (2011) Effect of prey refuge on a harvested predator–prey model with generalized functional 

response. Commun Nonlinear Sci Numer Simul 16(2):1052–1059

Yafia R, Adnani F, Talibi Alaoui H (2007) Stability of limit cycle in a predator–prey model with modified Leslie–Gower and 

Holling-type II schemes with time delay. Appl Math Sci 1(3):119–131

Yafia R, Adnani F, Talibi Alaoui H (2008) Limit cycle and numerical similations for small and large delays in a predator–prey 

model with modified Leslie–Gower and Holling-type II schemes. Nonlinear Anal Real World Appl 9(5):2055–2067

Yu SB (2012) Global asymptotic stability of a predator–prey model with modified Leslie–Gower and Holling-type II 

schemes. Discrete Dyn Nat Soc 2012. Article ID 208167

Yu S (2014) Global stability of a modified Leslie–Gower model with Beddington–DeAngelis functional response. Adv 

Differ Eq. 2014(2014):84

Yu S, Chen F (2014) Almost periodic solution of a modified Leslie–Gower predator–prey model with Holling-type II 

schemes and mutual interference. Int J Biomath 7(3). Article ID 1450028

Yue Q (2015) Permanence for a modified Leslie–Gower predator–prey model with Beddington–DeAngelis functional 

response and feedback controls. Adv Differ Eq. 2015:81

Zhu Y, Wang K (2011) Existence and global attractivity of positive periodic solutions for a predator–prey model with 

modified Leslie–Gower Holling-type II schemes. J Math Anal Appl 384(2):400–408


	Dynamics of a modified Leslie–Gower predator–prey model with Holling-type II schemes and a prey refuge
	Abstract 
	Background
	Nonnegative equilibria and their linearized stability
	Global attractivity of a positive equilibrium
	Examples and numeric simulations
	Conclusion
	Acknowlegements
	References


