
© 2009 The Psychonomic Society, Inc. 1026

In typical speech contexts, listeners must correctly iden-
tify and interpret from 100 to 150 words per minute.1 This 
is done seemingly without effort, despite the noise and am-
biguity inherent in the speech signal and the complexity of 
the semantic knowledge that must be accessed. Because 
the process is so fast and the semantic structure is so com-
plex, the dynamics of spoken word recognition are chal-
lenging to study. The many different theories regarding the 
structure of semantic knowledge can be grouped accord-
ing to a few critical distinguishing properties. One distinc-
tion is the granularity of representations, with approaches 
varying from those in which concept is the lowest level of 
analysis or representation to those in which subconceptual 
elements or features are the lowest level. In network mod-
els of knowledge, this is a distinction between localist and 
distributed representations. Under the localist view, each 
concept is a unique node in a network (e.g., Collins & Lof-
tus, 1975; Steyvers & Tenenbaum, 2005) and the connec-
tions among the nodes in the network explicitly determine 
their effects on one another. Under the distributed view, 
concepts are represented by patterns of activation over the 
same set of units (e.g., Landauer & Dumais, 1997; Lund & 
Burgess, 1996; McRae, Cree, Seidenberg, & McNorgan, 
2005; Vigliocco, Vinson, Lewis, & Garrett, 2004) and ef-
fects of concepts on one another are an emergent property 
of processing dynamics and the patterns of overlap.

A second critical distinguishing property is the proposed 
structure of semantic relations. Conceptual relatedness has 

been hypothesized to depend on membership in the same 
category (e.g., Chiarello, Burgess, Richards, & Pollock, 
1990; Hines, Czerwinski, Sawyer, & Dwyer, 1986), as-
sociation by co-occurrence in text or speech (e.g., Nelson, 
McEvoy, & Schreiber, 2004), or shared perceptual, action, 
or other features (e.g., Barsalou, 1999; McRae et al., 2005; 
Vigliocco et al., 2004). Of particular interest are cases in 
which these approaches make different behavioral predic-
tions. There is general agreement that, as a word is pro-
cessed, words with related meanings are partially activated, 
but the different approaches make different claims about 
which meanings are related. Specifically, under a strict 
category hierarchy view, only category coordinates should 
be activated; under an association- based view, only associ-
ates should be activated; and under a feature-based view, 
co-activation is determined by feature overlap (although 
activation can also result from semantic association).

This issue has been addressed in a number of studies 
using semantic priming, but with mixed results. Shelton 
and Martin (1992) found priming for associated word 
pairs but not for semantically related word pairs that were 
not associated, suggesting that associations—not feature-
based semantic relatedness—form the basis of semantic 
structure. McRae and Boisvert (1998) showed priming for 
high semantic similarity pairs that were not associated and 
argued that Shelton and Martin failed to find priming be-
cause of the low semantic similarity between primes and 
targets in their study. Similarly, Cree, McRae, and McNor-
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and later than for beetle. In other words, participants’ eye 
movements were precisely time-locked to the phonological 
similarity between a presented target word and objects in 
the display (note that this paradigm is also sensitive to com-
petitors that are not in the display; e.g., Magnuson, Dixon, 
Tanenhaus, & Aslin, 2007). Related studies have examined 
in detail the VWP’s ability to detect fine-grained effects of 
phonological similarity. The VWP has been used to track 
such subtleties as minute differences in coarticulatory cues 
(Dahan, Magnuson, Tanenhaus, & Hogan, 2001), early and 
gradual effects of word frequency (Dahan, Magnuson, & 
Tanenhaus, 2001), and approximately 20-msec differences 
in vowel duration as a cue to word length (Salverda, Dahan, 
& McQueen, 2003). Although one must be cautious in 
avoiding effects of visual similarity (Dahan & Tanenhaus, 
2005) and consider carefully how to link the forced-choice 
nature of the task to theories or models (Tanenhaus, Mag-
nuson, Dahan, & Chambers, 2000), the VWP provides a 
very sensitive, temporally precise measure of competition 
during spoken word processing.

If failure to find semantic priming for prime–target pairs 
with distant or weak semantic relations (Cree et al., 1999; 
McRae & Boisvert, 1998; Shelton & Martin, 1992) is analo-
gous to failures to find phonological priming for words with 
matching offsets (Marslen-Wilson & Zwitserlood, 1989), the 
VWP may provide a more sensitive test that can detect these 
small effects. Indeed, recently the VWP has been extended to 
study semantic similarity. Listeners fixate images of seman-
tically (functionally or categorically) related objects more 
than they do unrelated images (Huettig & Altmann, 2005; 
Huettig & McQueen, 2007; Huettig, Quinlan, McDonald, 
& Altmann, 2006; Yee & Sedivy, 2006). So far, these results 
have been analogous to semantic priming results, although 
the effects of distantly related items predicted by the Cree 
et al. attractor network have not been investigated with this 
paradigm. Thus, applying the VWP to this specific issue has 
the potential to reveal whether failures to detect priming 
among distantly related items (Cree et al., 1999; McRae & 
Boisvert, 1998; Shelton & Martin, 1992) indicate that those 
attractor model predictions are incorrect, or, instead, that 
detecting them requires a measure with greater sensitivity. 
Note that VWP studies of semantic competition go beyond 
simple analogy to priming, in that these studies can provide 
new details about the time course of semantic activation and 
competition. Thus, one might expect that, in the same way 
that the VWP revealed critical aspects of the time course of 
phonological competition (Allopenna et al., 1998), it may 
reveal critical aspects of the time course of semantic com-
petition. In order to generate concrete predictions about the 
time course of semantic activation and competition, we first 
conducted simulations with a computational model using 
distributed feature-based semantic representations.

ATTRACTOR MODEL SIMULATION

Model Architecture and Simulation Design
We used the model developed by Cree and colleagues 

(Cree et al., 1999; see also O’Connor, Cree, & McRae, 
2009), and we would expect similar behavior from other 
attractor dynamical models of semantic processing (e.g., 

gan (1999) found that priming was determined by feature-
based semantic similarity rather than by shared category 
membership. The results of these last two studies suggest 
that semantic features form the basis of semantic structure. 
However, although attractor network simulations by Cree 
et al. predicted that low levels of feature overlap should still 
produce priming effects (albeit very small ones), all three 
failed to find semantic priming for distantly related con-
cepts. What could cause this consistent null result? Is the 
attractor network sensitive to behaviorally inconsequential 
degrees of overlap? Or, might the priming paradigm be 
insufficiently sensitive to detect such differences?

For over 30 years, semantic priming has served as the pri-
mary method for studying the time course of word compre-
hension, and results from priming studies have been central 
to theoretical development in the field. However, the para-
digm has two weaknesses. First, the priming paradigm re-
quires participants to make metalinguistic judgments (such 
as lexical decision or semantic categorization), which may 
promote use of strategies that obscure the underlying word-
processing dynamics. Second, the time course of word pro-
cessing must be inferred from experimenter- determined 
prime durations and from delays between prime and target 
presentation, which may give an incomplete picture of the 
time course of word recognition.

The domain of phonological processing has provided a 
concrete example in which experiments using the priming 
paradigm have failed to detect small similarity effects. Spo-
ken word recognition studies consistently detect phonologi-
cal priming for words that share onsets (e.g., beaker–beetle), 
but not for words that share offsets (e.g., beaker–speaker; 
Marslen-Wilson & Zwitserlood, 1989). This pattern is con-
sistent with the hypothesis that only words that match at 
onset are activated during spoken word recognition, which 
was taken as support for one class of model of spoken word 
recognition (e.g., the cohort model; Marslen-Wilson, 1987) 
and as a challenge to other models (e.g., the TRACE model 
of speech perception, McClelland & Elman, 1986, and 
the neighborhood activation model, P. A. Luce & Pisoni, 
1998). The empirical picture of competition during spoken 
word recognition changed when the visual world eyetrack-
ing paradigm (VWP; Cooper, 1974; Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995) was applied to the 
issue (Allopenna, Magnuson, & Tanenhaus, 1998).

In the VWP, several objects are shown in a display, and 
participants are typically instructed to point to or click 
on one of the objects. As participants listen to the spoken 
phrase that specifies the target object, their eye movements 
are recorded. The distribution of fixation proportions over 
time reveals temporally precise patterns of competition. 
Specifically, Allopenna et al. (1998) found strong early 
competition for words sharing onsets (that is, fixations to a 
beetle when the target was beaker) and weaker, later com-
petition for words sharing offsets (with fixation proportion 
changes lagging about 200 msec behind relevant phonetic 
information; given the time required to plan and execute an 
eye movement, this is close to the limit of how short the lag 
could be). That is, when the target was beaker, there was 
more fixation for speaker than for a phonologically unre-
lated competitor such as carriage, but the effect was smaller 
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and experiment in Cree et al. (1999), which used a target, 
highly similar prime (near semantic neighbor), less similar 
prime (distant semantic neighbor), and unrelated concept. 
Semantic relatedness was based on cosine similarity be-
tween feature vectors. Near neighbors had cosine similar-
ity to target greater than .4 and less than 1.0, distant neigh-
bors had cosine similarity to target greater than .1 and less 
than .4, and nonneighbors had 0 cosine similarity to target 
(i.e., no common semantic features). These thresholds are 
comparable to those used in a previous study of near and 
distant semantic neighbor effects (Mirman & Magnuson, 
2008) and were chosen so that distant neighbor similarity 
would be in the same range as studies that had failed to de-
tect priming effects for distant neighbors and so that there 
would be enough near neighbors to choose test materials 
that were matched on other variables.

In anticipation of behavioral experiments, the competi-
tors (near neighbor, distant neighbor, nonneighbor) were 
matched on familiarity (included in the feature norm cor-
pus; McRae et al., 2005), word frequency (log frequency 
from the HAL corpus; Lund & Burgess, 1996), and length 
in phonemes and syllables (the full stimulus list is provided 
in Appendix A). The top part of Table 1 shows the critical 
competitor condition means for lexical and semantic vari-
ables. To facilitate comparisons with priming studies that 
failed to find semantic priming for low semantic similar-
ity pairs, we computed cosine similarity for items used in 
those studies (Cree et al., 1999; McRae & Boisvert, 1998; 
Shelton & Martin, 1992). Those values are shown in the 
bottom part of Table 1 and are in the same range as our 
distant neighbor cosine similarity values.

Results and Discussion
The proximity of the network’s semantic state at each 

processing cycle to the target and competitor concept pat-
terns was evaluated by computing cross-entropy error 
(CEE) relative to the representation of each concept.2 
Lower CEE indicates greater proximity in semantic space 
and, hence, greater activation. CEE at each cycle relative 
to target, near neighbor, distant neighbor, and nonneigh-
bor concepts is plotted in Figure 2 (note that the y-axis 
has been reversed so that reductions in CEE, which corre-
spond to increases in activation, are higher in the figure). 
The model exhibited a graded pattern of semantic simi-
larity: CEE was lower to near neighbors than to distant 
neighbors and was lower to distant neighbors than to non-
neighbors. Thus, the model predicts strong activation of 
near semantic neighbors and weaker activation of distant 
semantic neighbors.

In addition, there was an interesting difference in the dy-
namics of activation of near semantic neighbors relative to 
distant neighbors and nonneighbors. Activation of (prox-
imity to) near neighbors initially gradually increased, peak-
ing at approximately the 11th time cycle (M  10.8, SD  
5.2), then decreased. In contrast, activation of (proximity 
to) distant neighbors and nonneighbors showed a nearly 
monotonic decrease that was slower for distant neighbors 
than for nonneighbors (the very small, very early peak is 
due to the model turning off units that were active as part 
of the randomly set initialization state).

Plaut & Booth, 2000; Rogers & McClelland, 2004). The 
model architecture is shown in Figure 1. The “word form” 
input patterns (analogous to spoken or written word pat-
terns) were created by pseudorandomly selecting 4 out 
of 40 units to be activated so that no two concepts would 
have the same input pattern. Target semantic patterns were 
created by activating the units corresponding to semantic 
features for each concept from a large corpus of feature 
norms (McRae et al., 2005). The semantic feature norm 
corpus contains the responses of 30 participants asked to 
list up to 10 features for each of 541 concepts. The seman-
tic layer consisted of 2,526 units, each one corresponding 
to a unique semantic feature in the human subject feature 
norms. For each concept, units corresponding to features 
that were produced for that concept by at least 5 partici-
pants were activated in the target pattern.

The network was trained to settle to the empirically de-
termined semantic feature pattern for each concept over 
the course of 20 processing cycles. Following O’Connor 
et al. (2009), we set learning rate to 0.01 and added mo-
mentum (0.9) after the first 10 training epochs. The model 
was trained using continuous recurrent backpropagation 
through time (Pearlmutter, 1995) until it correctly activated 
over 95% of the appropriate semantic feature units (i.e., the 
model activated over 95% of features that were produced by 
participants in the feature norming study; by this point, the 
model also correctly deactivated over 99% of nonproduced 
features), which was approximately 40 training epochs. 
Simulations were carried out using MikeNet version 8.02 
(www.cnbc.cmu.edu/~mharm/research/tools/mikenet/).

At the end of training, the model was tested on 36 sets of 
four critical concepts. Each set contained a target concept 
(the input presented to the model), a near semantic neigh-
bor, a distant semantic neighbor, and an unrelated concept. 
This design mirrored the design of the priming simulation 

Semantics

…

…

Input

Figure 1. Architecture of the nonlinear attractor dynamical 
model. The word form input layer had 40 units; the semantic fea-
ture layer had 2,526 units, corresponding to the 2,526 semantic 
features in the corpus. Not all connections are shown; where they 
are, full connectivity was used. Connection weights are estab-
lished through training.
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sensitivity of the priming paradigm (as in the phonological 
case; Allopenna et al., 1998). The second prediction is that 
near neighbors should show a transient peak in activation 
that is not exhibited by distant neighbors or nonneighbors. 
We are not aware of any data that speak to this prediction, 
and testing this prediction requires a behavioral method 
that provides a temporally precise measure of activation. In 
the following experiment, we tested these two predictions 
by examining semantic competition in the VWP.

EXPERIMENT

Method
Participants. Participants were 38 students at the University 

of Connecticut who reported English as their native language and 
normal hearing and normal vision (due to technical limitations of 
the eyetracking equipment, participants wearing glasses or contact 
lenses were excluded). Participants received course credit.

Materials. Critical stimuli were the same 36 sets of four words 
used in the simulations; these words differed in concept similarity but 
were equated on nonsemantic variables (see Table 1). Pairwise t tests 
showed that none of the control variables differed reliably between 
conditions, although the nonneighbors had marginally higher word fre-
quency [relative to near neighbors, t(35)  2.02, p  .051; relative to 
distant neighbors, t(35)  1.96, p  .058; all other ts  1.0, ps  .1]. If 
this marginal frequency difference had any effect on the fixation data, it 
would increase fixation of the higher frequency nonneighbors (Dahan, 
Magnuson, & Tanenhaus, 2001; Magnuson et al., 2007), thus reducing 
hypothesized semantic similarity effects. All stimuli were produced 
by a female native speaker of American English in a sound-attenuated 
room and digitized at 44 kHz. The individual words were edited to 
eliminate silence at the beginning and end of each sound file.

Procedure. Gaze position and duration were recorded using an 
ASL 6000 remote eyetracker. Stimulus presentation and response 
recording were conducted by E-Prime software (Psychological 
Software Tools, Pittsburgh, PA). Participants were seated with their 
eyes approximately 27 in. from a 17-in. screen with resolution set to 
1,024  768 pixels. To ensure that each trial would begin with the 
participant fixating the neutral central location, participants clicked 
on a central fixation cross to begin each trial. On each trial, partici-
pants saw four images; each image was presented near one of the 
screen corners, 154 pixels away from the side edges and 115 pixels 
away from the top and bottom edges (15% of the screen size from the 
corners). Images had a maximum size of 200  200 pixels and were 
scaled such that at least one dimension was 200 pixels. After a 750-
msec preview (to allow for initial fixations that are driven by random 
factors or visual salience rather than word processing), participants 

These simulations make two behavioral predictions: The 
first is that distant semantic neighbors should be more ac-
tive than nonneighbors (cf. Cree et al., 1999) but not as 
active as near neighbors. This prediction is not consistent 
with previous failures to show priming for distantly seman-
tically related concepts, but that could be due to insufficient 

Table 1 
Values for Each Competitor Condition 

Near  
Neighbors

Distant 
Neighbors

 
Nonneighbors

  M  SD  M  SD  M  SD

Present Experiment
 Cosine similarity .495 .0915 .218 .0821 .0  .0
 Familiarity 4.55 2.08 4.60 2.06 4.56 2.07
 Frequency 7.41 1.52 7.48 1.26 8.01 1.55
 Number of phonemes 4.58 1.78 4.50 1.38 4.75 1.81
 Number of syllables 1.67 0.76 1.67 0.76 1.67 0.76

Previous Priming Studies: Cosine Similarity
 Shelton & Martin (1992) (14 of 36) .220 .123
 McRae & Boisvert (1998) (27 of 27) .481 .148 .142 .0601 .0 .0
 Cree, McRae, & McNorgan (1999) (11 of 18) .534 .132 .345 .0529

Note—Cosine similarity for previous priming studies that failed to find priming for distant neighbors. Values 
in parentheses indicate how many prime–target pairs were in the feature norm corpus used to compute cosine 
similarity.
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Figure 2. Attractor-based model simulation results. Cross-
 entropy error at each processing cycle relative to target, near 
neighbor, distant neighbor, and nonneighbor concepts. Error 
bars indicate 1 SE. Lower error indicates greater proximity in 
semantic space, and thus, greater activation. Note that the  y-axis 
has been reversed so that lower error (greater activation) is higher, 
to facilitate comparison with the behavioral data.
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and fall of fixation probabilities over the course of a trial. 
Orthogonal polynomials are transformations of natural 
polynomials that make the individual time terms indepen-
dent (i.e., remove the correlation between, for example, 
linear and quadratic time), thus allowing a more precise 
evaluation of differences in dynamics of processing. Spe-
cifically, the intercept term reflects average overall fixa-
tion proportion (note that on this approach, the intercept 
term does not stand for the y-intercept, but rather is the 
average y-value of the modeled curve), the linear term re-
flects a monotonic change in fixation proportion (similar 
to a linear regression of fixation proportion as a function 
of time), and the quadratic term reflects an increase fol-
lowed by a decrease. The cubic and quartic terms tend to 
capture minor details in the asymptotic tails of the fixation 
proportion curves and do not have cognitively meaningful 
interpretations in this context (see Mirman et al., 2008, for 
details on interpretation of effects on different polynomial 
terms). Note that effects on the intercept term are equiva-
lent to the standard VWP comparisons of overall fixation 
proportion; thus, GCA contains both the standard analy-
sis and more sophisticated time course comparisons. The 
growth curves are shown superimposed on the observed 
competitor fixation proportions in the right panel of Fig-
ure 3, and the full statistical results are in Table 2.

Fixation curves for distant neighbors were different 
from the nonneighbor fixation curves only in terms of the 
intercept, reflecting a relatively constant difference across 
the time course. For near neighbors there were also ef-
fects on the linear term (reflecting an overall increase in 
fixation proportion relative to nonneighbors over the time 
course) and the quadratic term (reflecting a rise in fixation 
proportion followed by a decrease in fixation proportion). 

heard the target word through headphones and then had to click on 
the image that corresponded to the target word.

On a critical trial, the target appeared with one of the competitors 
and two unrelated distractors. There were three counterbalanced lists 
such that each target occurred once for each participant and in each 
condition across participants. As a result, each participant had 12 
trials in each condition. In addition to the 36 critical trials, there were 
48 filler trials on which a target was presented with no related dis-
tractors, and the experiment began with 11 practice trials on which 
feedback was provided.

Results
The left panel of Figure 3 shows average fixation pro-

portions to targets, near neighbors, distant neighbors, and 
nonneighbors. There was a graded semantic competition 
effect reflecting the semantic similarity difference between 
near neighbors, distant neighbors, and nonneighbors. This 
result converges with previous findings of graded priming 
effects as a function of degree of featural overlap (Cree 
et al., 1999) and extends those findings by showing an 
effect for distant semantic neighbors. The graded pattern 
of competition demonstrates that the VWP is a sensitive 
measure of graded semantic similarity effects (see also 
Huettig & Altmann, 2005; Huettig et al., 2006).

Growth curve analysis (GCA) with orthogonal polyno-
mials was used to quantify differences in the fixation time 
course for near and distant neighbors relative to nonneigh-
bors (Mirman, Dixon, & Magnuson, 2008). Under the 
GCA approach to analyzing visual world eyetracking data, 
there are two (or more) hierarchically related submodels 
to capture the data pattern. The first submodel, usually 
called Level 1, captures the effect of time on fixation pro-
portions using fourth-order orthogonal polynomials. A 
fourth-order polynomial is necessary to capture the rise 
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angles), and unrelated items ( s). (B) Observed and growth curve analysis (GCA) model fits for competitor fixations. Error bars 
indicate 1 SE.
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due to task demands or to purely visual similarity rather 
than conceptual similarity. A number of previous VWP 
studies have shown that similarity in shape and other vi-
sual features can cause competition (Dahan & Tanenhaus, 
2005; Huettig & Altmann, 2007; Huettig et al., 2006); 
thus, it is critical to evaluate to what extent our results are 
due to visual versus general semantic similarity between 
targets and competitors.

Task Demands
One possible concern is that the nature of the VWP task 

might force the final fixation to be on the target object, 
thereby restricting the competitor peak to be before the 
target peak. That is, participants may look around until 
they find the target and then stay fixated on the target until 
they click on it. Such a task constraint would predict that 
at the time of a correct response, the fixation should be on 
the target 100% of the time (or very nearly so, making al-
lowance for measurement error), which would entail that 
nontarget fixations peak prior to the target peak (since the 
target would peak at 100% once the participant settled on 
the target). This was not the pattern in our data: The target 
object was fixated at the time of the response on 87.6% 
(SE  1.3%) of the trials, a value substantially lower than 
100%. Further, if this were simply due to measurement 
error or other factors unrelated to semantic processing, 
there would be no reason to expect the final fixations to 
exhibit an effect of semantic relatedness. But there was 
such an effect: Final fixations were significantly [t(37)  
2.73, p  .01] more likely to be on a semantically related 
competitor (M  6.35%, SE  0.87%) than on an unre-
lated competitor (M  2.66%, SE  0.98%; the remain-
der of fixations were to the central fixation cross or other 
nonobject areas of the display). Recall that these results 
are only for correct trials, so even when participants click 
on the correct target, they are not always fixating it at the 
time of their response, and eye behavior even at the time 
of the mouse-click decision continues to be influenced by 
semantic relatedness between the target and the competi-
tor. Thus, the VWP task does not force the final fixation 
to be on the target, and fixation behavior continues to be 
affected by semantic similarity all the way to the time of 
the response.

A weaker form of the task-demands hypothesis is that 
the nature of the VWP task skews competitor fixations 
to be early without strictly forcing the final fixation to 

Direct comparison of distant and near-neighbor condi-
tions showed significant effects on the intercept, linear, 
quadratic, and quartic terms, confirming differences in 
fixation time course for near and distant neighbors.

In addition to the overall differences in fixation propor-
tion, the time course revealed a transient peak in fixation 
of near neighbors relative to distant neighbors and non-
neighbors. This effect is captured by the significant effect 
of near neighbors on the quadratic term relative to distant 
neighbors and nonneighbors (see Table 2). That is, ac-
cording to the GCA, the fixation curves for distant neigh-
bors and nonneighbors were essentially parallel with the 
distant neighbor fixation curve higher (significant effect 
only on the intercept term). In contrast, the near-neighbor 
fixation curve also significantly differed in its curvature 
(significant effect on the quadratic term as well as the 
intercept term). The near-neighbor peak occurred rela-
tively early in the time course; namely, the near-neighbor 
fixation peak occurred before the peak in target fixation 
[peak timing relative to word onset: Mnear  694.7 msec, 
SEnear  47.8; Mtarget  871.1 msec, SEtarget  27.5; 
t(37)  3.32, p  .01].

Discussion
The experiment tested two predictions from simula-

tions of a nonlinear attractor dynamical model of semantic 
processing. The first prediction was that distantly related 
semantic neighbors should be partially activated dur-
ing word comprehension. Previous priming studies had 
failed to find such an effect (Cree et al., 1999; McRae & 
Boisvert, 1998; Shelton & Martin, 1992). In contrast, the 
VWP revealed greater fixations to distant semantic neigh-
bors than to unrelated objects. Consistent with the model 
prediction, fixation of distant neighbors was greater than 
unrelated concepts and less than near neighbors. This 
result is consistent with models that propose graded se-
mantic relations rather than categorical relations. In ad-
dition, this result shows that the VWP is more sensitive 
to semantic effects than semantic priming is, which is an 
important methodological advance for studying semantic 
processing.

The second prediction was that near neighbors should 
show an early, transient peak in fixations. This prediction 
was also borne out in the behavioral data. Before consid-
ering the computational implications of this finding it is 
important to test whether the behavioral results could be 

Table 2 
Results of Growth Curve Analysis (GCA) of Behavioral Data 

 
Near Neighbors

 
Distant Neighbors

Distant vs.  
Near Neighbors

Term  Estimate  t  p  Estimate  t  p  Estimate  t  p 

Intercept 0.070 6.9 .0001 0.360 3.6 .001 0.034 4.1 .001
Linear 0.124 3.7 .001 0.016 0.5 n.s. 0.108 3.8 .001
Quadratic 0.111 6.1 .0001 0.019 1.1 n.s. 0.131 7.1 .0001
Cubic 0.041 2.3 .05 0.029 1.6 n.s. 0.013 0.7 n.s.
Quartic 0.066 3.6 .001 0.016 0.9 n.s. 0.051 2.8 .01

Note—The left and middle sections show results of analyses for near and distant neighbors rela-
tive to nonneighbors. The right section shows results of GCA for distant neighbors relative to near 
neighbors.
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ors) and to visual behavior (e.g., that jeans fade) were ex-
cluded, because these would not be visible in individual 
pictures. Visual similarity was then computed as the num-
ber and proportion of shared visual features. Both of these 
measures were considered, because the concepts differed 
substantially in number of visual features: Proportion of 
shared visual features abstracted across these differences 
(e.g., sharing 10 of 20 visual features is equivalent to shar-
ing 5 of 10 visual features) and number of shared visual 
features captures the fact that some conceptual representa-
tions are more reliant on visual features (sharing 10 fea-
tures is more important than sharing 5 features). Because 
we did not have a theoretical commitment to one of these 
measures of visual similarity, we tested both.

In the main experiment, participants performed what is 
essentially a word–picture matching, so the visual similar-
ity norming study was designed to test the extent to which 
the specific images used in the experiment were visually 
similar to the concepts denoted by the target words. That 
is, for a target word such as tomato, we want to know how 
tomato-like the tomato image was and how tomato-like 
each competitor image was. This concept–picture visual 
similarity rating is more relevant in the context of our ex-
periment than is picture–picture similarity, because we 
need participants to rate the visual similarity of the criti-
cal pictures (e.g., tomato, strawberry, potato, magazine) 
to their mental image induced by the target word (e.g., 
“tomato”). Visual similarity ratings were collected by pre-
senting an individual image for 200 msec followed by a 
concept name and asking participants to rate the visual 
similarity between the image and the concept name on 
a 5-point scale. Each target concept name was presented 
with each of the four critical images (target, near neigh-
bor, distant neighbor, unrelated). This approach provides 
a measure of target-likeness for each critical image. That 
is, for the target, tomato, these ratings provide a measure 
of similarity to the target word for the critical target image 
(tomato), near-neighbor image (strawberry), distant neigh-
bor image (potato), and unrelated image (magazine).3 
Twenty-four University of Connecticut undergraduates 
completed the experiment for course credit. All partici-
pants were native English speakers and reported normal or 
corrected-to-normal vision. The average visual similarity 
rating for the target pictures was nearly at ceiling (4.6 out 
of 5; see Table 3), confirming that the target pictures were 
good representations of target objects.

The three measures of visual similarity (number of 
shared visual features, proportion of shared visual fea-
tures, and rated similarity) were very highly correlated 
(all rs  .5, all ps  .0001). Table 3 shows that, for the 

be on the target. For example, it may be that that once 
participants look at the target, they have no need to look 
at any other images. They may still do so on some small 
proportion of trials, but this soft constraint makes a later 
peak highly unlikely (if not strictly impossible). In other 
words, the decision process involved in driving fixations 
in the VWP may reduce the likelihood of late competitor 
fixations, thus creating an early peak in the near-neighbor 
fixation time course. Formally, this would mean a non-
linear relationship between activation and fixation prob-
ability such that, as the target becomes highly active, the 
likelihood of fixating increases much more rapidly than 
does the likelihood of fixating a less active competitor. 
The R. D. Luce (1959) choice rule is precisely this type 
of decision mechanism, and it has been used previously to 
model decisional aspects of fixation behavior in the VWP. 
We evaluate whether the Luce choice rule can be solely 
responsible for producing the early near-neighbor peak in 
simulations reported below in the Testing Computational 
Mechanisms section.

Controlling for Visual Similarity
There is no complete and independent way to assess 

visual similarity, because no established image processing 
or object recognition machine algorithms exist and human 
ratings are likely to be influenced by nonvisual semantic 
similarity (for example, similarity ratings are influenced 
by category membership; Goldstone, Lippa, & Shiffrin, 
2001). To address this issue, we used two complementary 
measures with different strengths and weaknesses. We 
based the first measure on the visual features listed in the 
McRae et al. (2005) feature norms. This measure allowed 
us to isolate specifically visual similarity from nonvisual 
semantic similarity, but it is incomplete and does not cap-
ture the details of the specific images used in the study. 
The second measure was based on visual concept–picture 
similarity ratings. These ratings were based on the specific 
target concepts and target and nontarget images used in 
the study, but since human raters are unlikely (or perhaps 
even unable) to completely ignore the similarity between 
concepts that is not visual (e.g., that tuba and trombone 
are both musical instruments), it is likely that these ratings 
were influenced by nonvisual semantic similarity.

Visual features were identified from among the 2,526 
semantic features in the norms on the basis of the brain 
region taxonomy provided in the norms (see also Cree 
& McRae, 2003). The color and form/surface categories 
were chosen because such features would be visible in 
static images. A small number of features relating to vi-
sual variability (e.g., that a balloon can be different col-

Table 3 
Visual Similarity Values

 
Target

Near 
Neighbor

Distant 
Neighbor

 
Unrelated

  M  SD  M  SD  M  SD  M  SD

Number of shared visual features 5.4 2.4 2.6 1.2 1.2 1.1 0.0 0.0
Proportion of shared visual features 1.0 – 0.50 0.26 0.21 0.22 0.0 0.0
Rated similarity (1–5)  4.6  0.36  2.3  0.89  1.2  0.19  1.1  0.08
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TESTING COMPUTATIONAL 
MECHANISMS

The behavioral data closely matched the predictions 
from the attractor dynamical model, suggesting that this 
model correctly captures important aspects of the compu-
tation of word meaning; however, it is not clear what de-
tails of the computational model give rise to the observed 
patterns. One way to pinpoint the critical computational 
aspect is to construct alternative models that also fit the 
behavioral data and examine their computational similari-
ties. To that end, we considered two alternative computa-
tional frameworks: a localist spreading activation model 
and a simple decision model.

Localist Spreading Activation Model
In spreading activation models, when a concept node 

becomes active, activation spreads to all of its related 
concepts (Collins & Loftus, 1975; McNamara, 1992). If 
the link strength is proportional to relatedness between 
the concepts, these models straightforwardly predict the 
graded semantic similarity effects found in the present 
eyetracking study and in priming studies.

In standard spreading activation models (Figure 4, left 
panel) external input gradually activates a target concept 
and this activation spreads to connected (related) con-
cepts. Unchecked, this would lead to full activation of all 
units in the network, so one more assumption is required: 
that unit activations decay when external input is removed. 
With decay included, the target concept node will become 
active, then the activation will decay, producing a tran-
sient peak. Because the target concept node drives the 
activation of related nodes, the near-neighbor activation 
profile will necessarily lag behind it: The neighbor’s acti-
vation peak will always occur after the target’s activation 
peak. The situation is analogous to a sequence of falling 
dominoes: The first domino (target) causes the second one 
(neighbor) to fall, but the first necessarily falls first and 
reaches its maximum velocity first, and so on. Simula-
tions of a simple spreading activation network consisting 
of a target unit (that received the external input excita-
tion) and a neighbor unit (that was activated by spreading 
activation from the target unit) confirmed that this pattern 
emerges independent of parameter settings (e.g., connec-
tion weights ranging from .05 to 1.0 were tested). Note that 
adding more concept units may change the magnitude of 
the activations, but not the temporal pattern of activations: 

competitors, the number and proportion of visual fea-
tures shared with the target and the rated visual similar-
ity to the target followed the overall semantic similarity 
pattern. This is not surprising; the critical question is 
whether this pattern can account for the semantic simi-
larity effect. To test that, we conducted a series of by-
items GCAs of the fixation proportion data (analogous 
to the by-subjects GCA reported above). In order to eval-
uate the significance of visual and semantic similarity, 
we examined the change in the deviance statistic 2LL 
(minus 2 times the log-likelihood). The change in devi-
ance, LL, is distributed as chi-square, with degrees of 
freedom equal to the number of parameters added to the 
model. The starting point was a base model that included 
just the time terms and the item effects on time terms; 
that is, the base model contained neither visual similar-
ity nor semantic similarity effects. When visual similar-
ity terms were added, they provided a significant im-
provement in model fit ( LL  140, p  .0001, for each 
measure of visual similarity). When semantic similarity 
condition terms were added to the model already con-
taining visual similarity terms, they provided significant 
additional improvement in model fit ( LL  200, p  
.0001, for each measure of visual similarity). That is, 
semantic similarity condition accounted for significant 
additional variance beyond the variance captured by vi-
sual similarity. In fact, when visual similarity terms were 
removed from this full model, the decrease in model fit 
was small and reliable only for the number of shared 
visual features measure ( LL  11.34, p  .05). The 
goodness of fit results, summarized in Table 4, indicate 
that, for competitor fixation time course in the present 
experiment, visual similarity to the target represented 
only a subset of semantic similarity. See Appendix B for 
detailed results of by-items growth curve analyses after 
visual similarity measures were included.

These analyses demonstrate that fixations to the se-
mantic competitors were driven primarily by semantic, 
not visual, similarity. The behavioral results were consis-
tent with both of the critical predictions of the nonlinear 
attractor dynamical model: a graded pattern of semantic 
competition based on semantic relatedness and an early, 
transient peak for the near semantic neighbor. In order to 
examine what these patterns indicate about the computa-
tional mechanisms of semantic processing, we explored 
what is required for different computational models to ac-
count for these results.

Table 4 
Effect of Adding Groups of Terms on Model Fit 

Semantic Similarity
Visual 

Similarity

  2LL  LL  p  2LL  LL  p  LL  p 

Base model 4,172 – – 4,553 381 .0001 – –
Number of shared visual features 4,344 172 .0001 4,565 221 .0001 11.34 .05
Proportion of shared visual features 4,319 147 .0001 4,560 241 .0001 6.13 n.s.
Visual similarity rating 4,353 181 .0001 4,562 209 .0001 8.44 n.s.

Note—The right section shows results for the base model and improvements in model fit when individual visual 
similarity terms are added. The middle section shows improvements in model fit when semantic similarity condi-
tion terms are added. The left section shows the effect of removing visual similarity terms.
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ciples are enough to formulate a simple decision model. 
First, the decision likelihood should be monotonically 
related to semantic activation such that images corre-
sponding to semantic representations that are more active 
should be more likely to be fixated. This principle reflects 
the excitatory aspect of decision processes: Increased acti-
vation increases fixation likelihood for the corresponding 
image. Second, when a single representation has reached 
a sufficiently high level of activation (i.e., the target has 
been recognized), fixations of competitor images should 
be very low. This second principle reflects the inhibitory 
aspect of decision processes: Greater activation of one 
representation decreases fixation likelihood for competi-
tor images. These basic principles are encapsulated by 
the R. D. Luce (1959) choice rule, which has been widely 
used to model decision-level aspects of spoken word pro-
cessing (e.g., McClelland & Elman, 1986), particularly 
for the VWP (e.g., Allopenna et al., 1998; Dahan, Magnu-
son, & Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus, 
& Hogan, 2001).

According to the R. D. Luce (1959) choice rule, the 
probability of response i from a set of alternatives indexed 
by j is 

 p i

ka

ka

j

i

j

( ) ,R e

e
 

where ai is the activation level of representation i, and k 
is a constant. Under the Luce rule, representations with 
higher activation are more likely to produce the response 
(i.e., to be fixated) and all response probabilities add to 
1.0 (i.e., the set of alternatives accounts for all fixations). 
The exponential factor in the Luce rule causes a nonlinear 
relationship between relative activation and relative like-
lihood of response (fixation); thus, when a single repre-
sentation is relatively highly active, other representations 
have a very low likelihood of being fixated.

The strongest test of whether this decision mechanism 
can produce an early neighbor fixation peak is for the 

Neighbor activations must lag behind target activations. 
Thus, standard spreading activation networks predict that 
neighbor activation will peak after target activation has 
peaked, a pattern that is not consistent with the results of 
our eyetracking experiment.

A spreading activation model can exhibit an early, 
transient neighbor activation peak if the standard archi-
tecture is extended to include inhibitory nodes that are 
activated by individual concept nodes and that inhibit 
all other concept nodes (Figure 4, right panel). Note that 
simply adding lateral inhibitory connections to a standard 
spreading activation network will merely decrease the net 
connection strength between units without changing the 
qualitative dynamics of the units. For the extended ver-
sion of the spreading activation model, external input will 
activate the target concept node, neighbor nodes will be 
initially activated by the excitatory connections from the 
target, but as the inhibitory unit becomes more active, 
this unit will inhibit the neighbors. When properly pa-
rameterized, these networks exhibit stable activation of 
the target concept and early activation peaks for neighbor 
nodes. This kind of separation of excitatory and inhibi-
tory pathways can be found in biological neural systems 
(e.g., inhibitory inter neurons; see Markram et al., 2004, 
for a review). These simulations suggest that a combi-
nation of excitatory and inhibitory interactions between 
units is necessary for this model to produce the early 
neighbor activation peak.

Decision Model
One advantage of the VWP is that it minimizes the kind 

of metalinguistic task demands that arise in lexical deci-
sion or semantic categorization tasks. Nonetheless, the 
behavioral data necessarily reflect some amount of deci-
sional processing, at the very least at the level of oculomo-
tor control. As discussed above, it is possible that decision 
processes produce the early near-neighbor fixation peak. 
Formulating a detailed decision model for this paradigm is 
outside the scope of this report; however, a few basic prin-

Target

Input

Target

Input

A B

Figure 4. Two types of spreading activation models. (A) Standard spreading activa-
tion model with localist representations and only excitatory connections. Connection 
strength is indicated by line thickness. The target receives external input and spreads 
activation to related (connected) nodes. (B) A localist spreading activation model with 
an inhibitory node that is activated by the target and inhibits the other nodes in the 
model (similar inhibitory nodes for each concept node in the model are not shown).
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persists throughout the time course due to low selectivity 
(low k). If the target and neighbor activation are allowed 
to continue to rise, the difference between them eventually 
becomes large enough that the target draws most of the 
responses, and the neighbor response probability begins to 
decrease, producing a transient peak. However, this peak 
falls outside the scope of the activation values tested.

2. An initial increase in response probability followed by 
a decrease—that is, a transient peak in response probability 
(Figure 5B, bottom left panel). This pattern emerges when 
the activation of the neighbor is moderately high relative to 
the target, so the probability of fixations initially increases, 
but as the target becomes more active, it draws an increas-
ingly higher proportion of fixations, and the fixations of 
the neighbor drop, producing the transient peak.

3. A gradual, monotonic decrease in response probabil-
ity (Figure 5B, bottom right panel). This pattern emerges 
when the activation of the neighbor is low relative to the 
activation of the target, so it does not exhibit the initial 
increase in fixation probability.

Figure 5A shows the parameter space with curves that 
represent the dividing lines between the patterns. When 
correctly parameterized, the R. D. Luce (1959) choice 
model predicts the observed transient peak in fixation 
likelihood for near neighbors.

Discussion
We examined three distinct computational frameworks 

to determine whether they predict an early, transient peak 

input to the decision mechanism not to have any activation 
peaks. This way, any peaks in the decision model’s output 
are necessarily due to the decision model. To that end, we 
examined a simple case in which activation for a target 
representation increases linearly, activation for a semantic 
neighbor increases at a fixed ratio of target activation, and 
activation of two unrelated competitors is fixed at a low, 
nonzero value (Figure 5B, top left panel). This formula-
tion captures the four-alternative forced choice aspect of 
the VWP (participants must fixate one of four objects in 
the display) and does not include an underlying activation 
peak for the neighbor; thus, a peak in response probabil-
ity would be due to the R. D. Luce (1959) choice model. 
Since the input target activation is increasing linearly, tar-
get fixation probability increases until it asymptotes at 1.0 
and the neighbor peak can only occur early with respect to 
a target peak. That is, for the decision model, the critical 
question is whether it produces a neighbor peak or not; the 
timing of the peak is constrained by the simplified input to 
the model. This formulation of the decision model has two 
free parameters: the target–neighbor activation ratio and 
the constant, k. A full exploration of this two- dimensional 
parameter space revealed that the Luce choice rule pro-
duces three distinct patterns of competitor response prob-
ability over time:

1. A gradual, monotonic increase in response probabil-
ity for both the target and the neighbor (Figure 5B, top 
right panel). This pattern reflects a case of high ambiguity 
(high activation of the neighbor relative to the target) that 
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Figure 5. (A) R. D. Luce (1959) choice model parameter space. The curves represent the dividing lines between the three observed 
patterns. (B) Top left panel: Example activation patterns that served as input to the decision model. Top right panel: Example point 
from the parameter space, demonstrating monotonic increase in neighbor response proportion (no peak). Bottom left panel: Example 
point from the parameter space, demonstrating early, transient peak in neighbor response proportion. Bottom right panel: Example 
point from the parameter space, demonstrating monotonic decrease in neighbor response proportion (no peak).
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predicted by degree of semantic similarity to the target 
concept. Post hoc analyses of recent studies that used the 
VWP to examine semantic similarity effects have sug-
gested the presence of such graded effects (e.g., Huettig 
& Altmann, 2005), but this is the first study in which 
multiple levels of semantic similarity were tested explic-
itly. Critically, distant semantic neighbors with similarity 
too low to produce semantic priming (based on previous 
studies of semantic priming under low similarity condi-
tions) elicited robust semantic competition, as revealed 
by the distribution of fixation proportions over time. 
That is, listeners were more likely to look at images of 
distant semantic neighbors than of unrelated concepts, 
consistent with the gradient semantic activation pre-
dicted by the attractor network as a function of similar-
ity distance. This finding shows that the VWP provides 
an important tool for investigating semantic structure, 
because it can reveal effects that may not be detected in 
priming experiments.

The time course revealed a novel behavioral finding: a 
relatively early peak in fixation of near semantic neigh-
bors that did not occur for distant neighbors or nonneigh-
bors. Simulations of an attractor dynamical model of word 
comprehension showed that this pattern is a natural conse-
quence of attractor dynamics. An early peak in neighbor 
activation can also emerge in a spreading activation model, 
if the standard architecture is extended to include both 
excitatory and inhibitory pathways, and in a properly pa-
rameterized decision model. The common computational 
aspect of all three models that produce the early peak is 
that they have a combination of excitatory and inhibitory 
processes. In the attractor dynamical model, excitation 
and inhibition are emergent properties of distributed se-
mantic representations, the spreading activation requires 
explicit excitatory and inhibitory pathways, and the deci-
sion model assumes excitatory dynamics at the input level 
and provides a postperceptual inhibitory mechanism that 
can produce the observed peak pattern.

In summary, our behavioral results supported predic-
tions of gradient semantic activation and competition 
down to even very low levels of featural overlap that pre-
viously had failed to result in detectable semantic priming. 
Methodologically, this result indicates that the VWP is a 
powerful tool that can detect semantic similarity effects 
that are too small to be detected with semantic priming, 
the technique that has dominated in this field of study 
for 30 years. For theories of semantic memory, this result 
indicates that the similarity between concepts is graded 
rather than categorical, which is consistent with distrib-
uted models of semantic cognition rather than with local-
ist models. In addition, our behavioral results introduced 
new constraints regarding the time course of activation of 
target concepts and of semantically related concepts. Our 
computational explorations showed that, although very 
different implementations are viable, a combination of 
excitatory and inhibitory dynamics is necessary to gener-
ate the appropriate time course. Thus, the combination of 
computational and behavioral investigations led to novel 

in near-neighbor fixation. A nonlinear attractor dynami-
cal model naturally produced such a peak. A localist 
spreading activation model produced such a peak when 
the model included separate excitatory and inhibitory 
pathways. A decision model also produced a peak, but 
in a restricted parameter regime. The common pattern 
across these three computational mechanisms is the com-
bination of excitatory and inhibitory mechanisms. This 
point is most clear when the spreading activation model is 
considered: With only excitatory connections, the model 
could not account for the early peak; but with the addi-
tion of inhibitory connections, the early peak emerged. 
In the case of the decision model, the excitatory aspect 
was built into the input (target and neighbor activation 
increased linearly) and the decision rule acted as an in-
hibitory mechanism.

In the case of the nonlinear attractor dynamical model, 
both the excitatory and inhibitory effects were emergent 
properties of partially overlapping distributed repre-
sentations. For example, in the framework of feature-
based semantic representations, lion and tiger concepts 
are similar because they share many features (e.g., is a 
predator, has teeth, lives in wilderness, is used in cir-
cuses) but not all features (e.g., a lion has a mane; a tiger 
has stripes). The shared features give rise to excitation: 
Activation of the semantic representation of lion par-
tially activates tiger, because some features of tiger (the 
ones it shares with lion) are activated. The features that 
are not shared give rise to inhibition: Activation of has 
mane is inconsistent with tiger, as is nonactivation of 
has stripes. In general, for attractor dynamical models of 
semantics, the appropriate patterns of excitatory and in-
hibitory connections emerge as a necessary consequence 
of the training regime (see Rogers & McClelland, 2004, 
particularly chap. 4, for discussion of development of 
concept attractors in such networks).

In sum, examination of three computational frame-
works showed that a combination of excitatory and inhibi-
tory mechanisms is necessary to produce the early peak in 
neighbor activation observed in the fixation time course 
data. This combination can be an emergent property (as 
in attractor dynamical models based on distributed repre-
sentations) or explicit (as in localist spreading activation 
models), or it can be due to competition in the decision 
mechanism or possibly to other mechanisms. Whatever 
general computational framework one chooses, the pres-
ent behavioral data impose the constraint that excitatory 
and inhibitory mechanisms must be present in the formu-
lation of any model.

CONCLUSIONS

Semantic similarity is a critical component of under-
standing the organization of semantic knowledge. The 
present experiment used the VWP to investigate the time 
course of semantic similarity effects as a step toward un-
covering the dynamics of semantic processing during 
spoken word recognition. The likelihood of fixation was 
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NOTES

1. In English, the average syllable duration is 200–250 msec (Crystal 
& House, 1990), and the frequency-weighted average word length is 
2.3 syllables (American National Corpus; Reppen, Ide, & Suderman, 
2005), so the average word duration is approximately 0.5 sec, producing 
a speech rate of approximately 120 words/min.

APPENDIX A 
Critical Items

Target  Near Neighbor  Distant Neighbor  Nonneighbor

bayonet machete tomahawk colander
beans peas pear jar
blueberry raspberry pineapple microscope
broccoli celery banana envelope
buffalo caribou elephant clarinet
bus van bike ball
cake pie pear stone
cat dog stool (furniture) doll
cheetah zebra bison tripod
crab clam cod clamp
crow goose wasp snail
dagger hatchet shotgun cello
deer fox bear skis
dove swan bat (animal) hoe
eagle blackbird tiger trumpet
elk hare chimp urn
falcon partridge ostrich sardine
grape peach pear rope
lion tiger beaver crowbar
moose hare chimp sword
owl hawk swan crane (machine)
panther leopard zebra baton
pants shirt socks fork
peacock blackbird giraffe rifle
pelican flamingo crocodile revolver
penguin starling otter missile
pheasant starling catfish cannon
pistol shotgun crossbow banjo
sheep goat rat yacht
sparrow blackbird beetle anchor
spear bow (weapon) shield crown
squid eel seal tank (army)
stork finch hare wand
tomato strawberry potato magazine
trombone tuba bagpipe scooter
truck van couch cheese
Note—In the experiment, only a single critical competitor was presented 
along with the target on each trial. The choice of competitor presented for 
each target was counterbalanced across participants.
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APPENDIX B

Tables B1–B4 show the parameter estimates and significance values for semantic similarity condition effects 
on the orthogonal time terms in the different models. The by-items analysis results (Table B1) mirrored the 
results of the by-subjects analysis (Table 2, main text); specifically, there were significant effects of neighbor 
condition on the intercept and quadratic terms. Tables B2–B4 show that, even after visual similarity measures 
were included, semantic neighbor condition still had significant effects on growth curve model terms, particu-
larly the intercept and quadratic terms. These results show that nonsemantic visual similarity cannot account for 
the competition effects found in the experiment.

Table B1 
Results of By-Items Growth Curve Analysis

Near Neighbors Distant Neighbors Distant vs. Near Neighbors

Term  Estimate  t  p  Estimate  t  p  Estimate  t  p 

Intercept 0.072 13.0 .0001 0.034 6.0 .0001 0.037 7.3 .0001
Linear 0.128 5.8 .0001 0.019 0.9 n.s. 0.110 5.5 .0001
Quadratic 0.099 8.9 .0001 0.037 3.4 .001 0.137 12.4 .0001
Cubic 0.032 2.9 .01 0.028 2.5 .05 0.004 0.3 n.s.
Quartic  0.043  3.9  .001  0.003  0.3  n.s.  0.046  4.2  .0001

Table B2 
Effect of Semantic Competitor Condition After Number  

of Shared Visual Features Was Included in the Model

Near Neighbors Distant Neighbors Distant vs. Near Neighbors

Term  Estimate  t  p  Estimate  t  p  Estimate  t  p 

Intercept 0.057 5.5 .0001 0.028 4.0 .001 0.040 5.1 .0001
Linear 0.174 4.3 .0001 0.040 1.5 n.s. 0.110 3.6 .001
Quadratic 0.090 4.4 .0001 0.042 3.0 .01 0.123 7.3 .0001
Cubic 0.069 3.4 .001 0.045 3.3 .001 0.044 2.6 .01
Quartic  0.067  3.3  .01  0.008  0.6  n.s.  0.055  3.2  .01

Table B3 
Effect of Semantic Competitor Condition After Proportion  

of Shared Visual Features Was Included in the Model

Near Neighbors Distant Neighbors Distant vs. Near Neighbors

Term  Estimate  t  p  Estimate  t  p  Estimate  t  p 

Intercept 0.077 8.0 .0001 0.037 5.6 .0001 0.050 7.4 .0001
Linear 0.085 2.3 .05 0.0005 0.02 n.s. 0.071 2.7 .01
Quadratic 0.121 6.4 .0001 0.028 2.2 .05 0.162 10.4 .0001
Cubic 0.042 2.2 .05 0.033 2.5 .05 0.005 0.3 n.s.
Quartic  0.057  3.0  .01  0.003  0.2  n.s.  0.061  4.0  .0001

Table B4 
Effect of Semantic Competitor Condition After Visual Similarity Rating  

Was Included in the Model

Near Neighbors Distant Neighbors Distant vs. Near Neighbors

Term  Estimate  t  p  Estimate  t  p  Estimate  t  p 

Intercept 0.067 7.4 .0001 0.034 5.9 .0001 0.038 4.6 .0001
Linear 0.091 2.6 .01 0.014 0.6 n.s. 0.107 3.3 .001
Quadratic 0.114 6.4 .0001 0.035 3.1 .01 0.172 9.5 .0001
Cubic 0.026 1.4 n.s. 0.027 2.4 .05 0.007 0.4 n.s.
Quartic  0.061  3.4  .001  0.0007  0.1  n.s.  0.079  4.4  .0001
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