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We use group-theoretic methods to analyze phase-locking in a ring of identical integrate-and-
oscillators with distributed delays. It is shown how certain phase-locked solutions emerge throu
symmetry breaking bifurcations as some characteristic delay of the system is varied. The reductio
a phase-coupled model in the weak coupling regime is discussed. [S0031-9007(97)04283-X]
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The dynamics of coupled oscillator arrays has been t
subject of much recent experimental and theoretical inte
est. Example systems include Josephson junctions [1,
lasers [3], oscillatory chemical reactions [4], heart pac
maker cells [5], central pattern generators [6], and cortic
neural oscillators [7]. In many applications the oscillator
are identical, dissipative, and the coupling is symmetri
Under such circumstances one can exploit the symme
of the system to determine generic features of the dyna
ics such as the emergence of certain classes of solutio
due to symmetry breaking bifurcations. Group-theoret
methods have been used to study both small amplitude
cillators on a ring near a Hopf bifurcation [8], and weakly
coupled oscillators under phase averaging [9]. Symmet
arguments have also been used to construct central p
tern generators for animal gaits [10] and to establish th
existence of periodic orbits in Josephson junction seri
arrays [11]. Most work to date on the role of symmetr
in coupled oscillator arrays has assumed that the intera
tions between elements of the array are smooth. On t
other hand, many biological oscillators communicate wit
impulses as exemplified by the so-called integrate-and-fi
model [12]. This latter model has recently sparked in
terest within the physics community due to connection
with stick-slip models and self-organized criticality [13].
In Ref. [12], it was rigorously proved that globally cou-
pled integrate-and-fire oscillators always synchronize
the presence of excitatory coupling. However, more bio
logically realistic models have spatially structured pattern
of excitatory or inhibitory connections, and delayed cou
plings. It is an important issue to determine how th
dynamics of pulse-coupled oscillators depends on th
distribution of delays and the range of interactions. A
we shall show here, the analysis of such systems is co
siderably facilitated by exploiting the underlying symme
tries of the system.

In this Letter we use group-theoretic methods to an
lyze the dynamics of a ring ofN identical integrate-and-
fire oscillators with delayed interactions. In particular
we derive conditions for the existence of periodic, phas
locked solutions in which every oscillator fires with the
same frequency; the latter is determined self-consistent
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This set of conditions is invariant under the action of th
spatiotemporal symmetry groupDN 3 S1, whereDN is
the group of cyclic permutations and reflections in the rin
andS1 represents constant phase shifts in the direction
the flow. We classify the symmetries of the periodic so
lutions and indicate how this may be used to constru
bifurcation diagrams. We also show how our results re
duce to those of a corresponding phase-coupled mode
the weak coupling regime.

Consider a circular array ofN identical pulse-coupled
integrate-and-fire oscillators labeledn  1, . . . , N . Let
Unstd denote the state of thenth oscillator at timet.
Suppose thatUnstd satisfies the set of coupled equations

dUnstd
dt

 2Unstd 1 I 1 e

NX
m1

Wm
bEn1mstd (1)

supplemented by the reset conditionsUnst1d  0 when-
ever Unstd  1. (All subscriptsn, m are taken modulo
N). The input isbEmstd 

R`
0 PstdEmst 2 td dt, where

Emstd represents the sequence of pulses transmitted fro
the mth oscillator at timet and Pstd represents a dis-
tribution of delays. Neglecting the shape of an indi
vidual output pulse, the resulting spike train isEnstd P`

j2` dst 2 T n
j d, where Tn

j is the jth firing time of
the nth oscillator. We shall assume thatWm $ 0 and
Wm  WN2m for all m so that the network has symmetric
excitatory connections. It then follows that the underly
ing symmetry of the ring of coupled oscillators isDN . (In
the special case of global coupling,Wm independent ofm,
the symmetry is given by the full permutation group).

One may interpret Eq. (1) as a simple model of nerv
tissue in which the distributionPstd incorporates certain
important aspects of neural processing such as axo
transmission delays [14], synaptic processing [15], an
dendritic processing [16]. For concreteness, we sh
consider only the first two features by takingPstd 
gst 2 tddust 2 tdd, where gstd  a2t exps2atd is
the so-calleda function representing the shape of a
postsynaptic potential andtd is a discrete transmission
delay. Hereusxd  1 if x $ 0 and is zero otherwise. A
simplifying assumption of the model is that there is n
© 1997 The American Physical Society 2791
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correlation betweenWm and the delayst. (An example
of space-dependent delays is considered elsewhere [16

Suppose that we restrict our attention to period
solutions of Eq. (1) in which every oscillator fires with
the same fixed periodT (phase-locking). The state of
each oscillator can then be characterized by a const
phasefn [ RnZ. We shall represent the set ofN phases
by the vector F  sf1, . . . , fNd [ MN , where MN

denotes theN torus. The firing times of thenth oscillator
are T n

j  s j 2 fndT. Generalizing the analysis of two
integrate-and-fire oscillators in Ref. [15], we integrat
Eq. (1) over the intervalt [ s2Tfn, T 2 Tfnd and
incorporate the reset condition by settingUns2fnTd  0
andUnsT 2 fnTd  1. This leads to the result

1  s1 2 e2T dI 1 e

NX
m1

WmKsfn1m 2 fnd (2)

for n  1, . . . , N , where

Ksfd  e2T
Z T

0
et0

ĝst0 1 fT 2 tdd dt0 (3)

with ĝstd 
P`

j0 gst 1 jT d; that is,

ĝstd 
a2e2at

1 2 e2aT

"
t 1

Te2aT

s1 2 e2aT d

#
(4)

for 0 # t , T ; ĝstd is extended outside this range b
taking it to be a periodic function oft.

The system of Eqs. (2) is invariant under the action
the groupG  DN 3 S1. That is, if F  sf1, . . . , fNd
is a solution of Eqs. (2) then so issF for all s [ G.
We can take the generators ofDN to be hg1, g2j with
fg1Fgn  fn11 andfg2Fgn  fN2n12. The additional
S1 symmetry, which corresponds to constant phase sh
fn ! fn 1 d, is a consequence of the fact that Eqs. (
depend only on phase differences. It follows that an
solution of Eqs. (2) will determineF (up to an arbitrary
phase shift) and the periodT  T sFd such thatTssFd 
T sFd for all s [ G.

The existence of an underlying symmetry group allow
one to systematically explore the different classes of s
lutions to Eqs. (2) and the bifurcations that can occur
some system parameter is varied. In order to develop t
issue further, it is useful to introduce a few simple defin
tions from group theory. [For a general account of sym
metries in bifurcation theory see [8]. The more specifi
case of the groupDN 3 S1 within the context of coupled
(phase) oscillators is discussed in Ref. [9] ]. The symm
tries of any particular solutionF form a subgroup called
the isotropy subgroup ofF defined bySF  hs [ G:
sF  Fj. More generally, we say thatS is an isotropy
subgroup ofG if S  SF for some F [ MN . The
fixed-point subspaceof an isotropy subgroupS, denoted
by FixsSd, is the set of pointsF [ MN that are invari-
ant under the action ofS, FixsSd  hF [ MN : sF 
F for all s [ Sj. Finally, the group orbit through a
point F is GF  hsF: s [ Gj. If F is a solution to
Eqs. (2) then so are all other points of the group orbit.
2792
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One can now restrict the search for solutions of Eqs. (
to those that are fixed points of a particular isotrop
subgroup S. The isotropy subgroups and fixed-poin
spaces ofDN 3 S1 are listed in Table 2 of Ref. [9].
It can be shown that the fixed-point spaces cons
of m blocks of k adjacent oscillators wheremk  N
runs through all binary factorizations ofN. The phases
f1, . . . , fk determine the state of the system, and th
dimension of the fixed-point space is the number o
independent phases within this block. If dim FixsSd  d
then the N equations of (2) reduce tod independent
equations, one of which determines the periodT . In
particular, if d  1 then a solution is guaranteed to
exist by the underlying symmetry. Examples of thes
maximally symmetric solutions are thein-phasesolution,
fn  f for all n, and traveling wavesolutions,fn 
f 1 nb with b  nbyN , nb  1, . . . , N 2 1, wheref

is an arbitrary phase. For even integersN one also
has alternating solutions of the formsf, f, f, f, . . .d,
where f  f 1 1y2. Maximally symmetric solutions
typically bifurcate into solutions that have an isotrop
group with d . 1 as some system parameter is varie
(spontaneous symmetry breaking). Such a parame
could be a characteristic length or time scale, for examp
the range of interactions, the discrete time delaytd , or
the inverse rise timea for oscillator response. We shall
illustrate some of these ideas with a few simple example
a more detailed analysis will be presented elsewhere [1

First consider the case of two coupled integrate-and-fi
oscillators [18]; the underlying symmetry group isZ2 3

S1. Equations (2) can be written forN  2 as the pair
of equations1  s1 2 e2T dI 1 eKs6fd, where f 
f1 2 f2. These equations reduce to one independe
equation (that determines the periodT ) for the in-phase
solutionf  0 (or equivalentlyf  1) and the antiphase
solutionf  1y2. Both of these solutions are guarantee
to exist by the symmetry of the problem. In Fig. 1, we
show how an additional pair of solutionshf, 1 2 fj with
0 , f , 1y2 bifurcates from the antiphase solution a
the parametera is varied, and for a range of values
of the couplinge. (The fact that1 2 f is a solution
when f is a solution is again a consequence of th
underlying symmetry; that is, they lie on the same grou
orbit.) In the case of two integrate-and-fire oscillators on
can derive a simple condition for the dynamical stabilit
of phase-locked solutions [15]: a solutionfp is stable
provided that≠K2sfdy≠fjffp . 0, where K2sfd 
Ksfd 2 Ks2fd.

As a more complicated example, we show in Fig. 2
bifurcation diagram for a ring of four oscillators with uni-
form nearest neighbor coupling (Wm  dm,1 1 dm,N21).
Again we find that solutions withd . 1 bifurcate from
maximally symmetric solutions as the parametera is var-
ied. For N $ 2 the linear stability of the phase-locked
solutions can be determined by considering small pertu
bations of the firing times,Tn

j  s j 2 undT 1 d
n
j [17].
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FIG. 1. Relative phase in the IF model as a function of th
distributed delay parametera is shown with solid lines for
e  0.01, 0.05, 0.1, 0.25 with td  0 and I  2. In each case
the antiphase state undergoes a pitchfork bifurcation at a criti
value ofa (which increases withe) where it becomes unstable
and two additional stable solutionsf, 1 2 f are created. The
dashed curves show the bifurcation branches in the limiti
case of the weakly coupled phase-interaction picture.

However, the spectrum of the resulting linear map for th
d

n
j is infinite dimensional due to the presence of delay

Hence, proving stability analytically is generally not fea
sible and one must rely on numerical simulations. Th
latter shows, for example, that the traveling wave solutio
of Fig. 2 is unstable for smalla but is stable beyond the
bifurcation pointA.

FIG. 2. Relative phases of a ring of four IF neurons wit
nearest neighbor coupling illustrating bifurcations to isotrop
groups withd . 1 as a is increased (td  0.14, I  2, and
e  0.05). The phasef1 is fixed to be zero. At the pointA
a pair of d  2 states of the forms0, f, 1y2, fd1; d bifurcates
from a traveling wave statefn  ny4. At the pointB0 a pair
of d  2 states of the forms0, 0, f, fd bifurcates from the
states0, 0, 1y2, 1y2d and similarly at pointB a pair of the form
s0, f, f, 0d bifurcates froms0, 1y2, 1y2, 0d. At the points C
there are bifurcations fromd  2 statess0, f, f, 0d to d  4
statess0, f2, f3, f4d.
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We shall now show how in the weak coupling limi
the phase-locked solutions of the pulse-coupled mo
converge to corresponding solutions of a phase-coup
model obtained from the former by an averaging pr
cedure. (This feature is illustrated in Fig. 1). As
slight generalization, we shall assume that in the abse
of coupling se  0d each oscillator evolves according
to dUnydt  fsUnd for some smooth functionf, with
the period of oscillations given byT0 

R1
0 duyfsud. If

fsUd  2U 1 I as in Eq. (1), thenT0  lnfIysI 2 1dg
with I . 1. Following Ref. [15], we introduce the phas
variable cnstd according to (mod 1)cnstd 1 tyT0 
CsssUnstdddd ; T21

0

RUnstd
0 duyfsud. Under such a transfor-

mation Eq. (1) becomes

dcnstd
dt

 eFssscnstd 1 tyT0ddd
NX

m1

Wm
bEn1mstd , (5)

where Fszd  1yfT0fsssC21szddddg for 0 # z , 1 and
Fsz 1 jd  Fszd for all j [ Z. Whene  0, the phase
variablecnstd is constant in time and all oscillators fire
with period T0. Now suppose that the oscillators ar
weakly coupled (e small). To a first approximation, each
oscillator still fires with periodT0 but now the phases
cnstd slowly drift according to Eq. (5). Therefore, the fir
ing times may be approximated byTn

j  sss j 2 cnstddddT0
such that the right-hand side of Eq. (5) becomes a pe
odic function oft with period T0. We can then average
Eq. (5) over a single period to obtain the phase equatio

dcnstd
dt

 e

NX
m1

WmHfcnstd 2 cn1mstdg , (6)

whereH is the phase interaction function

Hscd 
1
T0

Z `

0
PstdFfc 1 tyT0g dt . (7)

Equation (6) immediately shows that delays in the prop
gation of signals between pulse-coupled neurons red
to phase shifts in the corresponding phase-coupled mo
Also note that the system of equations is invariant und
the symmetry groupG  DN 3 S1.

Proceeding along similar lines to our analysis of th
pulse-coupled model, we consider phase-locked solutio
of the form cnstd  fn 1 Vt, where fn is a constant
phase andV is an Osed contribution to the effective
frequency of the oscillators; that is,1yT  1yT0 1 V.
Substitution into Eq. (6) leads to the set of equations

V  e

NX
m1

WmHffn 2 fn1mg (8)

for n  1, . . . , N. As in the analysis of the analogou
system of Eqs. (2), we can exploit the underlying sym
metry to construct bifurcation diagrams for phase-lock
solutions. Note, however, that these solutions are n
independent of the couplinge; the coupling only affects
the value of the frequencyV. In order to make a direct
comparison with the previous pulse-coupled model w
2793
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setfsUd  2U 1 I. ThenFszd  eT0zyfIT0g, Hsfd 
eT0 K0s2fdyfIT2

0 g, whereK0 satisfies Eq. (3) withT re-
placed byT0, and Eqs. (2) reduce to Eqs. (8) to first or
der in e (see Fig. 1). Thus phase-locked solutions o
the pulse-coupled model converge to those of the pha
coupled model in the limite ! 0. The following stability
result also holds [17]: for any finiteN and for sufficiently
small e, if there exists a stable or unstable (hyperbolic
phase-locked solution of the phase-coupled model th
there exists a corresponding solution of the pulse-coupl
model of the same stability type.

The stability of phase-locked solutions can be dete
mined analytically for any finiteN. Set cnstd  fn 1

Vt 1 unstd and expand Eq. (6) to first order inu:

dun

dt


NX
m1

Jnmfun 2 umg , (9)

whereJnm  eWm2nH 0ffn 2 fmg. The Floquet expo-
nents of a periodic orbit are simply given by the eigenva
ues of the Jacobian matrix̂Jnm  Jnm 2 dnm

PN
k1 Jnk .

One of these eigenvalues is always zero, and the cor
sponding eigenvector points in the direction of the flow
that is s1, 1, . . . , 1d. The periodic solution will be sta-
ble provided that all other eigenvalues have a negati
real part. As a simple example, consider traveling wav
solutions cnstd  nb 1 Vt, where b  nbyN, nb 
1, . . . , N 2 1. The fact thatJnm now depends onm 2 n
(modN) means that the eigenvectors of the Jacobia
matrix are of the formunstd  elpt12pinp, p  kyN ,
k  0, 1, . . . , N 2 1 and the eigenvalueslp satisfy

lp  e

NX
m1

£
1 2 e2pipm

§
WmH 0f2mbg . (10)

A traveling wave solution will be stable provided tha
Relp , 0 for all p fi 0. (The stability of traveling
wave solutions in a number of different coupled oscillato
models has been investigated in Ref. [19]).

Phase-locked solutions of the phase-coupled model
furcate whenever there exists more than one eigenva
with zero real part (nonhyperbolic solutions). If one o
more real eigenvalues cross the imaginary axis then t
bifurcating branches correspond to other phase-locked
lutions as discussed previously. However, as we sh
2794
-
f

se-

)
en
ed

r-

l-

re-
,

ve
e

n

t

r

bi-
lue
r
he
so-
all

show elsewhere, in the case of an odd number of oscil
tors in the ring it is also possible for Hopf bifurcations to
occur leading to quasiperiodic behavior. Establishing th
existence of quasiperiodic (and perhaps chaotic) behav
in the underlying pulse-coupled model is less straightfo
ward and is the subject of future work.
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