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Abstract

In this paper, we study the dynamical behavior of positive solution for a system of a

rational third-order difference equation

xn+1 =
xn–2

B + yn–2yn–1yn
, yn+1 =

yn–2

A + xn–2xn–1xn
, n = 0, 1, . . . ,

where A,B ∈ (0,∞), x–2, x–1, x0 ∈ (0,∞); y–2, y–1, y0 ∈ (0,∞).
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1 Introduction

Rational difference equations that are the ratio of two polynomials are one of the most

important and practical classes of nonlinear difference equations. Marwan Aloqeili []

investigated the stability character, semicycle behavior of the solution of the difference

equation xn+ = xn–/(a – xn–xn). These difference equations appear naturally as discrete

analogues and as numerical solutions of differential and delay differential equations having

applications in biology, ecology, physics, etc. [, ]. Also, Cinar [] investigated the global

behavior of all positive solutions of the rational second-order difference equation

xn+ =
xn–

 + xnxn–
, n = , , . . . .

Similarly Shojaei, Saadati, and Adibi [] investigated the stability and periodic character

of the rational third-order difference equation

xn+ =
αxn–

β + γ xn–xn–xn
, n = , , . . . ,

where the parameters α, β , γ , and the initial conditions x–, x–, x are real numbers.

Related difference equations readers can refer to the references [–].

Papaschinopoulos and Schinas [] studied the system of two nonlinear difference equa-

tions

xn+ = A +
yn

xn–p
, yn+ = A +

xn

yn–q
, n = , , . . . , ()

where p, q are positive integers.
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Clark and Kulenovic [, ] investigated the system of rational difference equations

xn+ =
xn

a + cyn
, yn+ =

yn

b + dxn
, n = , , . . . , ()

where a,b, c,d ∈ (,∞), and the initial conditions x and y are arbitrary nonnegative

numbers.

Our aim in this paper is to investigate the solutions, stability character, and asymptotic

behavior of the system of difference equations

xn+ =
xn–

B + yn–yn–yn
, yn+ =

yn–

A + xn–xn–xn
, n = , , . . . , ()

where A,B ∈ (,∞), and the initial conditions x–,x–,x ∈ (,∞); y–, y–, y ∈ (,∞).

2 Preliminaries

Let Ix, Iy be some intervals of real number and f : Ix × Iy → Ix, g : Ix × Iy → Iy be

continuously differentiable functions. Then for every initial conditions (xi, yi) ∈ Ix × Iy

(i = –,–, ), the system of difference equations

⎧

⎨

⎩

xn+ = f (xn,xn–,xn–, yn, yn–, yn–),

yn+ = g(xn,xn–,xn–, yn, yn–, yn–),
n = , , , . . . , ()

has a unique solution {(xn, yn)}∞n=–. A point (x̄, ȳ) ∈ Ix × Iy is called an equilibrium point

of () if x̄ = f (x̄, x̄, x̄, ȳ, ȳ, ȳ), ȳ = g(x̄, x̄, x̄, ȳ, ȳ, ȳ), i.e., (xn, yn) = (x̄, ȳ) for all n≥ .

Let Ix, Iy be some intervals of real numbers; interval Ix × Iy is called invariant for sys-

tem () if, for all n > ,

x–,x–,x ∈ Ix, y–, y–, y ∈ Iy ⇒ xn ∈ Ix, yn ∈ Iy.

Definition . Assume that (x̄, ȳ) be a fixed point of system (). Then

(i) (x̄, ȳ) is said to be stable relative to Ix × Iy if for every ε > , there exists δ >  such

that for any initial conditions (xi, yi) ∈ Ix × Iy (i = –,–, ), with
∑

i=– |xi – x̄| < δ,
∑

i=– |yi – ȳ| < δ, implies |xn – x̄| < ε, |yn – ȳ| < ε.

(ii) (x̄, ȳ) is called an attractor relative to Ix × Iy if for all (xi, yi) ∈ Ix × Iy (i = –,–, ),

limn→∞ xn = x̄, limn→∞ yn = ȳ.

(iii) (x̄, ȳ) is called asymptotically stable relative to Ix × Iy if it is stable and an attractor.

(iv) Unstable if it is not stable.

Theorem . ([]) Assume that X(n + ) = F(X(n)), n = , , . . . , is a system of difference

equations and X is the equilibrium point of this system, i.e., F(X) = X. If all eigenvalues of

the Jacobian matrix JF , evaluated at X lie inside the open unit disk |λ| < , then X is locally

asymptotically stable. If one of them has a modulus greater than one, then X is unstable.

Theorem . ([]) Assume that X(n + ) = F(X(n)), n = , , . . . , is a system of difference

equations and X is the equilibrium point of this system, the characteristic polynomial of

this system about the equilibrium point X is P(λ) = aλ
n + aλ

n– + · · · + an–λ + an = ,

http://www.advancesindifferenceequations.com/content/2012/1/136
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with real coefficients and a > . Then all roots of the polynomial p(λ) lie inside the open

unit disk |λ| <  if and only if

�k >  for k = , , . . . ,n, ()

where �k is the principal minor of order k of the n× n matrix

�n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a a a · · · 

a a a · · · 

 a a · · · 
...

...
...

. . .
...

   · · · an

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

3 Main results

Consider the system (), if A < , B < , system () has equilibrium (, ) and (

√
 –A,


√
 – B). In addition, if A < , B = , then system () has an equilibrium point (


√
 –A, ),

and if A = , B < , then system () has an equilibrium point (,

√
 – B). Finally, if A > 

and B > , (, ) is the unique equilibrium point.

Theorem . Let (xn, yn) be positive solution of system (), then for all k ≥ ,

(i)  ≤ xn ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x–
Bk+

, n = k + ;

x–
Bk+

, n = k + ;

x
Bk+

, n = k + ;

(ii)  ≤ yn ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y–
Ak+ , n = k + ;

y–
Ak+ , n = k + ;

y
Ak+ , n = k + .

()

Proof This assertion is true for k = . Assume that it is true for k =m, for k =m + , we

have

xn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x(m+)+ ≤ x(m+)–

B
= xm+

B
≤ 

B
x–
Bm+ , n = (m + ) + ;

x(m+)+ ≤ x(m+)+–

B
= xm+

B
≤ 

B
x–
Bm+ , n = (m + ) + ;

x(m+)+ ≤ x(m+)+–

B
= xm+

B
≤ 

B
x

Bm+ , n = (m + ) + ;

yn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y(m+)+ ≤ y(m+)–

A
= ym+

A
≤ 

A
y–
Am+ , n = (m + ) + ;

y(m+)+ ≤ y(m+)+–

A
= ym+

A
≤ 

A
y–
Am+ , n = (m + ) + ;

y(m+)+ ≤ y(m+)+–

A
= ym+

A
≤ 

A
y

Am+ , n = (m + ) + .

This completes our inductive proof. �

Corollary . If A > , B > , then by Theorem . {(xn, yn)} converges exponentially to the
equilibrium point (, ).

Theorem . If

A > , B > . ()

Then the equilibrium (, ) is locally asymptotically stable.

http://www.advancesindifferenceequations.com/content/2012/1/136
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Proof We can easily obtain that the linearized system of () about the equilibrium (, ) is

	n+ =D	n, ()

where

	n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

xn

xn–

xn–

yn

yn–

yn–

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

  
B

  

     

     

     
A

     

     

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The characteristic equation of () is

f (λ) =

(

λ +


A

)(

λ +


B

)

= . ()

This shows that all the roots of the characteristic equation lie inside unit disk. So the

unique equilibrium (, ) is locally asymptotically stable. �

Theorem . If

A < , B < . ()

Then

(i) the equilibrium (, ) is locally unstable,

(ii) the positive equilibrium (x̄, ȳ) = (

√
 –A,


√
 – B) is locally unstable.

Proof (i) From (), we have that all the roots of characteristic equation lie outside unit

disk. So the unique equilibrium (, ) is locally unstable.

(ii) We can easily obtain that the linearized system of () about the equilibrium (, ) is

	n+ =G	n, ()

where

	n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

xn

xn–

xn–

yn

yn–

yn–

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, G =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

  
B

α α α

     

     

β β β   
A

     

     

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

in which α = – 
√

( –A)( – B), β = – 
√

( –A)( – B). The characteristic equation of ()

is

P(λ) = λ – αβλ –

(

αβ +


A
–



B

)

λ – αβλ – αβλ – αβ +


AB
. ()
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From (), we have

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 –(αβ + 
A – 

B ) –αβ   

 –αβ –αβ –αβ + 
AB  

  –(αβ + 
A – 

B ) –αβ  

  –αβ –αβ –αβ + 
AB 

   –(αβ + 
A – 

B ) –αβ 

    –αβ –αβ + 
AB

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

It is clear that not all of �k > , k = , , . . . , . Therefore, by Theorem ., the positive

equilibrium (x̄, ȳ) = (

√
 –A,


√
 – B) is locally unstable. �

Theorem . Consider system (), and suppose that () holds. Then the following state-

ments are true, for i = –,–, ,

(i) (xi, yi) ∈ (,

√
 –A)× (


√
 – B, +∞) ⇒ (xn, yn) ∈ (,


√
 –A)× (


√
 – B, +∞);

(ii) (xi, yi) ∈ (

√
 –A, +∞)× (,


√
 – B) ⇒ (xn, yn) ∈ (


√
 –A, +∞)× (,


√
 – B).

Proof (i) Let (xi, yi) ∈ (,

√
 –A)× (


√
 – B, +∞) (i = –,–, ), from system (), we have

x =
x–

B + y–y–y
<

x̄

B + ȳ
= x̄, y =

y–

A + x–x–x
<

ȳ

A + x̄
= ȳ. ()

We prove by induction that

(xn, yn) ∈
(

,

√
 –A

)

×
( 
√
 – B, +∞

)

. ()

Suppose that () is true for n = k > . Then from (), we have

xk+ =
xk–

B + yk–yk–yk
<

x̄

B + ȳ
= x̄, yk+ =

yk–

A + xk–xk–xk
<

ȳ

A + x̄
= ȳ. ()

Therefore, () is true. This completes the proof of (i). Similarly, we can obtain the proof

of (ii). Hence, it is omitted. �

4 Conclusion and future work

Since the system of the difference equation () is the extension of the third-order equa-

tion in [] in the six-dimensional space. In this paper, we investigated the local behavior

of solutions of the system of difference equation () using linearization. But as we saw lin-

earization do not say anything about the global behavior and fails when the eigenvalues

have modulus one. Some powerful tools such as semiconjugacy and weak contraction in

[] cannot be used to analyze global behavior of system (). The global behavior of the

system () will be next our aim to study.
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