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Abstract

We consider dynamics of a quantum nonlinear oscillator subjected to non-Markovian pumping.
Models of this kind can describe formation of exciton-polariton Bose-Einstein condensates in course
of stimulated scattering and relaxation of reservoir excitons. Using the Markovian embedding tech-
niques, we obtain stochastic differential equations of motion with an additional degree of freedom
corresponding to dynamical memory. It is shown that the oscillator asymptotically tends to the intrin-
sically non-Markovian stable fixed point corresponding to constant product of oscillator amplitude and
modulo of the memory variable. The state corresponding to this point exhibits unlimited growth of
population, with the growth rate that decreases with time. Our results show that the Markovian behav-
ior could be observed only within some limited early stage of oscillator evolution provided that decay
of dynamical memory is sufficiently fast. Transition from the Markovian regime to non-Markovian
one with increasing time is linked to phase shift of the pumping term. Coherence properties of the
oscillator are studied. It was found that interaction between particles delimits growth of condensate
population, thereby impeding formation of Bose-Einstein condensate.

Keywords: non-Markovian open systems, quantum decoherence, Bose-Einstein condensate, exciton-
polaritons.

1 Introduction

When we study quantum systems which interact with environment, we commonly simplify the problem
by eliminating multiple environmental degrees of freedom. In this way, a quantum system “of interest”
is referred to as an open quantum system, whereas environment is treated as some external reservoir.
Interaction of quantum systems with thermal reservoirs is one of the most important problems in con-
temporary physics. It is of vital importance in the context of physics of cold and ultracold quantum
gases [1–5], quantum computation [6], quantum fluids with a photonic component [7, 8], atomtronics [9]
and many other fields [10] where finite-temperature effects play a significant role.
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Assumption of reservoir independence on dynamics of the open quantum system naturally leads us to
the Markov approximation. This assumption is valid if the reservoir is characterized by relatively broad
energy spectrum (“hot” reservoir) and/or fast decay of dynamical correlations (“chaotic” reservoir).
The Markov approximation yields time-local equations governing quantum evolution. However, recent
progress in experimental technologies has led to onset of quantum systems where the role of a reservoir is
played by subsystems with narrow energy spectra and high degree of coherence. Examples of such systems
are optically trapped atoms with the Raman coupling to ballistic states [11–14], quantum dots, qubits or
nanomechanical oscillators coupled to Bose-Einstein condensate (BEC) [15–19], motion of matter-wave
solitons experiencing friction caused by excitations of a superfluid [20], quantum systems coupled to spin
baths [21]. If a reservoir cannot be fully separated from a considered quantum state, dynamics becomes
essentially non-Markovian. Non-Markovian open quantum systems are basically governed by evolution
equations which are non-local in time and contain integrals with memory kernels [22–27]. Inclusion of
memory effects can remarkably enrich physical properties of such systems (see [28–30] for particular
illustrations).

Most studies of non-Markovian open quantum systems consider the case of non-Markovian dissipation.
The case of non-Markovian pumping is relatively poorly studied. Pumping of this kind can occur under
stimulated relaxation of particles belonging to a reservoir. A particular example is exciton-polariton BEC
interacting with excitonic reservoir [31, 32]. Incoherent pumping of the reservoir density can enhance
condensate formation whereby improving coherence properties of the outcoming light, this phenomenon
can be used for development of polaritonic lasers [33]. Also, one should expect emergence of non-
Markovian features under evaporative cooling of atoms loaded into a dipole optical trap [34].

In the present paper we consider dynamics of a quantum oscillator describing a single state experi-
encing pumping from a Lorentzian bath in the non-Markovian regime. In the mean-field approximation
for interaction of particles, state dynamics is governed by a kind of the nonlinear Schrödinger equation.
Although this work is motivated by physics of exciton-polariton BEC, a paradigmatic form of the model
considered anticipates that it can be used in a variety of physical problems. We concentrate attention on
nonlinear phenomena in dynamics of the oscillator.

The paper is organized as follows. In the next section we describe the model under study. Section 3
is devoted to stationary solutions for the oscillator. Coherence of the oscillator is studied in Sec. 4 in the
context of Bose-Einstein condensate formation. The main results of the paper are discussed in Summary.

2 The model

Let’s consider an ensemble of cold bosonic particles, where small fraction belongs to some single state,
while the remaining part is characterized by narrow but continuous energy spectrum and can be con-
sidered as precondensate. If number of particles is sufficiently large, we can invoke the semiclassical
approximation, when amplitude of the state can be represented by a c-number [35–41]. Under certain
conditions (which shall be discussed in Sec. 4) particles belonging to the single state can form condensate.
Considering the precondensate as reservoir and utilizing the mean-field approximation, we can describe
evolution of the single state amplitude by means of the following stochastic nonlinear Schrödinger equa-
tion:

i~
da

dt
= E0a+ αint|a|2a+ η(t) + ~

∫

dt′Σ(t, t′)a(t′), (1)
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where E0 is state energy, αint is a nonlinearity rate quantifying strength of particle interaction, Σ(t, t′) is
a retarded self-energy utilized to describe coupling to the reservoir, and η describes fluctuations induced
by stochastic transitions between the state and the reservoir. In this model we neglect interaction of
precondensate particles, assuming that their phase space density is low.

Model (1) can be referred to as a quantum nonlinear oscillator under non-Markovian pumping. The
self-energy can be expressed as [31,32]

Σ(t, t′) = 2iV 2ρ2K(t, t′), (2)

where V is rate of coupling between the oscillator and the reservoir, and ρ is reservoir population. Form
of the memory kernel K(t, t′) depends on energy spectrum of the reservoir [42]. In the present work we
consider the Lorentzian spectrum

S(E) =
γ

[(E − Ec)/~]2 + γ2
, (3)

that yields

K(t, t′) =
γ

2
e−γ(t−t

′), (4)

for Ec = E0. One can see that the parameter γ simultaneously determines spectral width of the reservoir
and rate of memory decay. However, if

Ω ≡ Ec − E0

~
6= 0, (5)

then the memory kernel is supplemented by an oscillating factor and becomes [31]

K(t, t′) =
γ

2
e−(γ+iΩ)(t−t′). (6)

Population of the reservoir obeys equation

dρ

dt
= F (t)− 2γRρ(t)−

2

~
Re [a∗(t)η(t)] − 2Re



a∗V 2ρ2
t

∫

t′=0

K(t, t′)a(t′) dt′



 , (7)

where function F (t) describes incoherent pumping of the reservoir, γR is decay rate for reservoir particles.
In experiments with exciton-polaritons, incoherent pumping is produced by external laser radiation. We
consider the simplest model of the incoherent pumping, when F = const. In the absence of particle
exchange between the reservoir and the oscillator, Eq. (7) can be easily integrated that gives

ρ(t) = ρ(0)e−2γRt +
F

2γR
(1− e−2γRt). (8)

In the limit t→ ∞ we have

ρ(t) → ρ0 =
F

2γR
. (9)

Substituting (9) into (7), we get
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dρ

dt
= 2γR(ρ0 − ρ)− 2

~
Re [a∗(t)η(t)] − 2Re



a∗V 2ρ2
t

∫

t′=0

K(t, t′)a(t′) dt′



 , (10)

The constant ρ0 determines the equilibrium reservoir population in the absence of coupling to the oscil-
lator. Inserting (6) into (1) and (10), we obtain

i~
da

dt
= E0a+ αint|a|2a+ η(t) + i~γV 2ρ2

t
∫

t′=0

e−(γ+iΩ)(t−t′)a(t′) dt′, (11)

dρ

dt
= 2γR(ρ0 − ρ)− 2

~
Re [a∗(t)η(t)] − Re



a∗V 2ρ2γ

t
∫

t′=0

e−(γ+iΩ)(t−t′)a(t′) dt′



 , (12)

It should be mentioned that this model can be considered a particular case of the Stuart-Landau oscillator
[43–46].

Autocorrelation function of fluctuations η(t) is determined by the Keldysh component of self-energy.
It is linked to the memory kernel via the fluctuation-dissipation relation

〈

η∗(t)η(t′)
〉

= 2~2V 2ρ2(t)K(t, t′) = ~
2γV 2ρ2(t)e−(γ+iΩ)(t−t′). (13)

It corresponds to one-dimensional complex-valued Ornstein-Uhlenbeck process [47] described by the fol-
lowing Langevin equation

η̇(t) = −2(γ + iΩ)η(t) +
√

2γξ(t). (14)

Here ξ(t) is Gaussian complex-valued white noise with 〈ξ(t)〉 = 0, 〈ξ(t)ξ∗(t′)〉 = δ(t− t′). If γ ≪ Ω, then
η(t) can be fairly approximated by the complex-valued harmonic noise introduced in [48–52].

Using the Markovian embedding method [30, 32, 53], we can remove integrals from the right-hand
sides of Eqs. (11) and (12). It can be obtained by introducing the memory variable defined as [54]

M = a0e
−(γ+iΩ)t + γ

t
∫

t′=0

e−(γ+iΩ)(t−t′)a(t′) dt′, (15)

where a0 = a(t = 0). Then Eqs. (11) and (12) become

i~
da

dt
= E0a+ αint|a|2a+ η(t) + i~V 2ρ2

[

M − a0e
−(γ+iΩ)t

]

, (16)

and
dρ

dt
= 2γR(ρ0 − ρ)− 2

~
Re [a∗(t)η(t)] − Re

(

a∗V 2ρ2
[

M − a0e
−(γ+iΩ)t

])

. (17)

The memory variable obeys the following equation of motion:

dM

dt
= γ(a−M)− iΩM. (18)
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Figure 1: Time dependence of oscillator amplitude b averaged over 100 realizations of fluctuations.
Parameter values: ~ = 1, αint = 1, γR = 0.1,∆E = 0, ρ0 = 1000, V =

√
0.1/ρ0.

3 Stationary solutions

Equations (16)–(18) form a dissipative dynamical system whose long-term dynamics is determined by its
stationary manifolds [55, 56]. Indeed, there cannot be strictly stationary states in the presence of noise.
However, we consider the case of γ ≪ 1, then noise can be considered as a weak perturbation imposed
onto deterministic dynamics governed by equations of motion without noises. Removing noises from the
right-hand sides and using the substitutions

a(t) = b(t)e
−i

(

φ(t)+
E0

~
t
)

, M = m(t)e−iψ(t), (19)

we can rewrite Eqs. (16)–(18) as
db

dt
= V 2ρ2m cos θ (20)

dφ

dt
=
αint

~
b2 − V 2ρ2

m

b
sin θ (21)

dm

dt
= γ(b cos θ −m), (22)

dψ

dt
= γ

b

m
sin θ +

∆E

~
, (23)

dρ

dt
= 2γ(ρ0 − ρ)− 2bmV 2ρ2 cos θ, (24)

where θ = φ − ψ, ∆E = ~Ω − E0 is energy detuning between the reservoir and the oscillator. The
exponentially decaying term i~V 2ρ2a0e

−(γ+iΩ)t in (16) is also dropped out.

One can see that Eqs. (20)-(24) do not yield non-trivial stationary states obeying to the condition

db

dt
=
dm

dt
=
dθ

dt
=
dρ

dt
= 0. (25)

Their absence anticipates unbounded growth of the oscillator amplitude b, that is confirmed by results
of numerical simulation presented in Fig. 1. It should be noticed that rate of the growth diminishes with
time.
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Figure 2: Time dependence of combined amplitude variable β averaged over 100 realizations of fluctua-
tions. Parameter values: ~ = 1, αint = 1, γR = 0.1,∆E = 0, ρ0 = 1000, V =

√
0.1/ρ0.

Nevertheless, we can replace b by a combined amplitude variable,

β = bm. (26)

Then it turns out that coupled equations































dβ
dt

= m2V 2ρ2 cos θ + γ

{

(

β
m

)2
cos θ − β

}

= 0,

dm
dt

= γ( β
m
cos θ −m) = 0,

dθ
dt

= αint

~

(

β
m

)2
− V 2ρ2m

2

β
sin θ − γ β

m2 sin θ − ∆E
~

= 0,
dρ
dt

= 2γ(ρ0 − ρ)− 2βV 2ρ2 cos θ = 0

(27)

have non-trivial roots. Since b→ ∞ with t → ∞, time independence of β means m → 0. Then solution
of (27) is

βst = γ
~

αint
, θst =

π

2
, ρst = ρ0. (28)

This fixed point is a stable focus that attracts all trajectories. It is illustrated in Fig. 2 representing
ensemble-averaged time dependence of β. Fluctuations give rise to stochastic oscillations in the vicinity
of β = βst. It is somewhat surprising that impact of fluctuations increases with decreasing γ being decay
rate of fluctuation correlations. This circumstance has a simple explanation: increasing of γ enhances
growth of the oscillator population thereby reducing effect of fluctuations which basically have limited
amplitude. Dependence of b on γ at time instant t = 2000 is presented in Fig. 3.

Taking into account that the Markovian regime anticipates M = a, θ = 0 and, consequently, β → ∞,
one can conclude that the stationary point (28) is essentially non-Markovian. On the other hand, efficient
pumping of the oscillator implies nearly in-phase variations of a and M at least within some limited time
interval. This regime should be especially pronounced in the case of large values of γ which correspond
to fast growth of oscillator amplitude (see Fig. 1). Data presented in Figure 4 confirms this hypothesis.
In the case of relatively fast decoherence rate, γ = 10, we observe almost completely Markovian behavior
until t ≃ 5. Simultaneous growth of b and m is also observed for γ = 0.5 and γ = 0.05, but the
corresponding curves start diverging immediately at t = 0. It means that phase shift θ between oscillator
complex amplitude a and memory variable M is accumulated very rapidly. As θ approaches π/2, the
memory amplitude starts decreasing: oscillator state falls into some close vicinity of the asymptotic fixed
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Figure 3: Dependence of b on γ at time t = 2000 for different values of the interaction parameter αint
and energy detuning ∆E. Parameter values: ~ = 1, γR = 0.1, ρ0 = 1000, V =

√
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point (28). At this moment growth of the oscillator population is significantly decelerated. Difference
between the stage of initial pumping and the stage of attraction to the focus is notably pronounced in
the case of γ = 0.05, i. e. for low decoherence rate (see Fig. 4(c)).
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4 Coherence properties

The model (1) can be used for studying formation of Bose-Einstein condensate in course of stimulated
relaxation of particles from the reservoir. Emergence of condensate implies high degree of coherence in
many-body dynamics. Coherence of a state can be quantified by means of the first- and second-order
correlation functions defined as [57,58]

g(1)(τ) =
〈a∗(t)a(t+ τ)〉

〈|a(t)|2〉 , (29)

and

g(2)(τ) =
〈a(t)a(t+ τ)a∗(t)a∗(t+ τ)〉

〈|a(t)|2〉2
, (30)

respectively.

The latter one describes population fluctuations. Its value for τ = 0 can be used as an indicator of
condensate onset. The minimal value of g(2) is 1, it corresponds to a many-body state being superposition
of coherent single-particle states. Deviation from 1 can be used as measure of decoherence. In the case
of a thermal state we have g(2)(τ = 0) = 2. Fig. 5 represents dependence of g(2)(τ = 0) on memory time

tM =
1

γ
(31)

for various values of the interaction strength αint. When calculating g(1) and g(2), we considered only
dynamics in the close vicinity of the focus point (28), omitting the transient early stage. We see that
impact of incoherence has tendency to increase with increasing tM. Comparing this plot with Fig. 1, we
can deduce that enhanced incoherence is associated with decreasing of state population. Indeed, highly
populated state is insensitive to fluctuations whose amplitude is limited and small. Fluctuations can cause
significant effect only onto a weakly-populated state. Increasing of of interaction strength αint also results
in diminishing of population and enhancing of decoherence. So, we can conclude that state population is
the main factor that determines value of g(2)(τ = 0). It means that favourable conditions for formation
of Bose-Einstein condensate are expected for weakly interacting particles and broad reservoir spectrum,
the latter corresponds to large values of memory decay γ. On the other hand, analysis of data for g(1)(τ)
shows that condensate created with large values of γ undergoes faster decay of phase correlations, i. e.
it has lesser lifetime (see Fig. 6). Anyway, decreasing of interaction strength gives rise to condensates
with relatively long times of correlation decay, and this decay is Gaussian, as it follows from the data
presented in Fig. 6.

In contrast, the regime of relatively strong interaction, αint = 1, corresponds to a depleted state with
nearly exponential correlation decay indicating dominance of fluctuations. Transition from exponential
to Gaussian decay indicates the transformation of oscillator spectrum from Lorentzian to Gaussian. Ac-
cording to the Kubo stochastic line shape theory [59], it could be considered as a signature of fluctuations
suppression.

According to Fig. 6, decay of g(1)(τ) for αint = 1 and γ = 0.1 is much faster than decay of normalized
noise autocorrelation function given by

C(τ) = e−(γ+i∆E

~
)τ . (32)
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In this case relatively strong particle interaction compensates low state population, keeping nearly the
same impact of nonlinearity as for highly populated states corresponding to αint = 0.01. We suggest that
decoherence amplifies due to interplay of nonlinearity and noise with long correlation time (tM = 10).
Strong sensitivity to fluctuations in this case can be a signature of dynamical chaos. In fact, the presence
of a stable focus impedes exponential divergence of trajectories. It means there can be only a specific
kind of chaos termed “weak chaos” [60,61] can occur in this case.
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√
0.1/ρ0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

γ=10

g(1
) (t

)

t

αint=0.01
αint=1

Gaussian fit
C(t)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

γ=1

g(1
) (t

)

t

αint=0.01
αint=1

Gaussian fit
C(t)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

γ=0.1

g(1
) (t

)

t

αint=0.01
αint=1

Gaussian fit
C(t)

Figure 6: Dependence of the first-order correlation function g(1)(t) on time for different values αint and
γ. C(t) is the normalized autocorrelation function of the fluctuations. Parameter values: ~ = 1, γR =
0.1,∆E = 0, ρ0 = 1000, V =

√
0.1/ρ0.

5 Summary

In the present work we address the issue of non-Markovian manifestations in dynamics of a single quantum
state pumped from a reservoir. It is assumed that this is a many-body state, taking into account inter-
actions between particles in the mean-field treatment. We identify the Markovian behavior as equality
of oscillator amplitude a and the corresponding memory variable M , when the corresponding equations
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of motion become local in time. A weaker definition of nearly Markovian dynamics could imply in-phase
variations of a and M . In fact, we found the stationary oscillator state corresponding to

bm = const. (33)

As long as Markovian dynamics anticipates m = b and exponential growth of both these amplitudes, we
can conclude that this state is intrinsically non-Markovian. It is a stable focus that determines long-term
dynamics for all finite values of memory decay rate γ. Consequently there is no transition between non-
Markovian and Markovian regimes in the parameter space. However, if the reservoir is sufficiently “hot”
and characterized by broad energy spectrum, then the oscillator can exhibit Markovian behavior within
early stage of evolution, until dynamical memory is accumulated. Duration of this stage increases with
increasing of reservoir temperature. If it exceeds all relevant physical time scales, then the time-local
Markov approximation should be accurate.

Another point to be emphasized is the role of particle interaction in formation of Bose-Einstein
condensate. Our results show that the interaction diminishes state population, that results in stronger
impact of fluctuations which destroy coherence. On the other hand, the interaction plays the major
role in thermalization and stimulated scattering of particles from reservoir to condensate, so it should
facilitate condensate emergence. It suggests that there should be some intermediate range of interaction
strength that corresponds to optimal conditions for condensate formation.
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[47] M. Arató, S. Baran, M. Ispány, Comput. Math. with Appl., 37, 1 (1999).

[48] D. V. Makarov, L. E. Kon’kov, Phys. Lett. A, 377, 3093 (2013).

[49] D. V. Makarov, L. E. Kon’kov, Eur. Phys. J. B, 87, 281 (2014).

[50] D. V. Makarov, L. E. Kon’kov, Phys. Scr., 90, 035204 (2015).

[51] V. Yu. Argonov, D. V. Makarov, J. Phys. B: At. Mol. Opt. Phys., 49, 175503 (2016).

[52] D. V. Makarov, Quant. Electron., 47, 451 (2017).

[53] X. Li, Phys. Lett. A, 387, 127036 (2021).

[54] A. Neiman, W. Sung, Phys. Lett. A, 223, 341 (1996).

[55] S. S. Gavrilov, Phys. Usp., 63, 123 (2020).

[56] A. R. Kolovsky, e-print arXiv:2002.1137 [quant-ph] (2020).

[57] P. Schwendimann, A. Quattropani, Phys. Rev. B, 77, 085317 (2008).

[58] D. M. Whittaker, P. R. Eastham Eur. Phys. Lett., 87, 27002 (2009).

[59] R. Kubo, Adv. Chem. Phys., 15, 101, (1969).

[60] G. Zaslavsky, R. Sagdeev, D. Usikov, A. Chernikov, Weak Chaos and Quasi-regular patterns, Cam-
bridge University Press, Cambridge (1991).

[61] C. Nicolis, G. Nicolis, Physica D, 155, 184 (2001).

12

http://arxiv.org/abs/2002.1137

	1 Introduction
	2 The model
	3 Stationary solutions
	4 Coherence properties
	5 Summary

