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Electro-hydrodynamic equations describing the behavior of a charged polymer jet
are analyzed by analytical methods and scaling approach. A FENE-P constitutive
equation is employed to describe the viscoelastic properties of a conducting polymer
liquid. Effects of the electric field, the flow rate, and the material parameters on the
jet dynamics are investigated. Four different regimes are examined. In particular, a
regime in which the electric current is linearly proportional to the electric field and
independent on the flow rate and a regime in which the electric current is linearly
proportional to the flow rate and independent on the electric field are identified. An
operating window limiting the region of a stable cone-jet mode is also considered.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824109]

I. INTRODUCTION

Electrospinning of polymeric solutions is a simple and relatively effective method for production
of nanofibers and non-woven structures based on them. Since the process has regained interest in
1990s, the growing amount of experimental publications is devoted to its various aspects, mainly
such as spinnability of different polymers and the correlation between the process and the material
parameters on the one hand and the fiber diameter on the other.1–6 At the same time, one of the
main disadvantages of electrospinning disallowing its vast acceptance in the industry is the limited
production rate: a typical highest achievable solution throughput varies between 1 ml/h and 10 ml/h
rendering the process useless for large scale production. Different workarounds have been proposed,
including the multi-nozzle process and electrospinning from a free liquid surface.7, 8 However, as
a systematic fundamental knowledge of the factors limiting stable operation is still lacking, little
progress can be made in tuning the material parameters not only to obtain certain fiber diameter
range but also to increase the productivity and make the process more feasible for the industry.
Hence, one of the challenging problems in the field is an optimization of the electrospinning process
and understanding how different governing parameters influence the jet dynamics and stability as
well as the fiber diameter.

In general, an electrospinning setup consists of a nozzle (a needle or a protruding opening in
the upper electrode) and a counter electrode, as depicted in Figure 1. Although the solution flow rate
Q and the electric field E can be controlled independently, via a syringe pump and a high voltage
generator, respectively, in reality a long term stationary electrospinning process can be achieved only
in a small region in the (E, Q) plane. Unfortunately, the electrospinning literature lacks systematic
investigation of the steady operation window although there is evidence that it can be quite narrow.6

On the other hand, different operation regimes in electrospraying have been studied more thoroughly:
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FIG. 1. Schematic picture of the jet formation.

e.g., Cloupeau and Prunet-Foch9 have shown that the steady operation region shape and dependence
on the material parameters is far from trivial.

Stability and dynamics of the electrospinning jet depends on the intricate interplay of surface
tension, electric forces and rheology of the polymeric solution, although sometimes it is also affected
by gravity and inertial effect. There has been some progress made in understanding how different
factors influence the jet dynamics. General electro-hydrodynamic equations of an electrified liquid
jet have been formulated10–13 in the framework of a so-called leaky dielectric model.14 However,
their direct numerical solution is of limited use for electrospinning as it is profoundly difficult
due to large disparity of the length scales involved and can be obtained only in a narrow range of
parameter values.15, 16 Moreover, as the physics in such an approach is very much hidden underneath
heavy numerics, limited qualitative insight can be gained. Simplifications, such as reducing the
problem to one dimension, are often applied17–19 but introduce inconsistencies: e.g., the electric
current cannot be calculated anymore and has to be treated as an input parameter. Among others,
the effects of viscoelasticity20, 21 and the axisymmetric and bending instability17 have been studied
in the framework of such an approach for the initial part of an electrospun jet.

An alternative approach, often applied in the modeling of electrospraying,11, 22 is a scaling
analysis. It allowed the identification and classification of different electrospraying regimes11 and
prediction of their domains in the parameter space. Also, certain universal trends observed in elec-
trospraying experiments were successfully predicted, the most known example of which is the
electric current being independent on the voltage but scaling as a square root of the flow rate.11, 23

A similar approach being applied to electrified jets emitted in a cone-jet mode, also relevant for
electrospinning,12, 24 resulted in scaling relations for the electric current, jet diameter and length
of the cone-jet transition zone. Two different regimes – viscosity and surface tension dominated –
were identified based on the relative importance of the corresponding forces. In contrast to electro-
spraying, the electric current I has been shown to depend both on the flow rate Q and the electric
field E, yielding scaling relations I ∼ η1/6 K 1/2 E2/3 Q2/3 for viscous and I ∼ α2/7 K 3/7 E3/7 Q4/7

for capillary regimes, where η, α, and K denote liquid viscosity, surface tension, and electric
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conductivity, respectively. Also in this approach only a Newtonian liquid has been considered and
the throughput and the electric field have been treated as completely independent parameters im-
plying that no predictions on the stable operation window have been made. On the other hand,
experiments show1–6 the electric current to be very insensitive to the throughput and viscoelastic
effects to be essential.

Apart from the technological relevance, the problem about the highest and the lowest achievable
flow rates is of a great scientific interest.22 For instance, the finest diameters of the fibers in elec-
trospinning or the smallest droplets in electrospraying are obtained when the applied flow rates are
reduced to a minimum. An existence of such a limiting rate is in some cases explained by a complete
charge separation – saturation of the number of available charge carriers. However, in the majority
of cases, especially for highly conductive liquids, the minimum attainable rates are still far beyond
the complete charge separation limit rendering such an explanation invalid.22 To our knowledge, no
consistent theory explaining the existence of a minimal flow rate has been formulated to this date.

To summarize, although considerable progress in the understanding of the electrospinning
process has been achieved during the past 20 years, there is still a number of problems, which have
not received enough theoretical attention yet. One of the most important of them is the prediction
of the stationary operation region in the (E, Q) plane. Also the influence of viscoelasticity on the
electrospinning regimes and their boundaries has received relatively little attention.

In the present work the dynamics of an electrified jet formed in an electrospinning process is
analyzed. Starting from the general electro-hydrodynamic equations, formulated in Sec. II, analysis
of electrospinning regimes is performed in Sec. III in order to identify the influence of the material
properties, especially viscoelasticity, and the process parameters on the jet characteristics. Special
attention is paid to the boundaries of the stationary operating window, in Sec. IV.

II. MODEL AND BASIC EQUATIONS

We assume that the electrically conducting polymer solution is pumped at a flow rate Q out of
an orifice with diameter D located at the top electrode, Fig. 1. The electrodes generate homogeneous
electric field of strength E0 directed along the z-axis and coinciding with the direction of the
gravity force. The distance between the electrodes is equal to H, at that H � D. As experimental
observations1–6, 22 show, a charged liquid cone is formed at the orifice and then transformed into a
thin straight jet. Later on the jet becomes unstable with respect to whipping, Fig. 1.

The polymer solution is characterized by its density ρ, electrical conductivity K, dielectric
constant ε, and surface tension α. We do not consider the exact nature of the charges in the solution
but assume the polymer is carrying charges of the same sign as the upper electrode – positive – due
to ionization. For the surrounding gas medium we assume that ρ = K = 0 and ε = 1. Additional
parameters are connected with the polymeric nature of the liquid. A polymer chain has a contour
length L and a Kuhn segment length a, so that the number of segments per chain is N = L/a.
Concentration of the polymer chains in solution equals to n and the relaxation time is τ . Using above
parameters we can define the elastic modulus G � nkBT, and the linear viscosity η � Gτ of the
polymer solution.25, 26 As a simple estimation shows, a typical value of τ for the polymer solutions
used in electrospinning is τ ∼ 10−5 ÷ 10−1 s.

The behavior of the electrospun polymer liquid can be described by a set of electro-
hydrodynamic equations, which include the momentum and the constitutive equation for the polymer
solution and the charge relaxation equation on the free boundary. In order to formulate these equa-
tions we introduce the surface charge density σ , the electric field vector inside the fluid E(x, t) and
the velocity field v(x, t).

A. Momentum equation

The general form of the momentum equation is given by

ρ
∂v
∂t

+ ρv · ∇v − ∇ · (� − pI) − ρg − qE = 0, (1)
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where the velocity v(x, t) obeys the incompressibility condition ∇ · v = 0. Here p is the pressure,
∇ is the gradient operator, � is the viscoelastic stress tensor, ρg is the gravity force density, and qE
is the electric force density (q is the free charge density). The differential equation (1) should be
supplemented by appropriate boundary conditions on the free surface. These conditions imply the
balance of the viscoelastic, capillary and electric forces

− psn + � · n + αCn − F = 0, (2)

where ps is the pressure at the surface, n is a normal vector to the surface, C = div n is the mean
surface curvature, and F is the electric force per unit area.

Further on we use a cylindrical system of coordinates (z, r, ϕ) and assume that the cone and
the jet surface is described by an axisymmetric function r = r(z, t) so that the vectors normal and
tangential to the surface are, respectively,

n = − r ′
z√

1 + r ′2
z

ez + 1√
1 + r ′2

z

er , τ = 1√
1 + r ′2

z

ez + r ′
z√

1 + r ′2
z

er .

In what follows we neglect the gravity force and assume that the Debye radius is small with
respect to the jet diameter. The last condition implies that the charges are located in a thin surface
layer with a thickness of the order of the Debye length and the bulk of the liquid is electrically
neutral (in Eq. (1) q = 0). The coupling between the hydrodynamic and the electrostatic problem is
due to the force acting on the surface of the jet. Per unit area, it reads27, 28

F � σ Eττ +
(

σ 2

2ε0
+ ε0 (ε − 1)

2
E2

τ

)
n, (3)

where Eτ = E · τ , En = E · n.
The momentum equation (1) can be simplified using a slender body approximation, |r ′

z| < 1
and the potentiality flow condition implying v · ∇v = 1

2∇v2. After integration over the jet section
[z, z + dz] this equation is recast in a one-dimensional form

2π

r (z,t)∫
0

rdrρ
∂vz

∂t
+ ∂

∂z

⎡
⎣2π

r (z,t)∫
0

rdr

(
ρv2

z

2
+ p − �zz

)⎤
⎦ + 2πr

√
1 + r ′2

z (psI − �) · nez = 0.

(4)
Using the boundary condition (2) and defining the surface velocity in the normal direction as
vn = n · er

∂r
∂t we arrive to the final equation

∂

∂t

(
ρr2vz

) + r2 ∂

∂z
(αC − Fn) + ∂

∂z

[
r2

(
ρv2

z

2
+ �nn − �zz

)]
� 2r Fτ . (5)

The incompressibility condition ∇ · v = 0 reduces to the mass conservation equation ∂r2

∂t +
∂
∂z

(
r2vz

) = 0. Equation (5) has been derived in Refs. 17 and 19 using another methods.

B. Constitutive equation

Special attention has to be paid to the constitutive equation describing the polymer solution. In
order to capture the viscoelastic effects, also in a strong elongational flow, we choose to approximate
the rheology of the solution by a FENE-P model.25, 26 This model is appropriate to describe the
rheological behavior of Boger fluids. It is formulated in terms of a conformation tensor A = 〈RR〉
where R is a polymer chain end-to-end distance and the angular brackets denote averaging. At
equilibrium, 〈R2〉0 � aL � a2N. If one assumes that the stress tensor � is mainly determined by the
polymer component, then in the framework of FENE-P one has

� = G
A/R2

0 − I
1 − trA/L2

(6)
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with A obeying

τ

[
∂A
∂t

+ (v · ∇) A − (∇v)T · A − A · ∇v
]

+ A − R2
0I

1 − trA/L2
= 0, (7)

where

(∇v)i j = ∂v j

∂xi
, (∇v)T

i j = ∂vi

∂x j
, i, j = 1, 2, 3

and R2
0 = 1

3

〈
R2

〉
0. The FENE-P model contains three parameters: the elastic modulus G, the relax-

ation time τ , and the contour length L introduced to account for the finite extensibility of polymer
chains. The linear viscosity of the polymer solution is expressed by means of the scaling relation
η � Gτ .

The components of the stress tensor can be found from Eqs. (6) and (7). We restrict ourselves
to the steady elongation flow characterized by a strain rate ε̇ as this situation is the most appropriate
for the jet dynamics.29, 30 The flow rate and the strain rate in that case are presented as follows:

vz = Q

πr2(z)
, ε̇ = dvz

dz
� − Qr ′

z

r3
. (8)

For further analysis we identify three steady flow regimes corresponding to different stress
behavior. If ε̇τ � 1, the conformations of the polymer coils are close to the equilibrium ones. Using
the representation for the conformational tensor A = R2

0I + A1 where A1 is small correction and
substituting it in Eqs. (6) and (7) one find the stress tensor � � GA1/R2

0 � η
(∇v + (∇v)T

)
. Hence

�zz − �rr � 3ηε̇, �rr � −ηε̇. (9a)

In the region ε̇τ � 1 the polymer coils start to unfold and stretch in the flow direction. At that
R2

0 < Azz < L2, resulting in stress increase � = G
(
A/R2

0 − I
)

(a strain hardening regime). The
incompressibility condition ∇ · v = 0 allows finding the radial velocity vr � − r

2
dvz
dz , therefore

Eq. (7) in the first order yields

τvz
d�zz

dz
− 2τ

dvz

dz
�zz + �zz � 2η

dvz

dz
, (9b)

τvz
d�rr

dz
+ τ

dvz

dz
�rr + �rr � −η

dvz

dz
. (9c)

Finally at very high strain rates ε̇τ � 1 the chains became nearly fully stretched, 1 − trA/L2 � 1,
and the normal stress difference and �rr read

�zz − �rr � ηN ε̇, �rr � −2

3
ηε̇. (9d)

C. Charge relaxation equation

The electric field inside the cone and the jet E induces a current j(E) which obeys a linear Ohm
law j = KE. The normal component of this current is responsible for charging of the free surface.
The charge balance equation on a surface area dA is written as

∂

∂t
(σd A) + ∇τ (σvτ d A) = jnd A. (10)

Here vτ is the tangential component of the surface velocity, ∇τ is the gradient along τ , and jn is a
normal to the surface component of the electric current. Taking into account that ∂

∂t [d A] = vnCd A

and d A = 2πr
√

1 + r ′2
z dz, we arrive to the following charge balance equation:

r
√

1 + r ′2
z

∂σ

∂t
+ ∇τ

(
r
√

1 + r ′2
z σvτ

)
+ r

√
1 + r ′2

z σvnC = r
√

1 + r ′2
z jn. (11a)
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This equation is simplified in the steady state regime

∇τ (rσvτ ) � r jn. (11b)

D. Surface charge density

In what follows we divide the cone-jet pattern in two parts which for convenience will be called
a conductive and a convective one. The conductive part is attached directly to the nozzle and has
virtually equipotential surface (equilibrium distribution of the surface charges), whereas distribution
of the surface charges in the convective part is governed by the flow. Transitions between these parts
occurs at z = 0, with a transition region having a radius r(0) = b (b < D). Thus the conductive
region is located at z < 0 whereas the convective region at z > 0. Note that the z = 0 point does not
necessarily coincide with the point where cone transforms into jet: indeed, some part of the jet can
be conductive as well.

Due to the screening effects the electric current in the conductive region is mainly determined by
conductivity, I � πr2KEz, whereas the current carried by the convective region (z > 0) is determined
by the convective current I � 2πrσvz � 2σ Q

r . At z = 0 both currents have the same order of
magnitude, therefore the surface charge density in the transition region reads

σ ∗ � K Eb3

Q
� ε0 Eb3

QτE
. (12)

Here and further on the numerical prefactors are omitted. E is the strength of the electric field inside
the transition zone and τE = ε0

K is the charge relaxation time (note, it is different from the Maxwell
relaxation time εε0

K and is taken in such form for convenience). For conductive polymer solutions,
this time varies typically inside a broad interval τE ∼ 10−10 ÷ 10−5 s and is usually smaller than the
viscoelastic relaxation time τ , therefore an inequality τE/τ � 1 is assumed to be valid.6 The total
electric current which is a sum of the conductive and the convective currents equals approximately

I � K Eb2. (13)

The charge conservation law I � K Eb2 � σ Q
r leads to a simple formula for the surface charge

density at z > 0

σ � K Eb2r

Q
= σ ∗r

b
. (14)

The surface density of the conductive charges in the conductive region (the contribution of the
polarization charges is assumed to be small), i.e., at z < 0, obeys an integral equation which follows
from the Coulomb’s law27

σ

2ε0
= E0ez · n + 1

4πε0

∫
A

d A1
σ (r1) (r − r1) · n

|r − r1|3
. (15a)

Here the integration
∫
A

d A1 is performed with respect to r1 over the free cone-jet surface. This

equation is simplified after using a slender body approximation

σ (z)

2ε0
= −E0r ′

z + 1

2ε0

∫
|s−z|≤r (z)/|r ′

z|
ds

σ (s)r (s)
(−r ′

z (z − s) + r (z)
)

(
(z − s)2 + r2(z)

)3/2 , (15b)

where we take into account that the charges, which are arranged inside the interval |s − z| ≤ r(z)/|r ′
z|,

give the main contribution to the integral and the remaining part does not change this estimation.
After using an expansion σ (s)r(s) � σ (z)r(z) + (σr )′z(s − z) + 0.5(σr )′′zz(s − z)2 and integration,
we arrive to the following differential equation:[

(σr )′zr
′
z + 0.5(σr )′′zzr

]
ln

1∣∣r ′
z

∣∣ − ε0 E0r ′
z � 0. (16)
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Solution of this equation which conjugates smoothly with Eq. (14) reads

σ � σ ∗b

r
. (17)

Note that Eq. (17) will fail in the near vicinity of the nozzle.
Finally we estimate the electric field strength Ez inside the cone-jet. The total field in the system

is a sum of the field from the electrodes E0ez and the field created by the surface charges Es, Etot =
E0ez + Es. Based on a slender body approximation and the electrostatic boundary conditions27 we
can conclude that the tangential component of the electric field is

Ez � E0 + Es · ez . (18)

The term Es · ez is essentially determined by the charges inside the interval |s − z| ≤ r(z)/|r ′
z| in the

vicinity of the point z

Es · ez � − 1

2ε0

∫
|s−z|≤r (z)/|r ′

z|

σ (s)r (s)(s − z)ds(
(s − z)2 + r2(s)

)3/2 . (19)

Using expansion r(z) � b + r ′
zz the integration gives the following electric field strength:

Ez � E0 + Eb2r
∣∣r ′

z

∣∣
QτE

ln
1∣∣r ′
z

∣∣ . (20)

Far away from the transition region, at z > 0, Ez � E0. Owing to the screening effects, the electric
field inside the conductive region is determined from the electric flux conservation law and can be
approximately written as

Ez � E

(
b

r

)2

. (21)

Thus the electric field attains the maximum value E in the transition region characterized by the
length � � b

|r ′
z| ,

E � E0

1 − b3|r ′
z|

QτE

. (22)

Here we omitted the logarithmic term. Qualitatively similar behavior for the electric field has been
found in numerical calculations.12, 18, 19

Eq. (20) allows one to distinguish two asymptotic cases. If
b3|r ′

z|
QτE

� 1, the field inside the

transition zone approximately coincides with the external one, i.e., E � E0. When 1 − b3|r ′
z|

QτE
� 1,

the field is mainly determined by the surface charges and, therefore, the electric current does not
depend on the external field strength – the situation which is often encountered in electrospraying23

but is not typical for electrospinning. Therefore we restrict ourselves to the first case only, i.e.,

it will be assumed that E � E0. The case
b3|r ′

z|
QτE

> 1 could imply instability of the cone-jet
structure.

III. ELECTROSPINNING REGIMES

In Sec. II, we have formulated the full system of electro-hydrodynamic equations describing the
dynamics of a charged viscoelastic jet and calculated the surface density of the conductive charges.
In this section we focus on the analyses of the jet shapes and formulate an additional condition
which allows finding radius of the jet in the transition region and the electric current carried by the
jet. Further on we identify four different regimes A, B, C, and D.

In the regimes A and B the conductive region includes the cone and a part of the jet (we call it a
conductive jet) having nearly equipotential surface, whereas charge transport in the rest of the jet is
convective (a dielectric jet). Distinction between regimes A and B is made based on the rheological
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flow regime. In the regime A the conductive jet operates in the Newtonian mode whereas the regime
B is in the strain hardening mode.

In the regimes C and D only the cone has equipotential surface whereas the jet behaves as
charged dielectric. The regime C operates in the Newtonian mode and the regime D – in the strain
hardening mode.

A. Regimes A and B

First we consider the regimes A and B which can be described based on the following assump-
tions:

1. The flow inside the cone is small and the structure of the cone is mainly determined by the
capillary and ponderomotive force (the normal electric traction)

αC � Fn. (23a)

Further on we will neglect contribution of the polarization charges so that Fn � σ 2

2ε0
.

2. The shape of the conductive jet is stabilized by the viscoelastic and ponderomotive forces so
that Eq. (5) reads

r2 d Fn

dz
+ d

dz

[
r2 (�zz − �nn)

] � 0. (23b)

3. The shape of the dielectric jet is mainly stabilized by the inertia and the tangential electric
traction,

d

dz

[
r2ρv2

z

] � ε0 E2
0b2r2

QτE
. (23c)

To ensure a smooth transition between the cone and the conductive jet, an equality of the
capillary and viscoelastic terms in Eq. (5) have to be imposed at the junction point

αr2 dC

dz
� d

dz

[
r2 (�nn − �zz)

]
. (24a)

Using approximation C = 1/r and introducing a tensile force T ≡ r2(�zz − �rr), Eq. (24a) is written
in a simple form

αr0 � T0, (24b)

where r0 is the radius and T0 is the tensile force at the cone-jet crossover. Note Eq. (24b) does not
imply a force balance: both forces are directed inside the jet and balanced by the normal electric
traction. Equations (23a) and (24b) allow evaluation of the tensile force

T0 � r2
0
σ ∗2b2

ε0r2
0

� ε0 E2
0b8

Q2τ 2
E

. (25)

Next, the smoothness of the transition between the conductive jet and the dielectric jet should
be taken into account. It implies continuity of the derivatives r ′

z of the corresponding jet profiles at
r = b, i.e.,

r ′
z,conductive(r = b) = r ′

z,dielectric(r = b). (26)

In what follows, we make use of a smooth transition between the normal and the tangential electric
tractions on the one hand and the conductive and the convective currents on the other hand to
calculate the radius b and the electric current.

The shape of the conductive jet in the regime A is determined by Eq. (A4) and depends on the
constant β. The shape of the dielectric jet is given by well known Eq. (A16). First we calculate the
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constant β. Based on the general equation for the tensile force T0 � r2
0 (�zz − �rr ) � − Qηr ′

z
r0

, where
r ′

z is given by Eq. (A5), one gets

T0 � ε0 E2
0b8β

Q2τ 2
E

. (27)

Comparing this formula to Eq. (25) we obtain β = 1.
The derivative r ′

z for the conductive and dielectric jet profiles in the transition region (r = b) are
given by Eqs. (A5) and (A17), respectively. Substitution of these values in Eq. (26) yields

b �
(

ε0η

Kρ

) 1
2

. (28)

The electric current Eq. (13) after elimination of the radius using Eq. (28) reads

I � ηε0 E0

ρ
. (29)

Interestingly, in the regime A the radius b does not depend on the electric field strength and the flow
rate. Also, the electric current is linearly proportional to the electric field strength, I ∼ E0. Moreover
it is predicted to be insensitive to flow rate and conductivity – a feature that has been observed in
recent experiments.31

The radius of the cone-jet transition reads r0 � ε0 E2
0τ 2

E η4

Q2ρ4α
. It decreases with increasing flow rate

and at certain moment reaches the conductive-convective jet transition zone radius value, r0 = b.
This defines the upper boundary of the regime A and a transition into another regime where no
conductive jet is realized, as elaborated in Sec. IV:

Q(+)
A = η

7
4 ε

5
4
0 E0

α
1
2 ρ

7
4 K

3
4

, (30)

i.e., the regime A is realized at Q < Q(+)
A . Another restriction on the regime A is connected with an

assumption that the electric field generated by the surface charges in z direction is smaller than the

external one, see Eq. (22), i.e.,
b3|r ′

z|
QτE

< 1, or

Q > Q1 = ε0 E
1
2
0 η

5
4

ρ
3
2 K

3
4

. (31)

Finally, with decreasing flow rate the strain rate increases as ε̇ � ε0 E2
0 b6

Q2τ 2
E η

so that at

Q = Q(−)
A = ηε0 E0

(
τ

ρ3 K

) 1
2

, (32)

the condition ε̇τ � 1 becomes fulfilled. The boundary Eq. (32) separates the rheologically
Newtonian-like regime A from a strain hardening regime B. Thus, the regime A is realized at
Q > Q(−)

A . The inequality Q(+)
A > Q(−)

A implying G3ττE > ρα2 gives a criterion of the existence of
regime A.

Hence, at Q < Q(−)
A , the strain hardening regime B is realized. The radius b of the transition

zone in this regime is found from the continuity of r ′
z . After using Eqs. (A9) and (A17) it is written as

b �
(

Q2ρ

K E2
0τ

) 1
4

. (33)

This radius increases with increasing flow rate and decreasing electric field strength. The electric
current in the regime B is given by

I �
(

ρK

τ

) 1
2

Q. (34)
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It is linearly proportional to the flow rate and independent on the electric field. For sufficiently large
flow rates such behavior has been observed experimentally.1 The radius of the cone-jet transition
follows from Eqs. (24b), (25), and (33) and reads

r0 � ρ2 Q2

ε0 E2
0τ

2α
. (35)

Restrictions on the strain hardening regime B are determined by inequalities r0 > b and
b3|r ′

z|
QτE

� b6

Q2ττE
< 1, leading to the boundaries

Q > Q(−)
B = α

2
3 τ

7
6 ε

2
3
0 E0

ρ
7
6 K

1
6

, (36a)

Q < Q2 = ε0 E3
0τ

5
2 K

1
2

ρ
3
2

. (36b)

B. Regimes C and D

These regimes are realized when conductive jet does not appear and a transition from conductive
to convective current occurs in the cone-jet transition region. The following assumptions define those
regimes:

1. Similar to the regimes A and B, the structure of the cone is mainly determined by the capillary
force and ponderomotive force, i.e., αC � Fn.

2. The structure of the jet is governed by viscoelastic, inertial and tangential electric forces,

d

dz

[
r2

(
ρv2

z

2
+ �rr − �zz

)]
� ε0 E2

0b2r2

QτE
. (37)

In order to find the jet profiles, which are solutions of Eq. (37), the initial radius b and the initial
derivative r ′

z in the cone-jet transition region should be defined. Let us formulate the conditions
which allow finding these values. The smoothness of the cone-jet transition region implies (see
Eq. (5))

αr2 dC

dz
� d

dz

[
r2

(
ρv2

z

2
+ �rr − �zz

)]
. (38)

Assuming C � 1/r, after integration one gets the following scaling relations:

αb � T0 � ε0 E2
0b8

Q2τ 2
E

, (39)

where T0 � b2(�zz − �rr). Here an equivalence of the capillary and ponderomotive forces has been
used and inertia has been omitted in the cone-jet transition region.

The shapes of the jet in the regime C are presented in the Appendix, Eq. (A11). The radius b
and the derivative r ′

z at the cone-jet transition region are obtained from Eq. (39) using T0 � − 3Qηr ′
z

b

b �
(

ε0αQ2

E2
0 K 2

) 1
7

, r ′
z (z = 0) � −αb2

Qη
. (40)

The electric current reads

I � (
α2ε2

0 E3
0 Q4 K 3

) 1
7 . (41)

Note, that this scaling behavior is similar to the results obtained by Reznik and Zussman12 in what
they called a capillary-dominated regime. The initial conditions Eq. (40) uniquely determine the
shape of the jet which is a solution of the second order differential equation (A10).
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Inertia becomes dominant in the transition region when r ′
z (z = 0) � −αb2

Qη
� − ε0 E2

0 b7

ρQ3τE
, or at

Q = Q(+)
A � η

7
4 ε

5
4
0 E0

α
1
2 ρ

7
4 K

3
4

, (42)

i.e., the regime C is realized at Q > Q(+)
A . Thus Q(+)

A is a boundary between the regimes A and C.
An additional restriction on the regime C is due to the electric field induced by the surface charges,

which should not exceed the external one, see Eq. (22), i.e.,
b3|r ′

z|
QτE

< 1, or

Q > Q3 = α3

η
7
4 ε

1
2
0 E

5
2
0 K

3
4

. (43)

With decreasing flow rate at some point the condition ε̇τ � 1 is fulfilled. It implies onset of the
strain hardening mode. The corresponding transition occurs when the flow rate reads

Q = Q(−)
C � α3 K E0

ε
1
2
0 G

7
2

. (44)

It gives another lower boundary for the regime C. Inequality Q(−)
C < Q(+)

A implies G3ττE > ρα2.
The case Q < Q(−)

C , corresponding to the strain hardening mode, is attributed to the regime D.
According to Eq. (39) the radius of the transition region in the regime D coincides with that in the

regime C, i.e., b �
(

Q2τ 2
E α

ε0 E2
0

) 1
7

and the tensile force is given by T0 � ε0 E2
0 b8

Q2τ 2
E

. Formation of the thinning

jet is possible if simultaneously T0 >
ρv2

z b2

2 and T0 > 2T ∗ � ε0 E2
0 b2τ

τE
(see Eq. (A19b)). The last

inequality is written as b6

Q2ττE
> 1. On the other hand Eq. (A20) gives r ′

z (z = 0) � − b3

Qτ
, therefore

an inequality
b3|r ′

z|
QτE

� b6

Q2ττE
< 1 has to be fulfilled. This brings us to a contradiction implying that

stable jetting is impossible in the regime D.

IV. STABILITY OF THE CONE – JET MODE AND THE OPERATING WINDOW

In this section we address the operating window where a stable jetting mode can be realized.
In practice, a steady spinning region in the (E0, Q) plane is rather restricted: for each value of the
external electric field, a maximum and a minimum pump flow rates exist, beyond which no stable
steady spinning is possible.6, 22 In what follows, two cases corresponding to G3ττE < ρα2, Fig. 2(a),
and G3ττE > ρα2, Fig. 2(b) are identified.

In Figure 2 we introduce the following electric field values:

E∗ = G

η
1
2 K

1
2

, E1 = α
1
3 ρ

1
6

ε
1
6
0 τ

2
3 K

1
3

, E2 = αρ
1
2

ηε
1
2
0

, E3 = α
3
2 ρ

3
4 K

1
4

ε
3
4
0 τ

5
4 G

7
4

. (45)

When G3ττE < ρα2, only the regimes B, C, and D are identified. As has been shown above,
the regime D is unstable and this kind of instability can be responsible for the minimal flow rate at
which intermittent jet is observed.5 After using Eqs. (8) and (40), the strain rate in the regime C is
given by ε̇ � αb

η
. It is inversely proportional to the breakage time of a filament of radius b, τη � η

αb ,
when the instability is governed by viscous and capillary forces.32 Thus one could expect that the
regime C or part of this regime is unstable. We do not consider this point in the present work. One
can suggest that dripping cone is related to this kind of instability. The flow rates corresponding to

the characteristic fields E* and E1 are given by Q(E∗) � α3

G3τ
1
2 τ

1
2

E

and Q(E1) � ατ
1
2 τ

1
2

E
ρ

. According

to Eqs. (36a), (36b), and (44) the area of the regime B increases with increasing conductivity.
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FIG. 2. Schematic diagrams demonstrating location of different electrospinning regimes (the operating window). Details are
in the text.

In the case of G3ττE > ρα2 all regimes A, B, C, and D are possible. The additional regime A is
restricted by the boundaries from Eqs. (30), (31), and (32). With increasing conductivity this regime
moves to the region of low flow rates.

The operating window could be restricted at strong electric fields when the multi-jet modes
appear and at week electric fields when effect of the surface charges becomes dominant. However,
to reveal the single-jet/multi-jet boundary and the effect of surface charges, an additional analysis is
needed, which is beyond our present scope.

Other types of instabilities such as the bending (whipping) instability and the capillary instability
related to the jet dynamics have been discussed in Refs. 17, 33, and 35 and are out of the scope of
this paper. The polymer elasticity has an essential influence on the Rayleigh instability in the jet
region and on the transition to the beads-on-string jet structure, particularly the Rayleigh instability
can be arrested if the elongational stress exceeds some critical value.33–35
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V. CONCLUDING REMARKS

In the present paper analysis of the different spinning regimes has been performed and an oper-
ating window of the electrospinning process has been predicted. We base our approach on rigorous
electro-hydrodynamic equations, formulated within the leaky dielectric model13 and complemented
by a constitutive equation of the polymer liquid. The viscoelastic effects are incorporated by an
appropriate choice of the constitutive model – the FENE-P model is used to incorporate the effects
of chain stretch on the spinnability.25

By analysing the electro-hydrodynamics in the jet region we found that both the normal electric
traction and tangential electric traction manifest as driving forces of the flow inside the jet. It
allows predicting existence of different jet profile types. The inverse square root profiles r(z) ∼ z−1/2

observed in experiment27–29 are shown to be the result of the strain hardening mode. Inertial effects
lead to a well known27 scaling r(z) ∼ z−1/4. Additionally the exponential and double exponential
decay of the jet profile are predicted.

Based on the momentum and electric field equations we examined four electrospinning regimes.
Measurable quantities, such as the jet radius and the electric current, are calculated for three of them.
The regime A in which the jet first is driven by the normal electric force and then by the tangential
electric force operates in the Newtonian mode. At that the current scales as I ∼ ηE0, i.e., linearly
proportional the electric field. The jet dynamics in the regime B is driven by the same forces as
in the regime A but operates in the strain hardening mode. It gives the linear relation between the
electric current and the flow rate I ∼ (K/τ )

1
2 Q. In the regimes C and D the jet is driven only by

the tangential electric traction: at that the regime D operates in the strain hardening mode and is
unstable due to “overcharging” of the jet surface and the regime C operates in the Newtonian mode
and could be capillary unstable.

In experiment, quite often a distinction is made between “high” and “low” conductivity poly-
meric solutions, with the first ones being the most interesting as they allow to produce the thinnest
fibers.6 Note, that our theory predicts different type of operating windows for those two types
of solution, as the choice between Figures 2(a) and 2(b) is made based, among other parame-
ters, on conductivity: highly conductive liquids are expected to show the behavior represented by
Figure 2(a). Hence, from a practical point of view, it is instructive to estimate the characteristic val-
ues of the parameters for the typical representatives “high” and “low” conductivity solutions. Here
we base our estimations on the experimental results presented by Wang et al.,6 who systematically
studied polymers and solvents of different chemical nature.

Polyamide 6 (PA6) in formic acid (FA) is probably the most industrially relevant representative
of the “highly conductive” solutions.36 It features very high conductivity and allows to produce
nanofibers down to sub-100 nm range. An example of low conductivity solution is poly(D-L-lactic
acid) (PLA) dissolved in dimethylformamide (DMF). Somewhat intermediate conductivities are
detected, e.g., for polyacrylonitrile (PAN) in DMF system. The properties of all three examples,
extracted from Ref. 6 are listed in Table I. Parameters such elastic modulus G = η/τ and charge
relaxation time τE = ε0

K can be estimated from those data as well; we also assume the densities to
be around 1000 kg/m3.

It is easy to check that inequality G3ττE
ρα2 < 1 is valid for all solutions PA6/FA, PAN/DMF, and

PLA/DMF, therefore these systems fall into diagram of Figure 2(a) and operate in the regime B. The
radius of the jet b estimated from Eq. (33) is presented in the last column of the Table I. The results
are in good agreement with experiment.6

TABLE I. Parameters of three representative solutions of different conductivities. Values are from Wang et al.6 except the
last column, calculated from Eq. (33).

η (Pa s) τ (ms) K (mS/cm) E0 (kV/m) Q (ml/h) dj (μm) 2b (μm)

PA6/FA 0.21 0.4 4.3 1700 0.1 . . . 0.4
PAN/DMF 0.17 2 0.036 280 0.3 3.3 3.8
PLA/DMF 3.52 2 0.0064 300 1 6.4 10
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Unfortunately, most of the data available in the literature disallows a detailed comparison of the
present theoretical predictions to experiment. However, let us emphasize that the numerical values
of the typical electric field values (45) are well in the range of the practically observed ones. For
example, for PA6/FA solutions, Eqs. (45) predict E∗ = 3 × 103 V/m and E1 = 2 × 104 V/m.

Note that the analysis presented here omits certain details, which might be important in ex-
periments. First of all, the multi-jet operating mode as well as the polarization charges has been
neglected. One can expect multi-jetting to become important, especially at high fields or large nozzle
diameters, when the typical length scale of unstable surface perturbations becomes smaller than the
drop diameter.37, 38 Additionally, the exact details of the external field configuration have not been
considered and homogeneous external field strength E0 has been assumed. At the same time, in
practice, long protruding needles are often used, leading to strong field inhomogeneities. In such a
situation, the field strength parameter E0 used in our approach is to be associated with the typical
vertical component of the field in the vicinity of the needle tip and not with the electric voltage
divided by the inter-electrode distance, as is done sometimes in the literature.
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APPENDIX: THE JET PROFILES

Let us begin by considering a conductive jet which is governed by the viscous and ponderomotive
forces. After using formula �zz − �nn � 3ηε̇ � − 6Qηr ′

z
πr3 , Eq. (23b) is written as

r2 d Fn

dz
− d

dz

[
6Qηr ′

z

πr

]
� 0, (A1)

where the ponderomotive force Fn approximately reads

Fn � σ ∗2b2

2ε0r2
� ε0 E2

0b8

2 (QτE )2 r2
. (A2)

Substitution of Eq. (A2) in Eq. (A1) yields

ε0 E2
0b8

(QτE )2

r ′
z

r
+ 6Qη

π

d

dz

[
r ′

z

r

]
� 0. (A3)

Solutions of the last equation are given by

r (z) = b exp
[
β

(
e−Az − 1

)]
, A = πε0 E2

0b8

6Q3ητ 2
E

, (A4)

with r(z = 0) = b and β is an integration constant. It is interesting to note that asymptotically
(z → ∞) the shape of the conductive jet transforms to a cylinder of the radius r(z → ∞) = be−β .
The derivative r ′

z at z = 0 reads

r ′
z = −r Aβ

(
1 + ln

r

b

)
= −πε0 E2

0b9β

6Q3ητ 2
E

(A5)

and the strain rate ε̇ � − Qr ′
z

r3 ∼ 1
r2 attains maximum at the cone-jet crossover.

To proceed with the strain hardening mode, first we introduce the following notations:
T(r) � r2�zz and ψ(r) = r ′

z . In that case Eqs. (23b) and (9b) read

ε0 E2
0b8

(QτE )2 r
− dT

dr
� 0, (A6a)

Qτψ(r )

r3

(
r

dT

dr
+ 2T

)
+ T = 0. (A6b)
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Solution of Eq. (A6a) is written as

T = T0 + ε0 E2
0b8

Q2τ 2
E

ln
r0

r
. (A7)

Here T0 � ε0 E2
0 b8

Q2τ 2
E

is the tensile force and r0 is the radius of the cone at the cone-jet crossover. Taking

into account that r0 > b the jet profile is approximately written as

r (z) � b

(
1 + b2z

Qτ

)− 1
2

. (A8)

The derivative r ′
z at z = 0 is given by

r ′
z(z = 0) � − r3

Qτ
= − b3

Qτ
. (A9)

The scaling behavior r(z) ∼ z−1/2 has been both found in experiments29, 30 and predicted theoretically
using different arguments.29

Next we address a jet which is governed by viscous and tangential electric forces. The momentum
Eq. (37) is written as

6Qη

π

d

dz

[
r ′

z

r

]
� K E2

0b2r2

Q
. (A10)

Solution of this differential equation depends on the initial radius b and the initial value of the
derivative r ′

z (z = 0) = −w. It can be solved analytically if we introduce a new function f (r ) ≡ r ′
z

r

so that (A10) is rewritten as ff ′
r = 2Br with B = π K E2

0 b6

12Q2η
. A general solution of this equation is given

by

z(r ) = b

2

1∫
r2/b2

dx

x
√

w2 + B(x − 1)
. (A11)

The derivative r ′
z and the strain rate read

r ′
z = − r

b

√
w2 + B

(
r2

b2
− 1

)
, (A12a)

ε̇ � Q

br2

√
w2 + B

(
r2

b2
− 1

)
. (A12b)

Later on we consider the limiting cases. If w2 � B Eq. (A11) is simplified,

r (z) � b exp
(
−wz

b

)
. (A13a)

If w2 = B we arrive to well known result12, 24

r (z) � b
(

1 + wz

b

)−1
. (A13b)

Finally at w2 < B the jet has finite length, zmax = z(rmin ), where the minimal radius rmin is obtained
from the following equation:

w2 + B

(
r2

min

b2
− 1

)
= 0. (A14)

At that r ′
z(z = zmax ) = 0, therefore the strain rate ε̇ = 0.

Analysis shows that the strain rate ε̇ increases with jet thinning at w2 ≥ B and decreases at
w2 < B. Therefore in the first case one could expect transition to the strain hardening mode when
ε̇τ � 1.
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In the above analysis we do not take into account the inertial effects. The momentum equation
(37) at ρv2

z � �zz − �nn is a first order differential equation

ρQ2

π2

d

dz

[
1

r2

]
� ε0 E2

0b2r2

QτE
. (A15)

Its solution defined by the initial radius r(z = 0) = b reads

r (z) � b

(
1 + 2π2ε0 E2

0b6z

ρQ3τE

)− 1
4

. (A16)

The asymptotic behavior r(z) ∼ z−1/4 has been first predicted by Kirichenko et al.28 The initial
derivative value reads

r ′
z � −ε0 E2

0b2r5

ρQ3τE
= −ε0 E2

0b7

ρQ3τE
. (A17)

Finally we consider the strain hardening mode assuming ε̇τ � 1 and G < �zz < GN. Af-
ter introduction of T(r) = r2�zz, T0 = b2�0, T ∗ = K E2

0b2τ , and ψ(r) = r ′
z the momentum

equation (37) and the constitutive equation (9b) are written as

ψ(r )

(
ρQ2

π2r3
+ dT

dr

)
� −2T ∗r2

Qτ
, (A18a)

Qτψ(r )

r3

(
r

dT

dr
+ 2T

)
+ T = −6Qηψ(r )

πr
. (A18b)

After some calculations these equations are rewritten in the form

dT

dr

(
1 − 2T ∗

T

)
� 2T ∗

r

(
2 + 6Gr2

πT ∗ − ρQ2

2π2r2T ∗

)
, (A19a)

dr

dz
� − r3

2Qτ

(
1 − 2T ∗

T

)(
1 + 3Gr2

πT
− ρQ2

2π2r2T

)−1

. (A19b)

These equations can be simplified in the two limiting cases, namely when inertia is dominant and
when inertia is small. Further on, the term 3Gr2

πT < 1 can be omitted. In the first case two conditions
ρQ2

2π2r2T > 1 and 2T ∗
T > 1 ensure the solution of (A19b) yields a thinning jet. It easy to see that

Eq. (A19b) in the first order gives the profile Eq. (A16).
In the second case thinning jet solution appears when ρQ2

2π2r2T < 1 and 2T ∗
T < 1. Equation (A19b)

approximately reads

dr

dz
� − r3

2Qτ

(
1 − 2T ∗

T

)
� − r3

2Qτ
. (A20)

From the last equation the jet profile is obtained

r (z) � b

(
1 + b2z

Qτ

)− 1
2

. (A21)

Note, when the tensile force T = 2T∗, the derivative r ′
z = 0.

1 Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, “Experimental characterization of electrospinning: the
electrically forced jet and instabilities” Polymer 42, 9955 (2001).

2 S. A. Theron, E. Zussman, and A. L. Yarin, “Experimental investigation of the governing parameters in the electrospinning
of polymer solutions,” Polymer 45, 2017 (2004).

3 Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their
applications in nanocomposites,” Compos. Sci. Technol. 63, 2223 (2003).
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