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Abstract 

We study the sensory processing features of a network built of ON and OFF cells 
with global delayed feedback. We investigate the response of neural populations 
to spatio-temporal forcing, mimicking that found in most sensory systems. The 
network architecture is inspired from the physiology of the electrosensory lat-
eral line lobe (ELL) of the weakly electric fish, where we describe the collective 
behavior of populations in the pyramidal cell layer. ON pyramidal cells receive 
sensory inputs directly, while OFF cells receive a mirror image of the stimuli 
via an interneuron, inverting their response. The two opposed responses propa-
gate upstream where they recruit the inhibitory feedback pathways. To enhance 
the distinction between the sub-populations, different baseline firing rates are 
implemented (to which we refer as asymmetry). As a novel approach to this 
problem, we model the neural circuit using a system of neural field equations, 
where the connectivity is determined solely by all-to-all and non-topographic 
inhibitory recurrent connections. Motivated by numerical and experimental re-
sults on the electrosensory system, we determine the conditions for which global 
rhythmic activity states appear in response to spatially organized stimuli. Novel 
responses to localized pulses are shown in the steady state regime, where the 
feedback connections interfere with local ON and OFF activities. These effects 
are systematically compared to the dynamics of a noisy Integrate-And-Fire net-
work sharing the same architecture and parameters with the neural field for-
mulation. Lastly, we investigate the impact of intrinsic cellular adaptation on 
oscillatory dynamics. Together these results establish the theoretical basis for 
input driven transitions to rhythmic states in delayed feedback networks with 
realistic neural populations. 
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Resume 

Dans cette these, nous etudions les proprietes d'integration d'un reseau de cel-
lules ON et OFF avec retroaction globale a delai. Nous portons notre attention 
sur la reponse de populations neurales vis-a-vis un forcage spatio-temporel, re-
produisant les entrees observees dans la plupart des systemes sensoriels. 
L'architecture de notre reseau est basee sur les donnees physiologiques concer-
nant le lobe lateral electrosensoriel (ELL) chez le poisson electrique, dans lequel 
nous decrivons le comportement collectif des populations a travers la couche 
pyramidale. Les cellules pyramidales de type ON regoivent les signaux sen-
soriels directement, alors que les cellules OFF pergoivent une image miroir issue 
d'un interneurone, qui inverse la polarite du signal. Ces deux reponses opposees 
se propagent verticalement et activent alors la boucle de retroaction inhibitrice. 
Ann d'amplifier la difference qui existe entre les sous-populations presentes, 
des niveaux d'activite de base sont implementees (que Ton associent au degre 
d'asymmetrie). En tant que nouvelle approche au traitement de ce probleme 
particulier, nous modelisons le circuit neural a l'aide d'un systeme d'equations 
de type champ neural, ou la connectivity entre les differentes parties du reseaux 
est traitee uniquement par une connexion inhibitrice non topographique et glob-
ale. En se basant sur des etudes numeriques et experiment ales sur le systeme 
electrosensoriel, nous determinons ici les modalites selon lesquelles des solu-
tions oscillatoires globales apparaissent en reponse a des stimuli spatialement 
organises. De nouveaux comportements vis-a-vis des pulses localises sont mis a 
jour dans le regime des points fixes, dans lequel la retroaction interagit avec les 
activite locales des cellules ON et OFF. Ces resultats sont systematiquement 
compares du point de vue quantitatif avec un reseau equivalent composes de 
cellules de type Integrate-And-Fire avec bruit. II est alors possible d'observer la 
correspondance entre la description obtenue avec les champs neuraux, et celle 
obtenues avec les modeles plus traditionnels. Finalement, nous etudions l'effet 
de l'adaptation cellulaire intrinseque sur la dynamique oscillatoire du systeme. 
Ces resultats etablissent les fondements theoriques decrivant les transitions vers 
le comportement oscillatoire causes par des entrees sensorielles dans les systemes 
neuronaux recurrents composes de populations cellulaires realistes. 
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Introduction 

Neuroscience addresses the questions of physiology and function of neural sys-

tems. While the research on the physiological mechanisms underlying cognition 

has been the main motivation of neuroscientists and psychologists, some proper-

ties shared by the neural tissue with many physical systems have attracted the 

interest of physicists as well. The brain exhibits cases of spontaneous organi-

zation, non-linearity, non-locality and delayed interactions, resulting in various 

effects, like the propagation of activity waves, stochastic and chaotic dynamics, 

which have also been reported in many physical systems. 

Mathematical models have proven to be fruitful tools in analyzing idealized rep-

resentations of single and/or groups of neural cells, where experiments might 

be easily reproduced and theoretical predictions tested. Indeed, various param-

eters dictate the dynamics of single neurons and neural systems alike, defining 

the role they play in information processing. Such parameters obey a set of 

constraints, and through modelling, one seeks a mathematical representation of 

these constraints. Via the use of formal and often idealized representations of 

neural systems, it becomes possible to predict what the state of the system will 

be in the close future, according to its current and past state. This approach 

has been used since the beginning of the last century in a attemp to grasp the 

troubling complexity of real neural systems. Chapter 1 discusses several pioneer 

models of neural cells in detail. 

One of the major challenges in modern neuroscience is to understand the ways 

sensory systems, like vision and audition for instance, process the immense 

amount of sensory information they receive from the primary receptors. The 

efficiency of sensory system to encode and extract meaningful information out of 

sensory signals is of foremost importance to understand behavioural responses of 

various organisms. While sensory pathways might project up to cortical areas, 

a significant portion of information encoding is performed by the early stages 

of sensory systems. There, non-linear and delayed components already start to 
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extract temporal and spatial components of stimuli and project to higher brain 

centers for further processing. The physical nature of the stimuli which initi-

ated such processing mechanisms further supports the relevance of a physical 

approach to these problems. 

The realization of sensory processing tasks is a direct consequence of the ar-

chitecture of the microcircuitry. The topographic or spatial organization of 

both stimuli and connections plays a crucial role in the integration of sen-

sory information. Various studies have tried to elucidate the dynamical im-

pact of various network architectures on the stability of neural firing patterns 

[1, 2, 3] and/or on the phase of connected oscillators [4, 5]. These results have 

mainly been formulated in the context of cortical interactions, where they have 

been linked to experimental recordings like EEG (electroencephalography) and 

MEG(magnetoencephalography). In particular, feedback and recurrent connec-

tions are one of the fundamental ingredients of neural systems, being influential 

in control and motor tasks [6], implementation of memory [7, 8] and receptive 

field geometry [9]. See also [10] for an extensive review on feedback. 

Many early physiological studies depict the circuitry of sensory systems as a 

collection of static components. However, real sensory systems are highly fluc-

tuating environments, where the states of individual cells are highly influenced 

with the various time-varying signals they receive from their surroundings. As 

such, neurons are subject to a plethora of noisy and chaotic fluctuations, which 

shape the response pattern of the cells. It has been shown that noise is a 

fundamental component of neural systems, being necessary for the stability of 

organized network states [11]. Further, noisy fluctuations are responsible for 

spatially organized activity [12, 13], firing correlations [14] and resonance [15]. 

For in-depth reviews of noise in neural systems, see [16, 17, 18]. As a result, 

the information processing capabilities of the most basic neural nets requires a 

deeper understanding of the response mechanisms involved in the integration of 

fluctuating signals. Spiking dynamics might be used to track fluctuating signals 
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[19], but the role of non-linear connectivities combined with recurrent effects is 

still not clearly understood. From the point of view of physical modelling, it 

is believed that the response properties of sensory networks are related to the 

non-linear dynamical changes (either quantitative or qualitative) initiated by 

external driving forces. Analytic treatment of models of sensory systems might 

expose these dynamical changes and help elucidate the role of non-linear and 

delayed components in sensory processing tasks. 

Electroreception in the electric fish has received significant attention from neu-

rophysiologists in great part because of its relative simplicity compared to mam-

mals. On the other hand it exhibits highly evolved behaviors such as navigation, 

foraging and communication with other fishes. Electroreception is used by the 

gymnotiforms fish, where the neural circuitry involved is well known. Well es-

tablished experimental recording techniques combined with relative availability 

of such fishes further make electroreception a system of choice in the analysis 

of sensory responses. Primary sensors on the skin known as electroreceptors 

respond to electrical fluctuations on the fish skin and then project to a unique 

structure called the Electrosensory Lateral Line Lobe (ELL). The ELL is the 

first and unique relay in sensory processing and has been shown to be respon-

sible for stimuli feature extraction. Many studies ( see [20, 21, 22, 23, 24] and 

references therein) have exposed the detailed physiology of the ELL (mostly 

in Eigenmannia viriscens and Apteronotus leptorhynchus species). The ELL 

shares many features with other processing structures found in the visual sys-

tem. 

The ELL circuitry is characterized by the presence of several feedback loops, 

which exhibit quite distinct topographies. From the receptor units found on the 

fish skin up to the pyramidal cells layer, the sensory inputs are conveyed in a 

feed forward and parallel fashion. The pyramidal cells send synaptic contacts 

with the Nucleus Praementialis Dorsalis (Pd) and the Eminentia Granularis 

Pars Posterior (EGp), two cell clusters which feedback to the sensory layer with 
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both excitatory and inhibitory connections. Thus, the spiking behavior of the 

pyramidal cells is influenced by the signals they project up to these nodes, af-

ter some time lag associated with the non-instantaneous propagation of action 

potentials and the processing time of the cells present in the recurrent pathway. 

The circuitry of the ELL has inspired various computational and numerical 

studies (for instance [25, 26, 27, 28, 29]), which successfully exposed the rela-

tionship between neural dynamics and sensory stimulus, in order to correlate 

the sensory information with behavioral responses and/or specific pyramidal cell 

activity patterns. This kind of circuitry is also present in the so-called nucleus 

isthmi found in the visual system of many animals [30, 31]. 

In 2003, Doiron et al. [32] demonstrated that electrosensory stimuli showing 

sufficient spatial correlation triggered synchronous oscillatory activity states in 

a network with global delayed feedback, where the firing rate oscillations were 

situated in the gamma range (20-50Hz). This computational study used a net-

work of noisy leaky Integrate-And-Fire cells, connected via a delayed recur-

rent loop. This model reproduced the behaviour of the pyramidal cells under 

spatio-temporal stimulation. For increased spatial correlation or "binding" of 

the stochastic stimulus, global oscillatory states become stable, where "global" 

means that are cells are involved. This very important result sheds light on 

a fundamental feature of electrosensory input processing made by the ELL, 

namely to differentiate between prey-type and communication-type signals. Lo-

cal stimuli initiated by small objects in the pyramidal cells receptive field elicit 

localized responses in the sensory layer. Thus, only a small portion of the pyra-

midal cells are responding to relatively weaker spatial correlations of the input. 

In contrast, large or global stimuli, overlapping multiple pyramidal cell recep-

tive fields, trigger a massive and coherent response across the pyramidal cells 

layer. This strong response has been shown to recruit inhibitory feedback con-

nections, resulting in synchronous neural firing. The resulting strong spectral 

power in the gamma range caused by increased input spatial correlation was fur-

ther analyzed via calculations based on linear response theory, and supported by 
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experimental recordings on the weakly electric fish where the spatial correlation 

of the stimulus could be adjusted gradually [33] . Additional details about this 

result may be found in these references [34, 33]. 

Several concerns are raised by this result. First, one might ask what is the 

dynamical mechanism responsible for the cyclic response of the cells? While 

the setup of the study points toward an Andronov-Hopf bifurcation, cyclic so-

lutions are usually triggered by the variations of the feedback delay, not by 

external non-homogeneities. Further, the Integrate-And-Fire network consid-

ered is non-continuous and essentially stochastic, meaning that it is very hard 

to determine analytically what the threshold for this transition is. The network 

considered in [32] consists of a sensory layer interacting with a single delayed 

recurrent connection. This feedback pathway corresponds to the so-called direct 

feedback pathway [22], where the pyramidal cells feedback travels via the Pd. 

These connections are mainly inhibitory, and are spatially diffuse. In contrast, 

another component of this same recurrent connection local to the ELL and thus 

involves a much smaller delay, and is of mixed polarity, but has received much 

less consideration in the literature. Further, an indirect pathway from the EGp 

back to the pyramidal cell layer also influences the sensory responses of those 

cells. This indirect pathway has been almost completely neglected from the 

modelling perspective. As feedback has been shown to significantly alter the 

response properties of systems, it is natural to ask: what are the effects of these 

additional feedback loops on the genesis of rhythmic states found in [32]? 

Pyramidal cells receive the electrosensory inputs from p-units afferents. In con-

trast to [32] where the cellular responses are purely excitatory, the sensory path-

way in the ELL is divided into ON and OFF pathways. The pyramidal cells are 

also referred as E and I cells in the electrosensory literature. As illustrated in 

Fig. 2.1, ON pyramidal cells are innerved directly by the afferents and OFF cells 

receive the inputs via a granular interneuron, which mediates the signals sent 

from the p-units to the pyramidal cells. The interneuron inverts the polarity of 
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the signal it receives from the receptors, which is essentially excitatory. Thus, 

stimuli initiate two parallel and opposed neural responses: excitatory (ON) and 

inhibitory (OFF). Such di-synaptic circuitry is ubiquitous in most sensory sys-

tems, like vision, audition and pain processing. Both ON and OFF cells then 

act seemingly similarly with respect to feedback: they both excite the feedback 

population Pd in the same way. It is not clear then how feedback connections 

behave when these two responses are combined. Further, the spontaneous fir-

ing rates of ON and OFF cells can show significant differences [35]. From this 

perspective, are oscillatory states as likely to appear? Are the results presented 

in [32] robust when a second neural population of similar size (i.e. cell number) 

is added? 

Another issue raised by [32] is the properties of the noisy signal used to model 

electrosenrory inputs. Many computational and information theoretic studies 

on electroreception model sensory signals using zero mean random processes. 

Even though these types of signals have been shown to accurately represent 

certain real sensory stimuli, this particular choice of forcing is not ideal to elu-

cidate the effects of feedback on the behaviour of the neural population. How 

ELL-inspired circuits might integrate deterministic signals has received very lit-

tle attention, especially in the context of parallel ON and OFF pathways. 

Pyramidal cells are also subject to cellular adaptation. Cellular post-synaptic 

responses to steady stimuli exhibit typical decreases in amplitude, over a specific 

period of time. This decrease in amplitude has various causes, from transient 

ionic currents to synaptic depression. This form of stimulus habituation or fa-

tigue alters the response behaviour of the cells and shapes the frequency tuning 

properties to fluctuating currents. It has indeed been shown that cellular adap-

tation interacts with synchronous states and influences the response to stimula-

tion [36, 37, 38, 39]. This particular form of adaptation has not been included 

as a state variable in [32], but is likely to influence the rhythmic patterns of the 

system. 
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In this thesis, we address each of these questions using a neural field model. 

Most analytical and computational studies on the ELL have dominantly been 

performed using noisy Integrate-And-Fire networks. In contrast, neural fields 

constitute a class of continuous models (in both time and space), which greatly 

facilitates the steady state and bifurcation analyses from the population per-

spective. Designed for modeling relatively slower dynamics on patches of cells 

rather than the firing activity of individual cells, neural fields have been used 

to explore sleep [40], the spatial organization of working memory [41, 42] and 

even the cause of some visual hallucinations [43]. There they have proven to 

be tools of choice in the study of neural populations. For a more extensive re-

view of neural fields, see Section 1.3.3. Neural fields use deterministic dynamics 

to represent noisy networks, where the slower time scale and coarser spatial 

graining average-out random fluctuations. Further, the model predictions have 

been shown to be in good agreement with extra-cellular recordings known as 

local field potentials which register the firing activity of populations of cells [44]. 

The analysis of our model is segmented in a series of published or submit-

ted articles, where specific issues are studied in detail. Prior to those articles, 

Chapter 1 introduces the necessary background material, related to neuronal 

physiology and modelling, especially in the context of sensory systems and ON 

and OFF cells. An exhaustive description of the ELL is also provided, as well 

as an overview of generic neural field models. Our model is derived in Chapter 

2, where we construct an idealized network inspired by the circuitry involved 

in electroreception. In Chapter 3, we demonstrate how global rhythmic states 

are triggered by deterministic spatio-temporal inputs. We study the impact of 

multiple feedback loops of different polarities (either excitatory or inhibitory) 

on the genesis of cyclic solutions. On the basis of these results, Chapter 4 

constitutes a complete bifurcation analysis of our model, where we study the 

role of asymmetrical firing rates and feedback delay on the sensory response of 

the system to static and time-periodic stimuli. There, we expose novel effects 
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caused by recruitment of recurrent connections by the ON and OFF popula-

tions, and we systemically compare the predictions of the neural field model 

with an equivalent network of noisy Integrate-And-Fire cells. In Chapter 5, 

we perform a comparative study between the response properties of networks 

built of ON and OFF cells, and those built solely of excitatory cells. We expose 

the possible functional advantages of di-synaptic circuitry on the integration of 

both static and time-periodic pulses. In Section 5.7, we present novel results 

concerning stochastic forcing in an Integrate-And-Fire network of ON and OFF 

neurons. Chapter 6 discusses the role of cellular adaptation on the stability of 

global oscillations and on the oscillatory response threshold. We also show how 

adaptative forces enhance the response amplitude of the sub-units to a time-

varying stimulus. The thesis then ends with a discussion and some concluding 

remarks in Chapter 7. 

Non-homogeneous problems (like the ones considering external stimulation) are 

evoking a vivid interest across the dynamical systems literature. As most phys-

ical (and biological) systems are highly fluctuating environments, the need for 

theoretical tools to approach non-linear driven systems, often times involving 

delays, has become of prime importance. From a general standpoint, Dynamical 

Systems Theory does not yet provide the analytical tools required to deal with 

the stability of generic driven systems. As such, must of the current advances 

are made using specific examples of differential equations which admit an ex-

plicit solution, or by using computational techniques to solve the aforementioned 

systems numerically. This is especially true when one considers non-linear delay 

differential equations (DDE). Although they are extensively used in mathemat-

ical biology, laser theory and control, a standard technique to approach non-

homogeneous problems is still missing. As a parallel project to this thesis, we 

have developed a center-manifold approach to investigate the unfolding of solu-

tions in parameter space near a bifurcation for a generic scalar non-linear and 

non-autonomous delay differential equation. A short description of the work is 

presented in Appendix A. 
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Statement of Originality 

This thesis is an article-based work. As opposed to a monograph, it presents 

papers that are either published or submitted. The status of each paper or 

manuscript is clearly indicated in the following list, as well as the respective 

contributions of the co-authors. The work in all the papers was guided by my 

co-supervisors. 

• Chapter 3. 

This chapter is a copy of the article: 

J. Lefebvre, A. Longtin, and V. G. Leblanc. Oscillatory response in a 

sensory network of ON and OFF cells with instantaneous and delayed re-

current connections. Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, 368:455-467, 2010. 

This article analyzes in detail how global oscillations appear in a network 

of ON and OFF cells with all-to-all delayed feedback with external stimuli. 

In particular, we studied the impact of additional non-delayed or instan-

taneous feedback loops on input-induced Andronov-Hopf instabilities. I 

performed all the numerical simulations and theoretical analysis. I am the 

main author of the text and figures, while corrections and comments were 

added by A. Longtin and V.G. LeBlanc. 

• Chapter 4. This chapter is a copy of the article: 

J. Lefebvre, A. Longtin, and V.G. LeBlanc. Dynamics of driven recurrent 

networks of ON and OFF cells. Phys. Rev. E, 80:041912, 2009. 

In this article, we performed a complete bifurcation analysis of our model, 

and exposed multiple types of responses caused by spatio-temporal in-

puts. We systematically compared the results predicted by our neural 

field model with numerical simulations of an equivalent noisy Integrate-

And-Fire network. I did all the analysis and numerical simulations, along 

with all the figures contained in the article. The text was written con-
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jointly with A. Longtin, and corrections were added by V.G. LeBlanc. 

• Chapter 5. This chapter is a copy of the manuscript: 

J. Lefebvre, A. Longtin, and V.G. LeBlanc. Comparison of responses of 

recurrent nets of ON and ON/OFF cells to deterministic stimuli, Journal 

of Biological Physics, 2010, in press 

This article analyzes in detail the input response distinctivenesses be-

tween networks built solely of ON cells and those with both ON and OFF 

cells, with respect to spatio-temporal sensory forcing. I performed all the 

numerical simulations and theoretical analysis. I am the main author of 

the text and figures, while corrections and comments were added by A. 

Longtin and V.G. LeBlanc. 

• Chapter 6 This chapter is a copy of the submitted manuscript: 

J. Lefebvre, A. Longtin, and V.G. LeBlanc. Neural adaptation facilitates 

oscillatory responses to static inputs in a recurrent network of ON and 

OFF cells, Submitted to the Journal of Computational Neuroscience on 

July 16, 2010 

In this short paper, we study the effect of cellular adaptation on the gen-

esis of input-induced Andronov-Hopf instabilities. I am the main author 

of the text and figures, while corrections and comments were added by A. 

Longtin and V.G. LeBlanc. 

• Appendix A. This Appendix constitutes an overview of the preprint: 

J. Lefebvre, A. Hutt, A. Longtin, and V.G. LeBlanc. Non-autonomous 

center manifold reduction in a model of delayed feedback, under review 

for Physica D, 2009 

This article puts forward a novel way of computing center manifolds for 

non-autonomous scalar differential equations with time delay. This project 

was realized during an internship held at LORIA, Nancy, France. The ar-
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t ide was co-written with A. Longtin and A. Hutt. I wrote the theory and 

analytics, and performed all the numerical simulations. A. Hutt wrote 

the section on the boundary value problem, and performed the calcula-

tions related with the Greens function approach. A. Longtin wrote the 

introduction. V.G.LeBlanc detailed the center manifold theorem section 

and the applicability of our approach. All the co-authors corrected and 
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Chapter 1 

Background 

In this thesis, we investigate non-linear sensory processing features in a neural 

field model with delayed recurrent connections. Neural field models form a class 

of high level representations of neural networks. There exists two natural ways to 

introduce such models. The first approach presents neural fields as ideal math-

ematical models of spatially structured activity patterns in large-scale networks 

like the cortex. The network equations are formulated as abstract represen-

tations of neural activity, and it becomes harder to connect with the specific 

example at hand. The other approach builds the neural field formalisms on the 

basis of cellular behavior and network dynamics. I chose the latter because of its 

greater connection with physiology. Thus, in order to understand the language 

and shape of the model we investigated, we must go through a review of the 

building blocks of neural dynamics and modelling. In this Background section 

we will outline the most salient elements in mathematical neuroscience by re-

viewing some fundamental properties of cellular and network models . This will 

be done from the standpoint of modeling and computation. 

The review given here is by no means exhaustive. In Section 1.1,1.2 and 1.3, we 

will review the foundational elements of computational neuroscience. We will 

follow the lines of [45, 46, 47, 48]. In Section 1.3.3 we will introduce and derive 

a neural field model of a large scale neural network. Specialized references will 

22 



be given there. Further, in Section 1.4, we will present an overview of the visual 

and electrosensory systems. This will expose the circuitry and features on which 

our model is based. Explicit references will follow the text. 

1.1 The Neuron 

Neural interactions are mediated by cells, called neurons, which transmit and 

relay action potentials, which are electrical pulses in the form of propagating 

chemical gradients of electrically charged molecules. The neurons themselves 

evolve in an environment built of glial cells, which provide both structural sup-

port and energetic resources. Neurons come in various shapes and sizes, but can 

nevertheless be physiologically divided into three primary segments: the den-

drites, the soma and the axon, whose structures varies immensely in size and 

extent. Aside from their morphological specificities, these segments possess very 

distinct roles in the reception, emission and relay of action potentials towards 

other cells. 

Neurons are highly specialized, and thus possess various functional roles, ap-

Figure 1.1: Neuron. Simplified schematic of a pyramidal cell 

pearing in circuits ranging from the retina up the cortical regions . Irrespec-

tive of their shape, size or location, the relay of electrical signals occurs via 

a sequential polarization and depolarization of the membrane, performed by 

a sudden discharge of electrically charged particles in and out of the confine-

ment of the soma. At rest, these charged particles are segregated in and out 
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of the membrane coherently with their species, resulting in different chemical 

concentrations across the cell membrane, which in turn result in an equilibrium 

voltage of about -80mV. The reception of electrical perturbations, or inputs, al-

ters the electro-chemical balance across the somatic membrane. If the resulting 

transmembrane voltage increases up to a threshold value of around -50mV, the 

involved cations and anions (K+, Na2+, Ca2+, C1-, etc) travel in and out of the 

membrane using specific conduits called channels. The ion channels are protein 

pumps which are activated by high polarization levels, and possess very specific 

timing and transport properties. Thus if the potential across the membrane ex-

ceeds some ion species-specific level, the associated channels open up, allowing 

some ions to leave and other to enter the soma. Because the ion channels do not 

operate all simultaneously, the somatic voltage follows a sharp stereotyped jump, 

and then comes back to its original level. This depolarization-hyperpolarization 

sequence forms an action potential. The resulting electrical pulse travels down 

the axon in a regenerative fashion all the way to the synapse, where it is relayed 

to the post-synaptic cell, as a new input. 

Each of the steps in a neuron discharge is a complex electro-chemical process 

that involves many physiological details, especially in regard to the role played 

by the different components or branches of the cell in the relay and discharge 

processes. The reception of pre-synaptic action potentials and their propa-

gation across the selected dendrite involves important resistive and capacitive 

influences, further aggravated by the spatial structure and ramification of the 

dendritic tree. Axonal conduction and the role played by myelin, for instance, 

in the regeneration and transport of electrical pulses further complicates the 

issues of decay and timing of signal transport through the cell. Nevertheless, all 

these details involved in the emission of an action potential, although relevant 

and impacting on the behavior of the cell, do not alter qualitatively its basic 

function: the genesis and transfer of electrical signals. Detailed discussion of the 

electrical and molecular dynamics involved in the discharge of action potentials 

can be found in [49, 48, 46]. 
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1.2 Models of the neuron 

The purpose of mathematical and computational neuroscience is to design sets 

of mathematical models and numerical algorithms to explain and potentially 

predict neural processes. The ways cells and networks transmit and process 

information are investigated by looking at the properties and outcomes of these 

models, by means of theoretical analysis and numerical simulations. Of foremost 

interest is the ability to predict the response of neural systems, given some pre-

synaptic input. In this section, we outline the main discoveries and advances 

in neuroscience modeling. For an complete review of computational models 

classification and evolution through the last decades, see [50] . 

1.2.1 Integrate-And-Fire model 

Attempts to replicate single cell spiking behaviour can be dated as early as 1907 

with Lapicque and his Integrate-and-Fire model, still widely used today ([51] and 

references therein). Lapicque description of the neuron is empirical, in the sense 

that even though one could record the spiking activity of cells, the exact mech-

anisms underlying the emission of the action potential were not known. In the 

Integrate-and-Fire model (IF), the neuron is mapped to a simplified electrical 

accumulator, which is said to emit an action potential or "fire" whenever some 

artificial voltage threshold is met. The voltage increases according to incoming 

pre-synaptic input current. The Integrate-and-Fire model is the first example 

of single-compartment models, which reduces the behavior of the neuron to its 

somatic dynamics and where dendritic and synaptic effects are neglected. The 

advantage of this type of model lies in the fact that an Integrate-And-Fire de-

scription allows a good estimate of the cell spiking behavior with respect to 

incoming inputs, without a precise mapping of the internal processes. Such a 

mapping is highly non-linear, and can become quite computationally consum-
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ing to reproduce. As a result, the Integrate-And-Fire model is an oversimplified 

and artificial representation of the neuron, providing an easy manipulation of 

a large number of cells. This makes the Integrate-And-Fire model ideal tool 

for the study of networks. The IF model has proven its relevance and has been 

repeatedly adjusted and modified since its first incarnation, to incorporate more 

advanced physiological processes like spike adaptation or spiking latency and to 

map more elaborate circuits. In its most common form, the Integrate-And-Fire 

model contains a negative term to account for the various current leaks; it is 

thus often referred as LIF, for "leaky Integrate-And-Fire". 

The Integrate-And-Fire is the first example of a conductance-based model. It 
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Figure 1.2: Spiking dynamics reproduced by an Integrate-And-Fire 

model. Here, a constant bias input of I — 50mA/cm
2 drives the cellular 

membrane, making it emit a series of action potentials as per Eq. 1.1. Pa-
rameters where chosen such that Vreset = —SOmV and Vth = —45mV for 
gieak = lmS/cm

2
. The time scale was adjusted. 

indeed describes the time evolution of the voltage across the membrane of the 

cell, taken at the soma, as a function of the total input current I(t) it might re-

ceive from its surroundings, considering the pre-synaptic and dendritic processes 

as passive. The voltage variable V(t) in this case obeys 

CV(t) = C^P- = -guakV(t) + I(t), (1.1) 

V,t 

v_. 
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where C is the capacitance of the membrane and gieak is the conductance gain 

of the leaking potential. Fig. 1.2 illustrates the time evolution of V(t) in Eq. 

1.1. Given that the total current to the soma constitutes an excitatory input 

(i.e. I(t) > 0), the membrane potential will increase until it reaches an articifial 

threshold value from below. This threshold is typically labelled Vth- Whenever 

y — Vthy a spike is said to be emitted, and the value of the voltage is reset to 

some sub-threshold value, labelled Vreset- In contrast, if the input is inhibitory 

(i.e. I(t) < 0), the voltage decreases, reducing the probability of meeting the 

voltage threshold. The resulting ability of the model to mimic the evolution 

of the membrane voltage is restrained to sub-threshold dynamics. Variants of 

the LIF incorporate adaptation currents, noisy inputs, other more specific ionic 

currents, synaptic currents due to feedforward and feedback connections, to 

replicate the neural behavior with increased accuracy, but without sacrificing 

the computational advantage this class of models provides compared to the more 

physiological representations available. 

1.2.2 Hodgkin-Huxley model 

The mechanisms underlying action potential discharge were first implemented 

successfully in a conductance based model in 1952 [52]. Experiments performed 

on the giant squid axon allowed Andrew Hulxey and Alan Hodgkin to describe 

the emission of an action potential as being similar to the charge and discharge 

of a capacitor, where the involved ionic currents are activated by voltage-gated 

nonlinear conductance channels. The emission of an action potential is the 

consequence of the interplay of multiple voltage-gated ionic currents having dis-

tinct timings, activating and de-activating according to the current membrane 

potential and rest voltage, resulting in a quite realistic description of somatic 

dynamics. As stated before, the transit of the most common ions involved in 

spike discharge across the membrane, namely sodium Na+, calcium Ca 2+, 

potassium K+ and chloride CI- , temporarily perturb the electrical equilibrium 
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that is maintained across the somatic membrane; the incoming electrical pulse 

will not affect each of those channels simultaneously nor with the same strength. 

The resulting deviation of the membrane potential from its resting states was 

shown to have both the shape and properties of an action potential. This result 

led to the award of the Nobel Prize in Physiology and Medicine to Alan Hodgkin 

and Andrew Huxley in 1963. 

The concentration of ions inside and outside the soma is responsible for their 

respective equilibrium potentials, called the Nernst potentials, towards which 

the individual voltages try to relax. For some ionic species m, it is defined by 

III y^rn. outside 

where R is the ideal gas constant, z the valence of the concerned ion, T the tem-

perature, and Cm are the concentrations inside and outside the soma. F is the 

Faraday contant. A neuron at rest is in electrical equilibrium whenever the ions 

generate a voltage that corresponds to a weighted function of their respective 

Nernst potentials. Upon electrical perturbations, however, the transmembrane 

transit of electrically charged particles create currents flowing in and out the 

membrane. These species-dependent currents have amplitudes that depend on 

the instantaneous value of the potential V and the Nernst potentials, resulting 

in a non-linear conductance function gm(V) of the ionic species. Ionic currents 

Im for a species m are given by 

Im = 9m(V)(V-Em), 

where Em is the associated Nernst potential. According to Kirchhoff law, the 

sum of the ionic currents across a patch of the soma must be 0, so that the flow 

of charged particles in and out the membrane equilibrates. Thus, one may write 

m 
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where CV is the capacitive current of the membrane, and / constitutes the 

pre-synaptic input current to the cell. The resulting form has the structure of 

a conductance-based evolution equation governing the somatic potential V(t), 

CV=-YJ9m{V){V~Em) + I. 

m 

If we then restrict the dynamics to K, Ca, Na and CI ions, we obtain a dynamical 

model of the cells voltage respectively to these ionic species 

0 1 2 3 4 

Time (ms) 

Figure 1.3: Time evolution of the voltage variable in the Hudgkin-

Huxley model. The state variable V(t) reproduces accurately the shape and 
timing of a real action potential. An input current depolarizes the cell's mem-
brane, and triggers an action potential. The voltage build-up to the firing 
threshold (around -45mV), although less apparent than in the Integrate-and-
Fire case, still takes place. The membrane voltage evolution is governed by Eq. 
1.2, while the values of the parameters for this case may be found in [46]. 

CV = -gK(V-EK)-gca{V-ECa)-9Na{V-ENa)-gci(V-Eci) + I, (1.2) 

where the exact structure of the conductance functions gm{V) have been volun-

tarily omitted, but may be found elsewhere [46, 49, 48]; note that the specific 

conductance values and Nernst potentials vary across different types of neurons. 

Each of those conductances is in fact governed by one or more rate equation 

describing the states of opening and closing of the associated channel; these " gat-

ing" dynamics thus increase the dimensionality of the model. As in the case of 

the Integrate-And-Fire model, the Hodgkin-Huxley model has seen many vari-
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ants emerging since its introduction, to incorporate additional conductances in 

the form of supplementary ionic species, adaptative terms, and more elaborate 

conductance functions. In Fig. 1.3, we plot the membrane potential V(t) as a 

function of time when an action potential is emitted. 

1.2.3 Other conductance-based models 

The Integrate-And-Fire and Hodgkin-Huxley models represent only two of the 

best known conductance-based models describing the electric temporal activity 

of a cell, on which a plethora of alternate models have evolved to fit certain phys-

iological contexts. The Integrate-And-Fire and Hodgkin-Huxley models stand 

quite far away from each other in terms of physiological precision. Since then, 

progress has been achieved using simpler versions of the Hodgkin-Huxley model, 

where some physiological aspects are set aside in order to get greater mathe-

matical insight on the underlying mechanisms at work in the spiking process. 

This trade off between physiological precision and mathematical simplicity has 

proven to be quite successful in describing neuronal excitability and spike gen-

eration. The Fitzhugh-Nagumo model (1961) corresponds to a two-dimensional 

equivalent of the Hodgkin-Huxley model, where conductance dynamics has been 

replaced by an artificial recovery variable, and where the intrinsic non-linearities 

have been given a cubic polynomial form. The resulting two-dimensional dy-

namical system allows a full representation of the solutions in phase space, where 

potential instabilities caused by an external current may be both analytically 

and geometrically determined. The Fitzhugh-Nagumo model has been used to 

explain excitation block and anode break excitation. 

In contrast to the simplification approach commonly used in conductance based 

models, more elaborated models have been developed to investigate the spiking 

behavior of neural cells in greater details. The software NEURON[53] allows a 

compartmental description of the neurons as a vast construct of sub-units which 

obey sets of dynamical laws. One can then build a three-dimensional model of 
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the cell, where the axon, membrane and dendrite are built out of individual 

compartments, which interact with each other. The resulting computational 

construct allows the monitoring of hundreds of physiological and chemical vari-

ables which evolve in real time, and obeying the constraints of the cell design. 

1.2.4 Ra te models 

From the point of view of mathematical neuroscience, single-compartment mod-

els describe and hopefully predict the time evolution of a neuron. In most cases, 

the solution of these systems is a time series of the voltage as a function of time 

i.e. V(i) which takes the form of successive jumps, called spikes. These sudden 

perturbations of the voltage occur at very precise times, corresponding to mo-

ments when the neuron emits action potentials. The action potentials convey 

a lot of information, encoded through their shape, but these depend on many 

variables that are not readily measurable. For instance, the level of activation of 

sodium-gated channels at some time t might not be recordable at all. Further, 

many dynamical variables may be subject to random fluctuations. Therefore, 

it might prove useful to extract computationally meaningful information from 

a neuron's behavior by means of some data sampling. The most common and 

simple way of doing this is to record solely the timing of the spikes emitted. 

The resulting representation of V(t) is the firing history of the neuron and is 

called a spike tram. A spike train s(t) is a series of Dirac delta function located 

at the moments tt when the cell fired: 

s(t) = £*(*-*,)• 

The spiking behavior of the neuron is fully determined by the quantity s(t). 

This digital way of describing the behavior of a neuron is ideal for statistical and 

probabilistic descriptions of neurons. A main challenge in the analysis of spike 

trains is to get rid of their variability. Indeed, neural systems are intrinsically 

noisy. This implies that even in cases where identical stimuli are presented to 
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cells, they do not necessarily produce identical outputs. In order to predict the 

behavior of neural systems, one requires a higher reliability in the responses. 
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Figure 1.4: Rate description of neural membrane voltages. The mem-
brane voltages V,(i) are first expressed in terms of spike trains s t(i), where the 
action potentials take the form of singular stereotyped events. Averaging as in 
Eq. (1.3) yields a rate description of individual cells or network. 

Action potentials correspond to excursions of the somatic voltage that last for 

l-5ms, while axonal and synaptic processes have much slower dynamics i.e. in 

the range between 10 ms and several seconds. On short time scales, the voltage 

of individual cells is subject to various sources of inputs and noise, which, as 

mentioned, influence the response of the cells. The two main sources of neural 

noise are random openings and/or closing of ion channels and synaptic inputs 

from by distal cells [48]. These fluctuations result in a great variability of the 

response pattern on several successive trials with the same stimulus. These 

variations might however be filtered and averaged out by slow synaptic com-

ponents. Furthermore, if one considers a network of sufficient size, the average 

fluctuations of responses decreases towards zero, as long as the inputs given to 

the cells are not or only weakly correlated. Indeed, common neural inputs in-

troduce correlations in the firing patterns of stimulated cells, which may cause 

or amplify differences between the responses. However, if the firing variability 

is sufficiently reduced, a smooth firing rate description may provide an accurate 

description of spiking activity. The panel of dynamical effects exposed by a 
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firing rate model exhibits a close proximity with that of spiking models [54]. It 

has been shown than the rate, on the top of specific spike timing, is also used 

for coding purposes [45, 55, 56]. Even though the exact mapping between spik-

ing and rate models has not yet been exposed, several studies have shown that 

unless the inputs received by the cells are highly correlated, the two description 

share very common behavior [57, 56, 58, 59, 60]. 

As Fig. 1.4 illustrates, rtate models replace the spike train function s(t) by 

a rate function r(t), defined by 

1 f
t+T 

r(t) = - j s(r)dT, (1.3) 

where T is a usually short averaging period. This quantity may be further 

averaged over several different cell responses i.e. over many st(t) to obtain 

the rate description over a small population of cells. The most direct way of 

achieving a firing rate description of a cell's spiking activity is to use the output 

voltage profile V{t) of a conductance-based model as in Eq. 1.1 or Eq. 1.2, 

for instance, and use the resulting spike train as an input for Eq. 1.3. In 

the context of steady-state systems, the firing rate obeys r = / ( / ) , where / 

is a bounded activation function, which oftentimes has the form of a sigmoidal 

function. Increasing pre-synaptic input current I will generate sustained spiking 

activity, until saturation is met, partly due to the recovery period of the neuron 

after a spike - also known as the refractory period. However, for time-dependent 

dynamics I(t), the rate r(t) is typically modelled as a linear process around the 

steady state relationship r(t) = f(I{t)), namely 

*M = -r(t) + f(I{t)), (1.4) 

where / corresponds to the sum of inputs to the cell. It is also common to 

express post-synaptic voltages in conductance-based models by functions of the 

pre-synaptic rates. This assumption is motivated especially in the context of 

networks, where the neurons integrate a vast number of pre-synaptic inputs. 
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Combined with the filtering performed by the slow conductances and synaptic 

processes, a smooth pre-synaptic input function may represents well the signal 

integrated by the cell if the time scale is chosen properly. Indeed, the ability 

of Eq. 1.4 to accurately describe the evolution of the firing rate depends on 

the averaging period T on which the rate is computed, and further specifies the 

range on which the approximation r(t) = f(I(t)) holds. Further details may be 

found here [45]. 

1.3 Networks 

Neurons form ensembles, and rarely take part in any process without the active 

contribution of many other neurons, which also participate in a information pro-

cessing tasks .These networks are found throughout the brain, and are involved 

in all tasks performed by sensory, motor and cognitive systems. The neuron 

models seen in the previous section represent the neuron behavior as a complex 

process in which ions and protein pumps interact to generate action potentials. 

In the context of networks however, it is the wiring scheme between the neurons 

that determines the function of a network and dictates the appropriate weight 

given to individual activity patterns. 

At the end of the axon lies the synapse, which constitutes a biochemical junc-

tion between two neurons. As the action potential propagates along the axon 

and reaches the pre-synaptic bouton, the potential fluctuation activates cal-

cium channels. Calcium-sensitive vesicles are then activated and merge with 

the membrane, releasing neurotransmitter across the synaptic cleft. These neu-

rotransmitters diffuse up to the post-synaptic receptors, located at the ends of 

the post-synaptic dentrites. The main transmitters found in the brain are gluta-

mate and 7-aminobutyric acid(GABA). The transmission of glutamate activates 

excitatory receptors. These glutamate sensitive receptors (mostly AMPA and 

NMDA) increase the probability that the post-synaptic cell will emit an action 

potential given a pre-synaptic signal. GABA-sensitive receptors generally do 
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the opposite, that is to decrease the probability of post-synaptic firing. These 

connections are thus labelled inhibitory. Once the synaptic transmission has 

occured, the dendrites undergo post-synaptic spike reconstruction and relay the 

action potential up to the soma of the target cell. 

This process, called the chemical synapse, is one of the few ways neurons con-

nect to each other. Electrical synapses or "gap" junctions, which are physiolog-

ical connections between cells at various points on the cellular body, play the 

same functional role: electrico-chemical signals travel from one cell to another. 

Synaptic connections create correlations between the states of the networks el-

ements. In order to determine the state of a given neuron, one has to know 

the state of all cells with which there exists a connection. These cells may also 

share synaptic contact with others, thus exponentially increasing the amount 

of information required to determine the state of the members of the network. 

Synaptic connections vary greatly in strength and range, and are often plas-

tic i.e. their properties evolve with time. As the neurons are very specific, so 

are the networks in which they evolve. The biological circuits are the result 

of active evolutionary pressure, which has shaped the physiology of the neural 

systems and optimized them to perform a specific task. From the functional 

standpoint, the scheme of connections, or connectivity, dictates the architecture 

of a network, on which subsequent dynamics will depend. Pre-synaptic inputs 

stimulating some cells in the system may influence the response of the full net-

work. 

As in the case of single neurons, the study of neural networks is subject to 

many different approaches, some of which take into account some details pro-

vided by physiology, and some do not. This has led the fields dealing with 

neural networks to undertake quite separate paths. The single cell models seen 

in the previous section describe the evolution of the somatic membrane poten-

tial as a function of incoming input currents, ion-channel activation and leaking 

currents. Network models incorporate signals coming from neighbouring units, 
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and model the transition from pre-synaptic inputs to post-synaptic responses. 

The amplitude of the pre-synaptic signals will depend on the architecture or 

connectivity profile considered. 

1.3.1 Neural Nets 

In contrast with the physiologically inspired and fine grained descriptions of 

the neuron like the Hodgkin-Huxley model, some models use abstract repre-

sentations of the neurons, where the focus is on the computational and logical 

operations performed in ensembles. These functional models address high order 

cognitive issues like learning, memory, and pattern formation using networks 

built of simple interacting units. 

Such functional representations of the neuron can be traced back to the McCulloch-

Pitts model [61], describing the action potential transmission as a simple logical 

operation. The "neurode" (simplified version of the neuron) becomes little less 

than an binary operator that switches between "on" and "off' or "0" and " 1 " 

states. As all internal dynamics and extra-cellular influences are being neglected, 

the cell is implemented as a binary operator: if the input I is larger than a given 

threshold h, the state u of the cell is set to active (u = 1), and set to silent 

(u = 0) otherwise. Mathematically, 

u = H(I-h), (1.5) 

where H is the Heaviside step function centered at 0. When a network of such 

cells is considered, the input / becomes the sum of the pre-synaptic inputs. 

The interaction between elements of such a network is commonly implemented 

via a connexion matrix W, for which the elements wi:s represent the weight of 

the synaptic coupling between the neurodes i and j . The pre-synaptic input It 

received at the i-th neurode is a weighted sum of the activities or states of all 

the units in the network, namely 
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Figure 1.5: McCulloch-Pitts network schematic. 

where the individual states are u3. Combining Eq.1.5 and 1.6, we obtain an 

example of a one-dimensional neural net 

< = #£>„«,-ft) . (1.7) 
3 

Equation (1.7) is called the McCulloch-Pitts network, and is illustrated in Fig. 

1.5. Similar neural nets, like the perceptron [62], have been used since their 

introduction to model the most basic forms of learning. The perceptron is 

the simplest form of such networks, where the dynamics is constrained to a 

pre-determined output pattern. In this case, the strength of the connections 

between the members of the network changes according to some predefined rule 

(see [63]). Advances in neural nets theory, as in the case of the Hopfield model 

of associative memory [64] for instance, have made significant impacts on the 

artificial intelligence, statistical mechanics and computer science communities. 

For a good review of the early developments in neural nets and applications, see 

[65]. 
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Figure 1.6: Raster plot of an Integrate-and-Fire network of N = 100 
cells. In this example, the neurons are driven by some external noise and a 
minimal bias current. 

1.3.2 Conductance-based networks 

The ongoing development of computers gave access to important computational 

capabilities. In this context, the use of oversimplified cellular models, like the 

McCulloch-Pitts unit, becomes less relevant. Networks built of Integrate-And-

Fire, Hodgkin-Huxley or even more elaborate neuron models is now common 

across the literature. In these computational networks, the equation for the 

time-evolution of the voltage contains inputs associated with pre-synaptic in-

puts. In the case of Integrate-And-Fire neurons, Eq. 1.1 may then be re-written 

as 

(1.8) 
ndV1{t) ^ 

where It (t) is the pre-synaptic input at the j-th from the i-th neuron, where i / j 

in a network of N cells. In this example, the synaptic weights are also labelled 

wl}. Numerical simulations facilitate the analysis of large scale networks i.e. for 

large N, where it is possible to investigate the effects of various connectivity 

profiles and architectures on the input response of the cells. A specific network 

behavior is plotted in Fig. 1.6. In such a figure called a rasterplot, only the 

moments when a neuron fires are plotted. We thus see the individual spike 
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trains. 

1.3.3 Neural Fields 

The number of cells in real neural tissue is of the order of 103 to 105 individuals 

per millimetre cube (for estimates in the human visual cortex, see [66, 48]). At 

this scale, obtaining a blueprint of the three dimensional circuitry involved in 

action potential transmission is a task still far beyond the capabilities of ex-

perimentalists. Furthermore, real cells are systems subject to multiple noise 

sources, which may be hard or even impossible to monitor or to identify. While 

conductance-based networks may be used in conjunction with numerical ex-

periments to test relatively large noisy networks (n > 100), these still do not 

approach the complexity of real neural systems, and do not give sufficient in-

sight into the dynamical mechanisms responsible for the formation of activity 

patterns and into the information processing properties of biological tissue in 

general. These facts suggest to use another approach. 

Neural fields are models that describe neural systems using coarse space and 

time graining. They are designed to consider a neural system as a spatio-

temporal manifold on which a state variable, the mean firing rate or the mean 

membrane potential, evolve. Instead of looking at a network as interconnected 

nodes which possess individual yet correlated dynamics, a neural field lumps the 

neural activities into a single neural mass [67, 68]. This continuum approach of 

neural systems was proposed mainly by Wilson and Cowan [69, 70] who first de-

signed a model where the state variable is the proportion of active cells. Later, 

Amari extended this approach to pattern formation problems [71]. 

The purpose of this different description scale is two-fold: 1. From the pop-

ulation perspective, the neural tissue is vast and each spatial location contains 

a large number of neural cells. It has been shown that the dendritic tree of neu-

rons in most neural systems constitutes the more volumetric component [72]. 

Thus, on average, the spatial properties of the neural tissue are largely domi-
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nated by axo-dendritic interactions. Local sub-networks are connected to each 

other via a complex circuitry of synapses, dendrites and axons, which form a 

spatially homogeneous domain. With this formulation, the neural tissue forms 

an excitable medium, through which the activity propagates. 2. On much 

slower time scales, the neural temporal dynamics are vastly dominated by the 

synaptic processes. Random fluctuations typically operate on the shorter time 

scale of the soma, and are averaged out from the state variable, which takes the 

form of mean firing rates. The resulting formalism should then be deterministic 

(for the study of stochastic neural fields, see [12, 73]). Neural fields have been 

used to reproduce collective activity patterns monitored via field potentials [44]. 

Spatially structured solutions of neural field equations have also been applied 

to understand cortical phenomena observed through EEG imaging, like visual 

hallucination, rhythms and short term memory [74, 68, 75]. 

Neural field equations 

We will now derive a typical neural field equation from the spike and rate de-

scriptions outlined in Section 1.3. By doing this, we will follow the lines of some 

reviews available [76, 68, 72, 60, 74, 77, 44, 78, 75]. A neural field describes a 

scalar function u(£, i) corresponding to the spatio-temporal state of the mean 

somatic membrane potential, or activity, taken amongst a sub-network of cells, 

located at position £ and at time t. The post-synaptic potential u(£, t) is de-

termined by a temporal convolution of the total pre-synaptic potential function 

U(£,t) over a synaptic response function rj(t). The convolution operator is de-

noted by *, and is defined for two time-dependent functions a(t) and b(t) by 

a * b = f_ a(t — s)b(s)ds. The function r\ is also called a synaptic filter, 

and is a solution of models describing the neurotransmitter vesicles opening 

probabilities [45]. It models the post-synaptic response to a stereotyped delta 

function-shaped action potential. A sudden neurotransmitter release facilitates 

the signal transmission until enzyme degradation causes an exponential decrease 

in synaptic conductance. In Fig. 1.7, two common synaptic response functions 
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are plotted, namely the exponential and alpha functions. 

In an infinite domain, the post-synaptic potential u(x, t) at £ = x may be 

Time 

Figure 1.7: Synaptic response functions. The response functions model the 
post-synaptic response to a delta-function action potential, The membrane de-
cay follows a rapid increase in post-synaptic potential (PSP) with time constant 
a. The bold line plots the exponential function: r)(t) = ae~

at
. The dashed line 

plots the alpha function: T](t) = a
2
te~

at
. Both functions are equal to 0 whenever 

t < 0 The synaptic time scale was chosen to be a = 2 in both cases 

expressed as a function of the total pre-synaptic activity U(x,t) accumulated 

since t = —oo, 

u{x,t) = {r]*U){x,t)= ri(t-s)U{x,s)ds. (1.9) 
J — oo 

The post-synaptic field u depends on the local and non-local interactions be-

tween spatially distant sources of potentials, and is entirely determined by the 
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Figure 1.8: The mean somatic membrane potential as a continuous 

variable. The mean somatic membrane potential u(£, t) is derived from the 
synaptic interaction between all possible neural sites. The field at £ = x is 
determined by integrating all the contributions from all f. 

sum of the synaptic interaction interactions that the units share with their sur-

roundings. These define the transition between axonal pre-synaptic activities 

u(y,t), initiated at some position £ = y, and post-synaptic potentials u(x,t) 

at £ = x (see Fig. 1.8). Consequently, the total pre-synaptic potential U{x,i) 

corresponds to the sum of all action potentials received at location x from across 

the domain, 

/

oo 

w{x,y)^5{t - tz{y))dy, 
-OO 

U{x,t) = (1.10) 

where w(x,y) is the connectivity function, also called kernel or anatomy of the 

network. It defines the polarity (excitatory or inhibitory) and weight given to 

a specific synaptic connection as a function of the location where the spikes 

were initiated (y) and where they were integrated (x). The connectivity repre-

sents how the network integrates signals. In homogeneous systems, connectivity 

typically takes the form of an exponential, 
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Figure 1.9: Mexican-Hat connectivity kernel. Center-surround connectiv-
ity profile produced by the difference between exponentially shaped kernels as 
in Eq. (1.11) for g(x, y) = — \x — y\ = —d. An excitatory kernel is subtracted by 
an inhibitory kernel, so that signals synaptically transferred very close to the 
center of the receptive field (d = 0) are amplified, while more distant ones are 
inhibited. This shape refers to local excitation-lateral inhibition connectivities, 
used in many neural field studies. Here, the excitatory kernel has a range of 
a = 1 while the inhibitory kernel has a range of a = 2. The amplitude for both 
kernels is the same i.e. A = 5. 

w(x,y)=^e^^°, (1.11) 
la 

where A and a are the amplitude and range of the connections, respectively. 

g(x, y) is some function of the spatial variables x and y. A common choice for w 

is a difference of exponentials which results in the so called " Mexican-Hat" con-

nectivity, as depicted in Fig. 1.9. It represents the network connections with 

local excitation but distal inhibition, a profile close to the "center-surround" 

spatial organisation of receptive fields in the visual system. In this case, the 

function g expresses the distance between neural sites as the variable defining 

the shape of the kernel i.e. g{x,y) = — \x — y\. Such kernels lead to homoge-
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neous systems, which are also translationally invariant. Real neural systems are 

however not homogeneous, and thus studies have begun on general or statistical 

distributions of kernels [1], while oftentimes domain inhomogeneities are mod-

eled with the use of some additive and space-dependent term [79, 80]. 

It may be shown [54] that if the action potential duration is very small com-

pared to the synaptic time scale, the spike train may be well characterized by a 

smooth firing rate function of the mean somatic membrane potential across the 

sub-units i.e. 

Y,6(t - U(x)) si f(u{x)). (1.12) 

The function / , called firing rate function, is determined from single cell dynam-

ics and captures the frequency tuning properties of spiking models [81]. While 

it is known that the function / is shaped by the temporal fluctuations of the 

input currents, it is here considered to be constant. A common choice is a sig-

moidal shaped function, as depicted in Fig. 1.10. The choice of this particular 

function is motivated by the frequency tuning properties of neural cells. The 

mapping that exists between firing rate and input amplitude (commonly called 

/ - / curve) takes the form of a sigmoidally shaped function, where the firing 

rate varies between zero and some maximal value. Other non-linear functions 

do map this relationship as well, but make the analytics more involved. The 

firing rate response function is parameterized by the threshold h around which 

the firing rate increases significantly, and the gain /3, defining the slope at the 

inflexion point. Combining Eq. (1.12) and (1.10), we obtain a self-consistent 

equation of the activity across the domain 

/

t />oo 

r](t-s) w{x,y)f{u{y,s))dyds. (1.13) 
-oo J ~ oo 
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Figure 1.10: Firing rate functions reproducing the frequency tuning 

curves of spiking neurons for various gains. The curves represent the 
sigmoidal function f(u) = (1 + exp(—(3(u — h)))'

1
. The bold curve is such that 

(3 = 25. If the gain is decreased to /? = 5, a considerably smoother version of 
the curve is obtained. A curve for f3 = 150 is also shown, where the firing rate 
function may be approximated by a Heaviside step function i.e. f(u) w H(u—h) 

with H(u) = 0 whenever u < h and H{u) = 1 otherwise. The threshold chosen 
here is h = 1. 

The above equation is a neural field model for a single neural population and 

expressed in integral form. From the stability analysis point of view, it may be 

convenient to express Eq. (1.13) as a mtegro-differential equation. Differentiat-

ing with respect to time gives 

du(x,t) d 

dt -£/>->£ w{x,y)f(u{y,s))dyds. (1.14) 

Applying Liebnitz rule yields 

du(x,t) 

dt 
J_ w(x,y)[r1(0)f(u(y,t)) + J_ -r,(t - s)f(u(y,s))ds}dy. (1.15) 
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For an exponential synaptic response function i.e. rj(t) = ae
 at for t > 0, we 

obtain 

du(x,t) 

/

oo rt 

w(x,y)[af{u(y,t))~a r)(t - s)f(u{y,s))ds]dy, (1.16) 
-OO J — OC 

dt 

which may be simplified with Eq. (1.13) into 

du(x t) f°° f°° f
f 

— ^ — = a w{x,y)f{u(y,t))dy-a / w(x,y)r](t - s)f{u(y,s))dsdy 

/

oo 

w(x,y)f(u(y,t))dy - au(x,t), (1.17) 

- O O 

such that we obtain Eq. (1.13) in a differential form 

I^gl*) = -u{Xtt) + J
X
 w(x,y)f(u(y,t))dy. (1.18) 

Various forms of Eq. (1.18) have been studied, leading to a wide variety of 

dynamical effects. The structure of the spatial kernels give rise to stable local-

ized solutions, like fronts and bumps [44, 1, 82, 74, 83]. Introduction of time 

delays due to finite signal propagation speeds results into waves and breathers 

[80, 84, 85], while kernel inhomogeneities perturb the stability of activity pat-

terns [86]. As a natural extension of this model, two populations networks have 

also been investigated [69, 87, 85, 88]. The main advantage neural fields have is 

that the existence and stability of solutions may be proven analytically, which 

is not possible in most noisy conductance-based models. In particular, the sta-

bility of spatially structured solution can be performed via the use of Evans 

functions in the limit when the firing rate function is a Heaviside step function 

[89, 90]. 
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1.4 Sensory Systems 

Sensory systems are the primary relays of information processing pathways from 

the outer world up to the brain. They typically form the transition between cel-

lular receptors and higher brain centers involved in perceptive tasks. These 

specialized "support" systems provide organisms with the necessary informa-

tion about their environment to perform various behavioral tasks. Through the 

various senses, like vision, audition and touch, sensory information is processed 

and integrated by various parts of the brain. This information is first initi-

ated by sensory stimuli, to which a sensory system, via specialized receptors, is 

attuned. The various stimulus modalities evoke neural responses of cells with 

respect to their receptive field geometry. A receptive field of a cell is defined by 

the array of receptors to which it responds. How receptive fields are organized, 

along with where they project, determines the basic network architecture on 

which more elaborate forms of circuitry may occur. 

Sensory systems form a class of relatively simple neural systems. As a first 

relay to the high level brain centers, the architecture and physiology of sensory 

systems is typically well known. Cellular recordings may be correlated with 

external signals controlled by the experimenter. This is not the case in cortical 

systems for instance, where a given cell might be receiving inputs from various 

sources, not necessarily linked solely to the outer world. Further, the relative 

similarity of these systems across various organisms suggests that much of the 

sensory processing tasks are performed at these early stages, and that the high 

degree of specialization sensory systems demonstrate is an attribute of those 

circuits. As such, sensory systems are a subject of choice to study general neu-

ral systems. Thus, sensory neuroscience addresses the questions: how is sensory 

information integrated by neural systems? How are the information processing 

capabilities of sensory system linked to circuit shape and features? 

In the following sections, we will review the main properties and architecture of 

the visual and electrosensory systems, to set the stage for the derivation of our 
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general model. The review of the visual system refers to the detailed discussions 

found in chapter 14 of [49] and [91]. The review of the electrosensory system 

follows [20], [22] and the excellent online introduction and literature review [92]. 

1.4.1 Vision 

The visual system deals with the processing of optical information perceived by 

an organism about its surroundings. While the spatial and temporal content of 

a stimulus is responsible for determining shape and movement, the frequency 

and intensity of the light perceived confers additional information regarding 

color and brightness. This combined information is vital to a visually depen-

dent organism to behave in its environment and make decisions. The extraction 

of these features from a visual scene is performed by highly specialized neural 

circuits that extend from the bottom of the retina up to the visual cortex start-

ing with the optic nerve. From there, the visual system must build and identify 

representations of objects and determine their location. 

A schematic representation of the retinal pathway is shown in Fig. 1.11. The 

first stage of visual perception occurs in the response of several types of pho-

toreceptors, which are attuned to specific attributes of the visual signal, like the 

frequency or amplitude for instance. In humans, the photoreceptors populate 

the inner surface of the eye, and are distributed according to their sensitivity. 

After activation by a visual stimulus, the photoreceptors project through sev-

eral layers of cells, concentrically superposed on one another. These cells, like 

the horizontal, amacrine and bipolar cells, all possess very specific connection 

polarity and receptive field structures. The activity is transmitted to successive 

layers post-synaptically with either an inhibitory or an excitatory effect. Indeed, 

synaptic connections within the retinal circuit are either excitatory, which in-

duce a hyperpolarizing post-synaptic response (ON type cells) or inhibitory, 

with a depolarizing post-synaptic response (OFF type cells). The ON and OFF 

response pathways form almost parallel vertical circuits. These are initiated by 

the synaptic response of bipolar and horizontal cells to photoreceptor hyper-

polarization. The presence of these two asymmetrical neural response types, 
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To the optic n e n e 
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Figure 1.11: Schematic of the multi-layered structure of the retina. 

The visual information encoded travels upwards. Surprisingly, the photodetec-
tors (rods (R) and cones(C)) are located at the very bottom of the retina. The 
outer plexiform layer is populated by the horizontal cells(HC), which synapse 
to distant bipolar cells(BC), resulting in large receptive fields of the ganglion 
cells(GC). Amacrine cells(AC) perform a similar task in the inner plexiform 
layer, and further enhance the contrast of the responses. The responding gan-
glion cells project to higher processing centers of the visual system via the optic 
nerve . 

conveyed by independent pathways, is responsible for the parallel processing 

performed in most sensory systems, as in the retina. These separate circuits 

operate and integrate receptor responses and generate dual signals, which both 

contain meaningful information about a visual scene Sensory signals are pro-

cessed by the successive layers and reach the ganglion cells, which digitize an 

analog signal pattern (light intensity map in two dimensions) up to the visual 

cortex. 

Feedback also plays an important role in input encoding. This is especially 

apparent in the outer plexiform layer, where horizontal cells receive informa-

tion from photoreceptors (either cones or rods) and transmit to bipolar cells. 

Horizontal cells are characterized by large surface gap junctions between neigh-

bouring and distant dendrites of other horizontal cells These allow a lateral 
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flow of molecules (dopamine retinoic acid and nitric oxide) and ions (hydrogen) 

present in the intra- and extra-cellular medium, thus contributing to the propa-

gation of the response of horizontal cells. The resulting conductivity allows the 

electrical activity to flow through a lateral pathway, and hence contributes to a 

very large horizontal cell receptive field (>lmm). Although horizontal cells are 

post-synaptic to cones, hemi-gap junctions are believed to transmit information 

back to the photoreceptor, which feedbacks to the horizontal cell. 

Inter-laminar feedback shapes receptive fields. The combined action of both 

the response of the other laterally distributed ON or OFF horizontal cells and 

the cone photoreceptor feedback gives birth to the center-surround spatial or-

ganization of the receptive field of ganglion cells. As a stimulus is moved from 

center to the boundaries of a ON-type ganglion cell receptive field, the response 

shifts from excitatory to inhibitory. This ON-OFF spatial antagonism is also 

called Mexican-hat connectivity. The exact opposite occurs for OFF-type gan-

glion cells. This is because glutamatergic synapses tend to be less distal than 

GABAergic ones (this point is still debated, see [3] and references therein) .We 

also observe feedback loops within the inner plexiform layer, where amacrine 

cells, whose functional role is similar to horizontal cells but less understood, 

make lateral electrical synaptic connections with the rod vertical pathway, while 

still participating vertically in the rod pathway through chemical synapses with 

rod ganglion cells. The presence of these lateral connections introduces correla-

tions between the signals conveyed by the ON and OFF pathways. The density 

of rod and/or cone photoreceptors as well as the extent of the lateral projections 

vary within the retina, so that the receptive field size is minimal near the center 

of the retina (called fovea), resulting in a high resolution. 

Other sources of feedback in the visual system exist. In the outmost layer of 

the retina, ganglion cells synapse to various parts of the brain through the optic 

nerve. These sites are involved in perceptive tasks, like the saccade movement 

of the eye, the pupil reflex, and many others. Through the visual pathway, one 
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also finds a projection from lateral geniculate nucleus (LGN) in the thalamus 

to the primary visual cortex (VI). Feedback from VI back to LGN has been 

involved in the modeling of high level encoding tasks, generating network oscil-

lations and synchrony. 

The research on the visual system is a very broad topic. In the context of 

neural computation, models have tried to reproduce the response of the retina 

via representations of the multiple lateral and inter-laminar interactions. Mo-

tion, shape and color coding also represent important challenges. From the 

network perspective, one of the major goal is to put forward novel effects due 

to the topography of the ganglion cell receptive fields, and how the geometry 

of the connections is mapped to higher brain centers by the long-range connec-

tions. Further, the effects of various feedback loops, especially from LGN to VI 

in the visual cortex, on the activity profiles of the neural populations are still 

subject of active research. These information theoretic predictions are tested 

not only with spike trains, but also various forms of data imaging, like EEG. 

For excellent reviews of the early modeling trends in the visual system and their 

mathematical foundations, see [93, 67]. The thalamocortical system has in-

spired numerous neural and mean field approaches to identify the mechanisms 

by which activity patterns appear on the surface of the cortex. 

This excursion into the visual system has a specific purpose, namely to high-

light salient circuit features shared by the visual and electrosensory systems: 

large scale networks, spatially organized receptive fields, local (inter laminar) 

versus global (LGN-V1) recurrent connections and the simultaneous encoding 

performed by parallel ON and OFF-type pathways. These circuit traits also 

participate in the processing of sensory signals in the electrosensory system, 

which is the main focus of this thesis. 
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1.4.2 Electroreception 

The visual sytem shares many properties with other senses. The electrosensory 

system is present in a subgroup of the teleost fishes called the gymnotiforms. 

These fishes are capable of producing a self-generated electric field around their 

body, which they use to scan their environment and communicate. Across the 

various sub-species of fish using electro-reception, Eigenmannia viriscens and 

Apteronotus leptorhynchus have well known neurophysiology, gathered through 

many anatomical, behavioral and physiological studies (see [22, 24, 20, 92] and 

references therein). The electrosensory lateral line lobe (ELL) constitutes the 

first relay in the sensory pathway of the weakly electric fish. All electrosen-

sory information concerning the environment the fish obtains via the receptors 

found on the skin converge to this specific neural structure, located at the back 

of the brain. The ELL shares many similarities with the main processing units 

of the visual and auditory systems. The relative physiological simplicity and 

small size of the ELL makes it a candidate of choice in the analysis of more 

complex sensory encoding devices in general. The weakly electric fish produces 

a wave-type electric field via the electrical organ discharge (EOD), where the 

electrical influx is caused by the sudden discharge of modified motor neurons. 

The alignment and discharge timing of these motor neurons is responsible for 

the temporal structure of the emitted signal, which in the case of Apteronotus 

leptorhynchus is close to a sine wave oscillating with a frequency of 600-1300Hz 

[24, 20]. 

The communication and location tasks are initiated by the response of am-

pullary and tuberous electroreceptors located over the skin of the fish. Nearby 

objects or perturbations of the EOD will affect the conductivity of the water 

and alter the response of the receptors. Two types of afferents encode for fre-

quency (T-units) and amplitude (P-units) of the electroreceptor responses. The 

ELL, located at the back of the brain, is divided into four segments: the medial 

segment (MS), the centro-medial segment (CMS), the centro-lateral segment 

(CLS) and finally the lateral segment(LS). Receptor afferents project to each of 
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Figure 1.12- Coarse circuitry of the electrosensory lateral line lobe 

(ELL). Each synaptic connection is labelled by either a plus (+) or minus (-) 
sign, to represent the polarity of the projection, either excitatory or inhibitory, 
respectively. . Circles located on the bottom of the figure overlap many P-units, 
to represent the pyramidal cell receptive fields Only a few cells are depicted in 
each structure to represent numerous populations. See main text for acronyms. 

those segments, preserving the topographic alignment of the electroreceptors. 

The segments have distinct input processing properties [23, 29], but each pos-

sess an identical structure. A schematic of the ELL circuitry involved in the 

encoding of P-units afferents is illustrated in Fig. 5.5.1. Similarly to the retina, 

each of the ELL segments is organized in a laminar fashion, and the information 

propagates upward. The Deep Fiber Layer (DFL) and the Deep Neuropil Layer 
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(DNL) contains the receptor afferent (RA) axons and the axonal connections 

with the granular interneurons, located in the Granular Cells Layer (GCL). P-

units synapses are glutamatergic, so that the output from the electroceptors is 

excitatory. The interneurons (GC1-2) invert the polarity of the afferent input 

and project an inhibitory signal to the pyramidal cells (BP). They are also re-

sponsible for the inhibitory surround structure of the pyramidal cell's receptive 

fields. All pyramidal cells are grouped in the Pyramidal Cells Layer (PCL); those 

that synapse directly with the glutamatergic afferents are labelled E-cells, while 

those that connect with the granular interneurons are labelled I-cells. When 

the input voltage increases, E cells increase their firing rate, while I cells are 

inhibited and reduce their firing rate. These cells can be identified with ON and 

OFF cells found in the visual system. These two cell types are responsible for 

a divergence in the upward stream in sensory information processing, resulting 

in the ON and OFF parallel pathways. Both E and I pyramidal cells project 

excitatorily to the Nucleus Praementialis Dorsalis (Pd), built of stellate (SC), 

bipolar (BC) and multipolar cells (MPC). Stellate and bipolar cells project back 

to the PCL, creating a direct feedback pathway [94, 22]. Stellate cell projec-

tions are glutamatergic, and further are spatially localized, meaning that their 

synaptic terminations end very close to the site where the initial signal was 

emitted by the pyramidal cells. Bipolar cells feedback is GABAergic but is not 

spatially profiled, and affects many pyramidal cells. Both stellate and bipolar 

signals from the Pd propagate back to the pyramidal cells via the Stratum Fi-

brosum (StF), and synapse in the Ventral Molecular Layer (VML). An indirect 

feedback pathway also exists. Multipolar cells of the Pd project excitatorily to 

the Eminentia Granulans Pars Posterior (EGp). Via the Parallel Fibers (PF), 

a glutamatergic feedback signal ends in the Deep Molecular Layer (DML), and 

affects the discharge pattern of the pyramidal cells. 

In this thesis, we will be interested in modelling the dynamics of the pyra-

midal cells, were our network architecture will closely follow the one we just 

described. 
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Chapter 2 

Model Derivation 

The goal of our model is to analyze the sensory processing features of a neural 

microcircuit corresponding to the electrosensory lateral line lobe (ELL) of the 

weakly electric fish. This is done by describing the behavior of the cells popu-

lating the pyramidal cell layer, when the system is subject to spatio-temporal 

stimulation. In this section, we will derive the model we study in Chapter 3, 4, 5 

and 6, based on physiology of the ELL. We will thus follow Section 5.5.1 closely, 

along with the relevant references which will be cited along with the text. In 

Section 2.1, we will build our model step by step, including the most salient 

features of the ELL circuitry. In Section 2.2, we will outline the calculations 

used in determining the equilibrium states and their stability. 

2.1 Model 

As outlined in Section 5.5.1, the ELL is subdivided into three sensory processing 

segments: CMS, CLS and LS. Although each of these shows different frequency 

tuning properties and receptive field geometry, they all share an equivalent 

morphology, where the skin electroreceptors are topographically represented 

[35, 23, 29]. Sensory afferents trifurcate and project in each of the segments. 

Our model comprises a single segment, corresponding to a one-dimensional man-
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ifold H, taken as a subset of R1. We are thus mapping the 2D surface of the skin 

to a one-dimensional line, and it is natural to take this line in the rostro-caudal 

direction, i.e. in the head-to-tail direction in which the fish swims. The param-

eter l e f t determines the spatial location of recordings on the segment within 

the pyramidal cell layer. On the perspective of large scale nets (see Section 

1.3.3), each site contains a sub-network (or units) of cells, within which a very 

large number of dendrites, synapses and cellular bodies are found. These units 

line up to form to whole domain, so that the neural tissue forms a continuous 

medium [71, 72, 74, 68]. 

According to the receptive fields modalities, p-units afferents project to the 

pyramidal cell layer via a parallel path from the skin electroreceptors up to the 

sensory layer. For simplicity, we assume that the sensory signals are stimulating 

the pyramidal cells directly for ON cells and via an interneuron for OFF cells 

(see below). The response of a pyramidal cell is monitored by looking at the 

time evolution and spatial distribution of the mean somatic membrane potential 

or activity, across the domain fi. This quantity corresponds to the scalar field 

u(x,t). 

The pyramidal cell layer is populated by ON and OFF cells. These correspond 

to E- and I-type cells found in the literature. The respective fraction of ON and 

OFF cells in the network is denoted by aon and QQ//, such that aon + a0ff = 1. 

Stimuli are processed by two parallel sensory pathways. ON pyramidal cells are 

post-synaptic to p-units afferents. They respond to excitatory (resp. inhibitory) 

inputs by increasing (resp. decreasing) their firing rate. In contrast, OFF pyra-

midal cells are innerved by interneurons located downstream in the granular 

cell layer. These interneurons relay the afferent signals up to the OFF cells by 

inverting the polarity of the stimulus; OFF cells are excited (resp. inhibited) by 

inhibitory (resp. excitatory) signals. Aside from input response, ON and OFF 

cells have equivalent dynamics. Given some pre-synaptic stimulus I(x,t), the 

post-synaptic potentials PSPj for j = ON, OFF at the pyramidal cell layer are 
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given by 

PSPon{x,t) = r)on*I(x,t) 

PSPoff(x,t) = iloff*l[I(x,t)], 

where * is a temporal convolution as in Eq. 1.9 and I stands as the interneuronal 

operator, specific to the OFF pathway. The pre-synaptic filtering made by the 

interneuron is here omitted. The synaptic response functions are labelled with 

respect to the pathway they are in, namely by r}on{t) and ??o//(£) for ON and 

OFF pathways respectively. Many cells in the visual system respond maximally 

in the dark [91, 47]. Experimental results in the ELL have shown that E and I 

cells do not always share the same baseline firing rate [35, 23, 29]. Consequently, 

we make the hypothesis that the operator 1 is linear to first order such that it 

may be approximated by Z(u) zx V0 — u, where V0 is the spontaneous activity of 

the OFF cells. This parameter accounts for the difference in baseline activities 

of ON and OFF cells. 

The state variables of our model are uon(x,t) and u0ff(x,t), corresponding to 

the activity of ON and OFF cells at location x and time t. It has been shown 

that very few lateral connections exist within the pyramidal cell layer, where the 

activity propagates upstream in a parallel fashion to higher nuclei [22]. Thus, 

no activity propagates laterally between neural sites. To this point, the activity 

of the ON and OFF pyramidal cells is structured by sensory stimuli: 

uon(x,t) = r)on*I(x,t) (2.1) 

uoff(x, t) = ri0ff * [V0 - I(x, t)\. 

As shown in Fig. 2.1, pyramidal cells project to higher nuclei (Pd and EGp), 

from which they receive delayed feedback. We focus on the direct feedback 

pathway from the Pd as in [32] . As illustrated in Figure 5.5.1, the direct 

feedback pathway is divided into two components: pyramidal cell projections to 

bipolar cells feedback to the sensory layer with inhibitory synaptic connections, 
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Figure 2.1: Idealized circuitry of the ELL. The sensory layer is populated 
by ON and OFF pyramidal cells across the spatial extent Q of the segment. ON 
cells receive the input directly, while OFF cells receive a mirror image of the 
input, inverted with respect to their baseline activity V0. ON and OFF cells 
activity are denoted by uon(x,t) and u0ff(x,t), respectively. Pyramidal cells 
receive and relay spatio-temporal stimuli up to a higher nucleus, where single 
site activities are lumped into a neural aggregate A(uon,u0ff,t). Bipolar cells 
synapse back to the pyramidal cell layer via delayed connections. 

while stellate cells feedback is glutamatergic and thus excitatory. The feedback 

from the bipolar cells is spatially diffuse, and will be the focus of our study. 

From the pyramidal cell layer up to the Pd, the firing activity of ON and OFF 

populations across the network is lumped into a single neural component, 

A(t)= / dyT,Nori(y)son{y)(t)+ / dyZNoff{y)soff(y){t), (2.2) 
Jn Jo. 

where Non(x) and N0ff(x) are the number of ON and OFF cells at location x. 

s0n{x){t) and s0ff(x)(t) are the ON and OFF cell's spike trains at location x. 

The E symbol represents the sum over all the spike trains of all the cells at a 

given spatial location. The domain being continuous, we use here an integral 
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instead of a series to sum over the sub-units. 

Aggregated activities are synaptically transferred back to the pyramidal cell 

layer via the SfF, without spatial modulation and after a time lap r . This time 

interval accounts for the finite axonal propagation speed of action potential, and 

for the processing of signals by the bipolar cells. The time delay r and synaptic 

time scales are considered to be large compared to the individual action poten-

tial durations, so that the spiking activity may be replaced by a smooth firing 

rate function of the mean membrane voltage i.e. s(t) = f(u). Thus, Eq. (2.2) 

may be written as a non-weighted sum over the relative proportions aon and 

aoff of ON and OFF cells 

A(uon,uoff,t) = aon / dyf[uon(y,t)] + aoff / dyf[uoff(y,t)}. (2.3) 
Jsn Ja 

The firing rate function / determines the frequency tuning properties of single 

neural sites. It maps the firing frequency response to input currents. In this 

thesis, it is defined by 

/ («) = l + e\u-hy (2-4) 

with a gain of (5 and threshold h. As opposed to many studies on continuous 

domains, Eq. (2.3) is spatially independent; no integration kernel modulates the 

projection of feedback activity. Thus, our model has a "global" or "all-to-all" 

feedback profile. 

The recurrent component is branched to the pyramidal cells somata with ei-

ther GABAergic (k = — 1) or glutamatergic (k = 1) connections. The bipolar 

and stellate projections are mediated by the response function r/pa, through 

which we obtain the post-synaptic potential according to the signal initiated at 

the Pd. Combining Eq. (2.1) and Eq. (2.3) we obtain 

uon(x,t) = r]on * [I{x,t)\ + r]Pd* [kA(uon,uoff,t - r)] (2.5) 

uofs(x, t) = rjoff * [V0 - I(x, t)} + T)Pd * [kA(uon, uoff,t - T)}. 
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Note that the aggregate A is here multiplied by the feedback polarity k, to repre-

sent the inhibitory or excitatory nature of the Pd-ELL connections By changing 

the value of k within the interval [—1,1], we are modifying the amount of ex-

citatory versus inhibitory feedback (See Chapter 3) Excitatory and inhibitory 

recurrent connections lead to completely different behavior, which are summa-

rized in Section 2 3 (see also Chapter 4) The inhibitory case (l e k = — 1) 

will be the focus of most this study because of the dominance of the bipolar 

inhibitory feedback, but we nevertheless keep the parameter open here 

If we assume that all synapses involved in this circuit are identical and obey the 

same dynamics l e r/on = r)0ff = rjpd = 77, Eq (2 5) becomes 

uon(x,t) = r)*[I{x,t) + kA(uon,uoff,t-T)} (2 6) 

Uoff(x,t) = T)*[V0-I(x,t)+kA{uon,U0ff,t-T)] 

For exponential synapses 1 e r](t) = ae~
at

, a e R, applying Liebmtz rule as in 

Section 1 3 3 yields network dynamics m mtegro-differential form 

(l + o 1
dt)uon{x,t) = kA(uon,u0f/,t-T) +I(x,t) 

(1 +a~
1
dt)u0ff(x,t) = kA(uon,u0ff,t-T) + V0 - I(x,t) 

(2 7) 

This is the model that will be analyzed in this thesis 

2.2 Steady State Analysis 

ON and OFF populations reach steady activities whenever dtuon(x, t) = dtu0ff(x, t) 

0 Without stimulation, Eq (2 7) becomes spatially independent Steady states 
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(uon(x),u0ff{x)) are implicitely determined by 

uon(x) = kA{uon,uoff) (2.8) 

u0ff{x) = kA(uon,uoff) + V0. 

If the firing threshold h is high, then the feedback connection are weakly re-

cruited in absence of sensory inputs. Thus, we may suppose that ON cells are 

not firing and that OFF cells respond according to their spontaneous firing rate 

i.e. (uorl{x),u0ff(x)) = (0, V0). Note that this is just a choice, and an actual 

experimental situation can be mimicked by adjusting V0. As the activity profiles 

are spatially homogeneous, A(uon,u0ff) = Q,(aonf[uon) + a0fff[u0ff]), and we 

obtain 

uon{x) = Qk(aonf[uon] + aofff[uoff]) (2.9) 

Uoff(x) = uon + V0. 

We see that the activity of the OFF cells is greater that the activity ON cells 

whenever V0 > 0. This particular solution corresponds to OFF cells firing in 

absence of input, while ON cells are quiescent. The stability of steady states is 

determined by linearizing Eq. 2.7 around Eq. 2.9. For spatially homogeneous 

eigenstates i.e. Uj{x,i) = u3(x) + ue
xt, we obtain 

(1 +a~
1
\)u = k{aon / dyf'[uon{x)]e~

XT
 +aoff / dyf'[uofj{x)\e~

XT
}u 

Ju Jn 

(l + a~1A)w = k{aon / dyf'[uon{x)}e~
XT

 + aoff / dyf'[uoff{x)}e~
XT

}u. 
Jn Jn 

(2.10) 

Define 

R = R{uon,uoff)=aon / dyf'[uon(x)]+aoff / dyf'[uoff(x)}. (2.11) 
Jn Jn 

For spatially homogeneous solutions, R = Q.{aonf'[uon] + a0 / / / ' [wo//])- With 

this notation, the transcendental characteristic equation for this problem be-
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1 + o _ 1 A = kRe~ (2.12) 

where A 6 C Note that this equation is scalar, so that the elements of the 

eigenspectrum a determine the stability of the two population activities simul-

taneously. This is also coherent with the nature of the coupling, which connects 

all members of the network with the same weight. Static spatially profiled in-

puts I(x, t) = I(x) break the symmetry of the solutions, which are then no 

longer spatially homogenenous. Steady states now satisfy 

uon{x) = kA(uon,uoff) + I(x) 

uoff{x) = uon + V0- 21 (x). 

(2.13) 

If we assume that the eigenmodes are spatially homogeneous, we obtain the 

same linearized problem as for I(x, t) — 0, where the characteristic equation 

is given by Eq. 2.12. Even if the equations share a similar shape, the case 

I(x) ^ 0 is more difficult to analyze. This is because the function R in this case 

depends on spatially-dependent steady states and is consequently more difficult 

to compute. 

100 

n 

Figure 2.2: Spatial profile of a pulse stimulus. It is defined by I(x,t) = I0 

for x e [xi,X2] and <i < t < ti and zero otherwise. 

It is nevertheless possible to gain some insight by considering piecewise ho-

mogeneous stimuli. Pulses only drive a fraction of the cells, as illustrated in 
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Figure 2.2. In this case, the function R may be computed easily, so that the 

stability of ON and OFF activity states may be formulated as a function of the 

input width A = \x\ — a^l and amplitude I0. Furthermore, the spatial sep-

aration between external stimulation and autonomous dynamics makes pulses 

ideal input choices to observe the effect of stimulation on the behavior of de-

layed feedback connections. Another strong argument behind the use of pulses 

is their great relevance towards physiology. Studies motivating our work have 

illustrated how the spatial profile of external inputs alters the system activity 

states [95, 96, 34, 97, 98, 99]. In particular, the impact of a transition between 

spatially local and global input profiles has been linked to the stability of global 

oscillations [32, 27, 26, 100]. In this context, the use of static pulses or "bumps" 

allows us to control the input spatial contiguity as well as its strength, in or-

der to formulate the criteria behind network stability analytically. Thus, the 

analysis presented in Chapter 3 and 5 deals with the response of the neural 

populations to pulses, but numerical results on input bumps are also presented 

in Chapter 4 . 

2.3 Bifurcation Analysis 

Bifurcations are spontaneous state transitions occuring in topologicaly unsta-

ble dynamical systems, initiated by perturbations in the system's parameters. 

They are of particular relevance in biological systems, where they characterize 

the mechanisms by which equilibria undergo qualitative changes in their be-

havior and/or stability. Bifurcations are fundamental for the understanding of 

physical phenomena occuring in fluctuating environments, like multistability, 

oscillations and phase transitions. 

Consider the case of a network composed of an even number of ON and OFF 

cells by setting aon = a0ff = 1/2. We fix the synaptic response time constant 

to a = 1. For a feedback polarity k and without stimulation i.e. I{x,t) = 0, 

our system becomes a scalar delay-differential equation. If we further set the 
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baseline activity of OFF cells to zero (1 e V0 = 0), Eq 2 7 may be written as 

Uon{t) = -U0n(t) + kQ[lf(uon(t)) + \f{uof}{t))} 

\ \ (2 14) 

«o//(*) = -«<,//(*) + k9,\~f{uon{t)) + -f(uoff(t))] 

From a mathematical standpoint, local bifurcations correspond to changes in 

stability of so-called non-hyperbolic fixed points for which eigenvalues have a 

zero real part Equation (2 8) is non-hyperbolic if Re(\) = 0, where A = 

Re(X) + iw where a i e R The characteristic equation may then be written as 

1 + a~\w = kRe-'
WT (2 15) 

A in-debt analysis of Eq (2 15) is given in Chapter 4 Let us here present 

the calculations involved for k = 1 and k = — 1 without stimulation Further 

details concerning the stimulated case are detailed in Chapter 3 and 4 

i) k = l For excitatory feedback, Eq 2 14 may be wnten as 

(2 16) 
Uon(t) = -Uon(t) + n[\f(uon(t)) + \f{uo}f{t))] 

Uoff(t) = -uoff(t) + n{±f(uon(t)) + \f{uoU{t))\ 

Note that we have uon = u0ff = u so that we may write Eq (2 8) 

» = " ^ / ( f l ) + i / ( " ) ] = 1 + e - " ( T . ) - f c ) ' ( 2 1 7 ) 

where Eq (2 4) was used The common fixed point u for ON and OFF ac-

tivities is defined implicitly For k = 1, eigenvalues can be shown to have a 

zero imaginary part, so that damped oscillations and periodic solutions are not 

possible Substituting |A = 0| into Eq 2 15 may be simplified to 

1 = R =
 (l + exp-p(u-h))'

 ( 2 1 8 ) 
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Combining Eq. (2.17) and (2.18), we may write 

i = n /? (? - i ) (^ ) 2 , (2.19) 
u 11 

which corresponds to the tangancy condition for a saddle-node bifurcation by 

taking the derivative with respect to u on all sides of Eq. (2.17). A saddle-

node bifurcation is a codimension 1 bifurcation in which a pair of equilibria of 

opposed stability merge and disapear. Equation (2.19) has the roots 

_ , „ 1 (39, ± V/9 2^ 2 - A/39 
«i .2( /3)=2 ~p , 

where the steady states are function of the feedback response gain (3 and the 

network size 9 at the instability. The threshold h may also be expressed as a 

function of j3 at saddle node points where Eq. (2.18) and (2.17) hold simulta-

neously. The saddle-node curve in (h, (3) parameter space is thus 

m = — ^ ~ 2p
 [

^ ^ ^ ' . (2.20) 

It is of interest to consider the particular case where u = h, for which Eq. (2.20) 

reduces to 

w = I 
At this precise point in parameter space, the steady state u = h — ^ under-

goes a pitchfork bifurcation beyond the value (3 = (3* = 4/fl. This bifurcation 

involves the loss of stability of a fixed point and the appearance of two new sta-

ble fixed points symmetrically positionned on each side of it. The bifurcation 

is supercritical since -Q^{U,(3*) < 0. As the condition is relaxed, the system 

undergoes saddle-node bifurcations along the curve h((3). Hence, the presence 

of the threshold h leads the system into a cusp-shaped birfurcation portrait 

[101]. The presence of pitchfork bifurcations implies that excitatory feedback is 

characterized by multistability, where oscillatory solutions are not possible. 
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When the spontaneous activity of ON and OFF populations is not the same 

i.e. V0 ^ 0, the new equilibria become 

Uon = "J [/(«on) + / (So/ / ) ] , 

So// = " [/(«on) + f(uoff)} +V„, (2.21) 

where we now have uon = u0jf — V0. Fixed points of the system may thus be 

found by solving the scalar equation 

* = " [ / ( « ) + / ( « + V0)], (2.22) 

for u = uon. Saddle-node instabilities are characterized by the relationship 

1 = " [ / ' ( « ) + / ' ( * + V0)], (2-23) 

for which |A = 0|. We can solve (2.22) and (2.23) numerically, and identify 

the sets in (h, V0) parameter space for which there exists a solution. The re-

sult is a combination of saddle-nodes and pitchforks, as illustrated in Figure 2.3. 

h) k = - l For inhibitory feedback, mutistability (i.e. the coexistence of two 

or more stable equilibria) is not possible since Eq. (2.9) only has a single root. 

Andronov-Hopf instabilties occur whenever A = ±iw, for K 3 w ^ 0, where a 

limit cycle solution becomes stable. In this case, the eigenvalue problem becomes 

1 + iw = -Re-
lWT

, (2.24) 
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Figure 2.3: Bifurcation diagram in (h, V„) parameter space. Saddle-node 
curves delimit regions where multiple fixed points (eq) coexist. Here, (3 = 25. 

where R is defined in Eq. (2.11). Separating this equation into imaginary and 

real parts, we obtain 

0 = 1 + RCOS{WT) 

0 = w — Rsintwr), 

(2.25) 

(2.26) 

The ratio of these equations gives the following-

w = — tan(wr) <=> WT = — arctan(w). 

Since cos (arc£<m(a:)) = , * s , we obtain 

0 = 1 -
R 

vT 

Solving this second order polynomial gives 

Wl 2 = ±VR
2
 ~ 1 
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T = — arctan(w). 
w 

This determines the critical delay and frequency for which the eigenvalue A has 

zero real part. Thus fi is the frequency of the temporally oscillating solution 

born at this bifurcation; this frequency will generally change as the system 

moves further past this bifurcation point. The case V0 = 0 and V0 / 0 may 

be analyzed in the same way, although the function R will contain the ON and 

OFF steady states. 
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Chapter 3 

Oscillatory response in a 

sensory network of ON and 

OFF cells with 

instantaneous and delayed 

recurrent connections 

Lefebvre J., Longtin A., LeBlanc V.G. (2009), Phys. Trans. Roy. Soc. A. 28 

vol. 368 no. 1911, pp. 455-467, doi:10.1098/rsta.2009.0229 
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Abstract 

A neural field model with multiple cell-to-cell feedback connections is investi-

gated. Our model incorporates populations of ON and OFF cells, receiving sen-

sory inputs with direct and inverted polarity, respectively. Oscillatory responses 

to spatially localized stimuli are found to occur via Andronov-Hopf bifurcations 

of stationary activity. We explore the impact of multiple delayed feedback com-

ponents as well as additional excitatory and/or inhibitory non-delayed recurrent 

signals on the instability threshold. Paradoxally, instantaneous excitatory re-

current terms are found to enhance network responsiveness by reducing the 

oscillatory response threshold, allowing smaller inputs to trigger oscillatory ac-

tivity. Instantaneous inhibitory components do the opposite. The frequency of 

these response oscillations is further shaped by the polarity of the non-delayed 

terms. 

3.1 Introduction 

Rhythmic activity in the brain is commonly associated with the processing of 

neural information. Such oscillatory patterns are ubiquitous in many areas of the 

cortex, where they take part in higher brain functions and memory, displaying a 

vast range of frequencies. They are found in the thalamus, the thalamo-cortical 

system, and in many sensory pathways like vision [95, 102, 103], electrorecep-

tion [33] and audition [104]. Oscillatory behaviour in sensory systems has been 

proposed to be one of the basic mechanisms of input selection and detection, 

where oscillatory activity is triggered on the basis of stimulus properties. Specif-

ically, oscillatory response has been observed in various sensory networks under 

spatially non-homogeneous stimulation. Excitatory populations are known to 

enter states of rhythmic activity when the input shows sufficient spatial conti-

guity ("binding stimulus") [95, 96, 97, 99], or is noisy but which shows sufficient 

spatial correlation [33]. 

Aside from sensory stimuli structure, specific circuit geometry plays a crucial 
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role in the presence of rhythmic activity Network oscillations in sensory systems 

typically refer to synchronous states achieved by the means of Andronov-Hopf 

type instabilities commonly observed in inhibitory networks [2, 105, 106] How-

ever, the effect of multiple recurrent connections blurs the notion of what causes 

oscillatory behavior, as the combined actions of local and global signals is poorly 

understood Models in electroreception commonly incorporate global l e all-

to-all recurrent connections In vision, models introduce an elaborate mixture 

of global and local recurrent circuitry to mimic sensory information processes 

and exhibit oscillatory activity, a feature which can be amplified by feedback 

connections [103] Genencally, sensory pathways incorporate sets of recurrent 

connections with distinct polarities, l e either excitatory or inhibitory, where 

these are associated to excitatory and inhibitory synaptic connections, respec-

tively For example, [107] studied oscillations thresholds for paired excitatory 

and inhibitory delayed feedback where delays were either fixed or distributed 

Further, [108] suggested that combined positive and negative feedback may de-

scribe attention modulation m cortical networks 

Most sensory systems exhibiting oscillatory activity also involve ON and OFF 

cells [47, 109, 110] While the connection between rhythms and sensory inputs 

has been partially established, there is currently no consideration of the distinct 

ON and OFF cells behaviors in the treatment of sensory information and the 

genesis of temporal activity oscillations We ask the question as to how these 

populations might behave in a feedback system under stimulation can oscilla-

tions still be observed7 Does the system have the same oscillation threshold7 

In a previous work from the authors [111], precise conditions on which oscilla-

tory input responses are seen in a general ON/OFF system with a unique global 

inhibitory delayed feedback were established, along with a study of network re-

sponses to periodic forcing as well as the gain of the system in the equilibrium 

regime Here, we want to investigate the more generic case of a mixture of 

local and global recurrent connections, and investigate how this change in the 
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network architecture influences the genesis of oscillatory activity. Our aim is to 

understand generic properties beyond those studied for the standardly studied 

equivalent ON cell system, where local circuitry reinforces global oscillations 

[96] or vice versa [103]. To do so, we will first present our model in Section 2, 

and review in Section 3 the conditions on which oscillatory instabilities occur 

in a model with delayed inhibitory feedback components and how the interplay 

between ON and OFF populations input responses results in oscillatory activity. 

In Section 4, we introduce a mixture of instantaneous and delayed recurrent con-

nections and demonstrate how the mixed feedback profile alters the instability 

threshold and the response frequency to spatially localized pulses. 

3.2 Model 

Our analysis is particularly motivated by electroreception, but applies also to 

other senses. The architecture considered in Fig. 3.1 is inspired from the physi-

ology of the electrosensory lateral lobe (ELL) found in the brains of the weakly 

electric fish (Apteronotus leptorhynchus), acting as the primary operator in 

stimuli encoding (for an exhaustive physiological discussion see [22]). The sen-

sory layer is populated by ON and OFF pyramidal cells which feed forward 

their activity vertically to higher brain center, these in turn integrate ON and 

OFF activity and feed it back to the sensory layer via delayed interactions of 

different polarities. Here, these higher brain centers do not contribute to spa-

tial encoding, but merely act as activity accumulators. This fact distinguishes 

our approach from typical neural fields models that usually exhibit spatial con-

nectivity profiles. Non-delayed recurrent connections are nevertheless added to 

mimic local anatomy, connections which are weak in the ELL of the electric fish. 

As there are very few lateral connections between units in the sensory layer in 

electrosensory systems, these connections are typically neglected, the dynamics 

of the system being described using delayed feedback components. 

As in many sensory pathways, spatio-temporal inputs are processed through 
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the interplay of ON and OFF neural populations. The distinct input response 

mechanism between these cell types is mainly due to the presence of extra pre-

processing within the OFF pathway, where an intermediate cellular body called 

an interneuron transfers an inverted image of received inputs to the OFF cells, 

while ON cells receive the input directly, with preserved polarity. Thus, when 

the input stimulus increases, ON cell activity increases while that of OFF cells 

decreases. Given the synaptic response functions rjon and T?0// and some applied 

pre-synaptic input I(x,t), the post synaptic potentials PSP3 for j = ON, OFF 

at the sensory layer are given by 

PSPon(x,t) = rjon * I(x,t) 

PSPoff(x,t) = Voff*l[I{x,t)] 

where * is a temporal convolution and J stands as the interneuronal process. We 

make the hypothesis that the operator X is linear to first order such that it may 

be approximated by T{u) w —u. Thus for simplicity we consider the situation 

where, without sensory inputs I(x, t) = 0 and in open loop, stationary activity 

states correspond to both dormant ON and OFF populations uon = u0ff « 0. 

The system is composed of N distinct feedback loops where the delay r > 0 ac-

counts for processing and axonal conduction times and is assumed to be identical 

for all delayed circuits. The mean somatic membrane potentials, or activities, 
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I I(x,IJ I 

Figure 3.1: Schematic of the multi-loop feedback circuit. The system consists of 
a layer of ON and OFF pyramidal cells. These integrate spatio temporal inputs I(x, t) and 
project their output activity to higher brain centers, which process and feed back the signal 
via multiple feedback loops, after some time delay r and with polarity kt. Instantaneous i.e 
non-delayed feedback loops mimic local connectivity with polarities g3. 

Uon(x,t) and u0ff(x,t), at the sensory layer obey the following dynamics: 

N 

(
1
+

a
on

Q
t)uon(x,t) = ^2ktS{uon,Uoff,t-T) (3.1) 

M 

+ '52gJS{uon,uoff,t) + i(x,t) 
J = l 

(1 +a0ffdt)uoff(x,t) = ^ A ; I 5 ( « o n , M o / / , t - r ) 
2 = 1 

M 

+ ^2g3s(uon,uoff,t) - i(x,t) 

where we chose exponential synapses i.e. r)p(s) = ape~
apS

, p = ON,OFF. 

We use k for delayed feedback strengh, and g for non-delayed, or instanta-

neous feedback strength. Polarities of the recurrent connections are individu-

ally weighted by kl,gJ > 0 for excitatory and kug3 < 0 for inhibitory feedback, 

where i = [l,N] and j = [1,M]. A spatio-temporal stimulus I{x,t) with arbi-

trary polarity (either excitatory or inhibitory) is presented with inverted polarity 
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to the OFF layer, while ON cells receive the input directly. The recurrent term 

S{uon,uoff,t)= / dy[aonfon(uon(y,t))+a0fff0ff(uoff(y,t))} (3.2) 
Jn 

corresponds to global i.e. all-to-all coupling, for which f3 (u) = ( l - f e - ' 3 ' 1 ' - ' ^ ) ) - 1 

(j=ON,OFF) is a smooth sigmoidal firing rate function with threshold h3 and 

gain /3. The finite spatial domain is Q, while a3 is the relative proportion of 

j type cells in the population. ON and OFF populations project evenly to all 

cells in the system via the multiple feedback connections, irrespective of their 

polarity, which might be either excitatory or inhibitory, or both. 

3.3 Oscillatory Activity and Stimulation 

Let us first consider the non-stimulated case i.e. I(x,t) = 0 and the regions 

in parameter space where global oscillations may be found. We will neglect 

all non-delayed recurrent signals i.e. g3 = 0, Vj, and describe the evolution of 

activity in the context of multiple delayed loops. Oscillatory activity is typi-

cally characterized by determining Andronov-Hopf instability thresholds. The 

solutions Uon and u0ff of Eq.(3.1) for g3 = 0 are spatially uniform and can be 

implicitly written as 

uon = K—[f{uon) + /(«<,//)] (3.3) 

U
°ff = K

^[f(Uon)+f(uoff)} 

where K = X)t=i fc,. For simplicity, we chose aon = a0ff ~ 1/2, aon = a0jf — 1 

and hon = h0ff = h. We further fixed the response gain /3 = 25, so that the 

firing rate function / is smooth. 

Since all the delays in Eq.(3.1) are identical, the multiple feedback compo-

nents of Fig.3.1 are analogous to the single delayed connection case with gain 

K. In Fig. 3.2, whenever K > 0, no oscillatory solutions are possible, as exci-
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tatory connections dominate the dynamics and bring the system in a regime of 

multistability. However, if K < 0, linearizing the system around Eq.(3.3) indi-

cates that an supercritical Andronov-Hopf bifurcation occurs for smaller values 

of the delay as K decreases, meaning that a dominant number of inhibitory 

components versus excitatory components first makes possible oscillatory activ-

ity, and further encourages the stability of global oscillations by decreasing the 

magnitude of the critical delay. Consequently, additional delayed feedback com-

ponents with identical delays but different polarities do not alter the dynamics 

qualitatively, if the condition K < 0 is fulfilled. 

The stimulated case i.e. I(x,t) 7̂  0 can be analyzed in a similar fashion, 

Figure 3.2 Andronov-Hopf curve in (K, T) parameter space. The horizontal line K = 

0 separates the parameter space between excitatory and inhibitory regimes The bifurcation 

curve delimits regions of damped oscillations and regions where global oscillations are stable 

As the number of inhibitory delayed components increases (K decreases), smaller delays are 

needed to stabilize oscillatory solutions, reducing the instability threshold S O refers to 

stable oscillations, while D O refers to damped oscillations . 

to determine the effect of distributed input on the genesis of rhythmic activ-

ity. We will assume from now on that a single inhibitory delayed connection 

is present, weighted at K = ki = — 1, which we now know is analogous to the 

case of several delayed feedback connections dominated by inhibition, treated 

previously A spatially distributed stimuli of the form I(x,t) = I(x) induces a 
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non-homogeneous solution, determined from (3.1) by 

Uon(x) = S(uon,uoff) + I{x) (3.4) 

u0ff{x) = uon{x) - 21{x) 

Oscillatory response corresponds to an input-triggered supercritricial Andronov-

Hopf bifurcation. We can isolate the instability and specify the input response 

threshold by linearizing Eq. (3.1) around (3.4) for uonoff(x,t) = uon.0ff(x) + 

u\(x)e
xt
, A e C. This particular choice of ansatz restricts our stability analysis 

to spatially homogeneous modes. We obtain the characteristic equation 

A + l + i?e"AT = 0 (3.5) 

An input is expected to cause a Andronov-Hopf bifurcation if Re(X) = 0 for 

A = a + iw, w ^ 0, which occurs whenever the parameter R satisfies 

t&n{u) (R)T) + UJ{R) = 0 (3.6) 

where UJ{R) = \/R
2
 - 1 is the frequency at the bifurcation. The parameter R is 

defined by 

R = [aon I dyf\uon{y)) + aoff [ dyf{uoff{y))] (3.7) 
Jn Jn 

The parameter R arises from linear stability considerations, and is an integral 

over the solutions uon(x) and u0ff(x), measuring how close these are to the feed-

back activation threshold h. Spatially distributed inputs I(x, t) are expected to 

bring the solutions either closer or away from h, subsequently changing the value 

of R and triggering oscillatory solutions via Andronov Hopf instabilities when-

ever R = Rc, where Rc satisfies Eq. (3.6). As opposed to the non-stimulated 

case where an increase of the delay r was causing the oscillations for K < 0, 

spatially profiled stimulation alone is triggering oscillatory activity by balanc-
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ing local excitation and recurrent inhibition at some critical feedback amplitude, 

specified by h, which will be fixed throughout the analysis. [Il l] studies the 

exact dynamical impact of a modification of h. 

For concreteness, we numerically test these results with a pulse stimulus de-

fined by I{x,t) = I0 for x 6 A = [2:1,3:2] and t0 < t < t\ while I{x,t) = 0 

otherwise. The width of the pulse is defined by A = |a:i - x-i |. This input distri-

bution is ideal for separating local and global dynamics and identifying feedback 

effects, and is coherent with many stimulation patterns studied experimentally 

in spatially extended system. From Fig. 3.3, stationary uniform activity states 

uon and u0ff
 a r e stable on the basis of well chosen parameters until t = t0. The 

equilibrium (3.4) becomes unstable for the duration of the pulse and recovers 

stability at the offset of stimulation, delimiting the oscillatory response time 

of the combined ON and OFF population. Fig. 3.4 illustrates the condition 

Eq.(3.6) fullfilled at the onset of the stimulus t = t0 and again at the offset 

t = ti for Rc ss 1.823 and T = 2.0 , where the eigenvalues cross back and forth 

the imaginary axis 

10 •_ _. _ . __ __ -_ _ 10 '.-

Time Time 

Figure 3 3: O N / O F F network oscillatory response to a localized pulse. Parameters 
are T = 2 0, fi = 1, and h = 0 25 The input has the amplitude I0 = 0 4 between xi = 0 25 
and X2 = 0 75, and 0 otherwise for 15 < t < 40 

This behavior is coherent with many findings on recurrent neural networks, 
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where a spatially localized pulse generates global oscillations when the input 

width is sufficiently large [97], even though no delay is present. Further findings 

seem also to agree for stochastic Integrate-and-Fire models with delayed feed-

back, where the input spatial correlation must meet a critical value to trigger 

oscillatory response [32, 33], or require the use of dynamic synapses to estab-

lish the required level of non-linearity [99]. Our results incorporate distinct 

ON/OFF population responses, and indicates that oscillatory activity as a re-

sponse mechanism is possible even when individual cell responses to external 

inputs are not purely excitatory. The dynamic distinctiveness and sensitivity 

of ON/OFF networks as compared to the purely excitatory case i.e. ON /ON 

networks will be studied elsewhere (see Chapter 5). 
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Figure 3.4: Eigenvalues crossing the imaginary axis as the critical parameter Rc 

is met. At the onset of the pulse stimulus, the Andronov-Hopf curve (3.6) is crossed for 
the chosen delay r = 2.0 where the parameters are such that the solutions enter a regime of 
stable oscillations. Unstable eigenvalues cross the imaginary axis accordingly. At the offset 
of the bump, the opposite process takes place and the stationary activity states recover their 
stability and the oscillations disappear at the same time as the stimulus. 
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3.4 Instantaneous and Delayed Feedback Dynam-

ics 

Although delayed feedback connections have been studied extensively (In par-

ticular, see [112, 32, 105] and references therein), little is known about mixed 

feedback profiles, where non-delayed ("local") and delayed ("global") recurrent 

terms are combined. This setup is further complicated by the presence of distinct 

ON and OFF populations. This raises the important question as to how robust 

are the dynamics seen in delayed feedback system when additional recurrent 

terms are considered. Non-delayed, or Instantaneous recurrent components ac-

count for local signals, mimicking local spatial connectivity and lateral activity 

propagation. Eventually, we would like to understand the role of spatial con-

nectivity profiles (which greatly complicates the analysis), but this knowledge 

will build on the simpler all-to-all instantaneous plus delayed coupling studied 

here. 

Of particular interest is how delayed and non-delayed components combine and 

alter the oscillatory activity threshold. For simplicity, we set M = 1 and look at 

the case where a single non-delayed recurrent component of polarity g is present. 

Eq.(3.1) becomes 

(1 +a~*dt)uon{x,t) = -S(uon,u0ff,t-T)+gS(uon,u0ff,t) + I(x(tt)8) 

{l + a~ffdt)uoff{x,t) = -S{uon,u0ff,t-T) + gS{uon,uoff,t) - I{x,t) 

where we set aon = a0ff = 1/2, aon = a 0 / / = 1, hon = h0ff = h and j3 = 25. 

Note the first terms on the r.h.s. are delayed, while the second ones are not. 

As before, we assumed here that we have a predominantly inhibitory feedback 
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loop, weighted by K = k = — 1. Fixed points of Eq.(3.8) are now given by 

Uon(x) = {g - l)S(uon,uoff) + I{x) 

Uojf(x) = uon{x) - 21{x) 

(3.9) 

Similarly to the purely delayed case above, linearizing the system around (3.9) 

F i g u r e 3 . 5 : A n d r o n o v - H o p f curve (3 .11) for g = 0.5, 0 and - 0 . 5 . Shaded regions cor-
responds to parameter sets where oscillatory solutions are stable. These regions are delimited 
by Andronov-Hopf curves as in Eq. (3.11) for different values of g. The instability thresholds 
for T = 2.0 are such tha t R°

 5 < R° < Re , indicating tha t the additional non-delayed ex-
citatory component (g = 0.5) increases the "oscillatory" sensitivity of the system, promoting 
oscillatory responses to pulse inputs. 

for the ansatz uonoff{x,t) = uon.0ff(x) + u\(x)e
Xt

, A 6 C, yields a perturbed 

version of the previous eigenvalue problem 

A + 1 + Re' gR = 0 (3.10) 

where R is given in Eq.(6.8). The instantaneous recurrent term is expected to 

shift the spectrum, according to the magnitude of g. Oscillatory solutions are 

stable in parameter space in a region delimited by the curve 

w(R){- COS(W{R)T) + g) = sin(w(i?)r) (3.11) 
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where the frequency is now given by w(R, g) = y/(R
2 — 1 + 2Rg — R

2
g

2
)-

w V 
g-0.0 

g = 0.5 

-0 55 -0 30 -0 05 0 20 0 45 

I„ 

Figure 3.6: Pulse widths A and amplitudes I0 generating oscillatory responses. 
Shaded regions correspond to the input configurations where oscillatory responses to a local-
ized pulse are observed, for either g = —0.5, 0 or 0.5. The response threshold changes induced 
by additional non-delayed connections, on top of the global delayed inhibitory feedback, alter 
the criterions imposed on the input in order to trigger an Andronov-Hopf instability in the 
system. Parameters are Q = 1, r = 2.0 and h = 0.25 

The parameter R can be treated as a functional of the instantaneous recur-

rent strength i.e. R — R(g), so that we may identify the oscillatory response 

threshold by solving Eq.(3.11) for Rc{g) = R
9
C- Surprisingly, the response 

threshold is found to be inversely proportional to g, indicating that 

increasingly excitatory non-delayed components decrease the value of 

the threshold R
9
C and facilitates the genesis of oscillation. Fig. 3.5 shows 

this by comparing the values of R~°
 5, R®

 5 and R°c, the latter value correspond-

ing to the purely delayed case i.e. without any instantaneous recurrent term. 

Excitatory non-delayed interactions (g = 0.5) reduce the oscillatory response 

threshold, so that i?° 5 < R°. The opposite occurs for inhibitory non-delayed 

interactions (g = -0.5) , where R~°
 5 > R°c. This implies that minimal input 

distribution requirements are relaxed when g > 0, increasing the system sen-

sitivity to pulse inputs that cause oscillations. In the case of a localized pulse 

(Fig. 3.6), the minimal pulse spatial width A = \xi - X2\ causing oscillations 
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is significantly smaller, while the interval of amplitudes I0 generating oscilla-

tions is greatly enlarged. We also note the characteristic symmetry between 

excitatory(/0 > 0) and inhibitory inputs(/0 < 0), due to combined ON and 

OFF responses, indicating that evenly distributed inputs of opposed polarity 

will generate the same network response. 

g = -05 

Figure 3.7: ON population responses to a localized pulse when g = -0 .5 , 0 and 
0.5. Parameters in Eq. (3.8) are Q = 1, Ia = 0.3, A = 0.4, h = 0.25 and r = 2.0 

III!/ 

Figure 3.8: Frequency and equilibria stability for increasing local feedback gains, a. Input 
response frequency as a function of the instantaneous recurrent signal polarity g. The input 
response frequency at the threshold decreases as the non-delayed recurrent signal becomes 
more and more excitatory, b Saddle-node bifurcation occurring at gsN ~ 1.375, delimiting 
the region investigated. Parameters r = 2.0 and h = 0.25. 

In order to test this prediction, we stimulate the network response in Fig. 3.7 

with a pulse-shaped stimulus with different strengths i.e g = -0 .5 , 0 and 0.5. 

The system exhibits small damped oscillations for g = -0 .5 , indicating that 

the input width and amplitude are not sufficient to trigger stable oscillations. 

When g is increased to 0, damped oscillations are still observed, although with 
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longer decay rate, indicating that the system is closer to the oscillation thresh-

old. When g = 0.5, the input triggers stable oscillations. In all these cases, 

the same input distribution was used. The extension to multiple instantaneous 

feedback connections may be done in a similar way as in the case of delayed con-

nections, setting G = ] T \ = 1 g3, yielding similar quantitative results (not shown). 

We can identify the values of R satisfying Eq.(3.11) and consider how the re-

sponse frequency w(Rc,g) varies as a function of g, at the threshold. As Fig. 

3.8a shows, an increasing instantaneous recurrent strength g decreases the re-

sponse frequency, indicating that local signals shape oscillatory patterns, even 

in the case where global inhibitory delayed connections are present. Throughout 

this work, we restricted our analysis to the strength interval g e [—1,3sAT]. For 

g < — 1, the frequency w(R,g) becomes imaginary and oscillatory activity dis-

appears inside the associated region of parameter space. At gsN, a saddle-node 

bifurcation occurs as shown in Fig. 3.8b. At this point, network oscillations 

collide with the basin of attraction of the new fixed points, and multistability 

is observed. The saddle-node bifurcation point is determined by the firing rate 

threshold h and response gain (3, fixed earlier. 

3.5 Conclusion 

In this paper, we first demonstrated how oscillations appear in a delayed feed-

back network of ON and OFF cells with external stimuli, and investigated the 

issue of multiple delayed feedback loops. We then analyzed the effects of a 

mixture of delayed and non-delayed recurrent connections and demonstrated 

how the stability of the input-induced oscillations depends on the strength of 

non-delayed connections. When a delayed inhibitory term is present, instan-

taneous excitatory connections increase the network oscillatory responsiveness 

by decreasing the response threshold and allowing a greater range of pulse in-

puts to trigger oscillatory activity. Non-delayed inhibitory connections do the 

opposite by increasing the oscillatory response threshold. Further, the response 
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frequency decreases when g increases. 
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Abstract 

A globally-coupled network of ON and OFF cells is studied using neural field 

theory. Theory predicts that, without input, multiple transitions to oscillations 

can occur, depending on feedback delay and the difference between ON and OFF 

resting states. Static spatial stimuli can induce or suppress global oscillations 

via a Andronov-Hopf bifurcation. This is the case for either polarity of such 

stimuli. In contrast, only excitatory inputs can induce or suppress oscillations in 

an equivalent network built of ON cells only, even though oscillations are more 

prevalent in such systems. Novel non-monotonic responses to local stimuli occur, 

where responses lateral to the stimulus switch from excitatory to inhibitory as 

the input amplitude increases. With local time-periodic forcing, the unforced 

cells oscillate at twice the driving frequency via full-wave rectification mediated 

by the feedback. Our results agree with simulations of the neural field model, 

and further, qualitative agreement is found with the behavior of a network of 

spiking stochastic integrate and fire model neurons. 

4.1 Introduction 

Autonomous and driven responses of networks are a focus of much current re-

search in biological physics. The interplay of feedforward and feedback con-

nections, of both excitatory and inhibitory type, are strong determinants of 

dynamical behaviors [113, 114]. In particular, the modeling of spatially ex-

tended neural systems with such connections has received increasing attention 

as they exhibit a host of interesting dynamical phenomena. Mechanisms have 

been found for transitions between equilibria and non-homogeneous states in 

space and/or in time (see e.g. [85] and references therein). Propagation and 

processing delays in biological networks further expand the range of dynami-

cal possibilities [106, 105, 2]. Responses to simple localized inputs can lead to 

localized structures such as bumps and breathers [85, 44]. A main challenge 

lies on modeling responses to static [86] or moving spatial stimuli [80] which 

are relevant to neural networks. Stochastic spatio-temporal stimuli with vary-
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ing degrees of spatial correlation, as they occur in naturalistic situations, have 

also begun to receive attention [32, 33]. Another is the inclusion of multiple 

types of cells, which complicates the bifurcation analysis greatly. For example, 

two-population systems are under study [85, 69, 88, 87, 115], where cells in one 

population have similar properties and connections to other cells. 

Sensory systems are a common context in which to model responses of net-

works to localized spatio-temporal inputs. In many sensory systems however, 

the cells are divided into ON and OFF-type cells. The effect of this division 

on the aforementioned dynamical phenomena has not been studied. ON and 

OFF cells can similarly drive other cells further along the sensory pathway, but 

external input to OFF cells is inverted (e.g. by interneurons) in comparison to 

ON cells. For example, ON (OFF) pyramidal cells (also called E and I cells, 

respectively) in the electrosensory lateral line lobe (ELL) of weakly electric fish, 

which provide the prime motivation for our model below, increase (decrease) 

their firing rate when the electric field at the primary receptors in their recep-

tive field increases (decreases) [22, 116]. ON and OFF cells also occur in many 

other sensory pathways including visual [47], auditory [110] and pain processing 

pathways [109], where they further shape receptive fields. 

All these pathways further involve recurrent connections from higher nuclei back 

to ON and OFF cells [32, 103]. The role of feedback is a major question in neu-

roscience, and its answer is likely complicated even by most basic ON/OFF cell 

properties. In particular, oscillatory activity has been reported in the ELL when 

there is sufficient spatial correlation in stimuli. This is thought [33, 32] to be 

important for categorical coding, where spatially correlated stimuli are caused 

by the presence of other fish (and oscillations ensue) while spatially uncorrelated 

stimuli relate more to prey (and oscillations do not ensue). It has further been 

shown [117] that such gamma-range oscillations enhance the directional sensi-

tivity of neurons in the electrosensory system. Since very few lateral connections 

exist within ELL, the interplay between rhythmic activity and recurrent signals 
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from higher nuclei back to ELL is of prime importance to understand how such 

inputs generate oscillations. As this component of feedback circuitry is part of 

many senses, our analysis provides a picture of the dynamical effects that can be 

attributed to this basic skeleton of those sensory systems, as opposed to other 

pieces of circuitry specific to different senses, such as local connections. 

Thus our analysis on driven recurrent networks of ON and OFF cells is par-

ticularly motivated by experiments in electroreception, where an increase in the 

spatial correlation of a stimulus causes oscillatory firing activity, an effect re-

quiring feedback and successfully modeled using ON cells only without local 

connectivity [32, 33]. The fact that OFF cells are equally involved means that 

an increase in stimulation does not necessarily increase the feedback signal, since 

ON and OFF cells respond in opposite directions to that input. This raises the 

question of whether transitions between fixed points and oscillations can still 

occur, and what specific dynamical effects this arrangement might lead to. Our 

results below show that transitions to oscillatory activity for constant inputs 

can indeed occur when both ON and OFF cells are present. Further, we predict 

novel, and even paradoxical autonomous and driven responses of delayed feed-

back networks of ON and OFF cells. 

4.2 Model 

We focus on the simplest case of a ID layer of intercalated ON and OFF cells. 

We follow the basic connectivity scheme of the electrosensory system, in which 

each cell, regardless of type, is coupled identically to every other cell via global 

delayed feedback [22]. This feedback is provided in reality by a distant popu-

lation to which the ON and OFF cells project; we assume for simplicity that 

this population sustains the same activity without further processing and feeds 

it back to all cells in the ID layer. Since the delayed coupling connectivity is 
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I(x,t) 

Figure 4.1: Sensory processing with feedback. 1. For simplicity, ON cells 
receive external input I(x,t) directly; OFF cells are identical but receive in-
verted input via an interneuron (not shown). Apart from feedback, there are no 
connections between neighboring or distant cells, inspired from the architecture 
on the electrosensory lateral line lobe. 2. ON/OFF activity projects to higher 
brain. 3 . The summed activity A(t) drives ON/OFF cells after a delay T. 

all-to-all, there is no spatial dimension in the autonomous model. However, the 

spatial stimulus will impose a spatial dimension, i.e. a topology. Our analysis 

quantifies how opposing responses of these populations to spatiotemporal in-

put I(x,t) affects activity patterns in the ON-OFF layer. The mean somatic 

membrane potentials or "activities" uon(x,t) and u0ff(x,t) obey: 

Donuon{x,t) = A{t-r) + I(x,t) (4.1) 

DoffUoff{x, t) = A{t -T) + V0- I(X, t) 

where Dj = (1 + a " 1 ^ ) with synaptic response time a~
l
. V0 € R sets the 

asymmetry between ON and OFF spontaneous rates. ON and OFF cells produce 

the same feedback (strength and polarity) to all cells [32]. This global delayed 
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feedback which acts at "3" in Fig.4.1 is 

A(t -T) =kjn dy[aonfon(uon(y, t - r)) 

+otofffoff{uoff{y,t- r))] 

where, for j =ON,OFF, 

f3{u) = (1 + e~/3("-M)- i (4.2) 

is the firing rate function with threshold h3 and gain (5. The finite spatial do-

main is fi, while a3 is the relative proportion of j type cells in the population. 

The delay r > 0 accounts for processing and axonal conduction times. We set 

k = 1 for excitatory and k = — 1 for inhibitory feedback. Specific ON/OFF 

neural systems will deviate more or less from this generic configuration, but un-

derstanding their driven recurrent dynamics requires first analyzing this generic 

case. Further elaborations on this basic circuitry, such as the presence of local 

connectivity seen in other senses, are briefly discussed below. 

4.3 Steady state analysis 

To set the stage, we examine the case where, with I(x, t) = 0 and no feedback, 

ON units do not fire (uon ss 0) while OFF units do (w0// ~ Vo)- This can be 

adjusted with V0 to suit specific systems. Note however that this information on 

V0 is difficult to obtain in vivo, since the observed firing rate is a combination of 

the spontaneous activity of the cell and the feedback onto this cell from all cells. 

The spontaneous rate can be obtained in certain experiments if the feedback can 

be turned off, e.g. either surgically or pharmacologically, and this "open-loop" 

knowledge will help calibrate the neural model by adjusting its bias V0. 
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The asymmetry V0 plays an important role, seen by performing a bifurcation 

analysis of (6.1) in the (/3, h) parameter space, as well as a function of the delay 

r , for the homogeneous and autonomous case I(x,t) = 0. Solutions of (6.1) are 

spatially uniform and implicitly determined by 

fc"[/(fion)+/(fio//)] (4-3) 

k^[f(uon)+f(Uoff)] + V0 

For simplicity, we chose aon = a0ff = 1/2, aon — a0ff = 1 and hon = h0ff = h 

so that we may write the firing rate functions / without subscripts. 

4.3.1 Exci tatory feedback k = l 

For excitatory feedback k — 1, no oscillatory solutions are possible. In this case, 

for V0 = 0, varying (3 passed the value 4/fi causes a supercritical pitchfork bi-

furcation only when uon = u0ff = h = fi/2. Otherwise, if h ^ fi/2, saddle-node 

bifurcations occur. The dynamics are thus organized around a cusp point. How-

ever, when V0 ^ 0 with (3 fixed, multistability ensues as the activation threshold 

h is varied, with new fixed points arising via saddle node bifurcations. We do 

not analyze this case is greater detail since our main focus below is on inhibitory 

feedback. 

4.3.2 Inhibitory feedback k = - l 

For inhibitory feedback k = - 1 , and for V0 = 0, the unique fixed point can 

bifurcate to a stable limit cycle at an appropriate delay [105, 2] (see Fig.4.2a). 

Letting V0 ^ 0 introduces two distinct instability domains instead of one, as 

Uoff 
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Figure 4.2: Oscillatory regimes in the threshold-delay parameter space. 

Shaded regions, delimited by instability curves, correspond to global temporal 
oscillations. The shape of these regions is changed by the asymmetry V0 between 
ON and OFF subpopulations, introducing two effective thresholds in the system 
(b-c); the shaded boxes mark limit cycle behavior. Parameters are k = — 1, 
/3 = 25, a , = 0.5 and n = 1. 

seen in Fig.4.2a in the h — r space. Thus multiple transitions to oscillations are 

possible. In fact, defining uon = u0ff — V0 = V allows us to recast Eq.(4.3) more 

simply as v = F{y) = fc§ \fon{v) + /o//(*')]• Thus, V0 ^ 0 amounts to introduc-

ing two effective thresholds hon(V0,I0 = 0) = h and h0jf(V0,10 = 0) = h — V0 

(Fig.4.2b,c). The presence of asymmetry V0 > 0 creates two distinct sponta-

neous firing rates for ON and OFF populations, but does not alter the system 

threshold per se. This change of variable above is used to represent these dif-

ferent activities by a single state, resulting in a one-dimensional fixed point, 

but which exhibits two "effective" thresholds. The input breaks locally the 

symmetry introduced by this change of variable and the ON and OFF activ-

ities cannot be represented by a single point. From this perspective, plotting 

stationary firing rate F versus stationary activity v reveals two distinct regions 

where oscillations emerge through Hopf bifurcations, surrounded by fixed points 

(plateaus). Steep regions correspond to oscillations of the activity of the ON 

and OFF population around their respective thresholds hon and h0jf. Given a 

fixed point v, each population will respond to input with a different sensitivity, 

and be driven in and out of oscillation by inputs of different amplitude. Oscil-
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lations always reach all cells due to feedback. 

4.4 Responses to static inputs 

The results of the last Section lay the foundation for understanding how ON 

and OFF units integrate spatiotemporal signals. From now on, we set k = — 1, 

and illustrate novel responses, first in a regime near the Hopf (large T) , then in 

the fixed point regime (small r ) . Stimuli are always applied to ON and OFF 

cells evenly. 

Spatially uniform input I(x) = I0 linearly shifts the steady state defined by 

(4.3). This is equivalent to threshold modifications, hon = h — I0 and h0ff = 

h — V0 + I0, such that hon = h0ff — V0 + 2I0. More importantly, a static non-

uniform input I(x, t) = I(x) induces in the steady state a non-homogeneous 

solution that satisfies: 

uon(x) = A(uon,uoff) + I{x) (4.4) 

u0ff{x) = uon(x) + V0- 27(x) 

where we have made the dependence on uon and u0/f explicit. An input may 

induce a transition from fixed point to oscillations (Hopf) by moving the variable 

R across its critical value Rc at the bifurcation defined by: 

tan{ui{Rc)T) + UJ(RC) = 0 (4.5) 

for ui(R) = VR
2
 - 1 where R = [aon fn dyf'{uon(y)) + aoff Jn dyf'{uoff{y))}; 

if \R\ > 1, UJ(R) corresponds to the frequency at the bifurcation. The network 

allows the transition from fixed point to global oscillation as a response to an 

input of sufficient amplitude. Transition to oscillatory behavior is caused by 

local units approaching the neighborhood of the feedback activation threshold 

h represented by the shaded area in Fig. 4.2b,c), leading to higher values of the 
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variable R. 

Figure 4.3a demonstrates the effect of the amplitude of a pulse on the variable 

R defined above. The pulse is a piecewise homogeneous signal that has an am-

plitude of I0 over a spatial width A = \x2 — X\\ but is set to 0 elsewhere. For 

I0 = 0, R sits in a local minima for which R < Rc and ON and OFF popula-

tions have stationary firing rates. When a localized input drives the system, R 

increases as the locally excited units approach the activity level h. 

Figure 4.3b illustrates the activity increase of both ON and OFF sub-units 

for some stimulated site located at x = y with respect to the activation curve 

/ , in the spirit of Fig. 4.2b,c. Fig. 4.3c illustrates the same for ON units only. 

In each case, the stimulated ON population increases its activity towards the 

threshold, resulting in an increase in the value of R. According to this picture, 

if the pulse amplitude is high enough, the curve R{I0) crosses the critical value 

defined by Eq.(4.5) and oscillatory activity appears throughout the network. 

Note that if the pulse amplitude increases further, the value of R decreases. 

Thus, if the pulse amplitude is too high, no oscillatory response will be seen. 

Our analysis also reveals that oscillations are less prevalent in an ON/OFF sys-

tem compared to one with ON cells exclusively (labelled thereafter as ON/ON), 

in the sense that they occur over a smaller volume of pulse amplitudes and 

widths. This can be seen in Fig.4.3a by the larger area occupied by the curve 

above the critical line R = Rc in the ON/ON case compared to the ON/OFF 

case. Further, ON/OFF nets can exhibit oscillations for either positive and 

negative inputs. As one can see in Fig. 4.3a, the ON/OFF network allows R 

to cross the instability threshold Rc for both positive and negative pulse am-

plitudes, while the ON/ON network only does so for positive amplitudes. This 

result is intuitively expected given the distinct rectification properties of ON 

and OFF cells. 
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Figure 4.3: Impact of local stimulation, a) Variable R as a function of a 
localized pulse amplitude. The amplitude of the pulse is I0 over a spatial width 
of A = 0.6 and is zero otherwise. Increasing the amplitude will cause the value 
of R to change, for a network made of equal numbers of ON and OFF cells 
(ON/OFF) and one built uniquely of ON cells (denoted by ON/ON). In both 
cases, crossing the critical value Rc causes a Andronov-Hopf bifurcation and the 
resulting limit cycle becomes stable. Other parameters are V0 = 0.0, h = 0.1, 
(3 = 25, Qj = 0.5. b) Schematic of local effects of excitatory stimulation in the 
activity for some driven site x = y in a ON/OFF network. In this example, 
prior to the input, both ON and OFF units have the same activity denoted by 
the dark square. Local inputs shift activity states towards (resp. away from) 
the threshold h for the case of ON units (resp. OFF) units. Changes in the 
variable R, and thus the resulting oscillations, are essentially due here to the 
change in activity of the ON cells (open circle), since the activity of the OFF 
cells is negligible (dark circle), c) Similar behavior occurs in a ON/ON network, 
but the activities simultaneously approach the threshold, resulting in a greater 
increase in R, as shown in part a). The opposite occurs for inhibitory pulses. 

Interestingly, for some parameters, global oscillations are stable for I(x) = 0, 

and the reverse transition is observed, as shown in Fig. 4.5. We emphasize 

that distinct ON and OFF populations allow such an instability to occur even 

if their effective thresholds are not identical. Furthermore, letting an input 

spatial profile tend to a constant recovers the homogeneous problem described 
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Figure 4.4: Oscillatory response triggered by a static input bump. ON 
(left) and OFF (right) populations responding to a localized positive bump. 
Grey shading encodes relative activity amplitudes, b) Central (black) and lat-
eral(grey) response of ON and OFF populations, showing the time evolution of 
the solutions inside and outside the pulse. The input triggers oscillations from 
stationary activity states. Parameters are V0 = 0.0, T = 1.8, h = 0.12, /3 = 25 
and Qj = 0.5. The bump has an amplitude I0 = 0.6 for t 6 [20,35], and is 
set at 0 otherwise, c) Equivalent phenomenon in a stochastic spiking network 
of N = 1000 integrate-and-fire neurons equally spaced on the "spatial" interval 
[0,1] (see Eq. (4.6)). ON cells demonstrate oscillatory firing rates, while OFF 
cells are inhibited in the subthreshold regime. Parameters are V0 = 0, a3 = 0.5, 
T = 1.8, D = 2.0, hon = hoff = 1, with \i = 0.2 and g = -0 .05. The re-
fractory period is Tref = 0.1. The membrane and synaptic time constants are 
a = r m = 1. The input amplitude is 2.0 for 20 < t < 35 and 0 otherwise. The 
bump length scale is set at a = 0.6. d) Mean firing rate variations in time of ON 
and OFF cells from LIF simulations. Changes in the cell mean firing rate are 
shown both inside (black) and outside (grey) the bump. Mean firing rate is sta-
tionary prior to stimulation. The bump triggers global firing rate oscillations. A 
time window of 10 integrating steps was taken to approximate the frequencies. 
Note that time, here and in the following figures, is in arbitrary units which can 
be mapped to physiological time scales. The firing rate is expressed in spike/Vm. 
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Figure 4.5: Bump-shaped stimulus removing global oscillations, a) As in 
Fig. 4.5, ON (left) and OFF (right) cells responses to a localized positive bump 
are shown, b) Central(black) and lateral(grey) dynamics shows the damping of 
the oscillations as the input is turned on. Parameters are V0 = 0.0, r = 1.1, 
h = —0.05, (3 = 25 and a3 = 0.5. The bump has an amplitude I0 = 0.2 for 
t 6 [20,35], and is set at 0 otherwise. The bump length scale is set here at 
a = 0.1 c) Equivalent phenomenon in a stochastic spiking network of N = 1000 
integrate-and-fire neurons equally spaced on the "spatial" interval [0, l j . Other 
parameters are V0 = 0, a, = 0.5, r = 1.1, D = 1.0, hon = h0ff = 1 ,r r e / = 0.1 
with /j, = 0.8 and g = —0.06. The membrane and synaptic time constants are 
a — Tm = 1. The input amplitude is 0.5 for 20 < t < 35 and 0 otherwise, d) 
Mean firing rate as a function of time for both ON and OFF cells, inside(black) 
and outside(grey) the input bump. A time window of 10 integrating steps was 
taken here as well. The firing rate is expressed in spike/rm . 

by asymmetry-induced instabilities as in Fig.4.2, where limit cycles are only 

allowed in restricted regions of the {h(V0,I0),T) parameter space. 
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4.4.1 Numerical Simulations 

We numerically test these predictions using spatially localized bump stimuli 

which are biophysically relevant. In Fig.4.4 and 4.5 we consider the response 

of Eq. (6.1) to I(x,t) = I0{2a)^
1
exp[-\x - X 0 |<J _ 1 ] if ti < t < t2 and 0 else-

where. In Fig. 4.4, the bump drives the sensory layer for t > t\, and stationary 

activities lose their stability when the variable R satisfies Eq.(4.5). Global oscil-

lations appear across the network, modulating the structure of the bump-shaped 

responses. The reverse mechanism occurs at t = t2 when the bump disappears, 

and where ON and OFF stationary activities recover their stable fixed point 

behavior. In Fig. 4.5a, the opposite phenomenon is observed. Prior to the 

bump, limit cycles are stable for the chosen parameters, until t = t\. The global 

equilibrium (4.4) becomes stable during the input, and loses stability at input 

offset as the boundary defined by Eq.(4.5) is crossed again. 

This behavior is further qualitatively reproduced in simulations of noisy spiking 

networks of Integrate and Fire neurons (LIF) with all-to-all coupling. Our aim 

is to show that a simple generic form of this model adapted to the ON/OFF 

context can show qualitatively similar behavior to that of the neural field model. 

Our goal is not to provide a detailed representation of experimental data, nor a 

detailed correspondence between the LIF and the neural field formulation. The 

respective ON and OFF membrane potentials v°
n and v

0
'' in a population of 

N cells obey 

dv
on 

t, 

dv°
ff 

T m _ d T =
 ~

V
°"

 + 9 E ^ ' - T) + M + C(«) +V0- I(j,t) (4.6) 

t, 

with Gaussian white noise £(i) of intensity D, feedback gain g, spiking times of 

all neurons {t,} and bias current fi. The synaptic response function is given by 

r]{s) = ae~
as whenever s > 0 and zero otherwise. The synaptic time constant 

a is here set to 1. The membrane time constant Tm is also fixed to 1. The 
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asymmetry V0 and input amplitude I0 must be tuned in order to reach the ap-

propriate membrane potential correspondence between the neural field and LIF 

formulations of network dynamics. Indeed, our numerical experiments suggest 

that a close relationship exists between both model formulations, but its full de-

termination is not the aim of the current work. Figure 4.5b shows that the firing 

rate oscillations vanish across the domain as the input is turned on. The input 

causes the feedback to reach a critical amplitude, bringing cells subthreshold 

and thus inhibiting network activity. Pyramidal cells in the electrosensory sys-

tem can increase their firing rates more than tenfold in response to a stimulus, 

so large variations are physiological. The specific mean firing rates observed in 

our simulations, as well as the frequency of the emerging firing rate oscillation 

via the Hopf bifurcation, are consequences of the specific choices of the synaptic 

time constant (set throughout to a = 1) as well as the membrane time constant 

(set throughout to r m = 1) and the delay. For example, lower firing rate os-

cillation frequencies are observed for larger delay values (not shown). If time 

units are scaled such that 1 (time unit) = 10msec, as the physiologically relevant 

delay range suggests, one obtains firing rate oscillation frequencies around 50 

Hz, as observed in experimental studies on the electrosensory system [32, 33, 34]. 

4.4.2 Central and lateral responses 

We next consider network responses to input for smaller delays, i.e. in the fixed 

point regime. For V0 / 0, the response to a local pulse, where I(x, t) = I0 

for x e [2:1,0:2] if t0 < t < t\ and I0 = 0 otherwise, might alter feedback 

in non-intuitive ways. Indeed, asymmetry between ON and OFF populations 

induces, lateral to the pulse, a non-monotonic response as I0 increases (Fig. 

4.6a). As input increases, the contribution of the stimulated cells to the global 

feedback is first reduced, then enhanced. The behavior of both ON and OFF 

cells shown in Fig.4.7a,b illustrates the phenomenon in Fig.4.6a,b. For a small 

pulse, the magnitude of global feedback drops: lateral activity goes up. For 

a larger pulse, ON activity increases further, OFF activity remains low as for 
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the small pulse, and global feedback is stronger: lateral activity is now less 

than before the pulse. This is a consequence of the feedback component A(t) 

varying non-monotonically with respect to I0, which is reflected by the lateral 

response behavior plotted in Fig. 4.6a. The magnitude of this effect depends on 

the choice of parameters, especially the feedback gain, which can be adjusted to 

amplify the excitatory and inhibitory responses. The central response will, how-

ever, always be more important than the lateral response. This phenomenon is 

also observed in our integrate-and-fire network, where the lateral firing rate first 

increases then decreases when the input amplitude is augmented, as shown in 

Fig. 4.8. We further note that excitatory feedback (k = +1) alone brings solu-

tions away from the threshold; response curves are monotonic. Small excitatory 

feedback in parallel with dominant inhibitory feedback is equivalent to a small 

change in the gain k, as long as solutions maintain their stability properties for 

k < 0 (not shown). 

4.5 Response to time periodic stimuli 

More paradoxical effects are seen in the fixed point regime with stimuli of the 

form I(x,t) = I(x)sin(to0t), where 2n/uj0 is large compared to the synaptic 

(1/oj) and feedback (r) time scales. For a local pulse I(x) = I0 for x € [£1,2:2] 

and I(x) = 0 elsewhere, we observe a lateral discrepancy in the dominant fre-

quencies of the population activity (Fig.4.9). Interestingly, this is a spatial 

change in oscillatory mode, but without any space dependent connectivity. The 

feedback integrates input from both ON (+I(x,t)) and OFF (V0 — I{x,t)) cell 

populations which, for periodic input, are in antiphase. Given the form of the 

firing rate function, each of these feedback components is roughly a half wave-

rectified version of the input oscillating at frequency u>0. The sum of these two 

components produces a feedback that fullfills the role of a second forcing term, 

driving the system globally at frequency 2w0 as a full-wave rectified version of 
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Figure 4.6: Response vs I0 outside the pulse is non-monotonic. In-
hibitory feedback decreases, as OFF activity massively decreases, but then in-
creases, as ON cells are locally recruited by the pulse and continue to increase 
their rate. Note that the magnitude of the response depends on the choice of 
parameters, especially the feedback gain \k\ (here set to 1), but is smaller than 
that in the central response, b) Response vs I0 inside the pulse (central ON cell) 
is monotonic, but with two slopes. The same non-monotonic feedback effect as 
in (a) occurs, but is compensated by I0. The difference between the curves in 
(a) and (b) is simply I0. Note that for central OFF cells, the response curve 
is monotonically decreasing, due to the inhibitory effect of the incoming pulse. 
The pulse amplitude is I0 for x e [0.35,0.75] and t e [20,25], and 0 otherwise, 
V0 = 0.3, h = 0.05, p = 25, r = 0.2 and a3 = 0.5, with random initial con-
ditions, c) Schematic description of local effects of stimulation for some driven 
site x=y, resulting in non-monotonic lateral response. The variable used here 
is i>, in order to represent the asymmetrical solutions uon and u 0 / / by a single 
state with two distinct thresolds. Given the parameters considered, the fixed 
point v = F{v) before the pulse (dark square) is located in the plateau between 
h0ff = h — V0 and hon = h but closer to h0ff. By analogy to the initial formu-
lation (i.e. without v), the stimulation puts uonf and w0// in different parts of 
the response curve. As the input drives the units, the activity of the OFF cells 
(dark circle to the left) is inhibited and crosses the threshold h0ff, while ON 
cells (dark circle to the right) are not excited sufficiently to reach their response 
threshold hon. The cumulative effect across all stimulated sites generates a de-
crease in the amplitude of the inhibitory feedback, and lateral activity increases, 
d) As the input amplitude increases further, the activity of the ON cells crosses 
hon and augments the amplitude of the inhibitory feedback, leading to a lateral 
decrease in activity. 
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ON OFF 

Figure 4 7- Response of the ON and OFF cells to a localized discontin-

uous pulse of amplitude I0 in the fixed point regime. Here, for I0 = 0, 
OFF cells are firing and ON cells are almost silent. The initial decay seen in 
the time course of the ON cells is caused by this choice of initial conditions, a) 
ON(left) and OFF(right) populations activity in response to the pulse. Here 
I0 = 0 1 < V0. Activity of all cells increases, b) The pulse amplitude is in-
creased to I0 = 0.4 > V0; lateral activity now decreases The pulse is identical 
as in Fig. 4 6. 

the input. This rhythm always appears, regardless of whether the periodic pulse 

drive is local or global. However, inside the pulse, the direct input competes 

with the feedback, producing a dominant rhythm at UJ0 for sufficiently large I0. 

Outside the pulse, only the global feedback-driven rhythm at 2UJ0 is seen. 

Further, near to the Hopf regime (eg. for larger delays), a time-periodic 

pulse of large amplitude and/or spatial extent will induce a sequence of Hopf 

bifurcations as the condition in Eq.(4.5) is cyclically fuUfilled. The result is a 

complex waveform that includes bursts relating to the Hopf-induced limit cycles 
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Figure 4.8: Non-monotonic lateral response of OFF cells to a spatially 

localized pulse in a LIF network, a) A spike plot of a network of N = 1000 
cells, qualitatively reproducing the results shown in Fig. 4.6 and 4.7 is shown. 
Smaller input amplitudes (left) generate an excitatory lateral response, while the 
response for larger amplitudes becomes inhibitory (right), b) Time evolution of 
the firing rate both inside(black) and outside(grey) the pulse. As the input am-
plitude increases from 0.6 to 1.7, the lateral response changes from excitatory 
to inhibitory, and the firing rate first increases and then decreases, c) Cen-
tral (black) and lateral (grey) firing rate as a function of the input amplitude 70, 
qualitatively reproducing the results shown in Fig. 4.6a,b. The lateral response 
exhibits the same non-monotonicity, while the central response is monotonically 
decreasing, as expected from center OFF cells. Given this parameter set, OFF 
cells are in the suprathreshold regime due to the choice of a high value of Va, 

while the ON cells are maintained in the subthreshold regime where they fire at 
a very low rate (not shown). The non-monotonic response of the ON cells can be 
appreciated in the neural field model (Fig. 4.7) because the "activity" is plotted 
(rather than spike times), and this activity can take values below the threshold. 
Parameters are V0 = 1.2, <x, = 0.5, r = 0.1, D = 1.0, rref = 0.1. /i = 0.1, 
h = 1.0 and g = —0.9. The input has an amplitude of I0 between [0.25,0.85] 
for 20 < t < 35 and zero otherwise. A time window of 10 integrating steps was 
taken to compute the firing rates. The firing rate is expressed in spike/rm . 

(not shown). Their analysis will be presented elsewhere. 
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Figure 4 9: Lateral frequency doubling effect, a) Spatially inhomogeneous 
response of ON(left) and OFF(right) populations to local periodic forcing with 
I0 = 0.5 over the region x e [0.35,0.75] and zero elsewhere for 15 < t < 45. 
b) Time evolution of the activity of ON and OFF cells inside(black) and ou-
side(grey) the time-periodic pulse, showing the central-lateral response discrep-
ancy, c) Associated time evolution of the feedback signal A(t), showing that 
combined ON and OFF contributions make the recurrent component oscillate 
at twice the input frequency. Parameters are u0 = 0.9, V0 = 0 05, h = 0.0, 

(3 = 25, T = 0.4 and a0 0.5. 
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4.6 Discussion 

We have performed a bifurcation analysis of a neural field of ON and OFF cells 

with all-to-all delayed coupling. For excitatory coupling we have found multi-

stability between homogeneous fixed point states. Novel and even paradoxical 

effects are predicted to occur in such networks with inhibitory coupling, on which 

we have put more emphasis. Our work was directly inspired by the configuration 

of the electrosensory system in which local connections are weak compared to 

delayed feedback connections. Localized inputs near the Hopf regime can turn 

oscillations on or off. Compared to equivalent networks made fully of ON cells, 

we have shown that such nets exhibit transitions to oscillations over a narrower 

range of parameters that characterize the pulse input - namely its width and 

strength. However, the ON/OFF network is shown to exhibit such transitions 

for both stimulus polarities. Our work supports the observation of oscillations 

in the electrosensory system seen with spatially correlated inputs [32, 33] when 

both ON and OFF cells are present. A next step is to extend our analysis to 

stochastic spatiotemporal stimuli to show how, as in those studies, the spatial 

correlation of a stochastic input can bring on gamma-range oscillations, and 

whether the Hopf curve behaves as shown here for localized pulse inputs. 

In the fixed point regime, localized inputs produce monotonic or non-monotonic 

input-output relations. Local time-periodic forcing leads to co-existing network 

oscillations at different frequencies, in the sense that we can see one gamma 

frequency centrally, where cells are in the receptive field of primary receptors 

(such as electroreceptors projecting to ELL) receiving the pulse stimulation, 

while another frequency is measured laterally to the pulse. In fact, experiments 

have been proposed [118] to measure these non-monotonic lateral as well as 

frequency doubling effects, especially to see the spread in the range of gamma 

frequencies that ensues. 

Another direction of interest is to consider how local connectivity interacts 

with the global delayed loop considered here. Our results are qualitatively and 
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numerically unchanged (not shown) if non-delayed inhibitory feedback is also 

present, mimicking local connectivity. The same is true when moderate positive 

delayed feedback is present at the same time as the negative all-to-all delayed 

feedback considered here. A deeper analysis of the dynamical effects caused 

by such additional circuitry is beyond the scope of our study and is left for 

future work. Local connectivity makes the system truly spatial to begin with, 

rather than only in the presence of a stimulus as is the case in the present study. 

We note that all-to-all networks of stochastic LIF neurons have been analyzed 

using a mean field analysis [119] in which the field contributed by all cells af-

fects the mean bias and the noise level of each cell. They have found oscillatory 

behavior when inhibition is sufficiently strong, which is in line with our find-

ings using neural field theory and with our numerics on the neural field and 

the LIF's. Because of the all-to-all coupling, including sparse random coupling, 

their theory is also without space, as is ours. Although we consider only exci-

tatory or inhibitory connections in isolation, our work goes beyond their study 

by considering that ON and OFF cells both receive external input and respond 

in opposite directions to it. Further we consider the effects of time-varying in-

puts. It will be of interest to develop their theory or that in [33] to see how the 

noise influences the effects that we describe. It will also be of interest to see 

what are the prime determinants of the oscillation frequency in delayed nets of 

all-to-all coupled ON and OFF cells as a function of the balance of excitation 

and inhibition, the noise level and of the relative time scales of excitatory and 

inhibitory networks, as has been investigated for autonomous networks in [120]. 

As mentioned in the introduction, ON and OFF cells are found in most sensory 

pathways and in conjunction with feedback. The simple circuit investigated 

here can thus serve as a stepping stone towards understanding responses to 

inputs, including the onset of oscillations, in other senses, since the oscillation 

mechanism discussed here is accessible to these senses. Oscillations in the visual 

system induced by spatially correlated stimuli have been argued to rely mainly 
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on local circuitry in cortex. Further, locally generated oscillations can be ampli-

fied by a recurrent loop such as the thalamo-cortical loop [103]. This is clearly 

different from the electrosensory system where the feedback loop is important 

(see also work on the nucleus isthmi in the visual tectum by Wessel et al.[112]) 

As these resulting temporal oscillations are thought to be of particular signifi-

cance for higher cognitive functions [96, 98], their continued dynamical analysis 

in the context of more biophysically detailed driven networks of ON and OFF 

cells is further warranted. 
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Abstract 

A neural field model of ON and OFF cells with all-to-all inhibitory feedback 

is investigated. External spatio-temporal stimuli drive the ON and OFF cells 

with, respectively, direct and inverted polarity. The dynamic differences be-

tween networks built of ON and OFF cells (" ON/OFF") and those having only 

ON cells ("ON/ON") are described for the general case where ON and OFF 

cells can have different spontaneous firing rates; this asymmetric case is generic. 

Neural responses to non-homogeneous static and time-periodic inputs are ana-

lyzed in regimes close to and away from self-oscillation. Static stimuli can cause 

oscillatory behavior for certain asymmetry levels. Time-periodic stimuli expose 

dynamical differences between ON/OFF and ON/ON nets. Outside the stim-

ulated region, we show that ON/OFF nets exhibit frequency doubling, while 

ON/ON nets can not. On the other hand, ON/ON networks show antiphase 

responses between stimulated and unstimulated regions, an effect that does not 

rely on specific receptive field circuitry. An analysis of the resonance properties 

of both net types reveals that ON/OFF nets exhibit larger response amplitude. 

Numerical simulations of the neural field models agree with theoretical predic-

tions for localized static and time-periodic forcing. This is also the case for 

simulations of a network of noisy Integrate-and-Fire neurons. We finally dis-

cuss the application of the model to the electrosensory system and to frequency 

doubling effects in retina. 

5.1 Introduction 

Information processing along sensory pathways relies both on single cell prop-

erties and network geometry. A dominant feature of these pathways is feedback 

between successive anatomically distinct neural populations or nuclei, as well as 

connections within each nuclei. At some point along a sensory pathway, feedback 

appears, and shapes the integration and processing of spatio-temporal inputs in 

ways that are yet to be fully understood. Much experimental and theoretical 

research is in fact devoted to this issue. In particular, feedback may underlie the 
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appearance of oscillatory activity when the input has certain attributes. Such 

oscillations, which have been linked to information processing tasks in many 

areas of the nervous system, often emerge via inhibitory feedback connections 

[121, 122, 2, 105, 106], and especially when delays are present [56, 2, 97]. Large 

delays can even produce multistability [2, 123]. 

Localized inputs are known to cause localized increases in activity or "bumps" 

that can be maintained as long as the input is on. Oscillatory responses to 

static input can also occur because the spatial profile of the input induces an 

Andronov-Hopf bifurcation in the recurrent network [98, 99]. In other cases, 

the degree of spatial correlation in an otherwise stochastic input determines the 

onset of oscillation [56, 33]. Such oscillations, however, are not always triggered 

by a static stimulus. Time-periodic inputs also recruit the temporal integration 

properties of the sensory pathway, and drive recurrent connections. Investiga-

tions of these issues has also moved on to more realistic two-population systems 

[85, 88], where all cells respond the same way to external input. 

In fact, the bulk of the research on driven neural networks considers that all 

cells respond in the same manner to the external stimulus. However, most sen-

sory systems are made up, at some point along the way, of two subpopulations, 

namely ON and OFF cells [47, 110, 109, 124], This is true for the visual, au-

ditory, pain, and electrosensory systems. The ON and OFF populations are 

distinguished by their response to inputs. ON cells receive input directly, and 

increase their firing activity when the input increases. In contrast, OFF cells 

receive an inverted image of incoming stimuli, transmitted via inhibitory in-

terneurons [47]. Secondly, ON and OFF cells will generally fire at different 

mean rates even in the absence of an external input stimulus. Examples of such 

asymmetrical zero-input activity between ON and OFF populations have been 

observed in the electrosensory system [35] and the visual system [125], where 

the distribution of firing rates for ON cells has a different mean than that for 

OFF cells. 
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The distinct responses of ON and OFF populations with different intrinsic spon-

taneous rates is the focus of our paper. We characterize this rate difference as an 

" asymmetry". This situation is usually described as one wherein the two pop-

ulations have distinct firing rates, where "spontaneous" refers to the fact that 

there is no external stimulation. But this is to be distinguished from another 

common use of the term "spontaneous" where the context is one in which the 

cell is isolated from both the external stimulus and the feedback. The firing of 

the cells at different mean rates is usually attributed to the fact that there is ei-

ther local circuitry that produces different net currents into the cells, or that the 

intrinsic physiological characteristics such as leak conductance are different, or 

both. It is already an interesting question to infer these "intrinsic spontaneous" 

rates from the spontaneous rates measured when the feedback is intact (with 

zero-input in both cases). In some settings, it is possible to pharmocalogically 

or surgically impair the feedback to reveal the intrinsic spontaneous rates. 

In this article, we propose a comprehensive comparative study of input response 

dynamics of networks built of ON and Off cell populations (ON/OFF nets) to 

those of networks built solely of excitatory cells (ON/ON nets). In [111], a vari-

ety of stimulus responses in a ON/OFF net have been presented in the context 

of a neural field model, with much additional support from simulations of net-

works of noisy leaky integrate-and-fire neurons. The parameters that influenced 

the number of steady states of the network dynamics and their stability were 

analyzed. In particular, it was shown that unequal spontaneous firing rates or 

" asymmetr" can strongly influence the number of steady states and their stabil-

ity, but without demonstrating stronger implications of this asymmetry as we 

do here. Further, the response features discussed in [111] gave little information 

about the sensory processing differences and benefits enabled by the combined 

action of multiple neural populations. It is especially important to determine 

whether a recurrent symmetric ON/OFF net, which our previous study showed 

is less likely to exhibit self-sustained oscillations in response to a static input, 
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is still less likely to do so when the symmetry condition is relaxed Our results 

below show that, surprisingly, this is not the case, 1 e asymmetric ON/OFF 

nets can be more prone to oscillate 

To address the fundamental questions of the advantages versus disadvantages of 

an ON/OFF organization, a systematic comparison of stimulus-induced states 

in networks with and without OFF cells is essential This will enable us to 

distinguish response features due to feedback nonlmeanties from those caused 

solely by the characteristic inhibitory responses of OFF cells to input Our pa-

per builds on the recent results on recurrent networks of ON and OFF cells in 

[111] and can be seen as the natural extension of that work It first extends its 

predictions by investigating enlarged regions of parameter space (with special 

attention paid to the delay and the asymmetry), and further identifies an array 

of novel effects The enlarged region is particularly explored in the context of 

the response of both ON/ON and ON/OFF networks to stimuli (static as well 

as time-periodic) close to and away from the Andronov-Hopf regime, our previ-

ous work was limited to the regime away from the Andronov-Hopf bifurcation 

It compares the propensity to oscillate of asymmetric ON/OFF nets to that of 

symmetric ON/OFF nets and of ON nets Further, it contrasts the input-output 

characteristics of such recurrent networks in the time and frequency domains, 

enabling a comparison of their resonance properties The paper also presents 

novels results on a newly found discrepancy between the response of ON cells in 

the central region (1 e where external forcing is applied) in ON/ON nets versus 

ON/OFF nets in the context of periodic input, and exposes the subtle role of 

asymmetry and of feedback in this effect and in frequency doubling in general 

Finally, we study the response of ON/OFF nets to periodic gratings, 1 e pe-

riodic forcing in both space and time, and discuss how these results can shed 

light on certain aspects of frequency-doubling phenomenon known to occur in 

the retina under conditions of periodic spatiotemporal illumination [126, 127] 

In Section 5 3, we review the mechanism by which a static spatially localized 
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pulse triggers global oscillations, and investigate the instability threshold as a 

function of the activity asymmetry between ON and OFF populations. We then 

study in Section 5.4 the effect of time-periodic stimulation to see how a lateral 

response frequency discrepancy is generated, and proves that it can only be 

seen in ON/OFF systems. In each of these cases, we focus on the role played 

by asymmetrical firing rates on the behavior of neural populations. Lastly, in 

Section 5.5, we use the properties of the feedback connections to qualitatively 

reproduce results on frequency doubling in the retina. Throughout our work, 

we systematically compare our model predictions based on a neural field formu-

lation with numerical simulations of an network of noisy leaky integrate-and-fire 

(LIF) neurons with all-to-all (i.e. global) delayed feedback. 

r 
space (mm) 

\oltaye(mV) 

OFF l(x,t) 

F i g u r e 5 1 Schematic of the driven O N / O F F network The spatial extent of the network is 
shown vertically, while the mean somatic membrane potential , or activity, across the domain is 
drawn horizontally The system is composed of a layer of intercalated ON and O F F pyramidal 
cells As an example, here O F F cells (right) have a higher activity level than ON cells (left) 
When the input I(x,t) increases and is applied to both cell types, ON cells become more 
excited, and O F F cells have a reduced activity All activities are summed ( £ ) across the 
network and sent back to the pyramidal cell layer with all-to-all delayed feedback coupling 
Lateral connections between neural sites are considered weak and negligible 
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5.2 Model 

Figure 6.1 illustrates the neural field model built of ON and OFF cells, con-

nected globally via inhibitory delayed feedback only. Both populations are ho-

mogeneously distributed along a spatial domain of size H. Activities of the ON 

and OFF populations propagate to a higher brain center. This center integrates 

the activity and feeds it back inhibitorily to the sensory layer, i.e. to all ON 

and OFF cells after some propagation time lag r > 0. The feedback activity to 

ON and OFF cells also goes through the same synaptic response function (see 

below). The parallel sensory pathways of ON and OFF cells are thus identi-

cal. The only difference is an interneuronal relay between the external stimulus 

and the OFF cell, which inverts the polarity of incoming sensory signals. For 

simplicity we have omitted the dynamics of any primary sensory receptor cell, 

as well as the connectivity between these cells and the ON and OFF cells that 

would determine the receptive field. In the visual system, such primary cells also 

include many classes of retinal ON and OFF cells, which project to thalamic 

ON and OFF cells. In contrast, in the electric sense the receptors are only of the 

ON type, and project to ON and OFF pyramidal cells (known as E and I cells, 

respectively). No lateral connections between cells are assumed, although spa-

tially localized sensory stimuli drive localized ON and OFF populations, with 

direct and inverted polarity, respectively. Local perturbations are nevertheless 

propagated throughout the network via the recurrent loop, where they generate 

linear effects, as well as non-linear effects resulting from bifurcations. 

The architecture considered here, although common to many early sensory sys-

tems, is inspired by the layout of the electrosensory lateral line lobe (ELL), 

found in the weakly electric fish, where very few lateral connections exist [22]. 

This point distinguishes our approach from most neural field models, which 

typically incorporate spatial kernels. Local circuitry has indeed an important 

impact on the generation and stability of spatial patterns [44, 86, 78, 74], but we 

focus here on the effects of delayed interactions. Nevertheless, our previous work 

[128] has shown that moderate instantaneous recurrent connections, mimicking 
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local anatomy, influence only quantitatively the tendency of a dominantly in-

hibitory delayed feedback system to oscillate by altering the oscillatory response 

threshold and frequency. These effects have further been shown to not change 

the dynamics of this model qualitatively. Note that while the model set-up is 

inspired from the electrosensory system, it also applies to any recurrent network 

in which the cells receiving global feedback can be split into two groups: ones 

that respond to external input changes with activity changes of similar and op-

posed polarity. 

The mean somatic membrane potential, or activity, of the sub-populations 

uon(x, t) and u0ff(x,t) evolves according to the dynamics 

{\ + a-
l
dt)uon(x,t) = -A(t-r) + I{x,t) (5.1) 

(l + a-^K/zOM) = -A{t-T) + V0 + sI{x,t), 

where a is the time constant of the synapse, whose response to a delta-function 

spike is of the form rj{t) = ae~
at

. We will fix at a = 1 throughout our work. 

The sensory signal I(x, t) is added to the activity of an ON cell with preserved 

polarity, while an OFF cell receives the input with inverted polarity (s = — 1). 

Also, the OFF cell generally fires at a different rate in absence of input (/ = 0) 

and feedback (A = 0); without loss of generality we consider V0 > 0. We will 

make comparisons between ON/OFF networks and ON/ON networks. Thus we 

parameterize ON/OFF networks by setting s = — 1, and ON/ON networks by 

setting s = + 1 . The recurrent feedback term A integrates the activity of each 

population across the network 

A{t-r) = G I dy[aonf{uon{y,t-T)) + a0fff{uoff(y,t-T))}, (5.2) 
Jn 

where f(u) = (l + e~ / 3 ' "~' l ' )_ 1 is a sigmoidal firing rate function, with threshold 

h and gain /3. The network full spatial extent is here 0 = 1 and remains 

fixed throughout, a., for j = (on,off) corresponds to the proportion of j 

type cells amongst the total population. These will be fixed at aon = Q 0 / / = 
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0.5, so that our network contains an even number of ON and OFF cells. The 

feedback gain G will be fixed to 1 for the rest of the analysis. We further set 

(3 = 25, so that our firing rate functions are relatively smooth sigmoids. The 

feedback is nevertheless a nonlinear function of its input u, which makes the 

whole system nonlinear. In our comparative study, we frequently present the 

alternative description provided by a noisy leaky Integrate-and-Fire network. 

The evolution of the membrane potential of the j - th LIF neuron obeys 

dv°
n 

dt 

dv°/
f 

dt 

= -v°
n
 + 9j2v(U-T) + » + ti(t)+I(J,t) (5.3) 

t. 

= -v°
ff
 + gJ2 viU -r) + fi + m + V0 + sl(j, t), 

with Gaussian white noise £(£) of intensity D, i.e. the autocorrelation is (?(*)£(£')) 

2D5(t — £'). The feedback gain is denoted by g, the spiking times of all neurons 

by £,, and the bias current by ft. V0 is here again the asymmetry parameter. 

This setup is analogous to the neural field description given in Eq.(6.1), where 

only mean somatic membrane potentials are taken into account. 

5.3 Responses to Static Stimuli 

The type of response generated by a static (time-independent) sensory input 

depends on the proximity of the selected parameter set to the Andronov-Hopf 

curve, which separates equilibrium (fixed point) solutions from oscillatory solu-

tions. There are two cases to consider: the Andronov-Hopf regime and the fixed 

point regime. The fixed point regime is typically reached by selecting small or 

zero delays. In this regime, only feedback dynamics provides nonlinear effects 

in response to sensory driving, although not of the oscillatory type. This case is 

ideal to examine basic effects of recurrent connections. Larger delays bring the 

system closer to the Andronov-Hopf regime where intrinsic oscillations emerge. 

In this case an increase in a static input will cause a transition to oscillatory 

activity. Nonlinear properties of the feedback are also present in this region 
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of parameter space, but often difficult to separate from the oscillatory compo-

nent of the solutions. Below we investigate the dynamical impact of static and 

spatially non-homogeneous driving in each of these regimes, by selecting an ap-

propriate small/large delay. 

5.3.1 Oscillatory dynamics 

Oscillations appear in inhibitory recurrent systems by increasing the delay or 

the feedback gain. Steady states of Eq.(6.1) for some time-independent stimulus 

I(x, t) = I(x) are non-homogeneous functions, implicitly determined by 

Uon(x) = A(Uon,U0ff)+I{x) (5.4) 

uoff(x) = uon(x) + V0 + {s-l)I{x). 

Setting Uj(x,t) = Uj(x) +ue
xt
, i 6 R, A £ C, yields the characteristic equation 

A + 1 + Re~
XT = 0. (5.5) 

Andronov-Hopf bifurcations occur for Re(X) = 0 with A = a + iw, w ^ 0, where 

the parameter R is defined by 

R
=\\l dyf'(uon(y)) + / dyf'(uoff(y))}. (5.6) 

This function corresponds to the amplitude of the linear component of the feed-

back, and thus determines the impact of the feedback term on the steady state 

linear stability. It is the first coefficient of the taylor expansion of A near the 

fixed point ( « m , B 0 / / ) . Note that R depends on the response polarity s, since 

it is a function of the steady states uon.off = w o n o / / ( s ) . As a result, the eigen-

value dependence on the network type (ON/OFF and ON/ON) is embedded 

within the last expression. The parameter R is an integral of the steady states 

over the domain Q, and is maximized when the activities uon and u0ff are in 

the neighbourhood of the threshold h. Oscillations will be triggered by external 
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inputs that allow steady states uon 0ff to approach h sufficiently closely, such 

that R crosses the instability threshold R = Rc. This critical value is defined 

by: 

tan(uj(Rc)T) + LO{RC) = 0. (5.7) 

This linear analysis predicts that the frequency of the oscillation right at the 

Andronov-Hopf bifurcation is u{R) = \/R
2 — 1. 

Transitions to oscillatory behavior are function of asymmetry. These transi-

tions depend on the spatial distribution of the sensory signals. External sensory 

driving has to generate a sufficient change in the value of R to cause R > Rc 

and trigger stable oscillations in the whole network, that is, excite or inhibit a 

sufficiently large fraction of ON and/or OFF population to activity levels near 

the feedback threshold h, where R is maximal. The further the activities are 

from threshold, the larger the input must be to cross the critical value. A typical 

example of input driven oscillatory response, occurring via an Andronov-Hopf 

instability in an ON/OFF network (s = —1) is illustrated in Fig. 5.2. We com-

pare Integrate-and-fire and neural field descriptions. The stimulus considered 

is a pulse, which is defined by I(x,t) = I0 for x 6 A = [2:1,2:2] and t0 < t < t\ 

while I{x,t) = 0 otherwise. At the onset of the input, OFF cells are inhibited 

and ON cells are excited. The resulting excursion of the parameter R across the 

instability threshold Rc is here caused by the ON cells, whose activity reaches the 

neighbourhood of the threshold h, while the activity of the OFF cells decreases 

far below. In this example, V0 = 0, and thus both ON and OFF populations 

show the same activity level prior to and after the stimulation. The range of 

spatial widths A = \x2 — Xi\ and amplitudes I0 triggering stable oscillations in 

this context have already been established [128]. A question remains: how are 

transitions to oscillations affected if the spontaneous firing rates were different 

i.e. V0 > 0? 

The asymmetry level between ON and OFF populations increases the response 

possibilities, as the feedback does not operate in a all-or-none fashion. With-

out any stimulation, V0 introduces two distinct effective feedback thresholds, 
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Figure 5.2. Localized pulse generating oscillatory activity in a ON/OFF network 
for both the neural field and integrate-and-fire descriptions. The activity of ON 
cells is shown on the left, and of the OFF cells on the right. As the input 
is turned on, the activity of stimulated ON(resp. OFF) cells increases(resp. 
decreases); te resulting change in the feedback causes a bifurcation. The neural 
field model (a-b) shows the ON and OFF populations reaching a stable limit 
cycle after a short transient. The global oscillations in the LIF model (c-d), 
shown in the lower panels, take the form of periodic firing rate modulations. 
Parameters are I0 = 0.5, V0 = 0 0, A = 0 8, h = 0.25 and r = 0.8 for the neural 
field description. The LIF model parameters are I0 = 1.9, h = \, y. = 0.4, 
g = —0.07, D = 2.0 for TV = 1000 cells with Gaussian white noise; parameters 
have been scaled to closely match the response frequency in the neural field case. 
The input has an amplitude I0 and a width of A = 0.8 for t > 15. Throughout 
the paper we set a = 1,(3 = 25 and fi = 1. 

hon = h and h0ff = h + V0, causing two possible Andronov-Hopf transitions in 

parameter space. This phenomenon can be seen in Fig. 5.3 where are plotted 

the regions in (r, /i)-parameter space where oscillations are stable, for different 

levels of asymmetry and without any input i.e. I(x, t) = 0. As V0 increases, 

the stable domain splits into two regions, corresponding to the predominant 
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Figure 5.3: Regions in the (r, h) subspace of parameter space where global 
oscillations are stable for I(x, t) = 0 and various asymmetry levels (adapted 
from [111]) • For V0 = 0 (black shaded region), ON and OFF populations share 
the same spontaneous firing rates, and thus have the same activity relative to 
the feedback threshold. The resulting Andronov-Hopf region has the shape of 
a parabola, as in an ON/ON system. If V0 is increased to 0.2 (gray shaded 
region), the stable domain starts to split into two distinct regions, showing that 
ON and OFF population do not have the same activity level with respect to the 
threshold of the system, and thus, that their relative Andronov-Hopf domains 
(where cyclic solutions becomes stable) are becoming distinct. The separation 
becomes even more appreciable with respect to initial case when V0 reaches 
the value of 0.4 (dark gray shaded region) as indicated by the black arrows. 
Parameters are as in Fig. 5.2 with I(x, t) = 0. 

response of either ON or OFF populations and according to the new effective 

thresholds. This steady state property of the system illustrates that transitions 

to stable oscillations occurs within two regimes, as a consequence of different 

effective ON and OFF feedback activation thresholds.A positive pulse moves the 

activity of ON and OFF cells towards critical levels, located at hon and / i 0 / / , 

around which the value R increases significantly. 

A brief comparison between ON/ON and ON/OFF nets responses(i.e. the cases 

s = + l and -1 ) with respect to the proximity of the Andronov-Hopf regime has 

been presented in [111]. There, it has been shown that input driven oscillatory 

activity is more prevalent in ON/ON nets. However, the presence of asymmet-

rical firing rates i.e. V0 ^ 0 is expected to significantly alter this result. Figure 
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Figure 5.4: a) Regions in (I0, V0) space where oscillatory response occurs, for 
ON/ON (dark grey) and ON/OFF(light grey) network configurations. These 
points are such that R > Rc in each case. For small asymmetry values, the 
ON/OFF configuration can respond to both excitatory and inhibitory inputs, 
the oscillatory response region being symmetrical with respect to the vertical 
line I0 = 0. ON/OFF nets can oscillate for both positive and negative inputs. 
ON/ON nets have a larger interval of I0 values that cause oscillation compared 
to ON/OFF nets. An ON/ON net can oscillate in response to both positive and 
negative inputs only if V0 is large, b) Slice of the graph shown in panel a) for 
V0 = 0.0, illustrating how the parameter R in Eq. (5.6) changes as a function 
of I0. Shaded areas correspond to the parameter sets are such that R > Rc. 

c) For larger asymmetry V0 = 0.2, an ON/OFF net now has a larger range of 
inputs that cause oscillations; and ON/ON nets now show two distinct intervals 
of inputs amplitudes. Parameters are Rc « 1.83, T = 1 4, A = 0.6, h = 0 1. 

5.4a shows the effect of an increasing asymmetry V0 on the ability of a pulse 

of amplitude I0 to trigger stable oscillations. This is shown for both network 

configurations. This complex structure represents points in parameter space for 

which R > Rc. It becomes quite hard to give an intuitive interpretation of what 

is going on, given the complex forms of the oscillatory zones, but we may still 

state general results. 

For V0 small, asymmetrical firing rates have a radically different impact on 

ON/OFF and ON/ON network responses. In the ON/ON case, there is an os-
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dilatory response sensitivity shift towards inhibitory signals, while the opposite 

occurs for ON/OFF configurations. Given a broader interval of inputs causing 

oscillation, these are more prevalent in ON/ON networks for the weakly asym-

metrical cases V0 < 0.15. This confirms the property of our two-population sys-

tem: ON/OFF nets have symmetrical behavior w.r.t. excitatory and inhibitory 

inputs, while ON/ON nets do not. This result holds over a large range of 

asymmetry values; beyond this, the ON/ON configuration surprisingly starts 

to respond to both input polarities with oscillations, as one can see in Fig.5.4c. 

Further, the opposite occurs in the ON/OFF case, where the system no longer 

responds to both polarities. We emphasize that these results are dependent on 

the input spatial width. Larger pulses are responsible for greater variations of 

the parameter R, which implies that smaller amplitudes are required to reach 

the oscillation threshold Rc. 

5.3.2 Steady state dynamics 

For small delays, a static input does not trigger an oscillatory response. This 

is because the threshold Rc exceeds the maximal bound of Eq.(5.6). Nonlinear 

effects are nevertheless generated through the interaction of the input with the 

feedback, since ON and OFF populations activate the recurrent connections 

differently depending on their activity prior to receiving input. Spatially local-

ized pulses, in particular, are ideal to study these effects, as the sharp spatial 

separation between stimulated and non-stimulated sites emphasizes feedback 

dynamics. The system may then display distinct activity patterns inside (cen-

tral) and outside (lateral) the pulse. Previous studies [111] of central/lateral 

discrepancies in ON/OFF nets were not compared to ON/ON networks, nor 

explored as a function of asymmetry. This is our task here. 

We consider the case of equal spontaneous activities V0 = 0, in which both 

ON and OFF cells are subthreshold. We focus again on spatially localized stim-

uli. We also focus on the differences between the activity of both cell types in 
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Figure 5.5: Central and lateral responses to a spatially localized pulse of am-
plitude Ia and width A = |rri — X2I far from the Andronov-Hopf regime, for 
both ON/OFF and ON/ON network configurations. ON/OFF nets lateral re-
sponse is non-monotonic, while it is not so in the ON/ON case, a) Local regions 
correspond to the neural sites located inside the pulse i.e. for x € [zi,X2], 
which are directly stimulated. Lateral sites do not receive the input, but are 
driven only by the feedback, b) The activity difference between stimulated and 
non-stimulated states are plotted versus I0. The central response is monotonic 
for both configurations, although two slopes distinguish the curves, c) Lateral 
responses are radically different for ON/ON and ON/OFF nets. The ON/OFF 
response to the pulse is non-monotonic as a function of pulse height I0, while 
the ON/ON response is monotonically decreasing. The difference between the 
curves in (b) and (c) is I0 in both cases. Parameters are V0 = 0.3, h = 0.05, 
r = 0.2. 

btnnulated regions and non-stimulated regions; this difference is likely important 

for decoding at a higher level Static positive inputs locally increase (resp. de-

crease) the activity of the ON (resp. OFF) cells. The resulting response curve 

is monotonic (not shown). As the input increases further, so does feedback, 

leading in both ON/OFF and ON/ON cases to a lateral decrease in activity. 

ON/OFF systems will have the same global network response for inhibitory in-

puts, while ON/ON systems, in contrast, will not show any modulation of the 

feedback. 

For asymmetrical cases V0 > 0, the response of OFF cells allows the system 
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to modulate the polarity of the response as a function of the stimulus ampli-

tude. Central/lateral responses to an excitatory localized pulse in the fixed point 

regime are shown in Fig. 5.5. OFF cells, here maintained at supra-threshold 

activity because V0 / 0, are locally inhibited by the incoming pulse, reducing 

the feedback and thus generating a global increase in activity. If the input am-

plitude increases, ON cells locally reactivate the feedback amplitude by crossing 

the threshold, now leading to a global decrease in activity. In contrast, in the 

case where no OFF cells are present, the only consequence of increasing the stim-

ulus amplitude is an increased feedback inhibition. Consequently, our analysis 

predicts that ON/OFF systems exhibit non-monotonic lateral response curves, 

while ON/ON systems are restricted to inhibitory lateral responses. Note that 

these steady state effects at small delays, caused by input-feedback interactions, 

are also at work in the larger delay regime of the previous subsection. There, 

they influenced the distance to threshold and thus transitions to oscillations 

caused by static inputs; but their role is somewhat masked by these more dra-

matic transitions to oscillatory activity. 

Finally we note that some ON and OFF cells respond to steady input cur-

rents by showing bursts of spikes at the onset and offset of stimulation - thus 

lending another meaning to an "off response" cell. These transient effects have 

been linked to various neural mechanisms like post-inhibitory rebound in many 

sensory systems (see [129]) where they play an important functional role. They 

are typically reproduced by models in which the neuron state is dependent on 

the time derivative of the input, where sudden changes in the input temporal 

structure result in important membrane voltage changes. We have not yet drawn 

attention to the fact that recurrent connections do reproduce similar responses 

under certain conditions. For example, in [111], Fig.7, both ON and OFF cells 

outside the stimulation zone exhibit a sudden increase in activity at both onset 

and offset of the pulse. In our model the effect is most pronounced for lateral 

cells, and is a consequence of the non-monotonic response shown in Fig. 5.5 -

which itself is a consequence of the asymmetry V0 =̂  0. Central units do not 
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show this behavior as clearly, as the amplitude of this excursion is relatively 

smaller than the amplitude of the stimulus itself. The effect is nevertheless 

present as a gentle slope change exists in the response curve. Thus, the variety 

of transient on and off responses seen experimentally in a variety of systems 

may in some cases have a contribution from feedback effects. 

5.4 Time-Periodic Stimuli 

ON/OFF 
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F i g u r e 5.6: ON cell response to a smusoidally modulated localized pulse, a) The O N / O N 
response is characterized by a central response in phase with the input, while the lateral re-
sponse is antiphasic with respect to the central response b) The O N / O F F response exhibits 
a lateral frequency doubling effect, where the activity oscillates at twice the input frequency, 
while centrally the activity is in phase with the input and oscillates at the driving frequency 
Furthermore, the ampli tude of the central response is higher than in the O N / O N case Pa-
rameters are Q = 1, r = 0 3, h = 0 0, l0 = 0 5 for x 6 [0 35 0 75] and t > 15, w0 = 0 9, 
V0 = 0 05 

Oscillations in neural systems can also be triggered by time-periodic stimuli. 

Such non-autonomous components of the input determine the main features of 

the system's response, but additional nonlinear effects can be generated via the 

recurrent interactions. Non-autonomous problems, however, pose an important 

analytical challenge, as dynamical systems theory has few tools to determine 

the shape and stability of the resulting non-stationary solutions Results have 

nevertheless been obtained in specific input shapes, like linear ramps [130], lat-

a) ON/ON 
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erally drifting bumps [80], and global periodically-forced spiking models [131]. 

In our context, the absence of spatial kernel simplifies the analysis greatly, as 

the dynamics can be essentially described by the interaction between the stim-

ulus and its "image" propagated via feedback. We thus analyze the response 

patterns close to and away from the Andronov-Hopf regime by selecting the 

appropriate delay. 

In Fig.5.6, we show the response of ON cells to a spatially localized pulse with 

a sinusoidally modulated amplitude, in both ON/ON or ON/OFF network con-

figurations. Two main results are obtained when one analyzes in detail the dis-

tinction between these two responses: 1) second harmonic or frequency-doubled 

response (laterally), and 2) sustained amplitude response (centrally). We will 

analyze each of these cases separately. Further, in this section, we restrict 

our analysis to inputs which possess the following spatio-temporal structure: 

I(x,t) = I0sin(w0t) for x € A = [ i i , ^ ] and t0 < t < t\ while I(x,t) = 0 

otherwise. 

5.4.1 Frequency doubling 

[111] showed that periodic driving, in the case of small delays, results in a lat-

eral frequency doubling effect in ON/OFF networks. This effect is caused by 

the combined responses of ON and OFF populations, resulting in the feedback 

being modulated at twice the input frequency. Underlying this effect is the fact 

that the recurrent feedback loop acts as a full-wave rectifier, getting a boost 

from both positive and negative going phases of the input. This effect was 

found in ON/OFF nets; here we contrast it with the behavior of an ON/ON net 

with similar forcing. We further show that it can occur in a LIF network. Our 

aim is to characterize the functional differences between this type of behavior, 

which appears to be specific to ON/OFF networks, and the antiphasic lateral 

response seen in ON/ON networks, as seen in Fig. 5.6. Further here we explore 

the effect of increasing delay times on the structure of the response. As a result, 
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F i g u r e 5.7: Sinusoidally modulated localized pulse generating a lateral frequency doubling 
effect in a O N / O F F net ON and O F F population responses are presented, for both neural 
field (a-b) and spiking(c-d) approaches. The parameters for the neural field description are 
identical as in Fig. 5.6 while for the LIF Integrate-And-Fire description these are r = 0 3, 
h = 1, I0 = 5.5, /j = 1.05, V0 = 0 05 and g = —0.06 for Gaussian white noise 

this problem must be considered both close and away from the Andronov-Hopf 

regime. 

Away from Andronov-Hopf bifurcation in the fixed point regime, when the delay 

is small, the input cannot trigger a bifurcation as the spectrum of eigenvalues is 

bounded to the left of the imaginary axis. As Fig. 5.7 shows for both the neural 

field and LIF models, ON and OFF populations respond to localized signals 

with opposed polarity. In the case of sinusoidally modulated amplitudes, the 

reversed OFF response constitutes an antiphasic (i.e. 180 degree phase shifted) 

image of the signal transmitted to the ON cells. The combined responses of ON 
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and OFF cells results in a signal oscillating at twice the input frequency. 

Frequency doubling might be explained when one looks at the interaction of 

a) 

ON h 
cells 

OFF h 
cells 

ON/OFF b) ON/ON 

A(t) rTTTTTT r* 

F i g u r e 5 .8 : Schematic representation of the t ime evolution of the activity of cells in O N / O F F 
and O N / O N nets, a) As the activity of either ON and O F F cells increases beyond the threshold 
h (shaded areas), the ampli tude of the feedback increases. In O N / O F F nets, stimulated ON 
and O F F cells never activate the feedback simultaneously, the resulting recurrent signals 
oscillates at twice the input frequency, b) Stimulated cells in an O N / O N net activate the 
feedback simultaneously, which then oscillates with the same frequency as the input. The 
profile of the feedback te rm A(t) as in Eq. (5.2) is also shown in the two cases. 

the ON and OFF cell activity with the feedback activation threshold h. Figure 

5.8 a illustrates the sequence of events leading to feedback oscillations. Before 

the stimulus is applied, steady firing rates states are reached by both ON and 

OFF populations. As the sinusoidally modulated pulse is turned on at t = t i , 

I(x) > 0 for x 6 [2:1,0:2], and ON cell activity increases until the feedback acti-

vation threshold is met. This increases the amplitude of the feedback, resulting 

in a lateral decrease in activity. As the first half of the input cycle ends and 

where I(x, t) « 0, the ON population decreases its activity below the threshold, 

which deactivates the feedback. The activity then increases laterally. Now OFF 

cells become excited, due to their reversed response, and activate the feedback 

again. The lateral activity decreases once more. This sequence of events is not 

instantaneous, and the lateral response shows two small bumps of activity for 

every input period, caused by two feedback activation/deactivation sequences. 

This process repeats itself until the input is turned off. The resulting lateral 

activity behavior corresponds to the time evolution of the feedback term A(t), 

which oscillates at twice the input frequency. 
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Of particular significance is that our analysis predicts that lateral double fre-

quency responses in only possible when ON and OFF populations are present. 

As Fig. 5.8b illustrates, ON/ON type networks do not exhibit this behavior. 

This is because ON/ON systems only activate and deactivate the feedback once 

per input cycle. The lateral response then corresponds to a sequence of steady 

activity plateaus, corresponding to successive feedback changes in amplitude 

caused by ON cells reaching the threshold. The resulting effect is a central-

lateral response phase shift of 180 degrees. One might characterize the response 

of ON/OFF networks by comparing the input contrast curves generated by this 

configuration to those for the ON/ON systems. Frequency doubling and lateral 

phase shift can be seen as outcomes of global feedback driving, but seen pre-

dominantly in regions where the input has smaller or zero amplitude. 

Figure 5.9a,b shows the central and lateral responses for small delays. In 

the case of large delays, a similar behavior occurs, but the input makes the 

parameter R cross back and forth the critical value Rc. For large delays, Rc is 

also much smaller. As we can see from Fig. 5.9c,d, the variations of R generate 

periodic epochs of Andronov-Hopf cycles, or bursts, superimposed to the activ-

ity profile provided by the input. This makes the network response look even 

more nonlinear. The temporary transitions to oscillatory activity are caused by 

the activity levels getting closer to and away from the threshold h, changing the 

value of R accordingly. 

In a ON/OFF configuration (Fig. 5.9c), only one stimulated population at a 

time approaches h, as explained in Fig. 5.8. The variation of R is thus much 

smaller than in the ON/ON case, where the two populations simultaneously in-

teract with the feedback. The excursion of the parameter R in the ON/OFF case 

takes place in the vicinity of the bifurcation, causing relatively small oscillations. 

In contrast, oscillations in the ON/ON case are much larger, as the excursion of 

the parameter R takes place further into the Andronov-Hopf regime. We note 

that this effect is apparent mainly for small input frequencies, as the stimulus 

130 



20 40 I _' _ j i;_ -I_J 180 200 

F i g u r e 5 9 ON cell responses to a time periodic stimulus in O N / O F F and O N / O N nets 
far(a,6) and close(c d) to the Andronov-Hopf regime Andronov-Hopf cycles appear whenever 
ON or O F F cells activity is near the feedback threshold h, making the parameter R cross 
the critical value Rc A small frequency of w0 = 0 04 allows those cycles to gain sufficient 
amplitude to be seen The O N / O F F net is shown on the left {a,c) and O N / O N on the right 
{b,d) On the top of each panel, bold lines describe the central temporal evolution of the 
solutions, while thin lines describe lateral dynamics Other parameters are £1 — 1 I0 = 1 1 
for x G [0 15 0 85] and 0 elsewhere, V0 = 0 05 and h = 0 0 The delay chosen m the fixed 
point regime is r = 0 5 while r = 1 8 near the Andronov Hopf regime 

has enough time to gam the required amplitude to generate a bifurcation 
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F i g u r e 5 .10 : Response amplitude discrepancy of central ON cells in O N / O N and O N / O F F 
networks, a) Evolution of the activity of sinusoidally driven ON cells, for central locations i.e. 
x, € A. Activity oscillations in a O N / O F F network(solid line) are larger than in a O N / O N 
network (dashed line), b) Resulting evolution of the feedback A{t) according to a sinusoidal 
stimulus, in the O N / O N and O N / O F F cases. In the O N / O N case, the sudden activation of the 
feedback caused by the two populations is such tha t A(t) makes high ampli tude excursions 
away from the resting value, resulting in a strong inhibitory effect on the network. This 
decreases the ampli tude of the response, but only when the ampli tude of the input is positive. 
In the O N / O F F case, the simultaneous and antiphase responses of ON and O F F cells result in 
a full-wave rectification across the feedback loop. The variations of the feedback ampli tude are 
much smaller, meaning tha t less inhibition affects the response at the sensory layer. Further, 
the activation of the negative feedback by the O F F cells during the negative components of 
the input results in a amplification of the response. The input temporal s t ructure in plotted 
in c). Parameters are fi = 1, T = 0.3, h = 0.0, I0 = 0.5 for x € [0.35 0.75] and t > 15, 
w0 = 0.9, V0 = 0.05. 

5.4.2 Amplitude of Sustained ON/OFF Response 

We now consider the amplitude of responses to periodic forcing. The behavior 

illustrated in Fig. 5.6 also puts forward another novel effect, namely a central 

response amplitude difference between purely excitatory networks and those 

built of both ON and OFF cells. Indeed, the central response of the ON cells 

has significantly greater amplitude in an ON/OFF setup. This behavior can 

be explained when one considers the temporal structure of the feedback in the 

ON/ON and ON/OFF cases. Figure 5.10a illustrates the central response pat-

terns in both configurations, as well as the feedback time course A(t) in as in 

Eq.5.2( b)) when a sinusoidal input is present (which is also plotted in panel c). 

In an ON/ON network, whenever the input amplitude increases, both popu-

lations recruit the feedback simultaneously, which results in a sudden and high 
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F i g u r e 5 . 1 1 : Response amplitude of central ON cells m O N / O N and O N / O F F nets as a 
function of input frequency A sinusoidally modulated pulse of fixed ampli tude Io = 0 25 and 
width A = 0 4 generates distinct frequency tuning properties if the system incorporates O F F 
cells a) For T = 0, O N / O N nets response is relatively constant over the range of frequencies 
considered The units recruit the feedback pathway, which in turn reduce the amplitude of 
the cells response For r = 0 9, the curve shows the resonance due to the Andronov-Hopf 
frequency The response ampli tude diminishes as the frequency becomes larger, because the 
input becomes too fast compared to the system's dynamics b) In O N / O F F nets, the response 
curve is lowpass For T = 0, the response is maximal at low frequencies due to the feedback 
amplification, where the amplitude is larger compated to the case shown in a) Increasing 
the delay to r = 0 9 makes the system closer to the Andronov-Hopf regime a resonant peaks 
becomes visible near the Hopf frequency 

amplitude increase of A(t). The resulting strong inhibitory signal reduces the 

amplitude of the cell's response. As the input amplitude then decreases, both 

populations reduce their activity below the threshold, resulting in a sudden and 

complete deactivation of the feedback. The remaining negative part of the input 

is not altered by the feedback, which is not activated. 

In a ON/OFF network however, the feedback A(t) does not reach as high an 

amplitude, because only one population at a time, either ON or OFF cells, can 

recruit recurrent connections. As the input amplitude increases, only ON cells 

activate the feedback, resulting in a relatively smaller inhibitory signal. This 

allows the response of the stimulated ON cells to reach higher amplitudes than 

in the ON/ON case. And as the amplitude of the stimulus becomes negative, 

the negative feedback acts as a amplifier, and sustains the response of the stim-

ulated cells. This is because the negative part of the input makes the OFF cells 

activate the feedback once again: the feedback amplifies the cellular response. 
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The response amplitude deviation shown in Figure 5.10 further shapes the fre-

quency tuning properties of ON/ON and ON/OFF nets. In Figure 5.11, the 

response amplitude of driven units is plotted with respect to stimulus frequency 

for small and large delays. Panel a) shows that ON/ON nets response is band-

pass. For zero delays (T = 0), the response curve is flat over the range of input 

frequencies. Increasing the delay to a higher value (r = 0.9), the resonance 

peak appears as the system gets closer to the Andronov-Hopf regime and ex-

hibits stronger oscillatory behavior near the characteristic Hopf frequency. In 

the ON/OFF case (plotted in panel b)), the response is low pass, where stimuli 

with smaller frequencies trigger responses of amplitudes much larger than in 

the ON/ON case. If the feedback delay is changed from T = 0 to T = 0.9, the 

Andronov-Hopf resonance peaks appears. 

5.5 Application to Sensory Systems 

The model under study here, which incorporates ON and OFF populations with 

global recurrent connections, can shed light on recent experimental findings, in 

both the electrosensory and visual systems. These two systems use ON and 

OFF cells to integrate sensory inputs, and have feedback. We show that some 

experimental data are reproduced by our generic model, thus providing a sim-

ple caricature of the dynamics at work when both populations operate together, 

and 2) that known results obtained in ON/ON networks still hold when more 

realism is put in the models by incorporating OFF cells. 

5.5.1 Electrosensation 

The electrosensory system is endowed with ON and OFF cells, known respec-

tively as E and I pyramidal cells. These cells receive direct input from primary 

sensory neurons, the electroreceptors, which cover the body of the animal. It 
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is known that E and I cells project back to themselves via the nucleus preem-

inentialis (nP) after a minimal delay of approximately 10 msec [22]. It is also 

known that stochastic inputs in time cause oscillatory activity in the gamma 

band (around 40 Hz) when the inputs are strongly correlated in space [32, 33]. 

In the context of our model here, spatial correlation is proportional to the num-

ber of neurons receiving common input. No such oscillatory activity was seen 

when neighbouring patches of electroreceptors receive independent stochastic 

forcing. This experimental result was reproduced by a computational modeling 

of a network of E cells projecting to themselves with inhibitory delayed feedback 

of the type considered here. This was the case for LIF type nets with intrinsic 

noise driven by the external correlated noise [32] as well as for a linear fluctu-

ation theory using stochastic LIF neurons with delayed feedback [33, 34]. The 

outstanding question is whether the inclusion of OFF cells known to be present 

in approximately equal numbers as ON cells can alter our understanding of this 

picture. 

In [111] we showed that ON/OFF networks can also oscillate when a sufficient 

number of neurons receives a static input, enabling the parameter R to cross 

the critical value Rc. Further we showed that the range of inputs that cause 

this transition was more limited than for ON/ON nets. While the deterministic 

localized "step input" stimulation used in that paper (and here) differs from 

the stochastic zero-mean stimulus used in [32, 33], the lower propensity of the 

ON/OFF network to oscillate when an input bump is applied suggests that OFF 

cells could counteract the genesis of gamma oscillations. However, that result 

was obtained for a symmetric network (V0 = 0). Our new results here for the 

asymmetric case now show that the situation is more complex. The ability to 

oscillated really depends on V0 (see Fig.5.4). In some cases, the ON/OFF net-

work may in fact have a greater propensity to show an oscillatory response to 

a static input. This question could be ultimately settled by knowing the spon-

taneous activities, which can be done by opening the feedback loop surgically 

or temporarily using pharmacological agents. So it may be that the oscillations 

135 



seen experimentally in the electrosensory system were in fact supported, and 

maybe even strengthened, by the presence of the OFF cells 

5.5.2 Response to Periodic Grating and Retinal Frequency 

Doubling 

In this subsection we consider the response of our recurrent network of ON 

and OFF cells to forcing that is periodic in both space and time This type 

of forcing is common in research on the visual system, where it is referred to 

as contrast-reversed periodic stimulation For simplicity we consider sinusoidal 

gratings Note however that we do not consider sinusoidal drifting gratings 

which are also often used in vision research (we only comment briefly on the 

resulting dynamics below) Here, the modulation is fixed m space Hence there 

is a discrete set of points in space, at the local minima of the spatial modulation, 

that never receive any stimulation beyond the background stimulation on which 

the periodic grating is applied Parameters of this stimulation are the spatial 

frequency, the temporal frequency, and the spatial and temporal modulation 

amplitudes, which can be combined into one amplitude factor I0 

I(x,t) = I0sin{w0t){\ + cos(7x)] (5 8) 

where wa is the temporal frequency and 7 the spatial frequency The response 

of our one-dimensional array of ON cells to the sinusoidal grating is shown in 

Fig 5 12 The temporal part of this forcing, turned on at t = 15, is shown 

above the plot, while the spatial part is shown to the right This set-up is sim-

ilar to that studied in Section 5 4 1 on periodically modulated pulses, except 

that here the pulses have a sinusoidally repeating profile in space The activity 

in the regions receiving more illumination is seen to oscillate at the temporal 

driving frequency w0 On the other hand, the activity of regions receiving less 

illumination are found to oscillate at twice the input frequency even though 

the input is weak in those regions The frequency-doubling effect is maximal 
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at positions xn = (2n + l)7r(7)_1 where I(xn,t) = 0. The frequency doubling 

observed here occurs because the combined responses of ON and OFF popula-

tions propagate back through the network via the recurrent connection. Illu-

minated locations oscillate predominantly at the input frequency, even though 

the frequency-doubled component is globally driving the system via the feed-

back - this latter component is just weaker than the direct driving frequency 

component in the illuminated region. The relative strength of the fundamen-

tal and frequency-doubled components thus changes in a continual manner from 

regions of zero illumination to regions of maximal illumination from the grating. 

The addition of OFF cells to our recurrent sensory pathway may be used to 

shed some light on phenomena occurring in the visual system. Frequency dou-

bling has been observed in many experimental studies of retinal ganglion cell 

responding to periodic illumination gratings (see [127] and references therein). 

These observations have also been reproduced computationally [126]. In [127], 

experiments were carried out in guinea pig retina, where both ON and OFF 

pathways are present. Lateral responses (outside the illuminated bars) at twice 

the stimulus frequency were reported, and attributed to the presence of non-

linearities in the ON and OFF pathways, and to the dimension of the receptive 

field of amacrine cells. In the experiments, illumination grating stimuli were 

drifted or reverse-contrasted periodically in time, while the activities of central 

(sites of maximal illumination) and lateral (position of zero-illumination) gan-

glion cells were simultaneously recorded and compared (see [127] for details). 

For gratings with a low spatial frequency, the activity was shown to track the 

input temporal modulation in regions of maximal illumination (labelled "F l" 

behavior). In contrast, in regions of zero-illumination, the activity of the gan-

glion cells oscillated at twice the temporal input frequency (labelled "F2" or 

"non-linear" behavior). In [126], this phenomenon has been reproduced by a 

complex computational model of a retinal sub-circuit in which frequency dou-

bling, also called "second harmonic response", has been linked to photoreceptor 

non-linearities and amacrine wide-field effects. The model, developed for the 
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F i g u r e 5 .12: Frequency doubling caused by a spatially and temporally sinusoidal input, 
mimicking an illumination grating stimulus This input is presented here to a one-dimensional 
ret ina Parameters are Q = 1, r = 0 4, h = 0 0, IQ = 0 5, wa = 1 3, V0 = 0 05 and 7 = 13 0 

ON pathway because the data on the off pathway are more scarce, includes the 

properties of subtypes of photoreceptors, horizontal cells, bipolar cells, ganglion 

cells as well as two classes of amacrine cells: narrow field ("nested" amacrine 

cells) and wide field amacrine cells. The complex wiring diagram involves feed-

forward inhibition and recurrent negative feedback loops. 

The setting of the experiment described in [127] and the work in [126] suggests 

that our model might be used to reproduce certain features of the observed 

dynamics. Those authors state that F2 non-linear responses - qualitatively sim-

ilar to our lateral frequency doubling behavior - is due to the ganglion cell's 

"non-linear" receptive field, which possesses quite distinct spatial summation 

properties in comparison to the more familiar center-surround "linear" recep-

tive field. F2 responses are not sensitive to the recording position within the 

spatial grating, and thus do not appear to be the determined or influenced by 

local spatial connectivity. While the F2 responses are constant over all grating 
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phases, the F l responses (due to the standard center-surround receptive field) 

are proportional to the illumination in the grating. This is qualitatively similar 

to what is seen in Fig. 5.12. 

Further, the F l and F2 responses show similar dependencies on the spatial fre-

quency of the grating, and this dependency is preserved over the receptive field 

of the ganglion cells. Also, [127] reports that non-linear receptive field effects are 

caused by the spatial summation of independent "sub-unit" responses that pop-

ulate a wide area around the ganglion cell's dendritic field. The range of these 

connections is supposedly a consequence of the presence of wide-field amacrine 

cells. As a result, F2 responses measured across the receptive field were shown 

to sum up linearly at the ganglion cells. 

Thus the interplay of the activation of ON and OFF cone pathways involves 

weakly interconnected sub-units distributed across the receptive field. Their 

activity is integrated via the wide-field amacrine cells, which is analogous to a 

large scale feedback pathway with weak lateral connectivity, as in our model and 

in the ELL discussed in Section 5.5.1. Thus, although retinal sub-circuits are 

not spatially homogeneous, and our model lacks the complexity to reproduce 

the full range of phenomena described in [127], we argue that the qualitative 

behavior of the non-linear responses of ganglion cells to a periodic grating can 

be reproduced without spatial connectivity considerations, by including globally 

summed inhibitory effects. In this context, our model proposes a mechanism 

which is responsible for input rectification, which relies on the non-linearity of 

both the ON and OFF recurrent pathways. 

We have considered here only contrast-reversed gratings, as opposed to drift-

ing gratings. Preliminary results with drifting sinusoidal gratings do not reveal 

frequency doubling in our one-dimensional array (not shown). The difference 

with the retinal data under these conditions may be due to the fact that two-

dimensions are needed to reproduce the basic observations, or that more intri-

cate circuitry has to be included. Also, the frequency doubling exhibited by our 
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model is not sensitive to the spatial frequency of the contrast-reversed grating, 

which is also the case for the data over a certain range of spatial frequencies. 

But at some point the lateral connectivity and other details of retinal circuitry 

do set a spatial scale beyond which the effect decreases until it is no longer seen. 

5.6 Conclusion 

In this paper, we analyzed the main differences between the sensory processing 

capabilities of networks built of ON and OFF cells (ON/OFF) with networks 

built of ON cells only (ON/ON). We have shown that both types of nets inte-

grate spatiotemporal inputs differently. In the context of oscillatory responses 

reached via Andronov-Hopf bifurcations, symmetric ON/ON systems are more 

sensitive in the sense that they undergo Andronov-Hopf bifurcations with pulses 

of smaller amplitude and spatial widths; however, this transition is only allowed 

for positive inputs. In symmetric ON/OFF systems, the transition occurs on 

a narrower interval of input widths and amplitudes, but is observed for inputs 

of both positive and negative polarities. This situation changes with the degree 

of asymmetry in the spontaneous firing rates, controlled by the parameter V0. 

We found that the asymmetry greatly influences the bifurcation properties of 

the system, and the propensity to respond to static step inputs with oscillations. 

In the context of time-periodic inputs, we demonstrated that only ON/OFF 

systems exhibit lateral frequency doubling, while ON/ON systems instead show 

antiphasic lateral responses. We further found that ON/OFF systems possess 

a larger response amplitude compared to ON/ON systems, due to the temporal 

structure and timing of the feedback. Our analysis supports the observation of 

oscillations in the electrosensory system when a sufficient number of neurons 

share common input. Our model was also used to reproduce the response pat-

tern found in the cat and guinea pig retina, where frequency doubling has been 

reported. 
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Even though the inclusion of OFF cells corresponds to a step towards more 

realistic models of early sensory systems, many physiological processes and com-

ponents are believed to play an active part in information processing tasks of 

early sensory systems. Neural adaptation has been shown to influence the gene-

sis of synchrony in recurrent networks [4, 39] as well as the formation of spatially 

organized activity patterns [132, 82, 133, 84]. We thus expect that the timing 

and strength of adaptation might augment the range of response possibilities of 

ON/OFF nets, and thus increase the physiological relevance of our model. The 

analysis of this problem is planned for later studies. 

Inclusion of receptive field effects for both cell types is another obvious next 

step. This is also the case for the inclusion of other types of ON/OFF asymme-

tries seen e.g. in retina where both onset and offsets of the stimulus can lead 

to increases of firing rates [134]. The connectivity between primary receptors 

and the ON and OFF cells considered here is known to determine receptive field 

properties, and needs to be included in the analysis at some point. And finally, 

it will be interesting to determine whether the results found here in the context 

of asymmetric networks, where the ON and OFF cells can have different base-

line or spontaneous activity, will respond to spatio-temporal stochastic signals 

in a way predicted by our analysis of deterministic signals here. This will reveal 

whether oscillations seen in data with spatially correlated stochastic stimuli are 

generically observed in ON/OFF cells, supporting our understanding of oscilla-

tions in the electrosensory system [32, 33, 34] and others with this type of forcing. 

The circuitry investigated here assumes that both ON and OFF cells project 

to the same nucleus, which in turn feeds back symmetrically to all cells. The 

actual circuitry is not known in the electrosensory system, nor is it in most 

other systems. It may be that E cells project preferentially to E cells via the 

nucleus nP, and I cells to I cells. Future work will investigate whether it is 

possible to make predictions of the true connectivity by using a clever suite of 
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measurements. Of course, at the extreme where E's connect only to E's, and 

I's only to I's, one is faced with two separate recurrent systems, both of which 

will obey the rules described here for ON/ON systems. Future work will also 

explore possible ways of performing a combination of closed loop experiments 

in order to reveal the spontaneous firing rates, thus enabling an estimate of V0 

without tampering with the feedback. 

5.7 ON/OFF networks and stochastic driving 

It has been established through many computational studies that circuits in-

spired by the electrosensory lateral line lobe(ELL) provide a suitable environ-

ment for the genesis of rhythmic states, given that sensory stimuli exhibit suf-

ficient spatial correlation [33, 26, 135, 97]. In this context, we have been able 

to show how the spatial structure of the input interacts with delayed feedback 

to generate oscillations. Further, these result are supported by experimental 

findings, which clearly indicate that a global stimulus (i.e. all sites get stimu-

lated) results in a strong Fourier component in the gamma range, while local 

ones (i.e. a fraction of the sites) do not [32, 26]. The aforementioned studies 

have considered only the presence of ON cells (known as E-cells), despite half of 

the cells being of the OFF type. They used LIF descriptions, and most impor-

tantly considered realistic noisy stimuli, in bright contrast to the static pulses 

considered throughout our work in Chapter 3, 4, 5 and 6. 

One can indeed model the encoded signals from the primary afferents using 

white noise low pass filtered with a cut-off frequency of around 60Hz. As such, 

the neural field formulation has not yet been used to approach the specific prob-

lem of the presence of OFF cells with stochastic stimulation. We thus ask the 

following question: does a neural field model which combines ON and OFF 

cells undergo an Andronov-Hopf bifurcation with spatially correlated stochastic 

driving? Recent studies [100] have attempted to confirm this statement using a 
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model of the ELL built only of excitatory cells, which also incorporates spatial 

kernels. Thus, although the bifurcation analysis performed earlier does not hold 

per se for stochastic forcing, we expect that the system might undergo input 

induced Andronov-Hopf bifurcations as the input amplitude and/or width in-

a) Local Stimulus c) 

b) Global stimulus 

* ! • ! • • • • • 

£ > 0,2-

Time 

F i g u r e 5 .13 : Stimulation profiles used t o investigate the genesis of global oscillations, a) 
Schematic of local stimulation, performed by st imulating a single site of the network, using 
an additive noisy term, while in b) global stimulation, all network sites get stimulated by 
independent stochastic processes. The resulting activation of the recurrent connections is 
increased, compared to the local case, c) Sample of the white noise process stimulus used 
in Fig. 5.14. The process has a cut-off frequency of 60Hz, and is obtained via a Ornstein-
Ohlenbeck process1 . It is shown with two values of 6 within the interval 25 < t < 50. 
Parameters are S = 0.6 and Tou = 1.67 

Here we show that our ON/OFF model may be used to understand the proper-

ties of the system as the sources of noise increase in intensity. This part of the 

thesis will be used for a future article submission in which we aim to study the 

effect of noise intensity and spatial correlation on the transitions to oscillatory 

states. It is thus part of a work in progress. We have uncovered an interesting 

*To obtain 0-60Hz gaussian white noise, the temporal component of the input I(t) obeys 
an Ornstein-Ohlenbeck process, which we define by 

(i(t) -e) + sm 
Q-t Tou 

where 6 and rou are respectively the mean and the time-scale of the process, and where 

S = J ~r— corresponds to the ampli tude of a gaussian white noise process, labelled £(£), with 

a variance of a. The resulting solution I{i) is then multipled by a spatial step function in 

order to obtain the required spatial profile i e. global or local. See [136]. 
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Figure 5 14 ON cells response to stochastic inputs with local and global profiles The input 
(shaded grey) is an additive low pass gaussian white noise process with a cut-off frequency 
of 60Hz When such a process has a zero mean l e 6 = 0 and S — 1 6 , ON/ON and 
ON/OFF network configurations display the exact same behavior Local stimuli do not trigger 
a rhythmic fluctuation of the firing rate (a ) while global input profiles do (b ) Once the 
mean is increased to non-zero values l e 0 = 0 15, S = 0 6, oscillatory responses become 
more prevalent in ON/ON networks (c ) than in ON/OFF networks (d ), as predicted by 
the bifurcation analysis performed earlier The input spatial profile evolves between global 
(A = 1 0) and local (A = 0 05) spatial width and the input is non-zero whenever 25 < t < 50 
Other parameters are fl = 1, r = 1 8,17 = 0 1, h = 1 0,^ = 0 4, g = - 0 3, D = 1 0, V0 = 0 0 
and Tou — 1 67 for a network of N = 1000 Integrate and Fire cells as in Eq (6 12) 

aspect of the response to stochastic forcing - one that hinges on the mean of 

the stochastic stimulus - which we report here This result will inform our full 

study into the effects of noise intensity and spatial correlations on oscillations 

The stimulus corresponds to a Gaussian noise process with frequencies between 

0 and 60Hz with an adjustable mean and a local or global spatial profile, as 

shown in Fig 5 13 Subject to this stimulation, we investigate the response of 

the system, whose cellular dynamics are governed by Eq 6 12 As shown in 

Fig 5 14, if the spatial extent of the stimulus is very small (1 e "local stimu-
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lus"), no rhythmic activity appears in either the ON/ON or ON/OFF network 

configurations, as expected. However, global oscillations appear once the input 

width is increased up to the size of the full network (i.e. "global stimulus"). The 

amplitude of the non-linear recurrent connection component increases up to the 

oscillation threshold and global rhythmic activity becomes stable. In analogy 

with the neural field description, this is because the local stimulus does not 

increase the value of the parameter R in Eq. (5.6) above Rc, while the global 

stimulus does. 

An interesting consequence of the input spatio-temporal structure is an ab-

sence of distinction in the response threshold between ON/ON and ON/OFF 

networks when the mean of the process is chosen to be zero. As the input is 

built of such zero mean and spatially independent processes, one finds that, sta-

tistically, an even amount of ON and OFF cells across the network are excited 

and/or inhibited at a given moment, which implies that the feedback connec-

tions are not recruited preferentially in either the ON/ON or ON/OFF cases. 

Both ON/ON and ON/OFF systems display the same Andronov-Hopd thresh-

old. This result further appears to be independent of the amplitude of the input. 

However, we observe a response threshold discrepancy when the mean of the 

stochastic process is shifted from null to either positive or negative values, mim-

icking the pulse-shaped inputs situations considered in our previous analysis 

(although the envelope of the aforementioned pulse consists of noisy fluctua-

tions). Indeed, stochastic inputs with non-zero means possess a statistical bias 

towards excitation or inhibition, which results in a coherent increase or decrease 

in firing rate contributions to the non-linear feedback components. ON/OFF 

systems are less likely to oscillate than ON/ON systems. This is due to the fact 

than all cells contribute coherently to the feedback signal in the ON/ON case, 

while only half of the neural population (either ON or OFF cells) does so in 

ON/OFF nets. Nevertheless, we may affirm that oscillations are easy to observe 

in a ON/OFF network if the stochastic stimulus has a zero mean. 
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Chapter 6 

Neural adaptation 

facilitates oscillatory 

responses to static inputs in 

a recurrent network of ON 

and OFF cells 

Lefebvre J., Longtin A., LeBlanc V.G. (2010) Submitted 
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Abstract 

We investigate the role of adaptation in a neural field model, composed of ON 

and OFF cells, with delayed all-to-all recurrent connections. As external spa-

tially profiled inputs drive the network, ON cells receive inputs directly, while 

OFF cells receive an inverted image of the original signals. Via global and de-

layed inhibitory connections, these signals can cause the system to enter states of 

sustained oscillatory activity. We perform a bifurcation analysis of our model to 

elucidate how neural adaptation influences the ability of the network to exhibit 

oscillatory activity. We show that slow adaptation encourages input-induced 

rhythmic states by decreasing the Andronov-Hopf bifurcation threshold. We 

further determine how the feedback and adaptation together shape the res-

onant properties of the ON and OFF cell network and how this affects the 

response to time-periodic input. By introducing an additional frequency in the 

system, adaptation alters the resonance frequency by shifting the peaks where 

the response is maximal. We support these results with numerical experiments 

of the neural field model. Although developed in the context of the circuitry of 

the electric sense, these results are applicable to any network of spontaneously 

firing cells with global inhibitory feedback to themselves, in which a fraction of 

these cells receive external input directly, while the remaining ones receive an 

inverted version of this input via feedforward di-synaptic inhibition. Thus the 

results are relevant beyond the many sensory systems where ON and OFF cells 

are usually identified, and provide the backbone for understanding dynamical 

network effects of lateral connections and various forms of ON/OFF responses. 

6.1 Introduction 

The behavior of neural systems is governed by a combination of circuitry and cel-

lular attributes. Amongst these, spike frequency adaptation is found in almost 

all neurons, where it is thought to influence the processing of neural information 

mediated by action potentials. Adaptation corresponds to a stereotyped de-
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crease in firing rate after prolonged stimulation, as the cell habituates to steady 

input currents. It is thought to play a particularly important role in sensory sys-

tems. There it can alter neuronal firing patterns in order to direct the system's 

response towards given stimulus attributes [137, 138, 139, 140, 39, 141] or to 

tune neural sensitivity to stimulus intensity [142]. Adaptation has further been 

shown to control repetitive firing [143] and influences both time and rate coding 

properties [144]. Various mechanisms underlying adaptation have been iden-

tified. Steady neuron firing can activate slow potassium currents [145], which 

may also be calcium-dependent [146], resulting in firing rate decay following a 

step input. Adaptation has also been linked in other cases to the inactivation 

of slow sodium currents [147]. Theoretical studies on Integrate-and-Fire models 

as well as conductance-based models have reproduced experimental recordings 

of adapting behavior (see [137, 148, 149] and references therein) 

The goal of this paper is to investigate how adaptation shapes the frequency 

tuning of cells and stimulus-induced network oscillations in a realistic context of 

sensory feedback circuitry involving adaptive ON and OFF cells. We draw our 

main motivation for combining feedback, ON/OFF populations and adaptation 

from studies of the weakly electric fish (Apteronotus leptorhynchus). Adapta-

tion has been studied there both at the level of the primary receptor known as 

the P-unit electroreceptor (which we do not focus on here), as well as at the 

level of the post-synaptic population of pyramidal cells. P-unit adaptation is 

very rapid (tens of milliseconds) and has been shown to influence the frequency-

dependent encoding of electrosensory inputs [150, 33]. This adaptation further 

enables the separation of fast transient stimuli, related to communication sig-

nals, from slower oscillatory signals arising from the proximity of two fish [39]. 

This adaptation further participates in the appearance of input-induced states 

of synchrony [151], allowing transitions among P-units from states of synchrony 

to desynchrony and vice-versa due to rapid communication signals. Each P-unit 

axon then trifurcates, with each of the three processes reaching pyramidal cells 

in one of three topographic maps of the electrosensory lateral line lobe (ELL). 
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Cells especially in superficial layers of the ELL also exhibit adaptation which 

shapes their temporal filtering properties for oscillatory inputs that arise natu-

rally during an encounter of two fish [152, 35, 29]. In fact adaptation becomes 

faster as one moves from central to lateral maps, which motivates the study here 

across adaptation time scales. The mechanism of this adaptation is not known 

but does seem to depend on calcium [153]. 

It is the adaptation exhibited by these latter pyramidal cells that is of interest 

in our paper because they are involved in recurrent circuitry with other nuclei 

- as opposed to receptors which are involved only in feedforward circuitry. In 

the visual system, the thalamo-cortical loop has similar properties and exhibits 

structures that also possess ON and OFF cells. We note that adaptation is 

in fact a form of negative feedback, and as such can interact with - and even 

mimic - other forms of feedback caused by network circuitry. Recent dynami-

cal studies on large scale nets have shed light on the role of adaptation in the 

generation and stability of spatially localized patterns like breathers (localized 

time-periodic bumps of activity) and traveling waves [154, 84, 155]. Other stud-

ies demonstrated its impact on network oscillations [36, 37, 38] in the form of 

enhanced synchronization. 

Of further interest is the fact that oscillatory states can appear in sensory path-

ways as a consequence of sensory inputs with sufficiently high spatial coherence 

and/or spatial binding [102, 97, 98]. In the weakly electric fish such oscillations 

are associated with temporally random stimuli of large spatial correlation (such 

as other animals) and relies on delayed feedback [32, 99, 33, 34]. Delayed feed-

back inhibition common to all cells often underlies oscillatory activity in the 

brain as it competes with excitatory feedback (see e.g. [156, 157, 97, 98, 158] 

and references therein). Also, frequency tuning effects have been observed in the 

electric fish that change with the spatial configuration of the stimulus, i.e. on 

its local versus global geometry [27, 32, 135]. These are due in part to cellular 

and circuit properties [26, 29]. It is known for example that a step increase in 
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stimulus contrast causes an increase followed by a decrease in ELL firing, 1 e 

by adaptive behavior rather than oscillatory behavior 

These studies naturally lead to the question of how adaptation interacts with 

spatio-temporal stimuli that lead to oscillatory dynamics Does the presence of 

adaptation increase or decrease the propensity for an inhibitory recurrent net-

work to oscillate in response to spatially correlated inputs7 How does adaptation 

influence frequency tuning in the presence of recurrent inhibition7 Cells in the 

ELL further display either simple ON or OFF behavior ON (OFF) cells en-

code positive (negative)-gomg fluctuations of input signals These signals occur 

as modulations of the amplitude (and sometimes frequency for communication 

calls) of the carrier oscillation emitted by the fish known as the electric organ 

discharge (EOD) ON cells (known as E cells) thus increase their firing rate when 

the amplitude of the EOD increases, and vice-versa for the OFF cells (known 

as I cells) [22, 159, 24] The incorporation of multiple neural populations is 

important to properly account for network activity and receptive field geometry 

and is still at the forefront of work in theoretical neuroscience [69, 87, 85, 88] In 

earlier work inspired by the electrosensory circuitry, we have shown how ON and 

OFF populations interact with delayed and non-delayed recurrent connections to 

generate oscillations triggered by static stimuli [111, 128] These studies, which 

used neural field formulations as well as stochastic Integrate-and-Fire neurons, 

did not consider the issue of cellular adaptation, in fact the dynamics of net 

works with both multiple populations and adaptation is a general open question 

We note that the interplay of ON and OFF pathways also plays a fundamental 

role in vision from retina onwards [47, 140] as well as in audition [110, 129] 

and other senses The simple ON/OFF dichotomy described above, where each 

population responds preferentially to one polarity of the stimulus, is commonly 

present [116] Yet the circuitry and physiology, often involving many types of 

ON/OFF cells and complex network interactions, is far from clear and is slowly 

being elucidated [140, 124, 160, 129] Here we focus on this simple type of 
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ON/OFF behavior as opposed to other forms, such as that where both the on-

set and offset of a stimulus both cause firing rate increases [129] (in the simple 

dichotomy illustrated above, ON and OFF populations would have inverted re-

sponses with respect to one another for both onset and offset). 

In contrast, ON/OFF circuitry (known as E/I circuitry) has been worked out 

for weakly electric fish, and can be summarized as follows: ON and OFF cells 

share common P-unit afferents, but the OFF pathway includes an interposed 

inhibitory interneuron, causing the OFF response to be inverted [22, 159]. Elec-

troreception thus offers a relatively simpler sensory system, both anatomically 

and physiologically, in which to investigate the role of adaptive ON/OFF cells 

involved in recurrent circuitry. Such a study can then provide the dynamical 

backbone for more complex systems and forms of ON/OFF responses. It is 

important to note that earlier modeling studies of oscillations in ELL assumed 

only one population was at work (the ON population [32, 99, 33, 34]). 

In this paper, we address the following questions: how does adaptation influence 

the oscillatory response threshold in networks of ON and OFF cells? Are global 

oscillations as common when adaptation is included? How does the combina-

tion of adaptation and feedback shape frequency tuning of cells embedded in the 

network? Our work here builds on our previous results about ON and OFF cells 

and delayed feedback without adaptation. We investigate how adaptation may 

underlie stimulus-induced oscillations in recurrent networks. To demonstrate 

this, we compare the Andronov-Hopf bifurcation scenario for the cases with and 

without adaptation. We thus expand the stability analysis around steady activ-

ity states in a recurrent model that now includes adaptation dynamics. We will 

highlight the effect of adaptation on the stability of input-induced limit cycles. 

We will also study how such a model responds to time-periodic input, and how 

adaptation shapes the resonance curve by introducing additional time-scales in 

the system. 
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In section 6.1, we describe the architecture of our ON/OFF network and we 

show how stable oscillations appear as a result of spatially localized stimula-

tion. In Section 6.3, we perform a stability analysis of our model, incorporating 

adaptation, where we compare the instability point between the cases where 

adaptation is and is not present. There, our study has been made more ana-

lytically tractable by assuming identical adaptation dynamics for the ON and 

OFF cells. We further look at the impact of adaptation on the system's steady 

states, to determine how external input then interact with the feedback. Lastly, 

in Section 6.4, we investigate and compare the effects of adaptation and feed-

back on the amplitude of the cells response to time-varying inputs. We further 

motivate those results by comparing the resonance curves with those obtained 

with a noisy Integrate-and-Fire net. 

6.2 Model 

Sensory 

ON cells 

I(x,t) 

I(*,t) 

- © - • 

OFF cells 

-I(x,t) 

Feedback connection 

T_ i—X—\ 

-©-

2 

Figure 6.1: Network architecture of our model. It is inspired from the ELL of 
the weakly electric fish. The sensory layer, built of an equal number of ON 
and OFF cells, receives external sensory inputs with direct (ON) and inverted 
(OFF) polarity. The populations then project to higher centers, which accumu-
late the activity distributed across the network (sigma symbol). The recurrent 
connections allows the accumulated activity component to be sent back to all 
the cells in the sensory layer with some time lag r. 
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Our model is based on electroreception, but is general enough to apply to other 

senses. We describe the evolution of the neural activity u(x,t), corresponding 

to the mean somatic membrane potential of a sub-network of the whole network 

located at position x along a one-dimensional spatial domain fi. This activity 

is further segregated into that of ON and OFF populations Mon.0//. External 

sensory signals I{x,t) propagate in a parallel fashion from the first receptors 

(not modeled explicitly) up to the "sensory" layer of pyramidal cells in the 

ELL, and excite and/or inhibit the local populations by altering their activity 

level. Further, recurrent connections allow the activity of the cells to propagate 

to higher brain centers (mainly area NP in the weakly electric fish [22]). For 

simplicity the activity there is summed across the network and then fed back to 

all the initial sites globally and with inhibitory polarity. This component of the 

circuit involves a significant processing and propagation time lag modeled with 

a fixed delay T. The fields uon and u0ff obey the dynamics 

{\ + a,-
l
dt)um{x,t) = -A{t - r) + I(x,t) (6.1) 

{l + a-
l
dt)uoff{x,t) = -A{t-r)-I{x,t), 

where a is the rate constant of the exponential synapses with response function 

r/(t) = ae~
at

, where t > 0, and A is the delayed inhibitory feedback connection, 

corresponding to the accumulation of activity of each unit across the network: 

A(t-r)= / dy[aonf{uon(y,t-T))+aofff(uoff(y,t-T))]. 
Jn 

Here, aon and a 0 / / are the relative proportions of ON and OFF cells in the 

network, which have been both set to 0.5. The function / is a sigmoidal firing 

rate function defined by f(u) = (1 + exp(—f3(u — h)))"
1 for a gain of j3 and an 

activation threshold h. The feedback gain (5 is fixed to 25 troughout the analysis. 

The ELL in the weakly electric fish exhibits a similar architecture to the one 

used in this model. Indeed, very few lateral connections exist within it, such 

that most of the processing is performed by the means of feedback connections 
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from higher muclei. Previous studies [111, 128] demonstrated that this model 

exhibits changes from stable activity equilibria to global oscillations as a re-

sult of increasing stimulus amplitude and/or spatial extent, due to the presence 

of an Andronov-Hopf bifurcation. Those neural field predictions were further 

supported by simulations of a network of noisy Integrate-and-Fire neurons with 

spatio-temporal forcing, as in [34, 32, 33] for the case where only ON cells were 

considered. Weaker effects of local non-delayed circuitry within the ELL itself 

have also been studied [128], and were shown to be of no qualitative consequence 

on the dynamics; such local effects are thus not modeled here. 

Aside from their inhibitory response to positive inputs, OFF cells in-vivo can fire 

at a baseline mean rate even in absence of external stimulation, as may ON cells 

[50,45]. In the electric sense, both ON and OFF cells are spontaneously active 

because they receive tonic excitation from various sources. Thus, external input 

modulates the firing activity of both ON and OFF cells around this baseline ac-

tivity. Experimental recordings in the electrosensory system indicate that the 

spontaneous firing rate may even be slightly higher for OFF cells than for ON 

cells. Our recent results, in the context where no adaptation is present, demon-

strate that such a significant difference in spontaneous activity between these 

neural populations can qualitatively alter the input response of ON/OFF nets 

[45]. While the inclusion of this activity difference in our network with adap-

tation is easy to do (e.g. by adding a bias current to one neuron population) 

and would further enhance the connection of our results with the physiology 

of real ON/OFF systems, the analysis would become much more complicated 

as a function of this asymmetry. Thus, for simplicity, we assume throughout 

that both neural populations share the same baseline activity in the absence of 

input. This allows us to focus more clearly on the influence of adaptation on the 

resonance and oscillatory properties of such nets. Also, our results are generally 

applicable to any network of spontaneously firing cells with global inhibitory 

feedback to themselves, in which a fraction of these cells receive external input 

directly, while the remaining ones receive an inverted version of this input via 
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feedforward di-synaptic inhibition. 

Without adaptation, observed global oscillations can emerge as network re-

sponses to spatially distributed signals. Figure 6.2 shows the response of ON 

and OFF populations to an input of the form I(x, t) = I0 ^ 0 if x\ < x < x2 

and t\ < t < £2 (and 1 = 0 otherwise). The stimulus triggers a global oscilla-

tory response by causing an Andronov-Hopf bifurcation, for which the details 

have already been worked out [111]. The linearization and subsequent eigen-

value analysis of system (6.1) for spatially homogeneous eigenmodes of the form 

u3 (x, t) = v,j (x) + ue
xt for u, e R, A 6 C, yields the characteristic equation 

\+l + Re
XT

 = 0, (6.2) 

for R = \[jndyj'{uon(y)) + fndyf'(u0ff(y))]- The case with adaptation is 

more involved, as we show next. 

Figure 6.2. Oscillatory response of ON(left panel) and OFF(right panel) pop-
ulations to a spatially localized pulse Parameters are a = 1, r = 1 4, h = 0.1 
and fi = [0,1]. The input has an amplitude I0 = 0.3 and possess a spatial width 
A=\x2-x1\= 0.75 where xx = 0.15 and x2 = 0.90 and for 15 < t < 40. 
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6.3 Neural adaptation 

While the idealized network architecture of (6.1) allows the cellular populations 

to maintain a steady (or oscillating) level of activity, more realistic network 

descriptions typically include adaptation. As we will see, this local intrinsic 

component of cellular dynamics plays a crucial role in balancing the excitation-

inhibition ratio across the system. It is therefore an important factor to consider 

in the genesis of global oscillations as well as possible resonance effects. Various 

biophysical mechanisms have been shown to cause adaptation, generating dis-

tinct effects on the spiking dynamics [149, 37, 144, 161]. Here we incorporate 

an intrinsic linear adaptation that is modeled as a second field, acting locally 

and subtractively on the activity field (6.1). Note that we are not modeling a 

specific outward current. Rather, this adaptation field can be seen as a subtrac-

tive current that approximates the impact of a number of realistic adaptation 

mechanisms on firing rate and resonance properties. This model adaptation 

field will thus reflect the effect of this linear component on the evolution of 

spatio-temporal activity. Our model now becomes: 

(1 +a~
1
dt)uon{x,t) = -A{t - r ) + I(x,t) -eonwon(x,t) (6.3) 

(1 +a~
1
dt)uoff{x,t) = -A{t-r)-I(x,t)-eoffw0ff{x,t), 

where the adaptation fields won 0ff (x, t) obey 

(1 + b~
1
dt)won(x,t) = uon{x,t) (6.4) 

(l + 6_1(9 t)wo/ /(a;,t) = uoff{x,t). 

Here b is the rate of the adaptation (b~
l is the adaptation time constant) and 

^on off > 0 corresponds to the gain or amplitude of the adaptation component, 

which acts as an inhibitory feedback. System (6.3) includes two additive in-

hibitory components which obey linear dynamics and operate on the time scale 

6_ 1 , which we assume is identical for ON and OFF cells. Further, the adaptation 

gain is assumed to be identical for both ON and OFF cells i.e. eon = eaff = e. 
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The fields won.0ff(x,t) are expected to locally inhibit the activity of both ON 

or OFF populations whenever the ON and OFF activities uon.0ff(x, t) increase. 

The instability threshold for which global oscillations can be triggered by static 

local stimuli will change according to the gain and relative time scale of this 

new inhibitory mechanism. 

To determine the impact of adaptation, one needs to rework the stability analysis 

taking into account the increased dimensionality of the problem. This analy-

sis relies on the symmetry between ON and OFF cells and is restricted to the 

choice of identical adaptation gains and time scales for both sub-populations. 

The steady states of the combined systems (6.3) and (6.4) are solutions of: 

(1 + e)uon(x) = -A(uon,u0ff) + I{x) (6.5) 

(1 +e)uoff{x) = (l + e)uon{x)-2I{x), 

where won = uon(x) and w0ff — u0ff{x). Adaptation acts as a contracting com-

ponents, reducing the amplitude of the steady states by a factor ( l+e o n . 0 / / ) > 0. 

Considering the spatially homogeneous eigenmodes Uj{x,t) = Uj(x) + ue
xt and 

Wj(x,t) = W]{x) + we
xt
, u,w € K, A e C, one obtains from (6.3) and (6.4) the 

Jacobian with delayed components 

(
 -a(l + Ron{uon)e-

XT
) -aRoff{u0ff)e-

XT
 -ae 0 ^ 

-aRon(uon)e-
XT

 -a{l+Roff(uoff)e-
XT

) 0 - a e 
J(A) — 

b 0 -b 0 

^ 0 b 0 - 6 / 

R
on = llfndyf'{uon(y))] and Roff = ^[Jndyf'(uoff(y))]. The characteristic 

equation follows as 

0 = det(JJ(A)-AI4), (6.6) 
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with I4 being the 4 x 4 identity matrix. The resulting fourth-order polynomial 

in A admits the following solutions 

A1.2 = -^^-±̂ Vb
2
-2ab + a

2
-4abe, (6.7) 

aRe~
lWT

 + a + b 
A3.4 2 

± - ^J{Rae-
XT

)
2
 + 2a

2
Re-

XT - 2abRe~
Xr

 + a
2
 - 2ab + b

2
 - Aabe, 

where the eigenvalues A3.4 are implicitly determined. The function R can be 

expressed as 

R = Ron{uon) + Roff(u0ff) = \[f dyf'(uon(y)} + hf dyf'(uoff(y))]. (6.8) 

The eigenvalues A1.2 define the stability of Eq.(6.4) and thus do not depend 

on the delay r. Given that a, b, e > 0, A1.2 remain bounded to the left of the 

imaginary axis and subsequently do not contribute to any oscillatory instabil-

ity. They however introduce an additional frequency in the system, whenever 

A12 € C with non-zero imaginary parts. An input-induced oscillation requires 

the non-linear delayed feedback connections. We may therefore restrict the 

analysis to the eigenvalues A3.4, which depend on the delay r as well as the 

parameter R. At the instability threshold, A3.4 = {iwfe|R 3 Wk > 0}, and we 

obtain the same criterion for an Andronov-Hopf bifurcation from both A3 and 

A4, namely 

0 = {2iw + aRe~
1WT

 +a + b)
2
 -a

2
- 2a

2
Re~

lWT
 + 2ab - R

2
a

2
e~

2lWT (6.9) 

+2abRe~
lwT

 - b
2 + Aabe. 

Expanding and separating the real and imaginary components using e~
lWT = 

COS(WT) — isin(wT), we obtain 

0 = -w
2
 + awRsin(wr) + ab(e + 1) + abRcos(wr) (6.10) 

0 = awRcos(wr) + (a + b)w — abRsin(wr), 
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Combining these equations, the instability threshold Rc becomes 

n t , B \ ^ b
2
(e+l) + w(Rc)

2 

Rccos(w(Rc)r) = b2 + w{Rc)2 , (6 11) 

for which the frequencies can be shown to be 

w(Rc,e,a,b) = ± - * yPi( i? e ,e ,o ,6) ± 2yJP2{Rc, e, a,6), 

with the polynomials 

Pi (i?c, e, a, 6) = 2(R
2
C - l)a2 - 262 + 4o6e, 

P2(-Rc, e, a, b) = b
4
 - 463oe - 2a2b2 + 2R

2
ca

2
b

2 - 4a
3
be 

+4a
3
beR

2
c + a4 - 2a4i?2 + R

A
ca

A
 - 862o2e 

Equation (6 11) defines the instability threshold as a function of the adaptation 

gain e and time scale b~
1 The reader might notice that whenever e, b = 0, one 

recovers the eigenvalue problem exposed in Eq (6 2), in which no adaptation 

was present 

The problem of determining the overall effect of cellular adaptation on input-

induced oscillations is twofold First, one must see how e > 0 and 6 > 0 change 

the value of the instability threshold Rc in Eq (6 11) with respect to the case 

without adaptation I e e = 0, b = 0 Secondly, one must see whether e > 0 

reshapes the function R in Eq (6 8) by shifting the steady states Thus, we 

must consider the fact that adaptation might not only change the critical value 

Rc where an oscillatory response occurs, but also the trajectory in parameter 

space on which the system reaches stable cyclic solutions 

Figure 6 3 exposes the effect of increasing gam and adaptation rate constant 

on the instability threshold Rc in Eq (6 11) For b small, R{b,e) < Rc The 

Andronov-Hopf threshold becomes smaller as the gam increases e > 0, meaning 
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that oscillatory states require weaker inputs to be reached. As b increases, the 

opposite occurs, and the threshold increases away from the case e = 0. Cellu-

lar adaptation in the electrosensory system operates on time scales of roughly 

100ms, slower than the intrinsic dynamics of the cells, which are on the order 

of 10-20ms [29]. As a result, 6 is more likely to be smaller than the cellular rate 

constant o, here fixed to a = 1. For this interval of b values, slow adaptation 

enhances the prevalence oscillatory responses by reducing the value of the bi-

furcation threshold. 

20- i 
8 = 00 

e = o l 

8 = 04 

Figure 6.3: Oscillatory response threshold Rc as a function of the adaptation 
gain e and time constant &_1. Slow adaptation (6 small) reduces the response 
threshold marginally, while on faster time scales, the threshold is increased, 
reducing the tendency of the system to enter oscillatory states of activity in 
response to static stimuli. The adaptation gain e amplifies both effects. We 
note that for b « 0.8, the gain e has almost no effect on the value of Rc. 

Parameters are a = 1, r = 2.0, aon 0ff = 0.5 and fi = [0,1], 

The effect of local stimulation on the function R for e = 0 has been investigated 

[111], but additional inhibitory components like adaptation influence the steady 

states as well. Indeed, from Eq. (6.5) and by considering the weak feedback 

regime i.e. f(uon 0ff) ss 0, adaptation reduces the response contrast by a factor 

(l + eOTl off)'
1
 • Figure 6.4 shows the response amplitude of stimulated cells as a 

function of the adaptation gain e. The input contrast is defined by the activity 
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difference between stimulated and non-stimulated sites for networks with e = 0 

and e > 0 in the steady state regime. This definition refers to the dynamics out 

of any oscillatory regimes and is used to specify the net impact of inputs on the 

activity of the sub-units. Once oscillations appear, we use the term "response" 

instead to qualify the magnitude of the oscillations (see section 6.4). As the 

adaptation gain increases, the response amplitude decreases. As a result, the 

amplitude of the inhibitory feedback for e > 0 is smaller than for e = 0; this 

allows the steady states to reach higher values. This can be verified numerically 

by solving Eq. (6.5) for both e > 0 and e = 0, or analytically by considering 

only the first Taylor expansion term of / . 

Adaptation also reduces the magnitude of the feedback signal sent to the sen-

sory layer in the same way that it limits the response contrast. Even though 

the same amount of feedback connections gets recruited, the amplitude of the 

return signal is reduced; the amount of inhibition in the system decreases. As 

such, increasing the adaptation gain does in part increase the activity of the 

ON and OFF populations. The behavior of the system with respect to stimula-

tion is a trade-off between a weaker contrast and inhibition. As a consequence, 

this modification of the steady states significantly alters the way the system 

interacts with the non-linearities of Eq. (6.1) and thus changes the location in 

parameter space where a bifurcation occurs. To understand this effect, we need 

to investigate the consequences of e > 0 on the shape of the function R = R(e) 

in Eq. (6.8). 

The function R is an integral over the steady states across the network, via 

the derivative of the activation function / . It is maximal whenever uon.off = h, 

that is, the closer the equilibrium activities are to the threshold for firing (and 

thus for producing feedback activity), the higher R becomes. It may also be 

seen as the amount of non-linearity in the system. With adaptation, signifi-

cant variations of the function R require large input amplitudes. In the context 

of a static pulse of width A and amplitude 70, Fig. 6.5 illustrates points in 

(70,e) parameter space for which an input-induced Andronov-Hopf bifurcation 
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Figure 6.4: Input contrast for a static pulse of the form I(x,t) = I0 if x e A 
and t\ < t < t2 where A corresponds to the input spatial width, defined by 
A = \x\ — X2\- The contrast is the difference in activity of units inside and 
outside the pulse. As the adaptation gain increases, the local response decreases. 
The activity levels have been chosen such that the feedback connections are 
weakly interacting with the ON and OFF population activities. The solid curves 
illustrate the contrast when adaptation is present and as a function of the gain 
e for different input amplitudes, while the dashed lines show the response for 
e = 0. 

occurs, i.e. for which R(I0,e) > Rc. It illustrates how the function R(I0,e) 

behaves according to an input amplitude I0 and increasing adaptation gain e. 

A diminished input amplitude implies that larger input amplitudes are required 

to bring the system in regions of parameter space where oscillations are stable 

(gray regions). But it also implies that once the system reaches those states, 

they are more robust and remain stable over a larger range of input amplitudes. 

Cellular adaptation diminishes the variability of R. When h is low, more signif-

icant contributions are made by the lateral units to the non-linear connections; 

this is even more so as the adaptation gain increases. The steady states uon 0ff 

of lateral sites are higher for e > 0 due to less feedback inhibition, and are typ-

ically found closer to the activation threshold h. This results in higher values 

of the function R(I0, e): the system remains close to the Andronov-Hopf regime 

over a larger portion of parameter space because the adaptation disposes the 

lateral activities to maintain a higher degree of non-linearity. As shown in Fig. 

6.5a, the minimal amplitude required for global oscillations is smaller for e > 0 
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than for e = 0. For high values of h, the effect of the adaptation gain on the 

lateral contributions is negligible, since the reduced contrast causes the func-

tion R(I0,e) to be much smaller when e > 0 than when e = 0. This is the case 

depicted in Fig. 6.5b. Nevertheless, the broadening of the amplitude intervals 

due to e makes oscillations more prevalent in a system that incorporates adap-

tation. This supports previous results on recurrent nets with adaptation, where 

slow recurrent components were shown to facilitate the genesis of cyclic activity 

[36, 37, 162]. We note that whenever the input absolute amplitude increases, 

the system first enters the Andronov-Hopf regime where global oscillations are 

stable; but if the input amplitude becomes too high, the oscillations disappear 

via a reverse Andronov-Hopf bifurcation. This is so because the sub-unit activi-

ties are taken to values much higher than the threshold h, where the feedback A 

behaves linearly. The activity of ON and OFF cells is then inhibited sufficiently 

by the feedback to destroy the oscillations. 

Our analytic work assumes that the adaptation rate and gains are equal between 

ON and OFF populations. However, it has been shown that in the electrosen-

sory system these parameters vary between ON and OFF populations, and also 

across the various electrosensory spatial maps (Krahe et al. 2008, Mehaffey 

et al. 2008). In fact, this motivates varying the adaptation rates below in 

Fig.7. If the symmetry restriction is relaxed and two distinct adaptation rates 

bon and b0ff are introduced, the Andronov-Hopf regions of Fig. 5 become non-

symmetric with respect to the vertical line I0 = 0, meaning that the system does 

not respond evenly to excitatory and inhibitory inputs anymore (not shown). 

In fact, the sub-population with the slowest adaptation dominates: whenever 

b0ff < bon, a wider range of inhibitory input amplitudes triggers oscillatory 

activity, i.e. the system becomes more sensitive to inhibitory inputs because 

OFF cell adaptation is slower. If bon < b0ff, the opposite occurs. This effect is 

amplified with the magnitude of |6 0 / / —
 bon\. 

An interesting consequence of these effects is that the system may now respond 
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Figure 6.5: Points in (I0, e) parameter space for which a Andronov-Hopf bifur-
cation occurs. The input is a stationary pulse as in Fig. 6.4 for a fixed width, 
a) Due to the presence of ON and OFF cells, oscillatory responses are observed 
for both excitatory (I0 > 0) and inhibitory (I0 < 0) pulses, making the func-
tional R(I0,e) symmetric with respect to I0, irrespective of the spatial extent 
of the stimulus. Because h is small (h = 0.07), as e increases, the minimal 
input amplitude causing a Andronov-Hopf bifurcation is smaller, enhancing the 
tendency of the system towards cyclic activity, and the interval of values broad-
ens. The vertical dark gray bands correspond to the case without adaptation 
(e = 0). b) For larger feedback thresholds (i.e. h = 0.1), the mean value of the 
function R(I0,e) is smaller for e > 0. The minimal input amplitude causing a 
Andronov-Hopf bifurcation becomes larger as e increases. Here, the feedback 
threshold is h = 0.1. Parameters are a = 1, T = 2.0, fi = [0,1]. The pulse 
width is A = 0.5. The rate constant b was set to 0.8, where the critical value 
Rc remains approximately constant as e changes (see Fig. 6.3). 

to pulses of smaller spatial extent, in a regime where h is smaller. As the mean 

value of R is larger for e > 0 in this case, input causing small fluctuations in the 

function R now becomes a candidate to cause a bifurcation, via either amplitude 

or width changes. This would not be the case if adaptation were not present, 

because the mean value of R would be much smaller. This effect is caused by 

a smaller amount of inhibition fed back to the sensory layer by the recurrent 

connections, as the units adapt as well to this steady return current. Fig. 6.6 

shows how the regions in (I0, e) space changes as a function of input width. As 

the width A diminishes from 0.50 to 0 35, regions of stable oscillatory activity 

retract towards higher adaptation gains, meaning that adaptation is necessary 

for those smaller inputs to trigger stable oscillatory solutions. We note that this 
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Figure 6.6: Points in (I0, e) parameter space for which R(e) > Rc for a static 
pulse-shaped stimulus of amplitude I0 and various widths. Pulses of smaller 
widths only generate rhythmic responses when the adaptation gain is increased. 
Regions where the limit cycles are stable, plotted in shades of gray, are sym-
metric with respect to the line I0. Parameters are a = 1, r = 2.0, fi = [0,1], 
h = 0.07 and b = 0.8. 

behavior occurs because of the choice of a small feedback threshold h. 

In [128], it was shown that if an additional non-delayed inhibitory feedback 

component is added to Eq. 6.1, the Andronov-Hopf threshold increases, thus 

reducing the tendency of the system to undergo oscillatory behavior with re-

spect to spatially localized inputs. In many aspects, an adaptation current like 

the one considered here plays the same role as an extra instantaneous inhibitory 

feedback. As Fig. 6.5 shows, the minimal input amplitude required to generate 

global oscillations increases, which corroborates the results presented in [128] 

for this particular choice of large threshold values. This seems to contradict the 

results of Fig. 6.6, but this is not so. While the main effect of adaptation is to 

move equilibria in phase space, the non-delayed feedback components consid-

ered in [128] changed the bifurcation threshold considerably, which is not the 

case here. The oscillations triggered by small pulses as in Fig. 6.5 are the result 

of a special choice of h which brings the system close to the Andronov-Hopf 

regime. 
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Figure 6.7: Response amplitude of ON cells to a spatially localized pulse sinu-
soidally modulated in time i.e I(x) = I0sin(w0t) for x £ A. The response is 
defined as the difference between the maximal amplitude of the activity reached 
by the solutions, and the activity level prior to any stimulus. For each trial, the 
adaptation time scale is increased, from slow to fast: 1. b=0.2; 2. b=0.5; 3. 
b=0.8; 4. b = l . l . a) With non-delayed feedback, the response is constant over 
the range of input frequencies. The system responds maximally to the adap-
tation intrinsic frequency, while the inhibitory feedback keeps the responses 
weak. One does not see the Hopf frequency because of the zero delay, b) With-
out feedback, the system demonstrates strong resonance near the adaptation 
frequencies. The response decreases in amplitude as the adaptation becomes 
faster, c) When delayed feedback is considered, dominant responses are seen 
near the Hopf frequency, where the change in adaptation time-scale does not 
seem to significantly shift the resonances, although the dynamics still become 
high pass. The delay chosen is T = 1.5. d) Without adaptation (i.e. € = 0), the 
resonance occurs at the Hopf frequency, and the response amplitude is generally 
larger (even for w0 = 0.0). Parameters are a = 1, Q = [0,1], h = 0.1, I0 = 0.2 
and A = 0.4. The adaptation gain was set in panel a)-c) to e = 0.6. 

6.4 Time-varying inputs 

The results presented in the foregoing analysis are based on changes of stability 

of steady states. However, one of the major role of cellular adaptation is to 

filter time-varying signals. Fast inputs are likely to significantly increase the 

cellular activity until the adaptive forces activate. This adaptive component 

typically acts on the system after the initial, transient response of the cells. 

As a result, apart from its effect on equilibria, adaptation influences the re-
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sponses of the system with respect to fast varying signals As a final part of 

our overview of adaptation, we outline how the integration of time-dependent 

inputs varies according to the adaptation parameters e and 6 Real sensory sig-

nals usually demonstrate a high degree of noise, which can include significant 

high frequencies However, studying time-periodic signals may highlight the 

frequency tuning properties of our model 

The behavior of the solutions with respect to time-dependent inputs might help 

to understand the role of adaptation and its timing in transient dynamics In 

Fig 6 7, we plot the response amplitude of the ON cells to a time-periodic sig-

nal of frequency w0 for various adaptation time scales It is evident that as the 

adaptation rate constant b increases, the system filters out lower frequencies, 

thus acting more like a high-pass filter When no adaptation is present (Fig 

6 7d), the system's maximal response occurs precisely at the Hopf frequency, 

as the input resonates with the intrinsic oscillations of the system If the feed-

back connections are removed (Fig 6 7b), the system becomes fully linear and 

input frequencies generating maximal responses are entirely determined by the 

amplitude of the solutions of Eq (6 3) which are function of a,b, w0 and e In 

particular, as adaptation becomes faster (l e when b increases), the response 

peak is also shifted towards higher input frequencies A similar behavior occurs 

in the case with non-delayed feedback (I e setting T = 0), while the system 

responds maximally at the same frequencies as in Fig 6 7b, although the am-

plitudes of the oscillations are significantly smaller 

When both delayed feedback and adaptation(Fig 6 7c) are considered, the sys-

tem responds maximally at an input frequency near the Hopf frequency, which 

corresponds to a mixture of the cases seen in Fig 7b and d In this case, the 

maximal response frequency shift is much less significant, as the system appears 

to remain closer to the Hopf frequency as 6 increases Increasing the adaptation 

gam e amplifies this effect (not shown) 
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The qualitative shape of the curves shown in Fig. 6.7 has also been obtained us-

ing a noisy Integrate-and-Fire model (LIF) that possesses both global feedback 

and adaptation, where the architecture is the same as in Eq. (6.3)-(6.4). The 

goal here is not to perform a thorough comparison of the neural field model dy-

namics to those of the LIF model - this will be left as part of a future study that 

will consider more biophysically realistic models of the electrosensory lateral line 

pyramidal cells, including adaptation, feedback and SK channels. Rather the 

goal is to show that an LIF description can reproduce the main qualitative fea-

tures seen in our neural field model. The evolution of the membrane potential 

of the j- th LIF neuron, for j = 1...N obeys 

dv°
n
(t) 

- ^ = - < * + 9 £ V(tr - r ) - ew°
n
{t) + fi + £(i) + I(j, t) (6.12) 

dv
off

(t) 
-1-11 = - „ ; / / + g £ „( t , - T) - ew°/

f
(t) + M + m ~ 1(3, t) 

u 

with Gaussian white noise f (£) of intensity D, i.e. the autocorrelation is (£(£)£(£')) 

2DS(t — t'). The feedback gain is denoted by g. The network contains TV ON 

cells and TV OFF cells, which receive inputs of the form I(j,t). The individual 

spike times of neurons are denoted by U, and the bias current by \x. The synap-

tic response function r) is an in Eq.6.1. The membrane time contsant was set to 

1, while the refractory period is set to rm = 1. Here as well, ft-1 stands for the 

adaptation rate and e is the adaptation gain. 

Numerical results on resonance properties for the LIF with adaptation are 

shown in Fig. 6.8. The parameters of the LIF model with ON and OFF cells 

have been scaled to fit the neural field description, as in [111]. We see that 

the LIF model qualitatively reproduces the behavior of the resonance when the 

169 



a) WITH FEEDBACK t = 0 0 •>) N O FEEDBACK. 

© 
Or '' 

OS 1 0 15 2 D 
U o (1)„ 

WITH FEEDBACK x = 1 5 d ) N O ADAPTATION £ = 0 

Figure 6.8: Mean firing rate fluctuations of stimulated ON cells in a noisy 
Integrate-and-Fire net as in Eq. (6.12). The input is a spatially localized pulse 
sinusoidally modulated in time i.e I(x) = I0sin(w0t) for x e A. The plotted 
firing rates correspond to deviations from the non-stimulated state. As in Fig. 
6.7, the adaptation time scale is increased in each panel: 1.6 = 0.2; 2 . 6 = 0.5; 
3. 6 = 0.8; 4.6 = 1.1. The circuit features are also changed in each panel: a) 
with non-delayed feedback i.e. T = 0.0; b) without feedback; c) with delayed 
feedback i.e. r = 1.5; and d) without adaptation (i.e. e = 0). In each case, 
the behavior observed with the neural field model is reproduced qualitatively. 
Parameters are I0 = 1.0, Si = [0,1], h = 1.0, g = -0 .2 , /J, = 1.05 and A = 0.4. 
The noise has an amplitude D = 1 0 The adaptation gain was set in panel 
a)-c) to e = 1.5. 

equivalent parameters are varied. This is particularly the case for the adaptation 

rate constant. Note that, in the LIF model, the increase in the feedback delay 

only changes the resonance slightly in comparison to the neural field model. 

This is likely due to the fact that the LIF includes a feedback kernel which 

convolves every spike emitted with a smooth function. This kernel already im-

plements an "equivalent" delay, which already causes a resonance similar to the 

neural field with delay. Nevertheless, the response curves behave as in Fig. 6.7 

to an increase of the adaptation time scale 6, where the processes become more 

<5 
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high pass. 

6.5 Discussion 

In this article, we studied the effects of cellular adaptation on the genesis of 

oscillatory responses to spatially localized static or time-periodic pulses of vary-

ing amplitudes in a recurrent network of ON and OFF cells. Based on previous 

results, we performed the bifurcation analysis for an Andronov-Hopf bifurcation 

caused by an external stimulus in an adaptive system, and showed that both 

the time scale 6 _ 1 and gain e of the adaptation term modified the instability 

threshold. The adaptation was shown to decrease the input contrast and the 

effect of negative feedback, resulting in an increase of steady state activities. It 

was further shown that for weak values of the adaptation rate and high values of 

the gain, adaptation enhances the genesis of oscillatory responses to stationary 

pulses. 

Specifically, the results of Section 6.3 demonstrate that whenever the adapta-

tion rate b is chosen to be small enough (resulting in slow adaptation dynamics), 

cyclic solutions are found to be more robust compared to a system that does not 

adapt at all. In this regime, adaptation causes the Andronov-Hopf threshold 

to be smaller. This was shown by performing a bifurcation analysis near the 

fixed points of our model for the case where the adaptation timing and gain are 

identical for both ON and OFF cells, and by investigating the effect of these on 

the bifurcation point. A complementary effect of adaptation may be elucidated 

by looking at how the activity equilibria behave in the presence of the terms won 

and waff. Indeed, the adaptation gain affects the input contrast by decreasing 

the response amplitude of the stimulated units. A direct consequence of this 

is a wider interval of input amplitudes generating oscillations, making the sys-

tem more sensitive to inputs of smaller widths. These results point toward a 

prevalence of oscillatory states generated by sensory stimuli. This result is also 
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consistent with the findings on neural oscillators which show that adaptation 

enhances the synchronization properties of networks [36, 37], where oscillatory 

solutions become stable in the presence of adaptation but aren't if feedback 

alone governs the dynamics [162, 155]. 

However, this conclusion holds only in a regime where the dynamics of won,0ff 

are slow. In this case, the adaptation components may be seen as an additional 

source of slow inhibitory feedback (albeit instantaneous rather than delayed), 

reinforcing the presence of cyclic activity. If the adaptation becomes fast com-

pared to the intrinsic dynamics of the units, the opposite occurs, and global 

oscillations become more difficult to obtain. This supports the results on a 

similar model without adaptation, where it was shown that additional non-

delayed (and fast) inhibitory feedback components pushed back (i.e. raised) the 

Andronov-Hopf threshold [128]. 

Adaptation is also involved in the integration of temporal signals. It is thus 

important to see how this combines with the resonant properties of ON/OFF 

nets. In Section 6.4, resonance curves were plotted, in cases with and without 

feedback. The adaptation component introduces additional resonances in the 

system. This is apparent by looking at the resonance curves when no feedback 

is present, or when the feedback delay is chosen to be zero. The Hopf frequency, 

located at input frequencies where the response amplitude is maximal, depends 

on the choice of adaptation time scale. The presence of these new frequen-

cies, brought up by two additional complex eigenvalues in Eq. (6.7), seems to 

corroborate previous results on frequency tuning regulation properties due to 

adaptation [149, 35]. Our results are also reproduced by numerical simulations 

on a network of noisy LIF cells with an equivalent circuitry. 

In the perspective of extending the current model, the use of topographic feed-

back connections would further increase the connection of our work to the elec-

trosensory system. Although an inhibitory spatially diffuse feedback connection 
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does exist between higher nuclei and the sensory layer, other spatially orga-

nized feedback connections branch to the pyramidal cells with glutamatergic as 

well as gabaergic connections. The topographic feedback in fact brings in a true 

spatial dimension to the all-to-all connected model. These feedback connections 

would greatly influence the stability of the activity distributions, especially re-

garding the presence of spatio-temporal stimuli. Topographic feedback, along 

with adaptation currents, has been shown to influence the stability of activity 

patterns and the propagation of oscillations [84, 155]. We thus expect that this 

will also be the case in our model. It would also be of interest to test whether 

the dynamics illustrated here differ if ON cells feedback more predominantly to 

ON cells, and the same for OFF cells. This could lead to predictions about this 

feedback connectivity. 

Further, experimental studies on the weakly electric fish have shown that adap-

tation time scales vary across the different sensory maps into which the ELL 

is divided [29]. Likewise, the receptive field size of pyramidal cells increases 

going from central to lateral positions. In this context, it would be interest-

ing to determine how frequency tuning properties of these maps relate to the 

adaptation time scales when ON and OFF cells are present, and how this tun-

ing depends on receptive field size and topographic feedback. Finally, ON and 

OFF cells may have different firing rates in the absence of input {I{x,t) = 0). 

This activity difference, when sufficiently strong, can influence the dynamics of 

recurrent ON/OFF in the absence of adaptation [111]. The role that it may 

play in the frequency tuning of cells and oscillation susceptibility of the network 

with adaptation thus remains to be investigated. 
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Chapter 7 

Conclusion 

7.1 Comments on Chapter 3 

The results of this article constitutes the initial point of the broader analysis pre-

sented in subsequent chapters. In Chapter 3, we perform a steady state analysis 

where we show how static pulses may cause global oscillations to become stable 

via a Andronov-Hopf bifurcation. The main purpose of this article is to demon-

strate that the analysis of a single inhibitory feedback loop was general enough 

to apply to other cases where additional recurrent connections, delayed or not, 

might be involved. As exposed by the physiology of the ELL, both GABA-ergic 

and glutamatergic connections project back to the pyramidal cell layer via the 

StF (see Figure 5.5.1), all with similar delays. While the inhibitory component 

is spatially diffuse, the excitatory part of the feedback is local. Further, lateral 

connections within the pyramidal cells are also involved. Results presented in 

[32], which are the prime motivation of this thesis, did not consider additional 

feedback pathways nor ON and OFF responses. The study of multiple feedback 

loops is of foremost importance, as it has been shown that combined recurrent 

terms are involed in cases of multistability and even chaotic dynamics in pres-

ence of time-varying signals [107]. 

Our analysis clearly demonstrates that the inclusion of additional feedback loops 
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will not qualitatively change the response properties with respect to external 

stimuli as long as the total lumped polarity of the delayed components is pre-

served. Further, we have shown that non-delayed excitatory connections reduce 

the oscillatory response threshold as the gain of such components is increased. 

The implications of such results with regard to electroreception are two-fold: 

1. from the point of view of physiology, it is secure to consider only a single 

inhibitory feedback component, as we know that the behaviour of the system 

holds even for many loops; and 2. the lack of local connections in our model 

does not affect the generality of our result with respect to oscillatory transi-

tions. These results were necessary to validate our approach, which focuses of 

the direct ELL-Pd pathway. 

In the case of the ELL, as well as in most sensory pathways, multiple feed-

back loops are involved in the integration of sensory inputs. Further, these 

loops are oftentimes topographic. The effects of multiple delays and spatial 

topography of feedback in the ELL-Pd system have been exposed in regard to 

oscillatory responses [100], although in the context of stochastic inputs and for 

a single neural population. Multiple delays are also crucial in the stability of 

steady states in motor control subject to visual feedback [163]. More insight 

on the role of multiple feedback loops in ON/OFF systems would first require 

the consideration of non-identical delays. Spatially profiled projections would 

regulate the distribution of activity on the network, and potentially give rise to 

spatially localized solutions like bumps and fronts. 

The inclusion of spatially dependent kernels is however not trivial. In the per-

spective of stability, the current all-to-all anatomy of our model allows a time 

and space separation for which the eigenmodes are spatially homogeneous. In 

most cases, the stability analysis of spatially structured connectivity problems 

requires the use of so-called Evans functions [89, 90, 133], which are generalized 

eigenvalue problems. Given the fact that most of the sensory pathways in the 

ELL are parallel and exhibit very few lateral connections [22], the kernel we 
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used were kept constant. We however hypothesize, on the basis of numerical 

experiments we performed, that feedback spatial profiles would result in spatial 

organization of activity, but would otherwise preserve the bifurcation scenario 

exposed here at least qualitatively. 

7.2 Comments on Chapter 4 

Chapter 4 constitutes the core of this thesis. On the basis of the results of 

Chapter 3, a wide palette of effects are exposed and a complete bifurcation 

analysis of our model is performed. A special attention is given to the role 

of asymmetrical spontaneous firing rate with respect to the behaviour of feed-

back and its subsequent impact on dynamics. Global oscillations triggered by 

static inputs are shown to be more prevalent in a ON/ON net compared to a 

ON/OFF net, although the later may respond to both positive and negative 

inputs. Input-induced rhythmic activity is also observed in a noisy and leaky 

Integrate-And-Fire net (LIF) where the firing rates fluctuate according to the 

prediction obtained with the neural field formulation. Much insight about the 

response properties of our model is obtained away from the Andronov-Hopf 

regime, where the feedback behaves linearly. For instance, the lateral response 

contrast of ON/OFF nets to static pulses has been shown to follow a non-

monotonic relation with respect to the pulse's amplitude. According to this 

property, the system can switch between excitatory and inhibitory responses, 

as the lateral activity increases and then decreases according to higher stimulus 

amplitude. Here again, the result was also obtained for a LIF network. Local-

ized pulses with sinusoidally modulated amplitudes cause a central-lateral re-

sponse discrepancy, where the lateral sites respond at twice the input frequency. 

Several issues raised in the discussion of Chapter 4 initiated the topics found in 

subsequent chapters. One of the main underlying topics of this article is the dis-

tinction between ON/OFF and ON/ON network configurations, with respect to 
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the integration of sensory inputs. This concern was raised by one the referees in-

volved in the editorial process, and resulted in the analysis presented in Chapter 

5. There, we study in detail the question of how ON/ON and ON/OFF networks 

compare with respect to sensory input responses. To do this, we determine how 

the Andronov-Hopf threshold (beyond which input-induced oscillations become 

stable) varies according to the model's parameters in each case, as well as how 

these models integrate flucturating inputs in the fixed point regime. 

The result published in [32] is supported by our findings on input induced 

Andronov-Hopf bifurcations, and are in line with other computational studies 

[97, 98, 99]. However, our analysis restricts to spatially contiguous static in-

puts, while [32] focused on a stochastic driving to generate spectral power near 

the gamma range. As a natural extension to our work, the use of stochastic 

inputs would further warrant the physiological relevance of the stimulus spatial 

and temporal profiles. Further, some recent results demonstrate how additive 

noise might trigger spatio-temporal organization of activity in neural field mod-

els with delayed feedback [12, 100, 73], One of the major concerns about this 

type of inputs is the opposed responses of ON and OFF populations. While 

noisy inputs with non-zero mean might result in a behaviour similar to the one 

we describe for static pulses by sustaining recurrent signals, electrosensory in-

puts are typically modelled using zero mean random processes (see for instance 

[135]). Some of these issues were addressed in section 5.7, where we showed 

that increasing noise across the network can bring on an oscillatory state. The 

analysis of the situation where the increased spatial correlation of the noise 

sources also produces an oscillatory state remains to be explored numerically, 

giving a more definitive assessment of the mechanism underlying the genesis of 

oscillations seen in [32] . 

It is not known if the feedback pathway from the pyramidal cell layer pos-

sesses a cellular-type profile. Are ON cells projecting back preferentially to 

ON cells via the Pd and/or EGp? What about OFF cells? A species-specific 
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feedback pathway would greatly influence the tendency of the system to enter 

states of oscillatory activity, by altering the balance between excitatory and in-

hibitory responses. Much insight about this particular setup could be obtained 

by analyzing the following system 

(1 +a~
1
dt)uon(x,t) = - e / f{uon(y,t - r))dy 

- ( 1 - e ) f f(uoff(y,t-T))dy + I(x,t) 
Jn 

(1 + a^d^Uoffix, t) = - ( 1 - e) / f{uon(y, t - T))dy 
Jn 

- e f f(uoff(y,t-T))dy + V0-I(x,t) 
Jn 

where e € [0,1] is a crossing parameter determining the amount of ON (resp. 

OFF) cells projecting back to themselves via the delayed feedback loop. For 

6 = 1, ON and OFF pathways are fully uncoupled, while we retrieve our initial 

model for e = 0. This analysis was left for future work. 

The non-monotonic shape of the lateral response curve is responsible for tran-

sient excitatory responses of ON and OFF units at the onset and offset of static 

pulses. This behaviour is expected from ON and OFF cells, as they typically 

exhibit transient responses characterized by bursts of spikes at stimulus onset 

and offset. This behavior is usually a consequence of sensitivity to the volt-

age derivative, which is not incorporated in our model. We however argue 

that feedback generates a similar behaviour in ON/OFF systems, and thus that 

it might play a role in recorded data, when the cells evolve in recurrent network. 

Time-periodic stimuli were studied far away from the Andronov-Hopf regime 

by choosing a small feedback delay. This is so because bifurcations might occur 

whenever the input amplitude increases. It becomes difficult then to separate 

Andronov-Hopf oscillations from the local drive and feedback echoes generated 

by the stimulus. We have nevetheless addressed this problem in Chapter 5, 
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where the sinusoidal stimuli has a small frequency. This problem, which arises 

naturally in the context of fluctuating systems, illustrates the challenge that the 

analysis of non-autonomous delay equations represents. It further supports the 

approach we have developped in Appendix A to analyze similar problems. 

Another important result suggested by our analysis is the strong correlation 

between neural field and Integrate-And-Fire descriptions. While many stud-

ies have shed light on the close relationship between LIF and rate models 

[54, 57, 56, 58, 59, 60], the explicit mapping between neural field and spik-

ing dynamics is not fully known. Our goal in comparing neural field to LIF is 

to show that both these popular network formulations produce the same quali-

tative behaviour with respect to our findings, and that the dynamics we found 

was a consequence of the network circuitry, and not of its formulation. 

7.3 Comments on Chapter 5 

This chapter addresses an important question: how is the dynamics of recurrent 

nets impacted by the presence of OFF cells? Chapter 3 and 4 have exposed a va-

riety of dynamical effects caused by sensory stimuli. The focus of these chapters 

was to highlight network mechanisms by which sensory signals would influence 

the stability or structure of activity states, in presence of ON and OFF cells. 

The main purpose of Chapter 5 was to contextualize the results presented in 

the first two chapters, and try to elucidate the functional advantages gained 

by sensory systems exhibiting di-synaptic circuitry. The analysis performed 

shows that ON/OFF networks have unique input response properties. In the 

particular context of network oscillations, past results on the ELL [32, 33, 26] 

and on delayed feedback nets [98, 34, 135] relate to networks built solely of ON 

(or equivalently E-type ) cells. In contrast, our model demonstrates that these 

findings occur even when both ON and OFF populations are involved. Further-

more, our populations do not possess the same baseline activity, an addition 
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that greatly influences the dynamics. 

Openings offered by the results of this chapter are similar to the ones of Chap-

ter 4 and 3, namely more realistic feedback projections from the EGp and the 

consideration of receptive fields effects. We however believe that the radically 

different response behavior between ON/ON and ON/OFF nets to stochastic 

signals (as opposed to deterministic and static ones) presented in Section 5.7 

is a promising path. These results show that, in the context of Andronov-

Hopf bifurcations induced by stochastic signals, ON/ON and ON/OFF nets are 

equivalent. Synchronous firing states are not prevalent in either network con-

figurations, due to the statistical properties of the stimulus, which is a noisy 

process of zero mean. In [32, 33, 135, 34], only the spatial contiguity or cor-

relation was involved in the stability of rhythmic states, not its amplitude. In 

contrast, our result show that differentiation in oscillatory behavior only occurs 

when the input has a non-zero mean, where the predictions made by the neural 

field model are supported by numerical simulations on an equivalent LIF net-

work. These results on OFF cells point towards the consideration of non-zero 

mean inputs as valid sensory signals, and further illustrates that the encoding 

of electrosensory afferent signals performed by feedback and ON and OFF cells 

depends on both the spatial organization and mean amplitude (or mean in noisy 

contexts). As such, one could hypothesize that the input spatial organization 

could elicit synchrony, while the mean of the signal would both modulate the 

frequency of the oscillations and emphasize the ON versus OFF differentiation. 

7.4 Comments on Chapter 6 

With respect to positive stimuli, the dynamics discussed in the previous chapters 

consider feedback and inhibitory responses of OFF cells as the only sources of 

inhibition in the system. However, real neural systems exhibit a certain level of 

habituation to stimulation that has been shown to depend on the input spatial 
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distribution. This important feature of neural systems is thus likely to influence 

the response properties of sensory networks. In the prospect of reproducing the 

experimental recordings found in the literature (for instance [32, 27, 26, 33]), 

the inclusion of adaptation in our model is of prime physiological relevance. 

Chapter 6 presents the effects of intrinsic cellular adaptation on the oscillatory 

dynamics exposed in Chapters 3, 4 and 5. To do so, we included two additional 

state variables to our model in order represent the effect of adaptation on both 

ON and OFF cells. Additionally, parameters specifying the gain and time scale 

of this new inhibitory component were introduced. The goal of Chapter 6 is 

to determine how an adaptation alters the rhythmic responses identified and 

studied in previous chapters. To answer this question, we performed a complete 

bifurcation analysis of our system and we parameterized the Andronov-Hopf 

threshold in terms of the adaptation gain and rate. 

Our model predicts that slow and strong adaptation makes oscillatory responses 

easier to achieve in ON/OFF nets by increasing the system sensitivity to inputs 

of small spatial extent. Further, in the case of sinusoidally modulated pulses 

of varying periods, adaptation also influences the resonance properties of the 

network by introducing new frequencies in the system. 

An important question raised by the results of Chapter 6 is: are ON/ON and 

ON/OFF nets impacted equivalently by adaptation? Based on Chapter 3 re-

sults, one could hypothesize that adaptation may in fact emphasize the dis-

tinctiveness between ON/ON and ON/OFF systems with respect to oscillatory 

behavior. Slow adaptation currents are preferentially recruited by either static 

or slow stimuli that evolve on a similar time scale. This is made apparent by 

the shapes of the response curves shown in Fig. 6.7. In the context of our study, 

the static pulses used maximize the expression of adaptation, where its effect 

on the instability threshold may be understood directly from the steady states. 

However, past studies [34, 26, 33] have used stochastic inputs to reproduce the 

signal sent by the receptors to the pyramidal cells, not deterministic ones. These 
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signals typically fluctuate on much faster time scales than the sinusoidally mod-

ulated pulses we have considered in Section 6.4. A relatively slower adaptation 

current might thus not have the time to build up - the effect on the dynamics 

would then be less significant. This consideration will play a crucial role if one 

wants to incorporate adaptation to the dynamics explored in Section 5.7 where 

stochastic inputs drive both ON/ON and ON/OFF nets. 
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Appendix A 

Non-autonomous center 

manifold reduction in a 

model of delayed feedback 

The center manifold theorem has proven to be tool of choice in the analysis 

of non-linear dynamical systems. In particular, it has been applied in the past 

decades to various delayed models [105, 164, 165, 166, 167], where it provides an 

accurate description of system dynamics in the vicinity of non-hyperbolic fixed 

points. This theorem guarantees that one can find a simplified reduced form 

of the full dynamics of the system in the vicinity of a bifurcation point. This 

so-called normal form provides a description of the different kinds of solutions 

available to the system as the parameter moves in parameter space around the 

bifurcation, i.e. it enables an "unfolding" of the dynamics around this point. 

The procedure to compute this normal form is technically very involved for 

delay-differential equations. 

Non-linear delay-differential equations (DDEs) have also been used in a variety 

of contexts where the state variables are driven by an additive time-dependent 

force. The question whether the center manifold theorem may be extended to 
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these non-autonomous delayed problems is currently unanswered. They are in-

dications that center manifolds do exist in infinite dimensional non-autonomous 

dynamical systems [168]. Furthermore, stochastic center manifold theory has 

been established in non-delayed systems [169], and a similar approach has been 

used in the numerical analysis of non-linear ODEs, subject to time-dependent 

forcing, providing an accurate description of dynamics[170]. Nevertheless, it is 

still unclear how to apply and compute center manifolds in the specific case 

of non-autonomous delayed systems. A solution to this problem would greatly 

enhance the possibilities of theoretical analysis of delayed systems, of particular 

relevance in mathematical neuroscience. The aim of this Appendix is not to 

detail the approach and subsequent calculations performed in the development 

of our method. We will overview the main idea underlying non-autonomous 

center manifolds reduction that we present in this preprint: [171]. 

Many studies use center manifolds to analyse delayed system [165, 164, 172, 

173, 174], while the fundamental steps and working details are rarely addressed 

nor discussed. Further, some use computerized algorithms to generate their 

result. In contrast, more specialized works do address the technical details 

[175, 176], although not in the context of non-autonomous equations. Given the 

current state of the literature, we wrote a practical review of the center man-

ifold reduction procedure for non-linear DDEs. This was done in the spirit of 

making the approach more accessible to an audience with a physics and applied 

mathematics background. 

The main goal is to adapt the center manifold theorem to unstable non-autonomous 

systems, in order to allow the computation of the mapping that exists between 

stable and unstable modes. The center manifold theorem was not validated in 

the context of time-dependent DDEs. The major dilemma lies in the apparent 

non-existence of a fixed point and eigenbases of the linear problem. Motivated 

by the results on stochastic systems [169], as well as on numerical results con-

cerning driven ODEs [170], we apply the center manifold theorem to our model, 
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considering the additive input as a non-linearity acting on a fast time scale. 

We justify this step by a recent work [168], where the center manifold theorem 

for weak solutions of non-autonomous abstract ODEs on infinite-dimensional 

spaces is proven, given that certain spectral gap conditions are satisfied. Non-

autonomous forcing results in a time-dependent corrective term, added to the 

center manifold equation of the autonomous problem. 

Our result has been tested numerically to approximate the dynamics near a 

transcritical bifurcation. We compare the time series of the original driven DDE 

to the dynamics of the order parameter equation (related to the aforementioned 

normal form), which dictates the behavior of the flow on the unstable subspace, 

and find good agreement. We were able to compare the benefits of higher order 

expansions as well as time-dependent corrections with respect to the precision of 

the center manifold reduction. This result will eventually be used to investigate 

the behavior of neural fields models with delays and time-dependent input. 
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