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Abstract: The aim of this paper is to give an analytical discussion of the dynamics
of the Abelian Higgs multi-vortices whose existence was proved by Taubes
([JT82]). For a particular value of a parameter of the theory, A, called the Higgs
self-coupling constant, there is no force between two vortices and there exist static
configurations corresponding to vortices centred at any set of points in the plane.
This is known as the Bogomolny regime. We will develop some formal asymptotic
expansions to describe the dynamics of these multi-vortices for 4 close, but not
equal to, this critical value. We shall then prove the validity of these asymptotic
expansions. These expansions allow us to give a finite dimensional Hamiltonian
system which describes the vortex dynamics. The configuration space of this system
is the “moduli space” — the space of solutions of the static equations modulo gauge
equivalence. The kinetic energy term in the Hamiltonian is obtained from the
natural metric on the moduli space given by the L? inner product of the tangent
vectors. The potential energy gives the intervortex potential which is non-zero
when A is not given by its critical value. Thus the reduced equations for the
evolution of the vortex parameters take the form of geodesics, with force terms to
express the departure from the Bogomolny regime. The geodesics are geodesics on
the moduli space with respect to the metric defined by the L2 inner product of the
tangent vectors, in accordance with Manton’s suggestion ([Man82]). This allows
an understanding of the two main phenomenological issues — first of all there is the
right angle scattering phenomenon, according to which two vortices passing
through one another scatter through ninety degrees. Secondly there is the conjec-
ture from numerical calculations that vortices repel for A greater than the critical
value, and attract for 4 less than this value. The results of this paper allow
a rigorous understanding of the right angle scattering phenomenon ([Sam92, Hit88])
and reduce the question of attraction or repulsion in the near Bogomolny regime
to an understanding of the potential energy term in the Hamiltonian ([JR79]).

1. Introduction

The aim of this paper is to give an analytical discussion of the dynamics of the
Abelian Higgs multi-vortices whose existence was proved by Taubes ([JT82]). The
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model consists of the two dimensional Maxwell equations coupled to a complex
scalar field with Ginzburg-Landau type self-interaction:

V-E = (i®,D,®), (1
dE, 0B .
‘&*Jraﬁxz—(l@,md’), 2
PE, OB
2= = (i), D, P
6t axl (l ’D2 )’ (3)
D§¢—Df¢—D§q&=§¢(1—;<p|2). (4

Here E, B are the time and space components of the field (or curvature) two form

2
F =Y Ejdt ndx; + Bdx; A dx,.
i=1
This is the exterior derivative of the vector potential (or connection) one form
A= Agdt + Y2, A;dx;, and so we have the relations:

Fo; =E; = 0,4, — 6; Ao ,
Fi; =B =014, — 0,4, .
Complex scalar fields are differentiated covariantly according to the rule
D,=0,—i4,.

E is known as the electric field while B is known as the magnetic field. The

parameter A is called the Higgs self coupling constant. The equations are invariant

under gauge transformations — for any smooth function y(t, x), the transformation
4

A Ay +=,
0> Ao ot

Ai—’Ai'}“@C‘,
ox;

® — Pe'*

takes solutions of Eqs. (1-4) into solutions of Egs. (1-4). This paper concerns the
reduction of this system of partial differential equations to a finite dimensional
Hamiltonian system which gives an understanding of vortex dynamics. For all
values of 1 these equations have vortex solutions — these are time independent
solutions in which ¢ has a single zero and approaches absolute value one at spatial
infinity (see Sect. 2). For the critical value A = 1, there is no force between two
vortices and there exist static configurations corresponding to vortices centred at
any set of points in the plane (see [JT82] and Sect. 2). This is the Bogomolny
regime. A static solution means one which is time independent , and has vanishing
time component of the vector potential Ao = 0. We can write these multi-vortex
solutions schematically as

Ai=a(x;Z,...,2y), ©=0¢024,...,2Zy),
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where the Z; are arbitrary points in the plane which denote the centres of the
vortices — the points at which @ = 0. The space of gauge equivalence classes of
N vortices is called the moduli space My. In this paper we will give some formal
asymptotic expansions which describe the dynamics of these vortices for 4 close to,
but not equal to, one. We will then prove the validity of these asymptotic
expansions - more precisely that there exist solutions to Egs. (1-4) with 4 = 1 + &2,

. . 1 . . .
which are L* close, for times 0<—>, to multi-vortices with parameters slowly
3

modulating in the fashion suggested by the asymptotics. The form of the asymp-
totic expansions is interesting — we obtain, to highest order, equations for the
evolution of the parameters which take the form of geodesics on the moduli space
with force terms to express the departure from the Bogomolny regime. The tangent
space to the moduli space at a given multi-vortex consists of square integrable
solutions to the static equations linearised about that multi-vortex. The geodesics
are with respect to the metric defined by the L? inner product of the tangent
vectors. Thus the asymptotic expansions generalise and rigorise the suggestion of
Manton that for 4 = 1 the scattering of vortices at low energy should be approxim-
ated by geodesics on the moduli space ([Man82]).

The moduli space has been investigated in some detail in [Sam92] and we now
discuss this before stating our result carefully. The static multi-vortex solutions of
the problem with 2 = 1 are determined by the positions of the vortices (the points
at which @ = 0), and are unchanged by an interchange of any pair of these centres.
Thus using complex numbers Z, to designate the centres of the vortices we have
a moduli space My = S¥(C), the N-fold symmetric product of C. In the case N = 2
this suggests an interesting behaviour for the scattering of two vortices as follows.
Firstly it was suggested in [Hit88] that it is natural to suppose we can take the
elementary symmetric functions P = Z, + Z,,Q = Z, Z, as complex co-ordinates
on M, — see Sect. 2.1. Assuming this to be so, we take advantage of translation
invariance to consider geodesics with P =0, Z, = — Z, = a. Then if the two
vortices initially approach each other along the real axis, we expect that as the
vortices pass through one another Q will change sign from negative to positive. But
this will correspond to right angle scattering as Q = — a* changing sign corres-
ponds to a becoming ia — i.e. a 90° rotation! This is discussed in [Sam92, Hit88],
subject to the assumption that P, Q are good co-ordinates, i.e. correspond to square
integrable solutions of the linearised equations. It is shown there that the geodesics
can be conveniently represented as geodesics on a surface of revolution with the
appearance of a smoothed out cone. There is a geodesic which passes over the
vertex of the cone which corresponds to the aforementioned right angle scattering.
Numerical experiments ([SR88] and [ KMRE8]) confirm these predictions and
also show that the phenomenon is robust to changes in A. This paper allows
a rigorous analytical understanding of this phenomenon. Another phenomenologi-
cal issue which the paper allows a partial analytical understanding of is that of the
attraction/repulsion of the vortices for 4+ 1 — it is conjectured and known
numerically from [JR79] that for 4 > 1 the vortices repel, and for A < 1 they
attract. The main theorem will hopefully allow this to be understood analytically.
We will come back to this in Sect. 6.

We will show in Sect. 2 that indeed P, Q are admissible co-ordinates — i.e. that
they give four real co-ordinates g, with corresponding square integrabie solutions
to the linearised equations n,, which satisfy the condition of being orthogonal to
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the gauge flow (see Eqgs. (28, 29) for details). We will refer to the n, as the zero
modes. This allows us to define a metric on M, by

gq(qs q) = Z gu,véuév = z (nw nv)qunQV (5)
i,y w,v

for ge T, M,. We will often suppress the ¢ dependence of g when no confusion is
likely. We will now state the main result of this paper. It amounts to giving a finite
dimensional reduction of the Abelian Higgs equations with 4 = 1 + 182, 1= + 1 to
a Hamiltonian system with Hamiltonian H: T*M, — R given by

1
H(p, q) = Eg(p, p+ V@, (6)

where pe T, M, is a momentum conjugate to ¢4 and is given by
Py =2 Guds » v

where g: T*M, x T*M, — R is the dual metric given by

9{p. ) = 9(4,4) ,
and the potential energy term V: M, — R is defined by

Vi =g ] (- 107

We shall see that the functions g,, and ¥ are smooth functions on M,, and so it
makes sense to consider the Hamiltonian system determined by H:

dpp  0H  dg 0H

= ——— =—_—. 8
dt dq; dr  dp; ®

We are interested in reducing the full infinite dimensional PDE to this finite
dimensional Hamiltonian system. Our main result gives conditions under which
there exist solutions to the Abelian Higgs model which are pointwise close to the
static solutions with parameters g(r) evolving slowly on the time scale © = &t
according to this Hamiltonian system. Such a finite dimensional reduction of the
PDE is possible when the energy is close to the energy of the multi-vortices. The
time scale 7 is of course here determined by A = 1 + 1¢2.

Notation. (i) For functions like ¥ = (4, ¢): R? > R @ C we will use spaces H"“
formed by completing with respect to the inner product

r
Wha= 2 [IVa]® +Dig|?.
k| =0 R2

If we write |+ |, 4, this will mean differentiation is with respect to the background
connection a(-, q). The connection a will be suppressed when no confusion is
possible.

(i) We decompose solutions of the linearised equations n, = (n}, n?) into its
a and ¢ components in order to write out the initial data. _

(iil) For complex numbers we use the usual inner product (@, b) = (ab + ab)/2.
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(iv) Finally, we state a gauge invariant Sobolev inequality — the problem is how
to deal with the covariant derivatives. This is solved by Kato’s inequality, which is
proved in [JT82]: for a smooth complex valued field ¢ on the plane

[IVI®|* < | (D,®,D,9),
R? R?

where a is any smooth connection. From this we can deduce covariant versions of
the ordinary Sobolev inequalities, in particular for iy as above

W lL=m2) = cllz,a -

Main Theorem 1. Consider the initial value problem for the Abelian Higgs model,
Egs. (1-4), with 4 =1+ 1%, and initial data which is close to a two vortex
(a(q(0)), ¢(q(0))) in the following sense:

A(0, x) = alx; q(0)) + £2a(0), A0 = ¢} 4.0, +€2a0),  (9)

B0, x) = (x; 9(0)) + £ 6(0), &0, %) =¢ 4 (On} +£>$(0), (10)
where (G(0), (0)) satisfy the conditions in Egs. 14, 15 and:

1@(0), $(0)) 3. atgion + 1(@(0), F0)2,aiqion £ K .
Then for ¢ sufficiently small there exists a time T, = O <1> such that on the interval
[0, T, ] there exists a solution of the form ¢
® = p(x; q(t)e™ + e2d, A = a(x; q(t)) + dE + £2a(t, x)
0,() = ¢2(0) + eq, (0, p.(0) = pl(D) + B, (1),
where p°(1), q°(r) are solutions of the Hamiltonian system
d__oH dg 0
dr dq;” dt  Op;’
with H determined by Eq. (6), with initial data
4. (0) = 4,0, pl0) =3 9,40,

(11)

where (@, ¢) satisfy the conditions
Veat,+) — (ip(+; 4(0), $(t,+) =0, (12)
(n, (@(2), 1)) =0, (13)
and the maps
ldp
Tedr’

. ldq
t t t -
- (1), R

(= (@ ), @, ) e HYw® @ H220

are continuous and bounded independent of ¢. In addition | Ao(t, - )| 1=r?) = O(>), the
map t — E(t)e C*(R?) is twice differentiable and the solution has regularity

@ p)eCH[0, LD @ C([0, T,.1)

- p@), t
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and N
@ $)eCH[0, 1L, H"* @ L*)nC([0, T,], H>* @ L?).

The additional conditions on the initial data we need are:

- d ~
(n, (@(0), 9(0))) =0, . (n,, (@ ¢)) =0, (14)

V-a(0,+) — (ip(+; 4(0)), $(0,+)) = 0. (15)

Remarks. (1) The conditions in Eqs. (12) and (15) are required in order to “fix the
gauge” — the solutions are only expected to be unique up to gauge equivalence. The
function Z(t) is a gauge transformation of the base multi-vortex solution, and has

. . . . d =
no dynamical significance. It is chosen in such a way that E(a + dE, ®e™=) satisfies

the condition in Eq. (12). The geometric meaning of these conditions is explained in
Sect. 2. (ii} The conditions in Eq. (13) are more physically meaningful, as we now
explain. Imagine that we are given a solution at time t, A(t,-), ®(t,-) and want to
decide which multi-vortex to which it is closest. An obvious thing to do ([Ben72])
is to minimise the following distance function over all the vortex configurations:

min (|A(t,+) = a(+; Z1, Zo)liz + [2(,+) — ¢(+5 Z1, Zo)l12) -
Zl,ZZ

Formally speaking we would hope that at the minima we would have the following
orthogonality conditions, obtained as the differential conditions for a minimum:

(A(t )'—a( ZlaZZ) 6Z> <¢(t )—¢( Zl’ZZ)’a;S) 0.

Now since (a(+; Z), ¢(+; Z)) are solutions of the full static equations for all Z, we

. . Oa 0O . . . .

expect that the derivatives 2z 6(Zb should be solutions of the linearised equations.
i i

These derivatives are thus candidates for the zero modes #n,. In fact this is not quite

right because the derivatives — are not square integrable - this is explained

a 0
0Z; 07,
fully in Sect. 2. Nevertheless we shall see in Sect. 4 that on account of condition (12)
we can think of the conditions in (13} as giving the parameters of the multi-vortex
closest to the solution at time t. These same conditions thus determine the time
dependence of the vortex parameters. In other words the modulation of the
parameters is such as to minimise the L? distance of the solutions from the
corresponding multi-vortex. This is a general feature of solitary wave perturbation
theory, and the reader may wish to take a look at [Ben72], [DHW82], [MS78] and
[Stu] to see the asymptotic situation in somewhat simpler situations. In particular
in [Stu] it is shown how to generalise the approximations of Manton ([Man82])
for self-dual monopole dynamics to more general situations. However a rigorous
argument has not yet been given for this case.!

(iii) The basis for the proof of the theorem is to use conservation of energy to
estimate the errors. At the level of the error terms (d, ¢) the energy of the Abelian

! This has since been successfully carried out in [D.S]
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Higgs model is replaced by its Hessian. We will see in Sect. (3) that the Higgs
mechanism, which physically gives the particles of the quantum theory mass, has
the effect of pushing the essential spectrum away from the origin, thus making the
Hessian equivalent to the H' norm on the subspace orthogonal to the zero modes
n,. This provides the method of proof.

(iv) The method of proof leads to a coupled system of ordinary, elliptic and
hyperbolic differential equations. A local existence result for this system is given in
the appendix which is proved by a simple iteration scheme. The result which this
gives is probably not optimal, and so the regularity statement in the statement of
the main theorem could not presumably be improved. The solutions are expected
to be unique up to gauge equivalence, a fact which could be proved by standard
methods.

We start off by reviewing the static Abelian Higgs model, then prove a few new
results about this which we will need for our work, before proceeding to the
dynamical situation.

2. Review of the Static Abelian Higgs Model
In this part of the paper we discuss the Abelian Higgs model, which is the two

dimensional gauge theory corresponding to the circle group S* coupled to a Higgs
field with Ginzburg-Landau type self-interaction. The energy of the theory is

A
&= IE2+BZ+IDA<I>|2+Z(1—I¢IZ)2, (16)
R2

M)

where E; = 0,A; — 0, A, is the electric field, B = 0, A, — 0, 4, is the magnetic field,
and D, is the covariant derivative D,® = d® — iA® with respect to the connection
A. The connection will be suppressed when there is no possibility of confusion. We
shall be interested in the time-dependent problems corresponding to modulating
static solutions, so we shall start off by recalling some facts about the static
solutions from [JT82]. The static version of the theory corresponds to time
independent configurations with A, = 0, which minimise the energy (subject to
boundary conditions at spatial infinity). This gives rise to the equations:

024, + 0,0, 4, +é(<1_5D1cD—cDDfd>)=0, (17)
—6§A2+6162A2+%(5D2(D—95D;q§)=0, (18)
2 2 }“ 2

which are invariant under gauge transformations
A—A+dy, - de” (20)

for any real valued smooth function y on the plane. These equations have a very
interesting behaviour as A varies. The best way to see this is the Bogomolny
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decomposition of the energy functional:

&= f 01Dy + A1 P2) F(0,D, — A2 P)|> + 1(0:P1 + A2D,) £ (0, D5 — A, 9,)]?
RZ

1 2
+|B+-(@7+ &5 -1)| +B+

t3 (1 —]o1)?. 21

(A-1
4

Thus we see that if A = 1 then the energy decomposes into positive definite terms,
plus the term | re B =limg., . jlxl _ g A+dx, which depends only on the boundary
behaviour. Thus if we minimise with ij B fixed we obtain the Bogomolny equa-
tions

(51@51 +A1¢2)$(62¢2—A2¢1):0, (22)

(62¢1 +A2¢2)i(01¢2—A1¢>1)=0, (23)
1

Bii(rpﬂqs;_n:o. (24)

We shall describe the consequences of this after discussing the boundary term
IRZ B, which has a topological significance as the winding number of the Higgs field
&. Indeed in [JT82] it is proved that if @, A are continuous functions on the plane
such that

(i) limg_ o supj=r |1 =@} =0,
(i) |x|t*°|DP| < const,
(i) BelLl,
and we define e = @/|P|, then

—i
B = lim A+dx =— lim | (éde — ede)
lé; R_'Oo[x|j.=R 4r R—*ooj‘
is an integer, the winding number or vortex number of the scalar field @.
To explain the phrase vortex number we now discuss vortex solutions. It is
known (see e.g. [ P1o80]), that Eqs. (17-19) have solutions with radial symmetry,
which means that using radial co-ordinates they can be expressed as

® =u(re® A=a(rdo.

These are called vortices, and correspond to vortex number + 1. Computational
studies of [JR79] suggest that if A > 1 two vortices will repel while for A < 1 they
attract and the net force is zero for A = 1. This is because the repulsion of the
magnetic field cancels the attraction of the complex scalar field for A = 1. This gives
rise to the possibility of there existing multi-vortices at this value. Taubes proved
that this is indeed the case (see [JT82]). We shall now describe how the Bogomolny
decomposition and consequent reduction of Egs. (17-19) to the first order form of
Eqgs. (22-24) allows a verification of this critical behaviour. We minimise & subject
to the condition of fixed positive winding number N, so we are led to Eqgs. (22-24)
with the upper signs. It turns out that these equations are equivalent to a single
second order equation for a scalar, a method which goes back to [ Wit77]. The
scalar equation is

—du+e*—1=—4n) oz, (25
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where the Z, are arbitrarily chosen points in the plane, and correspond to the
centres of the vortices (zeros of the Higgs field). The solution of Eq. (25) generates
solutions of Egs. (22-24) via

¢ = exp%[u +i0], (26)

1 1
a =§(62u+61@)5 a, = _E(alu_aza)’ (27)

where we choose @ =2 arg(z — Z,). (By Eq. (20) there are also gauge equivalent
solutions.) To see why the points {Z, } are referred to as the centres of the vortices,
we look at the appearance of the solutions close to these points. The delta sources
in Eq. (25) enforce the behaviour u ~ 21In |z — Z,|, which means that ¢ ~ (z — Z,)
(assuming Z, appears only once in the list of vortex centres). Solutions of Eq. (25)
thus generate what can sensibly be called multi-vortex solutions of Egs. (17-19)
when A = 1. We now state Taubes’ existence result ([JT82]).

Theorem 2.1 (Existence). Every critical point of the functional Eq. (16) with A =1
and ijB = NeN is a solution of the first order equations (22-24). Each such
solution a, ¢ is determined, modulo gauge equivalence, by a set of N points in the plane
Z,, and is given by Egs. (25-27). Furthermore the solution is smooth, and has the
following properties:

(@) ¢ ~cilz—Z;)% as z—> Z;, where Z; occurs n; times.
(b) Let the {Z;} be contained in some compact set K. Then for any 6 > 0 there
exists ¢(0, K) such that

ID¢, (1 —|¢]) < c(8)e ~ 1~
(© & =aN=3fpB=n) n;.
Similar results hold for N < 0.

In calculating the dynamics of these multi-vortex solutions a prominent role is
played by the solutions to the linearised equations (zero modes), which span the
tangent space to the moduli space. The moduli space is the space of gauge
equivalence classes

(¢, a) ~ (pe™, a + dy) .

Thus for our problem the moduli space is SY(C), the symmetric product of
N copies of C, because the solution of Eq. (25) is unchanged by the interchange
of two vortex ceatres. It is convenient to introduce the elementary symmetric
products of the Z,, which are the coefficients s; of the polynomial

p=Ysz =[] ¢-2)

whose roots are Z,. We will find that these are good co-ordinates on My — see
[Hit88] and [Sam92]. To see why this is so we have to discuss in some detail the
tangent space.

The tangent space is naturally regarded as being orthogonal to the infinitesimal
gauge transformations (dy, ix¢) at {(a, ¢):

§ (@ dy) +($,ixg) =0 (28)
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or equivalently
V-a— (g, )=0. (29)

This will be referred to as the gauge orthogonality condition. Thus we define the
tangent space Ty, 4) to My at the multi-vortex (a, ¢) as the space of L? functions
(4, ¢) which satisfy the condition in Eq. (29) together with the linearised
Bogomoiny equations. These two conditions can be economically written as

. 0%+~ dd
& 4 0
9«1,4))(5) =lsz_ 55— i = <0> , (30)

1 . I T
o= 5(“1 —iay), 4= E(al —ids),

where

and

~ 1 1 .
0= 5(51 +i0,), 0= 5(51 —i0,) .

Here the gauge orthogonality condition appears naturally as the real part of the
linearised equations written in complex co-ordinates. We now use Eq. (25) to write
down a basis for T, 4. For simplicity we consider the two vortex situation N = 2,
and assume for the moment the two vortices are not coincident: Z, + Z,. Then the
obvious way to try to generate solutions to the linearised equations is to differenti-
ate with respect to the parameters, ie. to consider

oa 0¢
0Z,. 0Z,,;

for a=1...N and i=1,2 representing the co-ordinate axes, i.e.
Z,=Z,4+iZ,,. A quick look at the asymptotic behaviour makes it clear that
these are not square integrable. However there is another difficulty — they do not
satisfy the gauge orthogonality condition Eq. (29). These two problems cancel out
- in other words we can find an infinitesimal gauge transformation (d%,,;, if,.:®)
such that

Oa o
. 99 |
(aza’i + an,l’ aZa’i + lXa,ld)) (3 )

is square integrable, and satisfies both Eq. (29) and Eq. (30). Direct substitution into
Eq. (29) leads to the following equation for y, ;:

00
0Z,;

—Ai + O Ay = — 912 @=2zarg(2_za,i)- (32)
Referring to Eqgs. (25) and (26) we see that the right-hand is in fact smooth which
will allow us to find a smooth solution to this equation. The next results show that
the multi-vortex solutions a(x; Z), ¢(x; Z) are smooth functions of the parameters
Z,,i, and the expressions (31) define smooth square integrable solutions of (30)
which depend smoothly on the {Z, ;}.
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Lemma 2.2. The multivortex solutions are smooth functions of the parameters Z, ;.

Lemma 2.3. Equation (32) has a smooth solution which approaches — as

0Z,.;
[z] — oo exponentially fast, which has the consequence that:

6(]5 . 2 661]- 2
sz (aza’i + ld)xa,i) + (5Z(,,i + djxa,;> <.

Corollary 24. If Z, & Z; for o &  we have 2N independent solutions of Eq. (30)
which are square integrable and are given by

o . da;
Ry, = <(3Z -+ iP5 5Z—J + dea,i> . (33)
. op . da;
Furthermore the functions 77 + i) ), 77 + d;y,,: | are smooth functions of

the Z,;, with the property that if the {Z,} are contamed in some compact set K, then
for any positive integer r, and any number 6 > O there exists c(d, r, K) such that

| 00 ) [ 0a
D < +1¢Xu,i> + D <6Za;+dxal>

0Z,
where D represents differentiation with respect to xy, X., and the Z, ;, and m is
a multi-index with |m| < r.

< c@,r, K)e (-9,

Remark. In this lemma the families of multivortices do not have to be exactly those
given by Egs. (26) and (27) but are allowed to differ by a smooth family of gauge
transformations.

Proof of Lemma 2.2. For the proof of this lemma we recall some aspects of the
existence proof in [JT82]. The function u which solves (25) is obtained by subtract-
ing out the singularities as follows:

u=ug+v,

N 2
|z — Z,]
= E 1 —_— ,
) n{u + |z — Zalz}

where y > 4N. This leads to the following equation for the regular part v:

where

—Av + e'e® =1 — g, =4 —.
% Z PEAFESADL

It is now clear that to prove the lemma all we have to do is to prove that v is

a smooth function of the Z,. We will show here that it is C* — the fact that it is

smooth will then follow either from repeating these arguments — see the proof of

Lemma 2.3 and its corollary. To see that v is differentiable we look at the natural

. ov . . .
candidate for ———, which is the solution v; ; of the equation:

0go w o OUg
—eet —.
Za,i aza,i

—Avy; +e™e’vy, ;= —
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This is easily seen to be smooth and square integrable. To see that it is indeed
we have to show that @i

U(Za,i + h) - U(Za,i) - hv;,i
w = A

has limit zero as & — Q. But w solves an equation of the form

—Aw + e*e'w = hWwF(v(Z,,; + h), v(Z,;), x) ,

where F is a smooth function, uniformly bounded for h < 1. Now since we know
that e T >0 and e* " > 1 as |x| > co we have an estimate

FIVW]? 4 et lwi? Z 9 [{w]* +|Vw|?

for sine y > 0. Thus if we choose h sufficiently small we can see that |w|g: — 0 as
h — 0. Substitution of this into the equation then shows that |Aw|;- > 0ash— 0. It
then follows from Sobolev’s theorem that v, ; is the classical derivative. We can
repeat this process to show that the map Z — ve C *(R?) is infinitely differentiable.

Proof of Lemma 2.3. Let p be a smooth function equal to one outside a disc

satisfies

|x| > R, and equal to zero inside | x| < Ry < R,. Then v, ; = y,.; — p@Z

an equation of the form

_AUa,i + |¢lzva,i = ga,i >

where g, ; is smooth and vanishes outside |x| > R, and so is square integrable.
Using the fact stated above that | ¢| approaches 1 exponentially fast, it follows that
this equation has a solution which decays to zero exponentially, ie. there are
constants C,  such that

Iva,il é Ce_éx .

This follows by comparison methods — see Sect. 3.7 in [JT82]. It follows that y, ; is
our required solution. To see that it depends smoothly on the parameters we have

ove: . .
%? exists it should be the

to show that v, does. This is easily seen as follows —if
solution A of the equation

o, L

s O™
—Ah + etoh = Dmi Vs (") .
Zy Zy,j

This is easily seen to exist and indeed to be a derivative. This process can be
continued indefinitely to produce any number of derivatives.

Proof of Corollary. First of all we see that
da

+ iy, ; is smooth and decays

a, i

+ dy, ; is a sum of exponentially decaying

exponentially to zero. The term
a,i
functions and functions of order r ~ 2 at infinity — see (26, 27). The non-exponentially
decaying terms cancel, out leaving an exponentially decaying remainder, which is
of course square integrable. The linear dependence of these solutions is easily seen
du

0Z,;

to reduce to the linear dependence of the from Eq.(25). But any linear
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combination of these

du
=Y Coiz—
X uizy
satisfies the equation
0
—Al+e'l=3 cpim—=90z .,
+e'l=3c, 07, ;e

so [ = 0 only if there is a cancellation of sources which requires Z, = Z;, contrary
to assumption. The fact that the derivatives are exponentially decaying follows by
looking at (26) and (27) and noticing that non-exponentially decaying terms cancel
out for all derivatives.

2.1. Co-ordinates on the Moduli Space. We now discuss co-ordinates on the
moduli space. We have displayed 2N square integrable solutions to Eq. (30) for
non-coincident vortices — Z, + Z;. A formal index calculation of Weinberg
([Wei79]) suggests that there should indeed be 2N such zero modes, so that at
points where no vortices coincide we say the Z, form a good co-ordinate system.
What about points of coincidence? First of all recall that the N vortex moduli space
is naturally regarded as My = S¥C. We noted above that the symmetric product
S¥(C) has as a natural set of co-ordinates the elementary symmetric functions, ie.
the coefficients s;(Z,) of the polynomial

N N
H (Z - Zat) = Z SiZi, Sy = 1.
a=1 i=0

We now show that these give good co-ordinates in the case N = 2, i.e. they generate
square integrable solutions to Eq. (30) for all positions of the vortices including the
case Z, = Z,. So we introduce

P=Z,+Z,=P,+iP,, Q=2,Z2,=0, +1i0Q,,

and show that the real and imaginary parts give four independent square integrable
solutions of Eq. (30) even when Z; = Z,. First of all:

9 ;<i_i)’ (34)

00 Z,— Z,\0Z, 0Z,
o 1 i 0

Clearly for Z, & Z, the real and imaginary parts of thesc give rise to four
independent square integrable solutions of (30), by the previous result. We now
propose to examine the limit as Z, — Z, of the solutions of Eq. (30) suggested by
these. We shall see that they extend to independent solutions at the points of
co-incidence.

o 0
Lemma 2.5. The operators @, 2P give rise to four square integrable solutions of Eq.
(30), which extend continuously to Z| = Z,, as follows. We write Egs. (34, 35) in
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real terms:

0 ) 0
a—q - Zz(aa,i + lba’i)é-Z;: s

0 . 0
% = ZZ(Ca,i + lda,i)fa’i .

Then the corresponding linear combinations
an = zzaa,ina,ia nQZ =zzba,ina,i 5
nP1 = Z Z Ca,illy,i> an = Z Z da,ina,i (36)

are square integrable linearly independent solutions of Eq. (30) (even for Z, = Z,).
Furthermore all these solutions depend smoothly on P, Q, and for P,Q in some
compact set K on M,, and for any integer, and any number 6 > 0 there exists
c(K, v, 8) such that

D™, (x)] < e(K, 7, 6)e ==,

where D represents differentiation with respect to x,, x,,and P, P,, Q, Q,,and mis
a multi-index with {m| < r.

Proof. We bave to examine the limits of Eqs. (25, 32, 33) as Z, - Z,. Since the
problem is rotationally invariant we can combine this limit with a sequence of
rotations and translations, and hence reduce the problem to the case
Z,=xy +iy, =a, Zy =X, + iy, — a for a real, so that

0 -1 i

30= a0 = 0+ 35000 = 02,

Jd 1 i

P 5(6x1 + 0y,) — E(ay1 + 0y,) . (37

We already know that dp gives rise to two square integrable solutions of Eq. (30)
from the previous corollary, and these are linearly independent. We next show that
0, also gives rise to two such zero modes. Looking at the real term, this amounts to
showing that

hm (ny,1 —ny,4)

=npeLl?. (38)
a—0 a

Referring to Eq. (33), this means we are investigating limits of the type:

1 i
~(¢x, — Ps,) + E(Xl,l — X2,1)
a a
1 i}
= a(ux, - “x2)¢ + ;(@x1 +x1,1 — Oy, — X2,1) - (39

To analyse the first term, w = a™!(u,, — uy,) we notice from Eq. (25) that it is
a solution of

4
AW+ etw = — g(axlézl —8,.62,).
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In order to show that ¢w has a well defined square integrable limit we use the
regularisation procedure in [JT82]. (See also the proof of Lemma 2.2.) Thus we
subtract out the singularities of w by defining

1 u B
=—~(o,In[1+——=)—-0, In[1+ ———
w ( ( +lz—21|2> ( +[Z_Zzlz)>+wg

where u > 8 is some fixed largish number (see [JT82] or Lemma 2.2). The first two
terms give the singular part, and the third is the regular part. We first look at the
singular term, which is calculated to be

_¢( 2u(x — a) 2u(x + a) >

a \lz—al*+plz—al* l|z+al*+plz+al?
Now as a — 0 we can represent ¢ as
¢ =(z—a)(z+ a)h(z)

with h non-zero (see [JT82]). Thus the singular part has a well defined square
integrable limit as a — 0. For the regular part we find that it satisfies the equation

_Awreg"i_euwreg:i 'uz 5 — H’z 5
a\(lz—al>+w* (z+al*+p

e* 2u(x — a) 2u(x + a)
- 4 2 4 2| (40)
al\lz—al*+ ulz — a| {z + al*+ ulz + al

The right-hand side is uniformly bounded in L? for all values of a. From this we
obtain the estimate

| IVWeeel® + e*w2, < const
RZ

for all values of a. This in turn implies that | Aw,.,|;2 is bounded independently of a.
The second term is treated similarly and hence we have proved that np extends to
a bounded square integrable function as Z, — Z,. Carrying out the same analysis
for derivatives we can see that it is smooth. The imaginary part of Q generates
a solution similarly. To see that these solutions are linearly independent, we notice
that if this were not the case we would have

(ux, - ux2) - (uy, - uyz) =o0(lZ, - Z,]),

which is easily seen not to be the case.

Finally to complete the proof of the lemma we have to show that the derivatives
with respect to P, @ also extend continuously to the point of coincidence. But the
analysis of these limits leads to problems of taking limits structurally identical to
that just studied. Thus all derivatives

(o) Ge)

extend continuously to the whole of M,, and the lemma is proved.
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This lemma implies that we can write the gauge equivalence classes of solutions
to Egs. (22-24) for N =2 as

a(x; P, Q) ~ dy + a(x; P, @},
¢(x; P, Q) ~ d(x; P, Q)e™*, (41)

with P=7Z, + Z,, Q = Z,Z,. We shall see the interesting consequences of this
later. Thus for N = 2 we have written down four linearly independent solutions of
the linearised equations which are square integrable. In the general situation we
expect there to be 2N square integrable solutions of Eq. (30) which are linearly
independent. An informal index calculation of Weinberg justifies this, and we redo
his calculation in an appendix in a rigorous fashion.

Theorem 2.6 (Index). The operator D defined in Eq. (30) is a Fredholm operator from
(H*)* to (L*)* with index 2N. Furthermore the adjoint operator is also Fredholm, and
Ker @* = 0.

Notation. We will use {g,}{ to denote a generic co-ordinate system on the moduli
space, and call n, the corresponding solution of Eq. (30) given by Eq. (33) or
Lemma 2.5. For g in some small neighbourhood we can choose a specific family of
representatives of the equivalence classes of multi-vortices a(x; g), ¢(x; g). These
can be chosen to depend smoothly on ¢ and such that a(x;q;)— a(x; q.),
o (x; q1) — d(x; g,) are square integrable. Of course this latter condition is not
satisfied for the representatives given by Eqgs. (26) and (27).

The next two results show that the Hamiltonian system defined in the introduc-
tion is a smooth function on the cotangent bundle to the moduli space:

Lemma 2.7. The maps
M, - (H ! )4
qﬂ — nu
are smooth.

Corollary 2.8. The functions V: M, >R and g: TM, x TM, — R defined by
1
Y@= f (=1(59?,
R2

and, for n,e M,
gq(n;u nv) = j‘ (n;n nv)
RZ

are smooth.

Proof of Lemma and Corollary. The lemma follows from the smoothness and
uniform decay results in Lemmas 2.2 and 2.3. The corollary then follows directly.

2.2. Some Final Comments on the Metric. In [Sam92] the metric is discussed in
some detail and we now state some of the results. First of all we notice from Eq. (30)
that there is an almost complex structure on the moduli space given by:
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This complex structure is integrable and the metric is in fact Kéhler, for any vortex
number. This can be seen either by a quotient construction or by the following
formula ([Sam92]):

ob;
g= 2Z<5”+26 )dzdzj, 42)

where a_zl = a—l;’ ensures the reality of the kinetic energy. This condition is easily
J i

seen to ensure the corresponding Kihler form is indeed closed. The b; coefficients
are defined in terms of the local form of u as defined in Eq. (25) - the coefficients of
the linear term z — Z; in the expansion of u close to z = Z; is b;, and similarly for
b, after complex conjugation. Another result from [Sam92] we need is an isometric
factorisation of the moduli space induced by the action of the translation group.
For the two vortex case this allows to write the metric as

g=dzdZ + fd(d_, 43)

where Z=2,+Z,, { =Z{— Z,. This corresponds to the isometric decom-
position
M,=CxMJ, (44)

where M3 is the relative moduli space, and has metric g = fd{ d{. Writing this in
terms of Q = Z, Z,, with Z, + Z, = 0 gives

4f
12

The theorem above that P, Q form a good co-ordinate system implies the fact that

g =—>dqdg=f(1Q)dQdQ . (45)

f is finite, i.e. ﬁ is finite as { — 0, as asserted in [Sam92]. Finally a remark on the

asymptotic behaviour of the metric — we show in the next section (see lemma on
asymptotic behaviour) that as the vortices get further apart the solution becomes
a superposition of single vortices with an error term which is exponentially small in
the vortex separation. This has the consequence (see [Sam92] that the metric
asymptotically decouples to g = n(dZ{ + dZ; ), where 7 happens to be the rest
mass of a single vortex. Thus the metric on M is asymptotically Euclidean. This
has a consequence that as long as we use the co-ordinates Z, Z, for large vortex
separations that the metric is uniformly invertible. So we will take the following
overlapping co-ordinate patches — choose some number L and for |Z, — Z,| < 2L
we will use P, Q as co-ordinates, and for |Z, — Z,| > L we have the co-ordinates
Z,,Z, themselves. We are then assured that the (Legendre) transformation be-
tween ¢ and p is uniformly nondegenerate.

3. The Higgs Mechanism — A Coercive Estimate for the Hessian

In this section we will use the information from the previous section to derive an
estimate for a functional related to the Hessian of the static Abelian Higgs energy
equation (16). The basic idea is that, modulo gauge invariance, the Hessian should
be equivalent to the H! norm in the subspace orthogonal to the zero modes given
in Eq. (33). This is known as the Higgs mechanism in the physics literature. Before



68 D. Stuart
proving this we notice two apparent difficulties with it:

04, 04
(i) The Abelian Higgs energy contains only B = i - KZ not the full derivat-
2 1

ive of A. This difficulty disappears when we modify the functional to deal with
gauge invariance.

(ii) The potential term which appears is not everywhere positive, thus there are
potential problems with bound states. In fact the multi-vortices appear as minima
(Eq. (21)) so the only problems are with zero modes (solutions of Eq. (30)), and we
are interested in the sub-space orthogonal to these. Thus the relevant question is
whether the spectrum extends right down to the origin. Our result could be
interpreted as saying the continuous spectrum is pushed away from the origin due
to the asymptotic values of the Higgs field when gauge invariance is properly taken
care of. We start off by calculating the Hessian of Eq. (16) at a multi-vortex
configuration (a, ¢), evaluated on the diagonal y = (4, §):

) {lddlz + i (ID? $1* — 28i(ip, D) ) — 2a,(id, D} $)
RZ

i=1

N —

Hessa, ¢(l//7 l//) =

. - 1 ~
+1o1%1a)? + (¢, ¢)2—§(1~|¢|2)I¢12}d2x, (46)

where D{® = 9, — ia;. We next add on a term to remove the degeneracy which is
present as a hangover from gauge invariance. The term is designed to exclude from
consideration as zero modes the infinitesimal gauge transformations, so we take the
square of the expression Eq. (29). This is because this expression vanishes only
orthogonal to the gauge flow. This has been done in the monopole problem also
(see [ Tau821). Thus we consider the corrected Hessian,

Hess, o(V, ¥) = Hesso ¢ (¥, ¥) + ,L (V-a— (9, $))°

2 2
= X Vgl + ¥ DG +16171a + 161117

R% i, j=1
2 ~ o 1 -
~2 3 a(id, D" ¢) —5 (1~ 19N
i=1
= [12ag¥l® =W 1v), 47

where & was defined in (30). This expression for Hess has a highly satisfactory

form. In fact in answer to the first problem raised above we notice that Hess, ,
contains all the derivatives of 4 not just the anti-symmetric one. Secondly, notice
that since |¢| — 1 exponentially fast as |x| — co that asymptotically the quadratic
form becomes the H' norm at spatial infinity. This is called the Higgs mechanism,
and is interpreted as saying that the corresponding particles have mass, and so the
fields decay exponentially at infinity. Thinking in terms of spectral theory it leads
us to suspect that the essential spectrum is pushed away from the origin, and this is
what is behind the next theorem. Notice that we have defined the operator
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L corresponding to the quadratic form Hess, and that it is of the form

L=Ly+V, max{V|=c, (48)
RZ
2 2 o > 5
W Low)=[ Y IVigl*+ Y ID{”¢|* +1a)> + 14> . (49)
i,j=1 i=1

Theorem 3.1 (Coercive estimate for Hessian). There exists a number y such that for
every ¥ = (4, ) e (H"*)* which satisfies

(,mr2=0 for every neKer?
the following coercive estimate holds:
Hess,, o, ¥) 2 7 Y110 = (VAL + 1313 + DO +1612) = y(), LoW) .
Remark. 1t is important that y can be taken independent of the configuration a, ¢.

Proof. We consider

o(q) = inf Hess, o, ¥), S = {: [¥lg: = 1, (), n), = O for all neKer @} .

We shall write 7(q) to indicate dependence on the configuration as parametrised by
q in the course of showing that such dependence can be removed, i.e. that we can
find a number 0 <y < 1(g) Yq.

To achieve the first part we fix a, ¢, and assume that (g, ¢) = 0, then by density
we have a C§ sequence V' such that

y'—=yeH', Hess,o('\¥)~0, WO.=1 (%n)=0,
and we will try to draw a contradiction. Integrating by parts we get
Hess,, o', ') = |29]3 -0,
so in the limit we have |2y/| = 0. But since ' — 1 in H', it follows that
(W, n)y =lim(yi,n) =0

so that ¥ = 0. To draw a contradiction we use the fact that by the Rellich lemma
there is strong L? convergence on compact sets. We apply this to the formula:

e = Flesy 04— § 301 = 01 + (1 = g2
+ 4(¢, — ia'- D)
= Hoss, o0 ) + [ 0. (50)
Now given any & we can choose a radius r(e) such that
(=191 1DOg1 <& for [x|> ().

Thus calling the ball of radius r(g), B, we find that as i — co:

f 0—-0 by Rellich’s lemma
Br(s)
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for every & But also we see that since ||y, = 1 we have the following estimate
uniform in i:
I 0=00.

R2 - B,

This leads to a contradiction since |'| =1 and Hess, 4/’ ¢) 0. Thus we
deduce that for each g, t(g) > 0. The proof of the theorem will be completed by the
following three lemmas which remove the dependence on the background config-
uration.

Lemma 3.2 (Continuous dependence). The dependence of © on the parameters q of
the moduli space is continuous.

Lemma 3.3 (Single Vortex). For a single vortex, T is independent of q (by translation
invariance).

The next lemma states that outside compact regions of the moduli space 7 is
bounded below uniformly.

Lemma 3.4 (Asymptotic Lemma). Consider any sequence of vortex configurations
4n€ M, in which the separation of the two vortices becomes infinite |Z, — Z,| — co.
Then there is a fixed positive number such that ©(q") = o for all such sequences.

The middle lemma requires no proof. The other two are now proved in turn.

Proof of Continuity Lemma. Here we can either apply the general results of chapter
five of [Kat66] or use a direct argument as follows. Let ¢, — g be a sequence of
points on the moduli space, and write the corresponding configurations a(-; q,),
&(+; q,) as c(g,), then for each n we have 1, = t(q,) and our task is to show that
T, = 7 = t(q). We need the following two results to prove this.

Claim A: If we write P, for the projection operator onto the L*-orthogonal
complement of Ker %, then P,— P, in the strong operator topology induced
from H'“ where P is the corresponding projection operator for the limiting
configuration g and «a is the connection corresponding to g. This follows almost
immediately from Lemma 23 and its corollary if we notice that
(P, — P)y =) (¥, n,)n, — Y. (f, nl)vil", where nl is a basis for Ker @)

Claim B: There exists a positive increasing function J, such that é(r) >0 asr —» 0,
with the property that

Hess (¥, ¥) — Hess (0, ¥) < 3(lg — ¢’ DY 2> -

To see this we just look at the expression for the Hessian and notice that the
coefficients are continuous functions of ¢ in the uniform topology.

We will now show that t £ liminfz,, and 7 = limsupt,. To see the former
imagine that 7(q) > liminfzt(g,) — then we have minimising sequences of unit L?
norm such that

HCSSc(qn)(l//,l;, lprln) —17(q,) .

Now project i} onto the subspace orthogonal to Ker 9. — this produces a new
sequence V., with the property that | — il < ¢,, where g, — 0 as n — oo, and is
independent of i, from Claim A. Next we use Claim B to deduce that

Hess, (2, ) = 1D i) = | D@ Vil® + & = Hessq\ s, Yi) + & »
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where &, -0 as n— oo and is independent of i. From this we can draw the
conclusion t £ liminft, by using Cantor diagonalisation to produce a subsetju-
ence which contradicts the assumption. An almost identical argument yields the
fact that 7 = limsupz, — we assume that 7 < limsupr,, and use a minimising
sequence for the limiting configuration g to produce “almost minimising” se-
quences for nearby configurations g,. The “almost minimising” sequences give
lower values for 7, than possible if the assumption were true.

Proof of Asymptotic Lemma. This hinges on the fact that when the two vortices are
far apart the spectrum should be as for a single vortex. Thus we will show that if
1(q) approached zero at infinity of the moduli space then t for a single vortex would
be zero contrary to the lemma above. We first of all notice that by translation
invariance it only depends on Z; — Z,. Furthermore by translation and rotation
invariance we can take Z; =d, Z, = — d, with d real. We will write u, for the
solution of the single vortex problem

—Aduy + e — 1= —4nd,,

then the solution of

—dAu+ e —1=—4n(d; + 9,)
can be written as

u=1uylz—d)+uplz+d)+1i,
where

Al etolz = Do~ (il [y = (guole = d) _ q)(gHole+d) _ 1y

We want to show # is small for large d:
Claim. There exists constants C, a such that
0q|w | 0q

This is proved after we show that it allows us to prove the asymptotic lemma.
We divide the plane into three regions

R2=Bl UBzu(RZ‘Bl —B2)=B1 UB2U«@,

< Ce ™™ .
H*

‘ﬁ|oo’ ]aley

[l
¢

where B,, B, are balls of large radius r around d, —d respectively. Now for d > 1
we see that u is the sum of three exponentially small terms outside the two balls.
Applying this to Eq. (47) we find that

(DY 2y = Y ma +o0(1).

Now consider a sequence of vortex configurations with d = d; — oo, where by
assumption we can find a sequence i’ such that

Wi =1 129, -0,

where d; refers to the background two vortex configuration corresponding to
vortices centred at d;, — d;. Then we deduce from the previous equation that
|¥*|r1 @) becomes arbitrarily small, and so one of ||y (s,), ¥ |n:(s,) must be
bigger than, say 1/3. We can now see our contradiction — as d — oo if we restrict to
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one of the balls we have a sequence with
. . |
D' =0, 1> 3,

where d is a background one-vortex configuration. But this would imply that y = 0
for a single vortex, which is not the case by translation invariance as expressed in
the lemma above.

Proof of Claim. First of all notice that by the maximum principle @ < 0. Next
multiply by (e — 1) to obtain:

j’eﬁ|val2 + euo(z—d)+u0(z—d)(eﬁ _ 1)2 — j‘(euo(z—a) _ 1)(euo(z+a) _ 1)(61; _ 1) .

Now from the negativity of @, and the fact that ¢* — 1 decays exponentially,
we find
j‘eﬂ|vﬁ|2 + euo(z~d)+u0(z~d)(eﬁ . 1)2 — O(e—ad) )

Substituting this into the equation we can estimate Aii to be exponentially small
also which proves the proposition.

Theorem 3.1 is the key to our method, which will be based on the fact that the
Hessian is “almost conserved” as we shall see in Sect. 5. We will need the following
corollary.

Corollary 3.5. Consider the quadratic form defined by
Q. ¥) = Hess, o (W, ) + Hess, o (L, L) .
Then on the subspace of H*“ defined by the conditions
(,n)2=0 for every n,eKer 2
there exists a number ¢ such that

c_ll‘//|3,a é Q(l//’ l/’) é Cl'/’!3,a .

Proof. We will use ¢ for a variable constant. We already know that on this
subspace

Chl]wll,a § Hessa,d)(lpa l//) é cll//'l,a
and we know that (Ly, n,) = 0 since Ln, = 0. From this we see that
'l/’|1,a + ’L‘ﬁ'l,a é HeSSa,¢(‘ﬁ, lﬁ) + Hessa,zb(Llpa Llﬁ)
Sclllyli,e+ Wi Sclyls,a- (51)
Now looking at the expression in (48, 49) for L we see that

Claim. There exists a number ¢ such that
¢ HYlza S Wi + 1L S ez - (52)
To see this notice that from the definition of L,
Wl2.a < ez + 1A% 112)
= iyl + | Lo ir)
S (Yl + [ Lyl + | VY (r2)
S|yl + | LylL)
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Now we see that
W30 S Wlza + 1V 2.4
S eyl + 1Lyl + VY] + | LVY|L2)
< (¥l + [Llez + VLY 2)
Sellyle + 1Lyl = QWL ),

where the final equation follows from Eq. (51). This proves the corollary.

4. The Ansatz

In this section we will write down an ansatz for the solution to describe the
slow (low-energy) dynamics of vortices. Very roughly this consists of writing the
solution as

A=a(-;q() +e2d, & =¢(-;q()) + &2 .

We then apply a Fredholm type condition to obtain equations for the evolution of
the parameters g,. This condition, Eq. (13), was discussed in the remarks following
the statement of the main theorem, and should be thought of as choosing g as
a function of time in order to minimise the L? distance of the solution from the
(modulating) multi-vortex solution. The reader interested in a more leisurely
description of the asymptotic situation may refer to the companion paper [Stu].

Of course the real justification for choosing the time evolution g(t) so as to
satisfy (13) is that this leads to a rigorous estimate of the error terms (d, ¢), as
shown in the next section. Nevertheless we will give an informal “derivation” of
those conditions here for motivation. Our ultimate aim is to estimate the error
terms using the Hessian, which is a conserved quantity for the equations linearised
about a static multi-vortex. We will see later that it is approximately conserved by
the full equations for 4, ¢ on a slowly modulating background. The difficulty with
using the Hessian however is that it is not a coercive quadratic form as it stands.
We saw in Sect. 3 that in order to make it coercive we have to restrict the subspace
on which it is evaluated in two ways:

(i) Ensure that § = a, ¢ satisfies the gauge orthogonality condition:
V-d—(ip,$)=0. (53)

To see that this is possible, notice that if A = a(+; q(t)) + &2, ® = ¢(+; q(1)) + &2¢
is a solution for which this is not satisfied, then a gauge transformation

Ao A+ e2dé, & — Pt

with
4E = (i, §) — diva + ¢~ 2| p|*sine2¢

will produce a solution satisfying the condition.

(i) Ensure thaty = 4, ¢ is orthogonal to the zero modes n,, which are the zero
eigenvalues of the Hessian. This is condition (13). To motivate this we expand upon
the comments in the introduction. We are trying to match our solution to
a multi-vortex with parameters q(t), so we try to minimise the L? distance, i.e. we
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determine ¢(t) by the minimisation problem

min | |4(-) — a(-; @) + D) — G+ g0
q(t)e M, R?
We now show that if ¢ are smooth, compactly supported and satisfy the gauge
orthogonality condition, that this minimisation leads to condition (13). The differ-
ential conditions for the minimum are

_ 0a ~ 8¢
f(“’a—&*(qb’a—q:)ﬂ

which makes sense on account of our assumptions on d@. We now take advantage
of the gauge orthogonality condition to add on the infinitesimal gauge transforma-
tion given by Lemma 2.3. This converts the partial derivatives with respect to
g, into the zero modes n,, and hence to the condition

[ (@ ).n)=0

But this is condition (13) and makes sense for any &, ¢ square integrable, and so will
be adopted as the condition to choose g(z).

We now write down the ansatz properly and apply condition (13). The starting
point is the time dependent equations corresponding to the energy (Eq. (16)):

— 440 + 0(0:A) = Jo , (54)
03A1 - AAI - OI@I-AO -+ 3,(51AJ) = Ji N (55)

Di® —Di¢ —Dio =%
where J, = (i®, D, ®). In order to write down the ansatz it is convenient to
introduce a slow time variable t = ¢t. The only feature of the rough ansatz stated
above that is not quite right is that we must allow for the possibility that at time
t the solution looks like a gauge transformed multi-vortex. Thus we introduce a time
dependent base gauge change Z. This leads to the ansatz:

o1 —|2%), (56)

®(t, x) = [P(x; q)e™ + e2(t, x)] = (x; 9) + &%, (57)
Ao =38y, (58)
A; = a;(x; @) + 0,5 + £248;(t, x) = a(x; q) + 24, , (59)

where we have defined ¢ = ¢e”®, and g, is shorthand for the two possible paramet-
risations of the two vortex solutions discussed in Sect. 2.1: Zy, Z,, or P, Q. We
require @, ¢ to satisfy the gauge orthogonality condition and condition (13). Finally
the base gauge change Z of the multi-vortex is a slowly varying function chosen

such that
d ] _d L om ) [de do
<;l—£(ai(xa qu) + ai‘—” E(d)(xs que )) = <dt s dt)

satisfies the gauge orthogonality condition Eq. (29). It is these two conditions
which allow 4, = O(&?). The reader will see by referring to the proof of Lemma 2.3
that this choice of base gauge ensures that

da do 4
<dr ) uZ Guty (60)
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which we shall use later. We also comment that Z(t) will solve the equation
—4E + 91’5 = — 91?6,
so that t > Ze C*(R?) will be twice differentiable for ge C2. Substitution of the
ansatz leads to the following equations for the error terms:
—4do + 1280 = — 2(id, @.) + #o » (61)
0a; — Al + |912a; — 2(id, D[V §) = — 02 (a; + 8:E) + &)y, (62)

2

~ - ~ 1 ~
02¢— ¥ (D¢ 21D +61°¢ — 5(1 - 141°)¢

i=0
l .
=~03<P+§<p(1—|¢|2)+813, (63)

where we use the notation D{” ¢ = 8;¢ — ia;¢, and the error terms are in the first
appendix. It is convenient to rewrite the last two equations in terms of Yy = (&, ¢) as

Yut+ Ly =k +4, (64)
where L = L(t) was defined in Sect. 3 by (, Ly) = Hess, ,(, ¥) and

k=(—af(ai+ai5,~af¢+§<p<1—W)) (65)
and j represents the non-linear terms, which are given in the appendix. The next
step is to apply the condition in Eq. (13) to derive equations for the evolution of
q(?), and then to show that these equations ensure that Egs. (61-63) will have
bounded solutions for large times.

4.1. Derivation of the Modulation Equations. The modulation equations for the
parameters ¢, are deduced from the additional condition that (4, ¢) be orthogonal
to the zero modes Eq. (33), or Lemma 2.5 (depending on the co-ordinate system),

and so we require ~
((d: d’)t’ nu) =0
which implies, using the slow time variable 7 = &,
L Lo~ 0%n .. 0n
(s D)y ) = — & <(a9 o), 61:2M> o ((at’ ?.), #) '

We apply this, using the fact that n, solves the linearised Eq. (30), which implies
Ln, = 0, to obtain the modulation equations:

(@2 (@, 329 m) — 5@ (1 — 191)m,) = oh, (66)

where

h = ((jl’j23j3)’ n[l) + 8(‘1’: arznﬂ) =+ 2(‘/’” a‘fn[l) . (67)

These equations are rather unwieldy as they stand, so we will first give a geometric
interpretation of the first term (the inertial term), and then prove that they have
solutions which are bounded for long times thus justifying the asymptotics. We
shall then see about drawing phenomenological consequences.
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4.2. Interpretation of the Inertial Terms. In this section we show that our asymp-
totics are consistent with the Abelian Higgs model version of Manton’s hypothesis
([Man82]), which we described in the introduction. This means we consider the
scattering of vortices in the Bogomolny limit, i.e. with 1 = 0, which is to highest
described by the equation

(03 (), 02 9),m,) = 0. (68)

We shall interpret this equation as the equation for geodesics on the moduli space.
The metric on the moduli space is the L? inner product of the gauge orthogonal
solutions to the linearised equations given in Eq. (33) and Lemma 2.5. The
geodesics T — g(t) are extrema of the integral

j (n‘“ ni)duq.v dt s

where the notation g, refers to either of the co-ordinate systems for the two vortex
moduli space, Z, Z, or p, q. We choose some representatives of the equivalence
classes of multi-vortices as discussed in Sect. 2.1 and n, are the corresponding
solutions of Eq. (30). The Euler Lagrange equation is

d .. 1fon, .., Lfdn, .
- E((nb nx)qk) + 2(5—(1,1’ nK> qudx + '2—(51;7 nu) quqx =0. (69)

To see that this corresponds to the inertial terms in the modulation equation we
need the following identity.

dn, 1{én, 1/0n, L.
_(dn . Lfom, .. Lfon, _0. .
(dr ,nx)qx+2<aqi,nk>quqk +2(aql,nﬂ>quqx 0 (70)

Proof. To see this we notice that this will follow if Q = (4, — 1, 4., m) = 0. To
see why this is zero it is convenient to introduce the covariant derivative on the

Claim.

. 0 . C
moduli space defined by D, = Powa, where P, , is the projection in L? onto

I
T, thus (1-P,,) ' is the projection orthogonal to 7,,, and so
Q = (D,n; — D;n,, n,) since n.eT, ,. We now use the fact that the n, have the

structure given in Eq. (33), which we write schematically as
0

n, = "

(A) + 4 (ga nu)=0 s

where g is an infinitesimal gauge transformation, and the latter relation follows
from the fact that n, satisfies the gauge orthogonality requirement. We see immedi-
ately that the contribution to Q from the first term (3, 4) vanishes. To see that the
contribution from the second term also vanishes we first proceed formally. Recall
that by definition of T, ,, we have (g, n,) = 0 so differentiating this we find, at least
formally, (D,g, n,) = — (g, D,n,). But (g, D,n,) since D, n, €T, , by definition of
D, and so satisfies the gauge orthogonality condition. To complete the proof of the
claim we comment that, even though g ¢ L2, since the n, are exponentially decaying
in space and smooth all these formal calculations are justified.
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Combining these two equations we are led to the following equations for
geodesics:

" dn,\ .
- (nb nK)qx - (n}.a d )qx =0. (71)
T

We can now see by differentiating (60) that this is equivalent to Eq. (68), Thus we
see that the asymptotic equation takes the form of an inertial term “mass x acceler-

ation” in the form of geodesics, and a force term — %((p(l —|¢1?),n,) due to the

departure from the Bogomolny regime (4 = 1 + 1¢?). We now show that to highest
order the modulation equations are in Hamiltonian form, with Hamiltonian
H: T*M, - R:

1
H= Eg(p, P+ V),

where p is the momentum which is determined from ¢ from the Legendre trans-
formation p, = ZK (n,,n)dy, g is the dual metric defined by g(p,p)=

> wv (M 1,)4, 4y, and V1 M, — Ris a potential energy defined on the moduli space
by

Vi =g ] (0 =162,

The transformation ¢ — p is uniformly non-degenerate on account of the com-
ments in Sect. 2.2, and the function V': M, — R is smooth. The Hamilton equations
are

de,;L _ 0H qu,u _ OH

dz B 0qo,, dr 0Po, u

(72)

of which the first corresponds to the modulation equation and the second to the
definition of p.

We now turn to proving that the asymptotics provides good approximations to
the true solutions for small ¢.

5. Proof of Validity of Approximation

In this section we will prove that the expansions suggested by the formal asymp-
totics of the previous section provide good approximations to the solutions of the
initial value problem for Egs. (54—56), with initial data of the form

A(0, x) = a(x; q(0)) + £a(0), 4,0 =3, 4,(O)n, +2d.0),

B0, x) = $(x; q(0)) + &> $(0), 6,0,%) = ¢ Y. 4,O)nF + > $,(0) .

Notice that our asymptotics have led us to study a system composed of elliptic and
hyperbolic differential equations coupled to ordinary differential equations — see
Egs. (61-66). The strategy is first of all to prove a local existence theorem for this
system in a suitable space. We then use an a priori estimate to show that the

. . . 1 .
corresponding norm is bounded for a time of O<~>, and thus continue the
g
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1
solution for such times of 0<—> by applying the local existence theorem re-
g

peatedly. The relevant norm is determined by the fact that for the linearised
evolution (i.e. that formally obtained from (61-63) by putting ¢ = 0) the Hessian of
the energy (16) is almost conserved. We proved in Sect. 3 however that as long as
d, ¢ satisfies the orthogonality conditions in Egs. (12) and (13) then Hess(y) is
equivalent to the H' norm of 1. This suggests that we should try to use H* for our
norm. However we can do better than this by noticing that if we consider Ly then
this will satisfy the condition (13) (on account of the fact that L is self adjoint and
Ln, = 0). And in addition we see that to highest order it satisfies an equation of the
form
(L¥)e + LILY) = Lk + O(e)

and so Hess(Ly/) is also approximately conserved. This will give us information on
[¥|3 and hence pointwise (L) control, by Corollary 3.5.

Notation. When we write L it is to be understood that this means the operator
defined in Sect. 3 with background configuration w«(+; ¢(#)), @(+; q(t)). This will be
suppressed for simplicity. The error terms in the equations are given in an

appendix. We will use ¢ for variable constants, and c(-,..., +) for positive
increasing functions depending on some number of variables used in estimation.
dg 1d
Also 4, g, g® denote a _ ~—q, etc.
dv  edt

5.1. Local Existence.
Theorem 5.1 (Local Existence). Consider the initial value problem:
Y+ Ly =k+g,
— A&y + 912 ds = — 20, ¢.) + o »

dn,

- (nb nx)(.ik - (nﬂ., E‘qx> - ';_((p(l - ld)lz)’ nu) = - 8((j13j27j3)t7 nu)

— (@ ), 02y
~ 26((@, $.)', 0m,) (73)
with initial data y(0), ,(0), q,(0), 4.(0) given satisfying the constraint (29), and
W (O)3,a0) + 102,00y + 14,0 S T/2.

Then there exist &, (I'), Tioo(I") such that for € < &, there exists a solution to the initial
value problem on the interval [0, T,y | satisfying the constraint (29), with the property
that g C?(0, Ty,.) and the maps

t“*(l//, l//t)era,a(O) @ H2,a(0) ,
to () Y) e H O D L2,
t—’goeHz

are, respectively, strongly continuous, strongly differentiable and strongly differenti-
able. In addition the solution satisfies the energy identities of Sect. 5.2.
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Proof. See appendix for a simple but non-optimal proof. The proof there is
restricted to small ¢ because it employs a simple iteration scheme. Presumably this
restriction could be removed. However since we are only interested in small ¢ we
shall not carry this out.

5.2. A Priori Estimate and Proof of Main Theorem. In this section we will prove
that the ansatz for the solution presented above does indeed give a good approx-
imation to the solution. In other words we want to consider the local solutions to
the coupled system provided by Theorem 5.1, and prove that the d,, ¢ are bounded

. . . . 1
in some norm for a large time — in fact for a time of O —>. We also want to know
€

that the highest order modulation equations approximate the real modulation
equation — and of course these two problems are coupled together. So we introduce
the solution py(1), go(7) to Eqs. (72) with initial data g4(0), p(0) = g(4(0)) obtained
from the initial data for the PDE given above. Next we write the solutions to the
full modulation equations as

p(t) = polet) + &p(®), q{t) = qoler) + &4 (1) . (74)

It will be convenient now to write p, g together as x(t) = (j(¢), (t)) and make
a definition:

v(ta X) = (Hq(p0> 510) - Hq(pa q)a Hp(q9 p) - Hp(pO’ qO)) = gAx + szﬁ(x) s

where py(et), go(et) can now be regarded as fixed functions of time. We use the fact
that v is smooth to make a Taylor expansion of v. With these definitions, our set of
equations becomes

Y+ Lp =k +¢f,

—Ady + 9128 = — 2(i$, @.) + &jo »

d -
= =A@ + 8 w(t, Y. o, %) (75)

where w represents the error terms. This equation will give the necessary estimate
for x. The main tools for controlling the errors in ¥ in our approximation are the
energy identities. These are generalisations of the fact that if the background
configuration a, ¢ is fixed then the corresponding operator L is time independent,
and so the equation

‘//tt+L‘/’=0

has a conserved quantity

N =

0:(n = g!%lz (W, L‘p)""ll//t|Lz+HeSSa oY) .

In our case the background configuration is slowly varying in time, and there are
inhomogeneous terms in the equation. However there are still approximate conser-
vation laws due to the fact that the O(1) error terms on the right-hand side are
slowly varying in time (see also [Stu92]). We now write down the identities, where
Q. is as defined above but with the background configuration understood to be
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slowly varying in time according to Eq. (66). Differentiating we get

0, _ W k + &) + 6C(4, W),

dt
where C represents the terms introduced by the (slow) time variation of the
background configuration a(x; g(t)), ¢(x; q(t)), and satisfies the estimate

[C(g, ¥)I < clgl iz (76)

We now integrate in time, integrating by parts the k term, and take advantage of
the fact that it is slowly varying:

0:(t) — Q1(0) = [¥, k1o — & [ (W, ko) — (Y, /) — €@, ¥)) - 7
0

We will also need a higher energy in order to estimate the higher Sobolev norms.
However we cannot just apply a derivative to the equation as this will introduce
error terms which are not slowly varying, so we take advantage of the fact that
L gives us equivalent Sobolev information as shown by the results in Sect. 3, and
also almost commutes with the equation. Applying L we find

(L) + L(LY) = Lk + eLj 4+ 2eL.yp, + € Loy

from which we deduce an identity corresponding to the previous one for Q,(t) =
5|(L), |72 + Hess,, o(Lyy, Lyp): first of all we have
dQ,

2t = (LW Lk + 8L + 2L, + 6> L)) + eC4, L)

and applying the same integration by parts trick we find

02(0) — 02(0) = [(Ly, LYo ~ & | (L, (Lk)) — 2((L )i, L)
0

— g (LY}, Loy + Lj) — C(g, L) . (78)

These two identities are the main ingredients needed for the proof of the main
theorem. The idea will be to measure the size of ¥ with @; + @, and apply the
Gronwall inequality to deduce boundedness. The estimates for Q,, O, come from

Lemma 5.2. For the local solutions whose existence is guaranteed by Theorem 5.1
the following inequalities are valid for the corresponding quantities Q1, Q,:

1/2 1/2

Q1(0) £ Q1) + ¢4l 14D @7 (k)22

+ e § e(ldl 1 1g® LW 1 W2z Wdola, 1o, m)
0

1/2 1/2

Q2(1) £ 02(0) + c({ql, I4)Y ()2, o LK (D) |2

+e [ c(1dh 1dh [P (W13, Wil as [Golas, 1o, lm) -
0
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In order to make use of this lemma we need to know that Q, + Q, is a good norm,
and that d, does not cause any trouble. The next two lemmas address these two
issues.

Lemma 5.3, Let q(t) be a differentiable funcion on some interval with § = O(g). Then
on this interval the quantity Q + Q, is (uniformly) equivalent to |Y(t,- )|y +
1, (t, *)|gr2«. The background connection a is a(x; q(t)).

Proof. To see this, first of all refer to (52), to see that
Wila,a £ c(ilrz + 1LYe122)
< e(lWulez + (L )2 + | Lo
c(I¥elez + Wiz + (L)l r2)
S (@i ¥) + QW ¥))

where we use the assumption on g to bound |L.y/|z2 < c|y|z2. The result now
follows from Corollary 3.5.

A

Lemma 5.4. For the local solutions in Theorem 5.1 the following bounds hold:

olms < c(1W a0 Wel2oa) [do,elms < (13,00 Wil2) -

Proof. The first one comes from a direct estimate of the equation for d, using the
observation in Lemma 9.1 in the appendix on local existence. For the second one
has to differentiate the equation for d, and substitute for ¢y, and then estimate for
small ¢ by taking all @, to the left-hand side. After substituting the equation for
¢.; of course contains second derivatives which is why the second estimate does not
have the gain of regularity of the first one.

Lemma 5.5. Consider (f, y,)e H>*® H**, and (8o, o) H> ® H®. Then the
error term j satisfies:

]le,a § c(h//|3,a5 ll//l|2,a7 |50|3’ |50‘3) .
Proof. See appendix.

Theorem 5.6 (A Priori Estimate). Consider a local solution as provided by Theorem
5.1. Then if we define

M) = max (|X($)] + [X6)] + Q1(s) + Q2(5)) ,

0ssst

1
then there exists a time T = O <—> such that for t < T,
&

M2y <c+ MY20) + ¢ j c(M(s))ds .

Proof. This basically follows from an obvious estimation of the expressions for
Q1. Q,, using the estimates in the first appendix for the error terms and Lemma 5.4.
The only terms this leaves unaccounted for are those involving ¢, § and ¢*®(¢). To
deal with these we notice from the expression in Eq. (74) and Eq. (75) that

14(6)], 14 < ¢ + ¢ [ c(M(s))ds .
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Differentiation of Eq. (79) for § then gives, for sufficiently small &
1@®®] < (M) -

. . d? . dk .
This last equation states that d_tg = 0(c?) and allows us to estimate @ We insert

these expressions into the Q; equations and then just estimate the integrals. This
gives

M) < M) + c(M(5)!? + M(0)}/2) + ¢ j c(M(s))ds ,
[¢]

from which the required estimate follows.

Proof of Main Theorem. We produce a solution for a short time from the local
existence theorem. This local solution will satisfy the inequalities needed to prove
the a priori estimate just obtained (see appendix). We then apply the Gronwall
inequality to the a priori estimate to deduce that for as long as the local solution
exists with M < M: )

M) < ce®locM)

1
From this it is clear that we can continue the local solution for times of O (—), by
repeatedly applying the local existence theorem. €

6. Phenomenological Implications and Open Questions

We see that we have reduced an infinite dimensional system to a finite dimensional
one — the Hamiltonian system corresponding to the Hamiltonian

1
H =§g(p, p)+ V),

where p is the momentum p, = ZK (n,, nc)de, g is the dual metric defined
by g(p, p) = ZM (., 1,)4,4,, and V' is a potential energy defined on the moduli
space by

V=g (=101 =1¥la),

1
@) = [ (=191

Thus to understand the attraction/repulsion problem for vortices we need to
understand how the potential energy V varies with the separation of the two
vortices. Notice that since 4 = 1 + 162 the force changes sign depending on whether
A is above or below the critical value, which fits in nicely with the notion that for
A > 1 the force should be repulsive and for 4 < 1 attractive. For reasons of
symmetry we know that } is only a function of the distance between the vortices

V(le Zz) = V(lzl - Zz|) .

Furthermore since we know from Lemma 3.4 that asymptotically the two vortex
solution looks like a superposition of single vortices, it follows that ¥ will approach
its “two vortex” value asymptotically fast.
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Conjecture, The function V, is a monotonically decreasing function of |Z, — Z,|.

For numerical evidence in favor of this see [JR79].

If this conjecture is true we can deduce that for 4 > 1 the vortices repel by
looking at the conservation of energy. Consider the motion of two vortices initially
at rest equal distances from the origin on the real axis. By translation invariance the
centre of mass will remain at rest, so we can choose as co-ordinates

P(ty=Z,(1)+ Z,(1)=0,
Q@) = Z,(t)Z,(1) = — Z{ (1) .
We can then write the potential function in terms of |Q}:
v(10)) = W(Zy, - Z4),

and the results of Sect. 2 ensure that v is smooth. Also referring to that section we
can write the kinetic energy term as

9(d, ¢) =F(QNI0I*.

Thus for the present situation conservation of energy takes the form

1 5 .
EJ’(IQI)IQI2 + w(|Q]) = w(|2O)}) .

From this we can see that if: > 0, and if the conjecture is valid, then in the resulting
motion we can only have positive kinetic energy if |Q(z)| < |Q(0)]. Thus the vortices
will move away from one another in the 4 > 1 case. The same holds true, mutatis
mutandis, for attraction when 1 < 0. In fact we can be slighty more explicit — write
0 = g, + ig,, and introduce the conjugate momenta '

P1 =J7(11 D2 =f42-

Using these coordinates the Hamilton equations become

dp, ov q:
—— = == — 1=V ,
= s 0] (el
dp; ov 4
—= == — == .
= . 0] (eh

Initial data for the problem under consideration correspond to ¢(0) <0,
q,(0) = 0. We will clearly have a solution with g,(r) = 0 and g(7) either becoming
more or less negative according as : is positive or negative. This corresponds to
repulsion for 4 > 1 and attraction for 4 < 1. A more detailed understanding of this
should be possible with computer simulations.

Another interesting issue is the right angle scattering phenomenon discussed in
the introduction. This has been observed numerically to be robust under depar-
tures from the Bogomolny regime (see [SR88, KMR88]). We can now see why this
is so — it depends essentially on the fact that P, Q are the appropriate parameters to
give a description of the vortices when they are close. In fact using the co-ordinates
just introduced we can see this explicitly. If the vortices start close to one another
and are given an initial velocity toward one another, we will have initial conditions

41<0> q1=M>0, q2=0, q.2=0
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If M is large enough compared with the potential energy then there will be
solutions of the equations in which

42(1) =0, q:()=f(v),

where f is a function which changes sign from negative to positive. Changing
co-ordinates back to Z,, Z, we have

Zi(0)= —Z() =/ - f0O),

which corresponds to right angle scattering. The fact that Z,, Z, are infinite when
f(r) = Ois a manifestation of the fact that Z,, Z, are not a good co-ordinate system
at the point of coincidence (Z, = Z,). This is not a physical effect. Thus we see that
the right angle scattering phenomenon is robust to small changes in 4, in agreement
with the numerical experiments just mentioned. Perhaps the same is true of some of
the similar phenomena which occur in monopole scattering in the Bogomolny
situation ([AHS8]).

Finally we make some comments on the analytical issues raised by this work.
The two obvious extensions to make are

(i) To give a similar discussion of monopole scattering. It is possible to give
a similar asymptotic discussion of monopole dynamics using the same perturbation
techniques (see [Stu]). However the proof given here that those expansions are
valid does not immediately go over. The difficulty here lies in the fact that the
symmetry is only partially broken — this has the analytical consequence that the
Hessian does not contain mass terms at infinity for all the components of a, ¢ —
only those transverse to the Higgs field. Thus we can say the continuous spectrum
touches the origin and so the Hessian is not equivalent to the H' norm orthogonal
to the zero modes. Thus new ideas are required to ascertain whether or not the
approximation is valid in this case.?

(ii) To extend the understanding of vortex dynamics to infinite time intervals.
One would hope that as time becomes large the radiation decreases in magnitude
pointwise due to dispersive effects, and that the vortices dominate the asymptotic
behaviour. This requires a detailed understanding of the effects of dispersion in the
linearised problem, which is difficult because there are variable coefficients so the
generalised energy methods seem not to be applicable.

7. Appendix One: The Error Terms

In this appendix we give the error terms which were not explicitly given in Sect. 3:
jo=—e($,0,6) — 26*(p, §)dp — £*1$|* 0 ,
Ji=eid,d" ¢) + e(p, i) + (P, dib) + 6,0:d, ,

js = 5§ =218 — 92§) — i@l - $6?)

2 This has since been successfully carried out in [D.S]
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— At §P? — (@l o + ia,d” ¢ — i0:@:$))
04,

00 + 2ie28,0,¢ + ie> 0@ §)

4~2 7 .
— & a; + ie
X ot

vied D it + e G
We now assume that all functions are in the spaces used in the text:
yeH>* y.eH>" GoeH* &,,cH?,
then the functions are all in L® and we have the following estimates:
Lole £ (¥ lra> Welra» 1ol »
ile S el 1,0 + ‘go,t‘r+1) )

[jSIr,a é C(“l’lw 1,a> [l//t(r,aa (50(r+1> lgo,t[r)

valid for r = 2, where ¢(-,..., +) indicates an increasing positive function of
several arguments as in the text.

8. Appendix Two: The Index Calculation

In this appendix we give a mathematical version of the index calculation of
[Wei79]. We are interested in the operator £ defined in (30) which can be written
out more fully as

Jy 0y ¢z —¢:

T b
2 ¢2 1 01+ A; —0,+ A
—¢1 P2 O — Ay 0y + Az

g =

while its adjoint is given by
=0y 02 B —¢:
1{ =0, —0; ¢ (0B
2 03} ¢ —01+ Ay 02 + Ay
— ¢ ¢ —0,— A —01+A4;
We first of all prove that these are Fredholm:
Lemma 8.1. Consider the operators 9, Z* between the spaces
D, D*: (HY)* - (L*)*.
They are Fredholm.

Proof. We will use the fact that from [ Hor79, Tay71, BS78] that an operator of the
given form is Fredholm if the following two conditions are satisfied: (i) The
coefficients satisfy the property

|0%]a} < c|x] 1
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which is certainly true from (26). (i) In addition if we look at the asymptotic

behaviour in phase space then the symbols are non-singular on sufficiently large
spheres.

To see this write out the symbols:

T
olx f):i &1 [ o ¢
2 ¢ ¢y —E+ Ay —E+ A
— ¢4 ¢ & —Ar =6+ A4,
&+ P — o4
N ¢
o é)_z (o o —E+ A, +E -4

— 4 ¢, —&1tdy —E+ A
We wish to show these are non-singular on sufficiently large spheres
X2 + &2 = R? .

Thus either |x|2 or |£|? is bigger than £ R? — in the former case one can calculate
that the asymptotic determinant is (1 + [¢]%)?(1 + o(1)) so it is non-singular in this
case. In the case |£[? is large, the determinant is | £[*(1 4 o(1)), and so in both cases
it is non-singular. Thus by the criterion above we see that & is Fredholm, and so is
its adjoint.

Lemma 8.2. Ind 2 = 2N and Ker @* = ().

Proof. We would like to apply the formula of Fedosov ([ Fed74, BS78]) to calcu-
late this index directly. Fedosov’s formula says the index is given by

i1 ~1,4.43
Ind@-—<ﬂ> ﬁsjsTrC(a do)® .

This is not yet in a form convenient for calculation — we shall take the limit
|x| = co, so that by (26):

¢1—cosNO + O(e =), ¢, —sinNO + O(e =),

1
AlaAZ = O<—') >
[x]

and consider the operator

01 0, sin N@ —cosN#B
2 1 —0, 04 cos NG sin NG
) sin N0 cos NO 01 —0,

—cosNf sin N6 1723 01



Dynamics of Abelian Higgs Vortices in Near Bogomolny Regime 87

with corresponding symbol

&2 —¢;  sinNf —cosNO

1 & &, cosNO sin NO
9wl &) ) sin N8 cosNO  —&, —&
—cos N8 sin NGO &y —~&,

We will use the following result
Lemma 8.3. The operator 9, is Fredholm and
Ind2, =IndZ .

Proof. We use the result in Theorem 5.26 of chapter four of [ Kat66] which states
_that a relatively compact perturbation of a Fredholm operator is also Fredholm
with the same index. To see that 9, is a relatively compact perturbation of & we

1
notice that the matrix B = 2 — 9, has entries which are O <|x—|> for large x. Now

consider a sequence ¥’ bounded in H! — we have to find a strongly L? convergent
subsequence to By’ (see p. 194 of the same reference). We have a weak limit
yi— e H! by Banach-Aloagau, so we must show that | By’ — )|z — 0. To see
that this is so we split up the integral using the characteristic function y of a ball of
radius r:

IBW' — y)lee =By’ — ¥z + B — )’ — ¥)le2 .

By choosing r large we can make the second term less than ¢/2, and then make i so
that the first term is also <¢/2 by Rellich. This completes the proof.
Thus we now need to calculate

2n

The integrand can be evaluated directly using a symbolic manipulator, and
one finds

. 2 1
Ind 2, = — (L) — | Treloytdo ) .
3

12Ns
Tre(o doo)? = mdﬁ dé, do ,
where |£|2 = 52, so that the integral becomes
2z 2n R
Ind @ = (4n)" 2[ jj (3 dsdod

_1 R
:ZN[a—rsf)l:”

Next we prove the second result i.e. Ker @* = . To see this we assume that (B, )
is a square integrable element of the kernel of 2* - it will then automatically be
smooth, and will satisfy the equations

—0B + iy =0,
—61//+imp—£d)ﬁ=0.



88 D. Stuart

Operate @ on the first equation, and substitute for & from the second equation,
then with use of the Bogomolny equation d¢ + ing = 0 we find

— 03B + |$1*/4p =0

from which we deduce f = 0 and hence from the first equation ¥ = 0 as required.
This completes the proof of the whole lemma.

9. Appendix Three: The Local Existence Theorem

In this appendix we prove the local existence Theorem 5.1 by an iteration proced-
ure. We will often suppress the index g as it is not important, and we will write ¢(I")
for a variable constant depending on I'. The first step is to rewrite the equations in
a way suitable for this — we have to

(i) First of all solve the modulation equation for §,, which is possible for
sufficiently small ¢ on account of the uniform invertibility of the metric discussed in
Sect. 2.2. This leads to an equation of the form

q"u =f2(¢, lpta q; qs» 509 50,!) . (79)

(ii) Take the formula for § from (i) and substitute this into the equation for
¥ leading to an equation of the form:

oy 5 = :
F + LO!/I :fl(llla l//ta Ao, Ag,15 4, CI) ’

where L is the operator defined in Eq. (48). We will now produce iterates accord-
ing to the scheme:

O(i)géi+1) =f0(!//(i)9 l//l‘(i)5 4q, q) = - 2(l$a d)t) - S(i(g(i)a at(gﬁ)) s
+ Lo‘ﬁ(iﬂ) ’:fl (lp(i)a l//t(i)> 5(()i+1)> 5(()i,:-1)> q(i)a q(i)) s

gV =hHUO0, 4% 40,877,857,
where the operator O® is defined by
0Dy = — Au+10D2u + 262(¢®, ¢D)u + e*1dD|2u
with ¢® = ¢(x; g¥(t)). We will take as initial data for ¢ the g(0), §(0). For ¥ we

shall take initial data y @(0), ¥ ’(0) obtained by smoothing and introducing a cut-
off at spatial infinity in a fashion which disappears as i — co:

[ DO) = Y (0)3,000 = 0277

This is just a technical device to ensure that all formal manipulations are allowed in
the following calculations, since the iterates will be smooth and exponentially
decaying at spatial infinity (see also Corollary 9.2 below). It also allows one to
prove that the local solution satisfies the identities for Q,, Q, in Sect. 5 by taking
the limit of the corresponding identities for the iterates. The smoothed initial values
can be used as the first iterates. We will use the norms:

(‘)zl//(Hl)
ot?

ldo @)l = I{(l)aéi(ldolm + 1d0,4l0)
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and
Iy = r[f(l)ag( (W 3,000 + Wil2,a0)) »

where the a(0) refers to the background connection as in Sect. 3. We will assume
that the initial data satisfy

@l 1991 = I/2
and aim to produce iterates within the space
Ol 1g®1 =T . (80)
Lemma 9.1. Let | V|| < T, then there exists go(I") such that for & < &,(I") we have
() Hulgr < (, 09u) < (I ulw .

Proof. This is certainly true for the quadratic form defined by —4 + |¢®|2, and so
subject to the restriction in the theorem:

(, 0Du) < (u, — Au + {0 V(% u) + &% c(I")|uL>
which gives the result immediately.
Corollary 9.2. Each iterate 3 is exponentially decaying in space.
Proof. See ¢.g. [JT82, Sect. 3.7]

We now see that the iterates are all well defined and using the error bounds in
the appendix satisfy the basic estimates. For ¢ < &,(I"):

Hi+1
15"Vl < e(D)] folar »

T

. i1 )

{g*;’i(ll//(lﬂ)lrﬂ,aw) + 1y )’r,a(O) SO v 1,00 + 1O a0y + f [filde,
, 0

T
max [¢¢" V] < 1¢(O0)] + [ | f2]dr .
[0, 7] 0
We are going to obtain a sequence convergent with respect to the norm

”'//(jloc)” + H gO(ﬂoc)” + ma (ll//ttll,a(O) + z lqu|> .
05t= T .

Applying Eq. (80), we see that for & < ¢,(I") small we have the following estimates
for some numbers A(I"), B(I'):

18" VIl £ A + eeT)We a0 »
O <2+ Ec(r)(l + e &5Vt
Wi Pliao) £ B+ elldg ")
14¢ 012 + Ec(rm +efdg " V)de .

The difficult term 1, appears because we have to estimate || 4, ,{|. We now see that
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Claim. There exist &,(I"), T, (I') such that for ¢ < ¢,,t < T} the iterates are uni-
formly bounded in the space:

X(Ty) = {(50, V. @: [¥(Ty) max (gl < T | do(Ty)ll <24(T),

max [Yyl1,a0) < 2B(F)} .
[0,T]

Having done this we use the following difference estimates to get a contraction in
the norm mentioned above, using a two step induction. First of all we see that

J D — O <6271+ (D) (IO =y + 13 = Gl
This is then used in the corresponding d, equation to give:
1dg " =@ L) fUIYO =y V) + a0 — &) de
+ oD — i 1,
Wit ™7 — ¥ a0 S @)UY — YO + Y@ -y
+ 149 = 49V + (D)0 - G
We now define
QO =1y Y — g + &0 - &)
+ maxT (”‘//(lﬂ) ‘ﬂnl)lx a(0) +Z|q(’+” (l)l)

= “Lloc

Claim. Given r < 1 there exists g3, T, such that for ¢ < ¢35, t < T, we have
QI r(QUTY + QU 4+ 527,
From this it follows that

e o]
Y Q<
ji=1

for sufficiently small r, which shows that we have a convergent sequence in X (7o)
for small enough 7T,.. The convergence being uniform we get the continuity
properties of the map states in the theorem. To see the differentiability properties
we use the fact that uniform bounds on |y}, imply from the equation uniform
bounds on ||l and so map t—(y,y,)e H' @ L? is strongly differentiable.
Notice also that dy’, are uniformly bounded 1n H?3, and hence t—»aoeH 3 is
continuous, while the uniform boundedness of a ao . in H? ensures that t —» dye H?
is differentiable.
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