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Abstract: Controlling interfaces of phase separating fluid mixtures is key to

creating diverse functional soft materials. Traditionally, this is accomplished

with surface-modifying chemical agents. Using experiment and theory, we

study how mechanical activity shapes soft interfaces that separate an active

and a passive fluid. Chaotic flows in the active fluid give rise to giant interfa-

cial fluctuations and non-inertial propagating active waves. At high activities,

stresses disrupt interface continuity and drive droplet generation, producing

an emulsion-like active state comprised of finite-sized droplets. When in con-

tact with a solid boundary, active interfaces exhibit non-equilibrium wetting

transitions, wherein the fluid climbs the wall against gravity. These results
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demonstrate the promise of mechanically driven interfaces for creating a new

class of soft active matter.

Main Text: Liquid-liquid phase separation (LLPS) is a ubiquitous phase transition, with

examples abounding throughout material science, biology and everyday life (1, 2). Immiscible

liquid phases are separated by sharp, but deformable, interfaces that strongly couple to flows

and the input of mechanical energy. For example, gentle shaking of an oil-water mixture in-

duces gravity-capillary interfacial waves, while more vigorous perturbations break up the entire

interface, reinitializing the phase separation (3, 4, 5, 6). Active matter provides an alternative

method of continuously stirring a fluid (7, 8). In such systems, mechanical energy, inputted

locally through the motion of microscopic constituents, cascades upward to generate large-

scale turbulent-like dynamics (9, 10, 11). We study how active stresses and associated flows

perturb soft interfaces and LLPS. Using experiment and theory, we identify universal features

of active-LLPS, including giant interfacial fluctuations, traveling interfacial waves, activity-

arrested phase separation and activity-induced wetting transitions. These results demonstrate

how active matter drives liquid interfaces to configurations that are not accessible in equilib-

rium. In turn, active interfaces are elastic probes that provide insight into the forces driving

active fluids, for example by allowing for the measurement of the active stresses.

The active liquid interfaces studied here belong to a wider class of activity-driven bound-

aries, that includes lipid bilayers, colloidal chiral fluids and interfaces between motile and im-

motile bacteria in a swarm (12, 13, 14, 15, 16). From a biology perspective, LLPS has emerged

as a ubiquitous organizational principle (2, 17). How cytoskeletal active stresses couple to self-

organization of membraneless organelles remains an open question. Studies of simplified sys-

tems can shed light on these phenomena. Relatedly, active wetting plays a potential role in the

development and shaping of tissues (18).

To explore how activity modifies soft interfaces, we combined poly(ethylene-glycol) (PEG)

2



and polysaccharide dextran with stabilized microtubule filaments and clusters of kinesin molec-

ular motors. Above a critical polymer concentration, the passive PEG-dextran mixture phase

separated (19). Microtubules and kinesin clusters exclusively partitioned into the dextran phase,

where depletion forces promoted microtubule bundling (Fig. 1A-C). Streptavidin-bound kinesin

clusters (KSA) stepped along adjacent microtubules within a bundle, driving interfilament slid-

ing. The kinesin-powered bundle extensions continuously reconfigured the filamentous net-

work, generating large-scale turbulent-like flows, similar to those previously studied (9) (Fig.

1D). The PEG-dextran interfaces were susceptible to large deformations by active stresses gen-

erated within the dextran phase, due to their ultra-low interfacial tension (< 1 µN/m) (19).

We first visualized the phase separation dynamics of active-LLPS in ∼30 µm thick hori-

zontal microscopy chambers. In such samples, PEG-dextran interfaces had a nearly-flat vertical

profile (Fig. S1). The quasi-2D nature of the system was supported by a nearly constant area

fraction of the PEG-rich domains (Fig. S2). In a passive system with microtubules but no ki-

nesin motors, the droplets coalesced slowly (Fig. 1E, Movie S1). The addition of motors altered

the coarsening kinetics. At intermediate KSA concentrations, active flows powered droplet

motility, which increased the probability of droplets encountering each other and coalescing,

thus speeding up coarsening dynamics (Fig. 1E, Movie S2). Higher KSA concentrations accel-

erated buildup of interfacial fluctuations leading to an entirely different dynamical state where

droplets incessantly fused and fissioned with each other (Figs. 1E, 1G, Movie S3).

To quantify the influence of activity on the PEG-dextran phase separation, we measured

the equal-time two-point correlation function C(∆r, t) = 〈I(r + ∆r, t)I(r, t)〉r, where I = 1

in the dextran phase and −1 otherwise (Fig. S3). Spatial correlations decayed over a length

scale ξ, defined by C(ξ) = 0.5, which is comparable to the average droplet size (Fig. S4).

For passive samples, ξ increased slowly in time (Fig. 1F). Enhanced coarsening at intermediate

KSA concentration was reflected by a much faster initial growth of ξ than the passive case. At

3



high motor concentration, ξ peaked at ∼1 hour and subsequently decayed to a finite plateau,

ξsteady. In parallel, average interface curvature κ monotonically grew, reaching sufficient large

value to cause droplet fission (Fig. S5). The steady-state lengthscale ξsteady, was maintained

by the balance of droplet fission and fusion events, where ξsteady was comparable to the inverse

of the average interface curvature κsteady. Concomitantly with the plateauing of ξ, active flow

speed became constant (Fig. 1F). These results demonstrate activity-suppressed coarsening dy-

namics, which created an emulsion-like state wherein finite-sized droplets continuously merge,

break apart and exchange their content (Fig. 1G, Movie S3, S4). The volume fraction of the

active and passive phases were nearly equal (Fig. S2). Low volume fraction of active fluid

generated similar steady states. Finite-sized domains are reminiscent of theoretical prediction

in motility-induced-phase-separation of isotropic active particles (20). However, in contrast to

theory, the active fluid in our experiments is anisotropic and perturbs an underlying equilibrium

phase separation.

To gain insight into how active stresses drive interfacial fluctuations we formed a macro-

scopic interface by gravity-induced bulk phase separation (Figs. 2A, S6). In equilibrium,

molecular motion works against the density difference ∆ρ and interfacial tension γ to roughen

the liquid-liquid interface. Typical disturbances of PEG-dextran interfaces, bereft of activity,

are ∼ 100 nm in amplitude, resulting in boundaries that appear flat when viewed with our

imaging setup (Figs. 2A, S7). When driven out of equilibrium, however, interfaces exhibited

giant undulations that were visible by naked eye (Movie S5). As motor concentration increased,

interfaces became multivalued with frequent overhangs, indicating that active stresses directly

control interface configurations (Fig. 2A, Movie S6).

The interplay of activity and capillarity is clarified by measuring the interfacial fluctuation

spectrum. To this end, local interface tangent angles θ(s, t) were sampled at a time t as a func-

tion of the arc-length distance s along the interface (Fig. 2A). Interfacial fluctuations were
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described by time-averaged power spectra S(k) = 〈‖θk‖2〉t, with θk =
∫

ds θ(s, t)e−iks. Due

to equipartition of thermal energy among Fourier modes, the spectrum of equilibrium inter-

faces is S(k) ∼ Tk2/(k2 + k2
c ), where T denotes temperature . The capillary wave-number

kc =
√

∆ρg/γ, sets a crossover from a gravity dominated regime at large scales S(k) ∼ k2

to a plateau at small scales where surface tension attenuates fluctuations. Active interfacial

fluctuations were markedly different. Active spectrum S(k) increased for small wave-numbers

(Figs. 2B, S7,8). After reaching a maximum for km ∼ 30mm−1, it decayed as S(k) ∼ k−3,

instead of plateauing as in equilibrium. While the shape of S(k) remained the same for all KSA

concentrations, the root-mean-square tangent angle θrms increased linearly with activity (Fig.

2B, inset). Using the crossover at km as a determinant of the fluctuation amplitude, it would

take an effective temperature of ∼ 1011K to achieve equilibrium interfaces whose roughness is

comparable to those measured at the lowest activities.

The dynamics of activity-driven interfacial fluctuations exhibit non-trivial spatiotemporal

correlations. To gather sufficient statistics, we imaged ∼10 mm-long active interfaces over a 2

hour interval. Space-time maps of local interface height h(x, t) exhibited diagonally streaked

crests and troughs that were suggestive of propagating waves (Fig. 2C). These translational

modes were also evident in time-lapse movies (Movie S6). To characterize these modes, we

measured the dynamic structure factor (DSF) of the interface height D(k, ω) =∫
dxdt eikx+iωt〈h(x′, t′)h(x′ + x, t′ + t)〉x′,t′ (Fig. 2D). Over a finite range of wave numbers,

the DSF exhibited peaks at finite frequencies ωp, confirming the presence of propagating modes

(Fig. 2E). Increased KSA concentration resulted in higher ωp for the same wave-numbers; thus,

activity controled the phase velocity (Fig. 2F).

The giant non-equilibrium fluctuations and propagating wave modes result from the inter-

action of active flows in the bulk dextran phase with interfacial elasticity. To elucidate the

processes driving active interfaces, we numerically integrated 2D hydrodynamic equations that
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describe a bulk-phase-separated active fluid (21,22). The two coexisting phases were modelled

as incompressible Newtonian fluids under gravity that experience confinement friction in the

low Reynolds number limit (23). The top phase was passive, while the velocity of the bottom

phase v was governed by

γvv− η∇2v = −∇P + ∇ · σ , (1)

with P the pressure, η the viscosity, and γv the confinement friction. The stresses σ driving

the flows were assumed to be generated by an active liquid crystal producing extensile active

stresses, σa = αQ, with α < 0.. The local orientational order was quantified by a traceless

tensor Qij = 〈n̂in̂j − δij/2〉 averaged over molecular orientations n̂. Active shear flows en-

gendered orientational order via flow-induced alignment. These assumptions are summarized

in the continuum equation

DQ
Dt

+ [ω,Q] = λu +
1

γQ
H , (2)

with ω the vorticity tensor, u the strain rate and λ the flow alignment parameter. H denotes

elastic forces that arise from the liquid crystal free energy, and γQ the rotational viscosity of

microtubule bundles (23). In the absence of activity the liquid crystal is in the isotropic phase,

consistent with the microtubule density used in experiments.

The hydrodynamic model reproduces key experimental observations. Finite-sized chaotic

flows, driven by active stresses, continuously deform the liquid-liquid interface (Fig. 3A, Movie

S7). Similarly to experiments, the interfacial power spectra showed a crossover between growth

at small wave-numbers and decay at large wave-numbers, while the root-mean-square tangent

angle increased linearly with |α| (Fig. 3B). The numerically obtained DSF also exhibited sig-

natures of active travelling waves (Fig. 3C-E), as in the experiment. The wave frequencies

ωp(k) increased with activity, showing active-stress-dependent wave velocity. Our numerical

model also suggests a non-inertial mechanism of active waves (12), which differs from conven-
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tional inertia-dominated capillary waves (24, 25). In the context of our hydrodynamic model,

the active waves arise from the coupling between the interface vertical displacement h and ori-

entational order Q in the interfacial region (22). Stress balance at the interface predicts that

the orientational order drives interfacial deformation as ∂th ∼ va⊥ ∼ αQ, where va⊥ is the

active contribution to the flow velocity normal to the interface. In turn, passive flows vp⊥ re-

laxing the interface at a wave-number dependent rate ν(k) feed back to induce local liquid

crystalline order ∂tQ ∼ λikvp⊥ ∼ −ν(k)h. Consequently, interface height obeys a wave equa-

tion ∂2
t h ∼ −αν(k)h (23). Accordingly, travelling wave velocities increase with active stress,

which is in agreement with both experiments and numerics.

Propagating waves might be a generic feature of active boundaries (12, 13). More broadly,

the active-stress-dependent wave dispersion mirror those of elastic waves in entangled poly-

mers solutions (26). While the numerical hydrodynamics reproduced qualitative features of

the experimentally observed active fluctuations and waves, there were important quantitative

differences. In particular, with increasing activity, numerics predict increase in both interface

fluctuations and bulk velocity. In contrast, in experiments active flows remain constant be-

tween 200 and 350 nM KSA, while interfacial fluctuations increase (Fig. S9). Moreover, in

numerics, the maximum wave-number km increased with activity, while remaining constant in

experiments (Figs. 2B, 3B, S10).

To demonstrate the unique properties of active interfaces, we studied their structure next to

a solid boundary (Fig. 4A,B). In the absence of motors, the interface assumed an exponential

profile h ∝ e−x/le with a decay length of `e ∼ 45 µm, which we identified with the capillary

length `c =
√
γ/∆ρg. At the wall, the rise in the interface height was ∼ 70 µm, which is

close to the maximum capillary rise of
√

2`c, indicating complete wetting (23). At intermediate

KSA concentrations, the capillary rise exhibited active fluctuations around the equilibrium ex-

ponential height profile (Fig. 4C), and the time-averaged center-of-mass height of the wetting
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region increased slowly (Fig. 4C). Above a critical value of 300 nM KSA, activity generated

a new interfacial structure. Specifically, we observed formation of a ∼20 µm thick dynami-

cal wetting layer, which climbed several hundred microns above the equilibrium capillary rise

(Fig. 4A, Movie S8). Within this layer, microtubule bundles preferentially aligned with the

wall (Fig. 4B). Coinciding with the appearance of the microtubule-rich wetting layer, the capil-

lary rise sharply increased (Fig. 4C). These observations demonstrate an activity driven wetting

transition beyond the complete wetting of a passive fluid.

We performed numerical simulations of the active-interface adjacent to a vertical bound-

ary (23). The liquid crystal director was anchored parallel to the wall, and the surface-liquid

energy γw corresponds to an equilibrium contact angle 10◦ (Fig. 4D). Similar to experiments,

the average height profile had an exponential decay (Fig. 4E, inset). As the activity α increased

from zero, the height of the contact point increased. Furthermore, above |α| = 10 mPa, the

active fluid generated a thin wall-adjacent layer, indicating a transition from partial to complete

wetting (Fig. 4D, Movie S9). The capillary rise was supported by a `w ∼ 3µm thick, ver-

tically aligned liquid crystalline domain with Q ∼ 1. This domain generated coherent active

stress along the wall σa = α, which supported the interface rise. Balancing the active tension

γa ≡|σa|`w at the contact point with wall adhesion γw, surface tension γ cos θa, and gravity Fg

resulted in a boundary condition for the climbing interface (Fig. S11) (23),

|σa|`w + γw = γ cos θa + Fg . (3)

Predictions of the center-of-mass height of the capillary rise, using Eq. (3), show a crossover

from slow to fast growth at α = 10 mPa which is in agreement with the partial to complete

wetting transition seen in simulations (Figs. 4E, S12).

Active interfaces provide a unique experimental probe to estimate the magnitude of the ac-

tive stress, a critical parameter that governs dynamics of active fluids. To avoid resorting to
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various assumptions on the numerical model, we analytically solved Eq. (1) treating the stress

σ as a random field with correlations 〈σij(r, t)σij(0, 0)〉 = σ2
rmse

−|r|/`a−|t|/τa , where correlation

length `a and time τa are identified with those of the bulk active flow (Fig. S13) (23). The

analytical model captured the interface fluctuations spectrum S(k) without fitting parameters,

revealing that its non-monotonic shape resulted from active flows with scale-dependent kinetic

energy spectrum (Figs. 5A, S10, Eq. (S32)) (23, 27). In contrast, fluctuations of equilibrium

interfaces are driven by thermal energy ∼ kBT that is equally distributed among all scales (23).

By integrating S(k) over all wave numbers, the active stress is predicted to increase proportion-

ally to tangent angle fluctuations σrms = pθrms, with p ' 9 mPa/rad (Fig. 5B, Eq. (S35)).

To independently verify these numbers we note that the force balance Eq. (3), associated

with active wetting, provides an alternative method of estimating active stress. For intermedi-

ate KSA values, prior to the appearance of the active wetting layer, the active stress estimated

from wetting is comparable to those extracted from interface fluctuations (Fig. 5B). Above 300

nM KSA, active stresses are a few times larger than those obtained from interface fluctuations.

These large values might be a consequence of flow-enhanced alignment of microtubule bundles

within the thin wetting layer. The formation of the active wetting layer at finite activity, how-

ever, is outside the scope of the static stress balance embodied in Eq. (3). A more complete

description of the wetting transition would include dynamical considerations, such as active

wave propagation and gravitational sedimentation, that appear to be essential for the formation

and turnover of the wetting layer.

In summary, we demonstrated a rich interplay between active fluids and soft deformable

interfaces. On the one hand, liquid interfaces provide a quantitative probe that can reveal in-

trinsic properties of the active fluids, such as active stress. On the other hand, bulk active

fluids drive the extreme interfacial deformations that yield intriguing non-equilibrium dynam-

ics, including arrested phase separation, stress-dependent non-inertial propagating waves and
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activity-controlled wetting transitions. Our findings provide a promising experimental platform

to design shape-changing adaptable soft materials and machines whose capabilities begin to

match those observed in biology (28, 29, 30).
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Experimental methods

Dextran fractional precipitation.

Control of LLPS required low-polydispersity, high-molecular-weight dextran. Dextran (1.5-

2.8 MDa, Sigma-Aldrich) was separated into fractions of narrow molecular weight distributions

via ethanol precipitation. Ethanol was gradually added to a solution of 0.2% dextran under

vigorous stirring at 23 ◦C. After reaching 31% (w/w) ethanol, precipitates were removed by

centrifugation (20 min at 17,000g, Fiberlite F9-6 x 1000 LEX fixed angle rotor, Thermo Scien-

tific). Ethanol was then added to a concentration of 32% (w/w). The precipitate was collected

by centrifugation and resuspended in water. Solvent was removed via lyophilization, and the

powder was reconstituted in water to 20% (w/w) dextran. This stock solution was used to make

LLPS solutions.

PEG-dextran LLPS.

Polymers of high molecular weight chosen to create mixtures that are both active and phase

separated. Inter-microtubule sliding occurs in a finite polymer concentration range, where

depletion forces are sufficiently strong to induce microtubule bundling without friction (32).

Mixtures comprising 2.38% (w/w) fractionated dextran and 1.55% (w/w) poly(ethylene glycol)

(PEG) (35 kDa, EMD Millipore), reconstituted in M2B buffer (80mM K-pipes, 2mM MgCl2,

1mM EGTA, pH 6.8), enabled both phase separation and motor-driven inter-filament sliding.

To distinguish the two phases, 2,000 kDa amino-Dextran (Fina Biosolutions) was labeled with

Alexa-Fluor 488 NHS Ester (ThermoFisher Scientific) and was added at a final concentration

of < 0.1% (w/w).

To characterize the LLPS, we let mixtures completely phase separate under gravity for one

day. Top (PEG-rich) and bottom (dextran-rich) phases were extracted, and their densities were
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measured using a density meter (DMA 4100, Anton-Paar). The densities of the dextran and the

PEG phases were ρP = 1.0151g/mL and ρD = 1.024g/mL respectively. The viscosity of each

phase was determined by microrheology (33). The viscosities of the PEG-rich and the dextran-

rich phases were ηP = 5mPa s and ηD = 25mPa s respectively. Interfacial tension between

the two phases was determined from the exponential decay length of the capillary rise next to a

polyacrylamide coated wall. At low KSA concentrations, the decay length was le = 45µm (Fig

5C, inset). The relation le = lc =
√
γ/∆ρg, where the density difference is ∆ρ = ρD − ρP ,

and g is the acceleration of gravity, yields the interfacial tension γ = 0.18µN/m.

Chamber preparation.

Chambers were constructed of glass slides that were coated with a PEG brush (mPEG 5k-

silane, BiochemPEG) (34). PEG-coating resulted in preferential wetting by the passive PEG

phase. Achieving a uniform coating was essential to prevent pinning of the dextran phase to the

chamber walls. Glass was cleaned by sonicating in 1% Hellmanex, and then etched in 0.5 M

NaOH for 30 minutes. Slides were dried at 90 ◦C in the presence of a desiccant for 10 minutes.

Silanized PEG, reconstituted in anhydrous DMSO to a concentration of 5%, was sandwiched

between glass slides and left to react for 30 minutes at 90 ◦C. Slides were then rinsed in water

and dried with a nitrogen stream. Chambers were assembled immediately. For wetting exper-

iments, #0 coverslips were coated with polyacrylamide according to established protocol (35).

Chambers were constructed by sandwiching two polyacrylamide coated coverslips between

PEG-coated slides.

PEG-dextran active-LLPS.

We assembled active-LLPS by adding the phase-separating polymers to microtubules and

clusters of kinesin motors. Kinesin K401-streptavidin (KSA) motor clusters and GMPCPP-

stabilized microtubules were purified and prepared as described previously (36). The active

mixture was prepared in M2B buffer containing antioxidants (2 mM Trolox, 3.3 mg/mL glucose,
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5 mM DTT, 200 µg/mL glucose oxidase and 35 µg/mL catalase) to reduce photobleaching, ATP

(1420 uM), an ATP regeneration system (26 mM phosphoenol pyruvate (Beantown Chemical,

129745) and 2.8% (v/v) pyruvate kinase/lactate dehydrogenase enzymes (Sigma, P-0294)). We

added microtubules to a final concentration of 0.67 mg/mL and KSA at variable concentration.

Correlation length evolution in phase separation experiments.

To quantify the phase separation dynamics, images of dextran fluorescence were thresholded

at each time point to produce a binary intensity map I(~r, t), where I = 1 for dextran-rich

domains and I = −1 for PEG-rich domains, and the radius ~r = (x, y) (Fig. S3A,B). The

two-point correlation function C(∆~r, t) = 〈I(~r + ∆~r, t)I(~r, t)〉 was azimuthally averaged to

produce the radial correlation function C(r, t). The correlation length ξ(t) was defined such

that C(r = ξ(t), t) = 0.5 (Fig. S3C,D), and its evolution was tracked (Fig. S3E).

Evolution of correlation length and interface curvature at 230nM KSA.

In samples approaching a steady state, increase in the interface curvature preceded the decay

of the correlation length. Local interface curvatures were computed as

κ =
fxxf

2
y − 2fxyfxfy + fyyf

2
x

(f 2
x + f 2

y )3/2
(S1)

where f(x, y) is the dextran fluorescence intensity at pixel (x, y) and subscripts denote partial

derivatives (37). κ was averaged over all interfaces in the field of view at each time point.

Initially, the average curvature increased before the correlation length started to decay (Fig.

S5). The correlation length evolution lagged by 30 min behind the average interface curvature

for the first 1.5 hours of the experiment. After 2 hours, both correlation length and inverse

curvature evolved synchronously as the system approached steady state.

Detection of bulk-phase-separated interfaces.

Interfaces were detected using a multi-step procedure:

(1) Dextran fluorescence images were divided by a background image, thresholded, and nu-
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merically differentiated to extract domain edges. Edges that straddle the image horizontal axis

were selected, skeletonized, and pruned to produce an initial contour at single pixel resolution

(Fig. S6A-C).

(2) For each point on the contour (x, y), image intensity is interpolated at sub-pixel resolu-

tion along the local interface normal (nx, ny) in a 5x5 pixel neighborhood of (x, y). Sub-pixel

interface position along the normal is defined so that the interpolated image intensity equals the

threshold (Fig. S6D-H).

(3) The local tangent angle to the interface θ = tan(∆y/∆x) is found by finite differences,

and the contour is re-parameterized with the arc-length parameter s.

(4) The total arc length of the interface is measured for each time point. Due to interface

deformations, the total arc length fluctuates in time. For computing correlations and Fourier

transforms, tangent angle data from a single experiment θ(s, t) is trimmed so that the interface

at each time point has the same total arc length.

Power spectra of interface fluctuations.

Interface tangent angles θ(s, t) were used to compute the spatiotemporal autocorrelation

function Rθ(∆s,∆t) = 〈θ(s + ∆s, t + ∆t)θ(s, t)〉, where 〈〉 denotes averaging over an arc-

length interval of 3.1 mm and time interval of 2 hours. The power spectrum was then computed

as S(k) =
∫
dse−iksRθ(s,∆t = 0).

Dynamic structure factor (DSF) of interface height.

Local interface height was sampled as a function of the horizontal coordinate x and time

t. The spatiotemporal autocorrelation function of interface height Rh(∆x,∆t) = 〈h(x +

∆x, t + ∆t)h(x, t)〉 was calculated by cross correlating a rectangular window ∆xm < x <

X −∆xm,∆tm < t < T −∆tm of h(x, t) with the complete sample, where X and T denote

the sample size and duration. ∆xm and ∆tm denote maximum lag distance and time respec-

tively. The values of the parameters were X = 10.7 mm,T = 2 hr,∆xm = 1mm,∆tm =
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0.36hr for experiments; for simulations they were X = 2 mm,∆xm = 0.67 mm, and T =

0.44, 0.22, 0.11 hr,∆tm = 0.3, 0.15, 0.0755 hr for activity values α = 10, 20, 40 mPa respec-

tively. The DSF was then computed by multiplying the result of auto-correlation with a 2D

Hanning window, and taking the Fourier transform of the result in both space and time.

Extraction of the wave dispersion relation.

Wave dispersion ωp(k) was extracted from the DSF in two ways. Above a wave-number

kmin, the DSF for a constant k exhibited a peak at a frequency ω = ωp(k). The peak position

was detected by modelling the DSF with a sum of Lorentzians, one centered at ω = 0 and the

other at ω = ω0:

F (ω) = a ((1− c)/((ω/b)2 + 1) + c/((ω/ω0)2 − 1)2 + (ω∆ω/ω2
0)2), where a, b, c, ω0 and ∆ω

are adjustable parameters. The frequency peak was ωp =
√
ω2

0 −∆ω2/2. For k < kmin, the

dispersion relation was detected by finding the wave number at which the DSF is at maximum

for a constant frequency.

Power spectra of active fluid velocity.

To find the velocity of the active phase, two-color fluorescent images were taken of both the

Alexa Fluor 488 labeled dextran and the Alexa Fluor 647 labeled microtubules. A mask of the

active phase was found by thresholding the dextran channel. This mask, along with the accom-

panying microtubule images, were imported into the MATLAB plugin PIVLab (38). Particle

Image Velocimetry was preformed on the microtubule bundle images to find the velocity of the

active phase.

Active bulk fluid velocity was calculated in a 2.5 mm X 2 mm window that was 100 mi-

crons below the interface. The vectorial velocity field v, sampled in 10 sec intervals over 1.5

hours, 5 hours after the beginning of the experiment, was used to obtain the spatiotemporal

autocorrelation function Rv(∆r,∆t) = 〈v(r + ∆r, t + ∆t) · v(r, t)〉r,t, where the radius is

r = (x, y). The autocorrelation was azimuthaly averaged to produce the radial autocorrelation

5



function Rv(r, t). Fig. S13 depicts sections of Rv(r, t) at t = 0 and r = 0 to extract correlation

length and time scales.

Measuring the center-of-mass of active fluid capillary rise.

In wetting experiments and simulations, the center-of-mass height of the active fluid that is

adjacent to the wall is defined as follows: (1) Interface profile is detected using thresholding as

in Fig. S6. The average height Y0 of the bulk interface far from the wall (> 5le) is set as zero

height. (2) Pixels above threshold whose height is greater than Y0, and are within 5le of the

wall are included in the center-of-mass height determination. The center of mass is defined as

Ycm = 1
N

∑
i(Yi − Y0), where N is the total number of pixels.

Numerical model

Multiphase hydrodynamic model. To simulate activity-powered interfaces, we use a VOF (Vol-

ume Of Fluid) multiphase hydrodynamic theory to model the active-passive mixture (39, 40).

The two fluids are described by three continuum fields: the volume fraction of the active phase

φ which is referred to as the ‘color function’ in VOF, the velocity field v, and the nematic

tensor Q ≡ S(n̂n̂ − I) describing the local orientation of microtubule bundles. Here, n̂ is

a unit vector indicating the local orientation of microtubules, and 0 ≤ S ≤ 1 is the local

nematic order parameter. I is the identity matrix. Since the experimental system is quasi-two-

dimensional, we implement the theoretical model in two dimensions. The governing equations

are (39, 40, 8, 21, 22):

Dφ

Dt
=0, (S2a)

DQ
Dt

=λφu + Q · ω − ω ·Q +
1

γQ
H, (S2b)

Dρv
Dt

=η∇2v−∇P + ∇ · (φσ)− γvv + fc + fg, (S2c)
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with D/Dt = ∂t + v ·∇ the material derivative.

The field φ is set by the initial conditions to have constant value in the bulk of either phase,

with φ = 1 in the active fluid and φ = 0 in the passive one, and sharp yet continuous variations

between the two bulk values at the interface. The advection of φ by the flow then drives interface

fluctuations. Unlike the more familiar phase field model, the VOF model sets the right-hand-

side of Eq. (S2a) equal to zero, hence neglects phase field diffusion in the interfacial region.

It is appropriate when phenomena such as Ostwald ripening are much slower than other time

scales, as appears to be the case in the active-LLPS. It is much more efficient for simulating

large interfaces as it only requires interfacial widths of the order of 2-3 grid points.

The dynamics of the nematic tensor Q is governed by relaxation and coupling to flow. The

first term on the right hand side of Eq. (S2b) describes alignment with local flow gradients, with

u = (∇v + ∇vT )/2 and λ the flow-alignment parameter. The flow alignment term is known

to drive nematic order even when the system is in the isotropic state (41, 42). To confine this

effect to the active phase, we weight the flow-alignment term by the color function φ such that

flow alignment vanishes in the passive phase. The second and third term describe co-rotation

of the director with the local vorticity ω = (∇v−∇vT )/2, and we neglect for simplicity other

nonlinear flow couplings. The relaxation of Q, with γQ the rotational viscosity, is driven by the

molecular field H = −δFLdG/δQ that minimizes the Landau-de Gennes free energy (43, 8)

FLdG =
1

2

∫
r

[
a tr Q2 +

1

2
b
(
tr Q2

)2
+K(∂jQik)

2

]
. (S3)

The first two terms in FLdG control the isotropic-nematic transition, and sets the equilibrium

value of order parameter to be S = 0 when a > 0 and S =
√
−2a/b if a < 0. The last term

describes the energy cost for spatial variation of the order parameter, with isotropic stiffness K.

Here we choose a > 0. This places the liquid crystal in the isotropic state when passive, which

is the experimentally relevant situation.
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The velocity field is governed by the Navier-Stokes equation Eq. (S2c), with viscous dissi-

pation controlled by viscosity η, drag γv with the walls, gravitational force fg = −ρ(φ)gŷ, and a

capillary force, fc = γκ∇φ (39,40), where γ is the interfacial tension and κ = −∇·(∇φ/|∇φ|)

the local curvature of the interface. Integrating such capillary force along the interface nor-

mal N̂ = ∇φ/|∇φ| gives a total force γκN̂, which is what we expected from Young-Laplace

pressure. The pressure P serves as a Lagrange multiplier to incorporate the incompressibility

constraint, ∇ · v = 0. The additional stress from the nematic degrees of freedom, σ = σe +σa

includes passive elastic and active stresses, with

σe = −λH + Q ·H−H ·Q , σa = αQ , (S4)

and α< 0 the activity. Note that σ is weighted by the color function φ in Eq. (S2c), hence its

contribution vanishes in the passive phase. Similarly, the capillary force fc is nonzero only at

the interface. For simplicity, we assume that the two phases have the same viscosity and drag.

Finally, the local density is related to the volume fraction φ as ρ = φρa + (1 − φ)ρp, where ρa

and ρp are the densities of pure active and passive phase, respectively.

Numerical simulations

General setting.

The continuum equations are solved with the Finite Volume Method using the open source

package OpenFOAM (44) (OpenFoam, https://openfoam.org/ ). Specifically, we modify the

InterFoam solver from OpenFOAM to include the dynamics of the nematic tensor Q (45) (In-

terFoam, https://openfoamwiki.net/index.php/InterFoam). The simulation is done on a square

grid embedded in a rectangular box centered at the origin, and we use the standard adaptive time

step controller in OpenFOAM with a maximum Courant number 0.3. Although OpenFOAM
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can only process three-dimensional simulations, one can still use it to simulate two-dimensional

systems by having a single grid along the third dimension, and setting the two boundaries nor-

mal to the third dimension to be empty (Openfoam user guide, https://cfd.direct/openfoam/user-

guide/ ).

The parameters used in the simulations are: ρa = 1027kg/m3, ρp = 1014kg/m3, η =

0.015Pa · S, γv = 25MPa · S/m2, γ = 0.3µN/m, γQ = 0.1kg/(m · S), K = 5 × 10−14N ,

a = 0.001Pa, b = 0.1Pa, λ = 0.1. Activity values range from 5 mPa to 80 mPa. The boundary

and initial conditions, box and grid sizes are varied depending on the specific problem we study.

Simulations of interfacial fluctuations.

We use a rectangular box of size 2mm× 1mm in the xy plane, with a uniform grid spacing

of 2.5µm. In the absence of active fluctuations, the interface separating the top passive fluid

from the bottom active fluid is flat and located at y = 0. The top and bottom boundaries are

solid walls with slip boundaries for the velocity field v, i.e., n̂ · v = 0 and ∂t̂vt̂ = 0 where

n̂ and t̂ represent the normal and tangential directions to the wall, and Neumann boundary for

the color function φ and the nematic tensor Q, i.e., ∇φ|wall = 0 and ∇Qij|wall = 0. Although

no-slip condition is typically used at solid walls, our experiments have found obvious sliding of

microtubules with respect to the wall, hence justifying the slip boundary condition of velocity

at the wall. At the left and right boundaries we impose periodic boundary conditions by using

the cyclicAMI boundary in OpenFoam. All simulations start with a flat interface located at 65%

of the box height, with zero velocity and zero nematic order. We add small perturbations to the

initial Q field in the active phase. Activity then drives these initial perturbations to grow and

pushes the system into the chaotic state.

Simulations of wetting.

9



For the wetting simulations, we use a smaller simulation box of size 0.5mm×0.5mm since

we need to use finer grids here. The boundary conditions at the top and bottom boundaries are

the same as used in the simulations of interfacial fluctuations. The left and right boundaries

are treated as solid walls, with slip boundary conditions for the velocity field and zero-gradient

boundary conditions for the color function (∇φ|wall = 0), except at the interface contact point,

where the gradient of φ is set to prescribe the contact angle of the passive system using the

constantAlphaContactAngle function in OpenFoam. The nematic tensor Q has a fixed value at

the left and right walls. For parallel anchoring of nematic director, we set Qxx = −0.5 and

Qxy = 0 at the two walls, and Qxx = 0.5 and Qxy = 0 for perpendicular wall anchoring. We

use nonuniform grids in the wetting simulations. The grid size in the bulk (|x| < 0.23mm)

is set to be 2.5µm as in the fluctuation simulations. To improve the spatial resolution at the

contact point, we refine the simulation grid close to the wall such that the grid size is 1.25µm

for grids within 0.23mm < |x| < 0.24mm and 0.625µm for grids at |x| > 0.24mm. The initial

condition is similar to that in the fluctuation simulations, except the flat interface is located at

50% of the box height.

Extracting interface profiles.

The instantaneous interface profile h(x, t) is extracted from the spatial distribution of color

function φ by using the isoSurface function in OpenFOAM. Specifically, OpenFOAM first in-

terpolates among discrete φ values residing on grids to get a continuously varying φ field. Based

on this, it is able to find numerically the positions where the continuous φ field is exactly 0.5.

The coordinates of the points with φ = 0.5 then constitute the interface profiles we are looking

for.

Theory of active interfacial fluctuations.
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As discussed in the main text, the non-monotonic power spectra of interfacial tangent an-

gle fluctuations is the result of a competition between passive relaxations and active excitations

(Fig. 2B, 3B). Here, we provide the theoretical basis for this claim by analytically deriving the

height equation for fluctuating interfaces from continuum hydrodynamics and, based on that,

calculate the fluctuation spectrum of passive and active interface. We begin by recalling the

behavior of thermally driven interfaces.

Equilibrium interfacial fluctuations from the equipartition theorem.

For a system in thermal equilibrium the equal-time spectrum of fluctuations is easily ob-

tained from the free energy cost of distortions of the flat interface located at y = 0. We expand

the distortion h(x, t) in a Fourier series as h(x, t) = 1
L

∑
k ĥ(k, t) eikx, with L the system size

along x and inverse transform ĥ(k, t) =
∫ L/2
−L/2 dx h(x, t) e−ikx. Assuming small deformations,

the free energy cost of interface fluctuations is

F =
1

2L

∑
k

(γk2 + ∆ρg)|ĥ(k, t)|2 , (S5)

where we have included the energy cost due to gravity. Here γ is the interfacial tension and ∆ρ

is the difference between the densities of the bottom and top fluid. The equipartition theorem

states that the mean energy of each fluctuation mode is kBT/2. It immediately follows

1

L
〈|ĥ(k, t)|2〉 =

kBT

γ(k2 + `−2
c )

. (S6)

As is well known, the spectrum becomes constant in the gravity-dominated region k � `−1
c ,

and scales as k−2 at k � `−1
c where interfacial tension dominates (46).

Equilibrium interfacial fluctuations from interface dynamics.
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Active systems cannot be described by a free energy and require an approach based on

dynamics. To set the stage for the study of active interfacial fluctuations, it is useful to first

derive the thermal fluctuation spectrum from hydrodynamics for the case where fluid dissipation

is controlled by both friction with a substrate and fluid viscosity, as relevant to our experimental

system. This derivation, which is not available in the literature, will inform the calculation of

the active fluctuation spectrum.

We consider two passive fluids. For simplicity assume they have the same viscosity and

friction, and only differ in density. We consider the dynamics in the Stokes limit which is

appropriate for our experiments and follow the derivation of Refs. (47, 48, 49, 50, 51). The

Stokes equation for the two semi-infinite fluids in the presence of thermal noise is given by

γvv = η∇2v−∇P − ρgŷ + f(r, t) , (S7)

where

f(r, t) = ∇ · σ(r, t) + η(r, t) (S8)

comprises the stochastic stress and force density describing the effect of thermal noise, with

correlations determined by the fluctuation-dissipation theorem as

〈σik(r, t)σjl(r′, t′)〉 =2kBTη(δijδkl + δilδjk)δ(r− r′)δ(t− t′) ,

〈ηi(r, t)ηj(r′, t′)〉 =2kBTγvδijδ(r− r′)δ(t− t′) ,

〈σik(r, t)ηj(r′, t′〉 =0 .

(S9)

We assume the fluids to be incompressible, hence ∇ · v = 0. Continuity of velocity and stress

at the interface requires

[v]0 = 0 ,

[η(∂xvy + ∂yvx) + σxy]0 = 0 ,

[2η∂yvy − P + σyy]0 = γ∂2
xh−∆ρgh ,

(S10)
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where for any function s(x, y) we have defined [s(x)]0 ≡ s(x, y = 0−) − s(x, y = 0+) as the

change in s across the interface. The two terms on the RHS of the last equation represent the

Laplace pressure due to interfacial tension and gravity-induced pressure difference, respectively.

To linear order, the interface height is related to the local velocity through

∂th(x, t) = vy(x, y = 0, t) . (S11)

To obtain an equation for the dynamics of interface fluctuations, we need to solve for vy(x, y, t)

for given stochastic force f(r, t). Interface height correlations will then be obtained by averag-

ing over thermal noise.

By taking Fourier transforms of Eqs. (S7)-(S10) with respect to x and eliminating v̂x and P̂

in favor of v̂y, we obtain an equation for v̂y(k, y, t) as

(∂2
y − k2)(∂2

y − β2k2)v̂y(k, y, t) =
ik

η

(
∂yf̂x − ikf̂y

)
, (S12)

where β =
√

1 + 1/(`2
ηk

2), and `η =
√
η/γv is the viscous screening length. We similarly

eliminate v̂x and P̂ from Eqs. (S10) to express the boundary conditions in terms of v̂y, with the

result

[v̂y]0 = 0 ,

[∂yv̂y]0 = 0 ,

[η(∂2
y + k2)v̂y − ikσ̂xy]0 = 0 ,[

η

k2
(∂2
y − 3k2 − `−2

η )∂yv̂y − σ̂yy−
i

k
f̂x

]
0

= γ(k2 + `−2
c )ĥ .

(S13)

We write the solution to Eq. (S12) with boundary conditions given by Eq. (S13) as the sum of

the solution to the homogeneous equation with the required boundary conditions and a particular

solution to the inhomogeneous equation with homogeneous boundary conditions,

v̂y(k, y, t) = v̂hy (k, y, t) + v̂′y(k, y, t) . (S14)
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The homogeneous solution v̂hy describes the flow induced by the stress discontinuity across the

interface and propagated by passive processes. It is given by

v̂hy (k, y, t) =− |k|
2γv

[
γ(k2 + `−2

c )ĥ+ [σ̂yy +
i

k
f̂x]0

](
e−|ky| − 1

β
e−β|ky|

)
+
ikσ̂xy
2γv

sign(y)
(
e−|ky| − e−β|ky|

)
.

The particular solution can be obtained in terms of Green’s function and describes interfacial

flows driven by stochastic stress and force in the bulk. It is given by

v̂′y(k, y, t) =
|k|
2γv

∫ 0−

−∞
dy′
(
e−|k||y−y

′| − 1

β
e−β|k||y−y

′|
)[

f̂y(k, y
′, t) +

i

k
∂y′ f̂x(k, y

′, t)

]
+
|k|
2γv

∫ ∞
0+

dy′
(
e−|k||y−y

′| − 1

β
e−β|k||y−y

′|
)[

f̂y(k, y
′, t) +

i

k
∂y′ f̂x(k, y

′, t)

]
.

(S15)

Adding the two solutions v̂hy and v̂′y, and integrating by parts, it is easy to show that, at the

interface y = 0, the surface terms in v̂′y are cancelled by equal and opposite contributions from

v̂hy . The y velocity at the interface can then be written as

v̂y(k, y = 0, t) = v̂r(k, t) + v̂t(k, t) , (S16)

where v̂r controls the passive relaxation of the interface due to surface tension and gravity and

v̂t represents the stochastic forcing arising from thermal noise that drives interface fluctuations.

The relaxation part has the form

v̂r(k, t) = −ν(k)ĥ(k, t) , (S17)

with

ν(k) =
γ(k2 + `−2

c )

2η|k|(β2 + β)
≡ γ(k2 + `−2

c )

ζ(k)
, (S18)

where

ζ(k) = 2η|k|(β2 + β) (S19)
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has a natural interpretation as an effective friction per unit length on the interface. The stochastic

forcing has a rather lengthy expression

v̂t(k, t) =
k2

2γv

∫ 0

−∞
dy′e|k|y

′
[
σ̂xx(y

′)− σ̂yy(y′) + 2ik|k|−1σ̂xy(y
′)− ik−1f̂x(y

′) + |k|−1f̂y(y
′)
]

− k2

2γv

∫ 0

−∞
dy′eβ|k|y

′
[
σ̂xx(y

′)− σ̂yy(y′) + ik|k|−1(β + β−1)σ̂xy(y
′)− ik−1f̂x(y

′)

+ β−1|k|−1f̂y(y
′)
]

− k2

2γv

∫ ∞
0

dy′e−|k|y
′
[
σ̂xx(y

′)− σ̂yy(y′)− 2ik|k|−1σ̂xy(y
′)− ik−1f̂x(y

′)− |k|−1f̂y(y
′)
]

+
k2

2γv

∫ ∞
0

dy′e−β|k|y
′
[
σ̂xx(y

′)− σ̂yy(y′)− ik|k|−1(β + β−1)σ̂xy(y
′)− ik−1f̂x(y

′)

− β−1|k|−1f̂y(y
′)
]
,

(S20)

but it is easy to show using Eqs. (S9) that it has zero mean and correlations

〈v̂t(k, t)v̂t(k′, t′)〉 =
2kBT

ζ(k)
Lδk,−k′ δ(t− t′) . (S21)

The dynamics of interface fluctuations is then governed by a Langevin equation

∂tĥ(k, t) = −ν(k)ĥ(k, t) + v̂t(k, t) . (S22)

with noise correlations given by Eq. (S21). We can now use the Langevin equation to evaluate

the equal time spectrum of interface fluctuations. After defining the temporal Fourier trans-

form, ĥ(k, ω) =
∫∞
−∞ dte

−iωtĥ(k, t), we immediately obtain the dynamic structure factor of the

interface as
1

L
〈|ĥ(k, ω)|2〉 =

2kBT/ζ(k)

ω2 + ν2(k)
. (S23)

The static or equal-time fluctuation spectrum is then given by

1

L
〈|ĥ(k, t)|2〉 =

∫ ∞
−∞

dω

2πL
〈|ĥ(k, ω)|2〉 =

2kBT/ζ(k)

2ν(k)
=

kBT

γ(k2 + `−2
c )

, (S24)

15



which is consistent with that obtained using the equipartition theorem. Importantly, the depen-

dence of the noise amplitude on the effective friction is key for guaranteeing the result obtained

from equipartition.

Dynamics of activity-powered interfacial fluctuations.

In the previous section, we studied the dynamics of thermally driven interfaces. This is char-

acterized by the exponential relaxations with k dependent rates that are controlled by interfacial

tension and gravity. Now we will show how a non-monotonic tangent angle spectrum arises in

active interfaces from the competition of the passive relaxation mechanisms delineated above

and active processes. When the bottom fluid is active, the main driving force of interfacial fluc-

tuations is not thermal noise, but active stress. Neglecting random thermal forces and stresses,

the Stokes equation then takes the form

γvv = η∇2v−∇P − ρgŷ + ∇ · σa , (S25)

where the active stress σa is specified below.

One can then carry out the same derivation as in the thermal case to obtain an equation for

the interfacial fluctuations as

∂tĥ(k, t) = −ν(k)ĥ(k, t) + v̂a(k, t) , (S26)

where the passive relaxation rate ν(k) is given again by Eq. (S18) and v̂a(k, t) is the active

forcing (or active interfacial flow) due to bulk active stress, given by

v̂a(k, t) =
k2

2γv

∫ 0

−∞
dy e|k|y

[
2σ̂axx(y) + 2ik|k|−1σ̂axy(y)

]
− k2

2γv

∫ 0

−∞
dy eβ|k|y

[
2σ̂axx(y) + ik|k|−1(β + β−1)σ̂axy(y)

]
.

(S27)

In this case, however, Eq. (S26) is not a closed equation since the forcing v̂a is determined by

the dynamics of the active stress, which in turn couples back to the flow, as shown in Eq. (S2b).
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As discussed in the main text, this feedback is key for the onset of traveling surface waves. On

the other hand, as shown below, the form given in Eq. (S26) offers a useful interpretation of

the role of activity on the equal-time fluctuation spectrum.

To proceed, we treat the active stress as stochastic forcing correlated both in space and time.

This is justified by a large body of simulations of bulk active nematics (52) that have quanified

active stress correlations. For the purpose of modeling interfacial fluctuations, we assume a

simple form with exponential correlation in both space and time, given by

〈σaxx(r, t)σaxx(r′, t′)〉 = 〈σaxy(r, t)σaxy(r′, t′)〉 = σ2
rmse

−|r−r′|/`ae−|t−t
′|/τa , (S28)

and 〈σaxx(r, t)σaxy(r′, t′)〉 = 0. The statistical properties of the active noise are then completely

determined by three quantities: the correlation length `a, the correlation time τa, and root mean

square active stress σrms. Using Eqs. (S27)-(S28), we can calculate the correlation function of

the active forcing va as

〈v̂a(k, t)v̂a(k′, t′)〉 =
2E(k)

ζ(k)
Lδk,−k′

e−|t−t
′|/τa

τa
, (S29)

where

E(k) =
σ2
rms`

2
aτaζ(k)

8γ2
v

∫ ∞
−∞

dkz
(β − 1)2k6

(k2 + k2
z) (β2k2 + k2

z)

4 + (1 + β−1)
2

+ (1− β−1)
2
k2
zk
−2

(1 + `2
ak

2 + `2
ak

2
z)

3/2
.

(S30)

We can then readily obtain the equal-time spectrum of the active interfacial fluctuations as

1

L
〈|ĥ(k, t)|2〉 =

2E(k)

γ(k2 + `−2
c )

1

1 + τaν
. (S31)

The equal-time spectrum of the active interface is well described by Eq. (S31). Figures

S10A,B show excellent agreement between the theoretical spectra (solid lines) calculated using

Eq. (S31) and those measured from simulations and experiment (circles). The experiment,
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simulations, and theory, all suggest a crossover of the height spectrum from 〈|ĥ(k, t)|2〉 ∼ |k|

at small wavenumber to 〈|ĥ(k, t)|2〉 ∼ k−6 at large wavenumber, which is very different from

the equilibrium spectrum in Eq. (S24). This can be attributed to the scale dependence of energy

injection in the active fluid.

To understand this, note that E(k) has the dimension of energy. Comparing Eq. (S29)

to (S21), we see that E(k) can be used to characterize the energy scale of active fluctuations,

to be compared to kBT in thermal equilibrium. We have calculated E(k) numerically using

Eq. (S30) and the results are shown in Figs. S10C,D. Both simulations and experiments show

energy scale of the order 10−13 ∼ 10−11J , which is much larger than the thermal energy scale

kBT ∼ 10−21J . This explains the giant interfacial fluctuations found in both experiments and

simulations. Furthermore, E(k) has a strong dependence on wavenumber k: it crosses over

from E(k) ∼ k at small k where dissipation is dominated by friction to E(k) ∼ k−3 where

dissipation is dominated by viscosity. The crossover length scale is essentially independent of

activity and is controlled by the typical size of flow vortices, which in our system is determined

by the screening length `η. This behavior is consistent with the energy spectrum reported for

bulk active liquid crystal in the regime of active turbulence (27).

The scale dependence of the active energy injection determines the fluctuation spectrum of

active interface. At small wavenumber or large scales, we find 〈|ĥ(k, t)|2〉 ∼ E(k) ∼ k, in

agreement with the interfacial spectra shown in Figs. S10A,B from both simulations and exper-

iments. At large wavenumber where τaν(k)� 1, we find 〈|ĥ(k, t)|2〉 ∼ E(k)/(k2ν(k)) ∼ k−6,

where we have assumed k � `−1
c , `−1

η and used ν(k) ∼ k. The scale-dependence of active

energy injection distinguishes the active interfacial spectra from their equilibrium counterparts.

Estimating active stress using interfacial fluctuations.

Equation (S31) allows us to estimate the magnitude of the active stress σrms from the inter-
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face spectrum. This is best done using the interface’s tilting angle θ instead of the height since

the former is well defined even at high activity. Using θ̂(k, t) ' ikĥ(k, t), we find

1

L
〈|θ̂(k, t)|2〉 =

2k2E(k)

γ(k2 + `−2
c )

1

1 + τaν
, (S32)

and the root mean square value of θ

θrms ≡ L−1

√∑
k

〈|θ̂(k, t)|2〉. (S33)

Clearly θrms is proportional to the amplitude of the active stress σrms,

θrms = σrms/p, (S34)

where

1

p2
=
∑
k

`2
aτaL

−1k2

4γ2
vν(1 + τaν)

∫ ∞
−∞

dkz
(β − 1)2k6

(k2 + k2
z) (β2k2 + k2

z)

4 + (1 + β−1)
2

+ (1− β−1)
2
k2
zk
−2

(1 + `2
ak

2 + `2
ak

2
z)

3/2
.

(S35)

Measuring θrms and calculating p numerically allows us to estimate the magnitude of active

stress σrms. We use this method to measure the active stress in the experiment. Taking advantage

of the fact that `a and τa barely change with the KSA concentration, p is essentially independent

of the KSA concentration. Using p ≈ 8.4 mPa/rad estimated from one set of data, we obtain

that the active stress varies between 2.5 mPa and 6 mPa in the experiment (Fig. 5B), close

to the values obtained from activity-induced wetting below 300 nM KSA. The lowest active

stress value coincides with the yield stress of passive kinesin-crosslinked bundled microtubule

gels (53).

Theory of activity-induced wetting: from active stress to active tension

The enhanced wetting in the presence of activity originates from directed active stresses in

the region near the wall that persistently lift the interface, effectively increasing wall adhesion

19



of the active phase. Both experiment and simulation show that nematic director preferentially

aligns with the wall (Fig. 4B, 4D inset). Such an alignment is expected even for passive rigid

filaments due to steric interaction with the wall (43, 54). It is enhanced by active forces, result-

ing in so-called active anchoring, as demonstrated in recent simulations (22, 55, 56). Since the

active stress is extensile, these vertically aligned domains exert, on average, a lifting force on

the interface, driving it upwards. Activity then changes both the height of the contact point and

the apparent wetting angle, as shown below.

Force balance at a passive interface.

We first summarize the force balance that determines the interface profile and the wetting

angle of a passive interface in the presence of gravity (57). For a passive interface, the profile

of the interface height h(x, t) is governed by the Young-Laplace equation that expresses normal

force balance across the interface as

γ
h′′

(1 + h′2)3/2
−∆ρgh = 0 , (S36)

where primes denote derivatives with respect to x and γ is the interfacial tension. This equation

needs to be solved with the contact boundary condition at the wall

h′(0) = −cotθe , (S37)

where the wetting angle θe (shown in Fig. S11A) is determined by balancing the wall tension

γw and the interfacial tension γ

γ cos θe = γw . (S38)

Assuming the slope of the interface remains small, i.e., h′ � 1, Eq. (S36) can be linearized and

solved, resulting in an exponential interface profile, given by

h(x) = `c cot θe e
−x/`c , (S39)
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with `c =
√
γ/∆ρg the capillary length.

Force balance at an active interface.

In the active liquid crystal there is a region close to the wall where MT bundles align parallel

to the wall (Figs. 4B, 4D inset, S11B). We assume that the thickness `w of this wall-aligned

region is `w � `c. Outside this region (x > `w), the average active stress vanishes due to

the chaotic dynamics, and we expect the average interface profile to be governed again by the

Young-Laplace equation, but with an apparent wetting angle θa different from the equilibrium

wetting angle θe (Fig. S11B). The profile is therefore given by Eq. (S39), with θe → θa.

To determine θa, we examine force balance within the thin wall-aligned region where four

forces per unit chamber thickness are at play (inset Fig. S11B):

1. coherent active stresses lifting the interface Fa ≈ −α`w, where α < 0;

2. vertical downward gravitaional force resulting from density difference, Fg = ∆ρgh0`w,

where h0 is the height of the contact point;

3. interfacial tension away from the wall aligned domain at x > `w, drags the interface

downward Fi = γ cos θa in the y direction;

4. wall adhesion contributes to a vertical lifting force per unit length Fw = γw.

The wetting angle θa is determined by the balance of these four terms through

Fw + Fa = Fi + Fg , (S40)

−α`w > 0 has the dimension of interfacial tension which defines an “active tension” γa ≡

|α|`w.

Prior to complete wetting, the interface profile for x ≥ `w is governed by the Young-Laplace

law with wetting angle θa. The interface profile must be obtained from the solution of the
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nonlinear equation, Eq. (S36) (57). The maximum height h0 is obtained by setting h(x = 0) '

h(x = `w), with the result

h0 ≈ `c
√

2(1− sin θa). (S41)

Equation (S40) then becomes

γ cos θa + ∆ρg`w`c
√

2(1− sin θa) = γw + |α|`w . (S42)

This shows that increase in activity results in a decrease of the active wetting angle θa, and

associated increase of the maximum height h0.

The onset of complete wetting corresponds to θa = 0. Inserting this in Eq. (S42) gives the

critical activity for complete wetting as

αc =
γ − γw
`w

+
√

2∆ρg`c . (S43)

Beyond complete wetting, θa = 0. For x ≤ `w, the interface height keeps growing until the

active stress is balanced by gravity and interfacial tension. Setting θa = 0 in Eq. (S40), we

obtain the maximum height as

h0 =
1

∆ρg`w
(γw − γ − α`w) =

√
2`c +

1

∆ρg
(|α| − αc) . (S44)

When |α| � αc, i.e., at values of activity well above the onset of complete wetting, h0 ' |α|
∆ρg

and one can infer the active stress directly by measuring h0. In experiments, we use the center-

of-mass of the capillary rise to determine the active stress, as it is challenging to consistently

define h0, e.g. when the wetting layer splits from the bulk fluid.

Numerical simulations allowed us to examine the dynamics of active wetting starting from a

flat interface. For all activities, the contact point climbed up the wall, saturating at a maximum

value determined by force balance (Fig. S12A). We compare the steady state maximum height

obtained from simulations (circles) to Eq (S40) (Fig. S12B). The theory provides an excellent
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prediction for the height prior to complete wetting, as well as the transition to complete wetting.

Beyond complete wetting, the maximum height h0 increases linearly with activity |α|, suggest-

ing that measuring the height of the contact point estimates active stresss. The rate of growth

of the height with activity is, however, slightly larger than the expected value 1/∆ρg (dashed

line in Fig. S12B). This could be due to the fact that at high activity, the contact point has a

sharp geometry and the fields are varying violently in space, which significantly reduces the

numerical accuracy of OpenFOAM.

To summarize, the presence of a wall-aligned layer gives rise to an active tension γa = |α|`w

that changes the apparent wetting angle from the passive value θe to θa given by Eq. (S42). Im-

portantly, we show that it is possible to infer the active stress by comparing measurement of

wetting of interfaces in passive and active samples.

Converting maximum height to center of mass.

In experiments it is difficult to determine the maximum height of the wetting layer. A

more convenient and directly measurable quantity for quantifying activity-induced wetting is

the center of mass of the region of the interface that is lifted above its flat value, defined as

hc =
1

2A

∫ ∞
0

h2(x)dx , (S45)

where

A =

∫ ∞
0

h(x)dx (S46)

is the area of the lifted region. To compare with experiments we therefore evaluate the center of

mass hc as follows. By requiring that the total gravitational force exerted on the lifted region,

∆ρgAd, balance the sum of wall adhesion Fw and active lifting force Fa, we obtain the area A

as

A =
γw − α`w

∆ρg
. (S47)
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To evaluate the integral in Eq. (S45). we separate the wall-aligned layer from the bulk part of

the interface. Within the aligning layer x < `w, we assume h(x) ' h0, so that the thin layer

contributes h2
0`w/2 to the integral. For x ≥ `w, we assume the average interface profile satisfies

the nonlinear Young-Laplace equation. Since no explicit solution is available, we first evaluate

the interface profile numerically by solving the Young-Laplace equation with contact angle θa,

then calculate the bulk part of the integral in Eq. (S45) numerically.
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Figure S1: Three-dimensional visualization of coarsening sample at 275 nM KSA. (A)
Active droplets (cyan) confined to a 30 µm chamber. (B) Magnified image of an isolated droplet.
(C) Cross sections views of the droplet. In 30 µm thick chambers, droplets span the entire
chamber, and have a nearly flat vertical profile.
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Figure S2: Area fraction of dextran over time. The area fraction initially increases rapidly,
then remains nearly constant 2 hours after sample preparation.
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Figure S3: Measurement of the correlation length. (A) Dextran fluorescence image 1.5
hr after the start of the experiment. Only part of the field of view is shown. Scale bar 300
µm. (B) Pixels in dextran-rich regions are assigned a value of 1, and those in the PEG-rich
regions are assigned a value of −1. (C) The autocorrelation matrix of (B). (D) The radial
autocorrelation at 6 time points, obtained from (C) by azimuthal averaging around the origin.
The correlation length ξ is defined as the distance at which the autocorrelation function equals
0.5. (E) Evolution of ξ in time. KSA concentration 235nM.
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Figure S4: Time evolution of average PEG-rich droplet size. At each time point, all PEG
droplets in a dextran-fluorescence image were identified. Then, their areas were averaged and
the average droplet size was defined as the square root of the average area. At 130 nM KSA,
droplet coarsening was enhanced. At 230 nM KSA, the mean droplet size peaked around 2
hours, and then entered a dynamic steady state characterized by constant average droplet size.
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30 min lag

Figure S5: Early evolution of correlation length and inverse curvature for 230 nM KSA.
In the first 2 hours of the experiment, correlation length development lagged behind that of the
average interface curvature. Subsequently, the rate of change of both quantities coincided as the
system approached the steady state.
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Figure S6: Detection of bulk-phase-separated interfaces. (A) Dextran fluorescence image.
(B) The thresholded image, with edges detected using the Sobel filter shown in red. (C) After
skeletonizing and pruning the largest component, the edge roughly contours the interface. (D)
A small section of the interface. (E) A magnified region surrounding a point (x, y) on the
interface. (F) Image intensity in (E) is interpolated using a 2D spline (grayscale). Red line is
parallel to the local normal (nx, ny) to the interface. (G) Interpolated image intensity along the
local normal. The distance d along the normal is defined where the intensity is equal to the
threshold. (H) The interface position is defined to be (x, y) + d(nx, ny)
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Figure S7: Tangent angle power spectrum as a function of time, averaged over one-hour
intervals after sample preparation. Although the amplitude of fluctuations increases over
time, after ≈ 6 hours, the shape of the fluctuation spectrum remains nearly constant.
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Figure S8: Experimental tangent angle spectra extended to k = 103 mm−1. Tangent angle
measurement noise increases as ∼ k2, resulting in a secondary peak at k ∼ 8 · 102 mm−1 where
all spectra overlap. Legend denotes KSA concentrations in units of nM.

32



Figure S9: Root-mean-square velocity of active phase as a function of kinesin concentra-
tion averaged from 6 to 8 hours after sample preparation. Below 200 nM KSA, the speed
decreases significantly. Above 200 nM KSA, the speed is approximately constant. Error bars
show standard deviation.
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Figure S10: Fluctuation of active interfaces at different activities. (A-B) Fluctuation spec-
tra of interfaces from (A) simulations and (B) experiment. Solid lines are theoretical values
calculated using Eq. (S31), while circles are height spectra extracted from either simulations or
experiments. For simulations, σ2

rms = α2S̄2/8, where S̄ is the mean nematic order parameter
at the steady state. The correlation legnth `a, correlation time τa, and S̄ were measured from
simulations. Since all other parameters are known, no fitting parameter is used here. (C-D)
Energy spectra E(k) calculated using (S30) with parameters from (C) simulations and (D) ex-
periment. The 200 nM KSA data set is used to obtain results in panels B and D. We used the
following parameters to calculate the energy and interface fluctuation spectra: interfacial ten-
sion γ = 0.177 µN/m, density difference ∆ρ = 8.9 kg/m3, viscosity η = 25 mPa·S, friction
γv = 100 MPa. The correlation length and time of active stress `a = 50 µm and τa = 80 sec
were used in (B) and (D). Magnitude of active stress σrms is used as a fitting parameter, and the
best fit gives σrms = 2.47 mPa.
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Figure S11: (A) Sketch of the wetting profile of a passive liquid-air interface defined by
y = h(x). The wall tension γw is determined by γw = γwall−air − γwall−liquid. (B) Sketch of
activity-induced wetting. The inset shows the geometry and force balance close to the contact
point.
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Figure S12: Evolution of height of interface contact point with activity. (A) Height of
contact point as a function of time at different activities obtained from numerical simulations
of the continuum model. Since there are two vertical walls, we use the average height of the
contact points at the two walls. (B) Steady state height of contact point h0 as a function of
activity. The circles are obtained from simulations as h0 = (ts − t0)−1

∫ ts
t0
h(0, t)dt, with

t0 = 7200S and ts = 20000S. The solid line shows the theoretical value given in Eq. (S40)
with `w = 2.5µm. The dashed line shows the predicted slope 1/∆ρg. In both figures we have
used a passive contact angle θe = 10 degree.
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Figure S13: Measurement of bulk spatiotemporal autocorrelations in simulations and
experiments. (A) Normalized time correlation of active stresses in numerical simulations. In-
set: Correlation time decreases with increasing activity. (B) Normalized space correlation of
active stress in numerical simulation. Inset: Correlation length decreases with increasing activ-
ity. (C) Normalized time correlation of velocity in experiment. Inset: Correlation time shows
little variation with activity. (D) Normalized space correlation of velocity in experiment. Inset:
Correlation length shows little variation with activity. Velocity (stress) autocorrelations were
computed by averaging the scalar products of bulk velocity (stress) fields with their displace-
ment in time ∆t and space ∆x. Correlation times and length were defined where the correlation
curve reaches 1/e.
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Supplementary movie captions

Movie S1: Phase separation dynamics at 0 nM KSA concentration. Images taken at 4 min

interval (top panel). Grayscales depict dextran-488 fluorescence, highlighting the active phase.

Chamber thickness, 30 µm. Evolution of the correlation length (bottom panel).

Movie S2: Phase separation dynamics at 135 nM KSA concentration. Images taken at 4 min

interval (top panel). Grayscales depicts dextran-488 fluorescence, highlighting the active phase.

At this kinesin concentration, the passive PEG-rich regions are advected by the active phase,

enhancing the coarsening dynamics. Chamber thickness, 30 µm. Evolution of the correlation

length (bottom panel).

Movie S3: Phase separation dynamics at 230 nM KSA concentration. Images taken at 2 min

intervals. Grayscales depicts dextran-488 fluorescence, highlighting the active phase. Droplets

undergo fusion and fission events that suppress coarsening. Chamber thickness, 30 µm. Evolu-

tion of the correlation length (bottom panel).

Movie S4: High resolution images of phase separation dynamics at 230 nM KSA concen-

tration, taken at 45 sec intervals. Grayscales depicts dextran-488 fluorescence, highlighting the

active phase. Splitting and merging of droplets are clearly visible. Chamber thickness, 30 µm.

Evolution of the correlation length (bottom panel).

Movie S5: Fluctuations of an interface at 345 nM KSA concentration taken at a 15 sec

interval with a macro lens (Canon M50, EFS 60mm f/2.8). Fluctuations are several tens of

microns in height, and are clearly visible to the naked eye due to the refractive index mismatch

between the phases.

Movie S6: Time series of active interfaces taken at 10 sec intervals, and at three KSA

concentration. Detected interfaces (red lines). Interfacial fluctuation amplitude grows with

KSA concentration. Chamber thickness, 60 µm. Travelling disturbances of the interface are
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indicated with arrows. Grayscales represent dextran-488 fluorescence. Scale bar, 350 µm.

Movie S7: Numerical steady-state interfacial fluctuations. Legends denote activities |α|.

Grayscales depict the nematic order parameter, S. Scale bar, 100 µm. 2 second time step.

Movie S8: Dynamics of the wetting profiles of active interfaces in contact with acrylamide-

coated glass walls. Images were taken at 10 sec intervals. Grayscales depict dextran-488 fluo-

rescence.

Movie S9: Numerical active wetting profiles. Legends denote activities |α|. Equilibrium

contact angle, θe = 10◦. Grayscales depict the nematic order parameter S. Scale bar, 50 µm.

20 second time step.
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