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ABSTRACT

Aims. The response of the solar coronal magnetic field to small-scale photospheric boundary motions including the possible formation
of current sheets via the Parker scenario is one of open questions of solar physics. Here we address the problem via a numerical
simulation.
Methods. The three-dimensional evolution of a braided magnetic field which is initially close to a force-free state is followed using a
resistive MHD code.
Results. A long-wavelength instability takes place and leads to the formation of two thin current layers. Magnetic reconnection occurs
across the current sheets with three-dimensional features shown, including an elliptic magnetic field structure about the reconnection
site, and results in an untwisting of the global field structure.
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1. Introduction

Parker’s notion of the “topological dissipation” of coronal mag-
netic fields (Parker 1972) continues to generate much debate.
Simply put, Parker’s suggestion is that following boundary mo-
tions of sufficient complexity the magnetic field of a coronal loop
will be unable to ideally relax to a smooth force-free equilibrium
and instead tangential discontinuities in the field, corresponding
to current sheets, will develop. In general terms the possible out-
comes of relaxation are a development of singular current sheets
(e.g. Ng & Bhattacharjee 1998; Janse & Low 2009), develop-
ment of thin but non-singular current layers (e.g. Longcope &
Strauss 1994; Galsgaard et al. 2003), and a smooth equilibrium
with large-scale current features (e.g. van Ballegooijen 1985;
Craig & Sneyd 2005; Wilmot-Smith et al. 2009a). It should also
be noted that the distinction between the first two cases may be
difficult to determine numerically.

In a previous a paper (Wilmot-Smith et al. 2009a) we con-
sidered the ideal relaxation of a braided magnetic field towards
a force-free equilibrium. The magnetic field configuration was
based on the pigtail braid and imposed as an initial condition
(rather than being built up through boundary motions). This par-
ticular braid was chosen since it is the simplest non-trivial braid
with no net twist and, accordingly, is the most conservative re-
alistic case to examine. More complex braided fields will, in
general, contain components of the pigtail-type. There is ample
motivation for modelling loops as having braided components.
Photospheric turbulence subjects loop footpoints to a random
walk, with motions of the fragments about each other acting to
braid (or unbraid) the overlying loop. However, while there is
some evidence for the existence of braided loop configurations
(see the left-hand image of Fig. 1 for example), most coronal
loops appear to be close to a potential field (e.g. Fig. 1, right-
hand image). This may be an effect of the large aspect ratios typ-
ical to loops, since a winding of a field line around another field

Fig. 1. TRACE coronal loops. (Left) A large-scale tangled configuration
and (right) apparently smooth loops.

line is almost undetectable when smoothed out over the length of
the loop (see also Berger & Asgari-Targhi 2009). Another reason
could be that reconnection is very efficient in maintaining a low
degree of topological complexity in loops. The present work is
designed in part to test whether this is the case.

In Wilmot-Smith et al. (2009a) an ideal Lagrangian relax-
ation scheme (Craig & Sneyd 1986; Pontin et al. 2009) was
used to ideally evolve the braided field towards a force-free
state. A smooth near force-free equilibrium was attained with
large-scale current features i.e. without any tangential discon-
tinuities or even strong current concentrations. (This situation
may be compared with Parker (1994) where the same pigtail
braid situation is considered as a thought experiment and con-
cluded to inevitably lead to tangential discontinuities. It appears
that Parker’s assumption of α = 0 in the domain fails; we indeed
have

∫

α dS = 0, where S is a cross-sectional surface through
the braid, but α varies significantly between field lines).

Although the local current density in the ideal equilibrium is
of large-scale, a global quantity, the integrated parallel current,
∫

J‖ dl, has small scales (here the parallel indicates parallel to
the magnetic field and the integral is taken along magnetic field
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lines). By small scales we mean that
∫

J‖ dl varies significantly
between neighbouring field lines as the field lines pass though a
particular plane, such as the lower boundary. In Wilmot-Smith
et al. (2009a) it was suggested that these small scales in

∫

J‖ dl
could lead to the development of a resistive instability and so a
loss of equilibrium of the field. This mechanism would be dis-
tinct to that of Parker’s topological dissipation but have the same
consequence.

The consideration that for sufficiently small scales in the in-
tegrated parallel current then a force-free magnetic field will be
resistively unstable (the instability being dependent, for a given
scale in the integrated parallel current, on the value of the re-
sistivity) motivated us to put the end, near force-free, state of
the Lagrangian relaxation into a resistive MHD code and test
whether or not the state is stable (for various values of resistivity
allowed by numerical limitations). It turns out that the braided
field as implemented in the resistive code is not stable. This find-
ing, together with the subsequent evolution of the field, allows
us to address a number of key questions related to MHD and the
behaviour of coronal magnetic fields. The results are described
in this series of papers. Here we describe the details relating to
the numerical setup of the problem and the early evolution of the
system. A subsequent paper addresses the long term evolution of
the system.

2. Numerical scheme and simulation setup

2.1. Numerical scheme

The numerical scheme employed in the simulations that fol-
low is described briefly below (further details may be found in
Nordlund & Galsgaard (1997) and at http://www.astro.ku.
dk/~kg). We solve the three-dimensional resistive MHD equa-
tions in the form

∂B

∂t
= −∇ × E, (1)

E = − (u × B) + ηJ , (2)

J = ∇ × B, (3)
∂ρ

∂t
= −∇ · (ρu) , (4)

∂

∂t
(ρu) = −∇ ·

(

ρuu + τ

)

− ∇P + J × B, (5)

∂e

∂t
= −∇ · (eu) − P ∇ · u + Qvisc + QJ , (6)

where B is the magnetic field, E the electric field, u the plasma
velocity, η the resistivity, J the electric current, ρ the density, τ
the viscous stress tensor, P the pressure, e the internal energy,
Qvisc the viscous dissipation and QJ the Joule dissipation. An
ideal gas is assumed, and hence P = (γ − 1) e = 2

3 e. These
equations have been non-dimensionalised by setting the mag-
netic permeability µ0 = 1, and the gas constant (R) equal to the
mean molecular weight (M). The result is that for a volume in
which |ρ| = |B| = 1, time units are such that an Alfvén wave
would travel one space unit in one unit of time.

The Eqs. (1)–(6) are solved on staggered meshes; with re-
spect to a mesh on which ρ and e are defined at the body centre of
the cell, B and P are defined at face centres and E and J at edge
centres. In this way the required MHD conservation laws are au-
tomatically satisfied. Derivatives are calculated using sixth-order
finite differences that return a value which is shifted half a grid-
point up or down with respect to the input values. When the stag-
gered mesh means that some quantity must be interpolated, data

values are calculated using a fifth-order interpolation method at
the relevant position. A third-order predictor-corrector method is
employed for time-stepping.

In all simulation runs we employ a spatially uniform resistiv-
ity model. Viscosity is calculated using a combined second-order
and fourth-order method (sometimes termed “hyper-viscosity”),
which is capable of providing sufficient localised dissipation
where necessary to handle the development of numerical insta-
bilities (Nordlund & Galsgaard 1997). The effect is to “switch
on” the viscosity where very short length scales develop, while
maintaining a minimal amount of viscous dissipation where the
velocity field is smooth.

2.2. Creating the initial condition

As discussed in Sect. 1, the initial state for the resistive MHD
simulations is drawn from the final state of the Lagrangian re-
laxation experiment of Wilmot-Smith et al. (2009a). The quan-
tities previously known from the Lagrangian code (see Craig &
Sneyd 1986) are the magnetic field B and the current J and in
the near force-free relaxed state these are known on a highly dis-
torted mesh. We describe below the process of constructing the
field on the rectangular grid required for the resistive MHD sim-
ulations.

In order to ensure that the initial magnetic field is divergence-
free, we work first with the vector potential A for B. In the
relaxation scheme, the calculation of A requires only that we
know the initial vector potential before relaxation and the mesh
deformation. In terms of the initial mesh X and the final “re-
laxed mesh” x, the ith component of the final vector potential
A f is given (see Appendix) in terms of the initial vector poten-
tial A0 by

A
f

i
=

3
∑

j=1

A0
j

∂X j

∂xi

· (7)

To create the input magnetic field for the MHD simulations we
then interpolate this vector potential onto a rectangular grid.
Since the magnetic field components are face-centred on the
staggered grid, the vector potential components are interpolated
onto locations corresponding to edge centres of the desired grid.
We then obtain the magnetic field by taking the curl of A using
the sixth-order finite differences described above, which yields
magnetic field components at face-centres as required. An inter-
polation scheme using biharmonic spline radial basis functions
was applied to A, the particular scheme chosen to maximize the
smoothness of the corresponding current density J , which in-
volves second derivatives of A. To further improve this smooth-
ness a simple five-point smoothing algorithm was finally applied
to A, before taking the curl.

The result of the above is that the initial braided magnetic
field for our MHD simulations is divergence-free to accuracies
on the order of truncation errors of the sixth-order finite differ-
ences (with typical maximum |∇ · B| ∼ 10−6 within the domain).
The topology of the magnetic field turns out to be well con-
served by the process, another important consideration for the
experiment. However, a drawback is that the quality of the force-
free approximation is not perfectly maintained; the initial state is
further from force-free than the relaxed field of the Lagrangian
experiment. Details and implications are discussed in Sects. 3
and 5.
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Fig. 2. Initial state of the simulation: (left) Isosurface of current |J | at
25% of the domain maximum and (right) some particular magnetic field
lines illustrating the braided nature of the field.

2.3. Initial state

The initial magnetic field is given on a domain of size [−24, 24]
in the vertical (z) direction and [−6, 6] in both the horizon-
tal (x, y) directions. Covering this domain we take a uniform
mesh of 3203 cells and employ closed boundary conditions in
all three directions. The magnetic field is line-tied, and can
be very closely approximated by B = [0, 0, 1] at the bound-
aries, i.e. it is directed perpendicular to the z boundaries and
parallel to the x and y boundaries. To achieve the perpendicu-
lar condition the Lagrangian relaxation experiment was re-run
on the larger horizontal domain (now [−6, 6]2 compared with
[−4, 4]2 in Wilmot-Smith et al. 2009a). The braided field is cen-
tered in the middle of the domain and the field is close to uni-
form in the region external to the braid. Accordingly the re-
sults presented here are shown for only the subsection of the
full domain in which the important dynamics occur, specifically
[−3, 3]2 × [−24, 24].

An isosurface of current in the initial state is given the left-
hand image of Fig. 2. The current has large-scales (see also the
upper-left hand image of Fig. 5 where contours of current in a
horizontal cross-section are shown) with two fingers of current
extending vertically through the domain. Some sample field lines
further illustrating the nature of the field are given in the right-
hand image of the same figure. Although non-trivial, the initial
state has little magnetic energy in excess of the homogeneous
field (0.96% in [−3, 3]2 × [−24, 24]). The aspect ratio employed
in the model is 1:8. Although this is larger than that of many pre-
vious simulations it is smaller than a realistic ratio for a coronal
loop (1:50, say). In the configuration the poloidal field compo-
nents are small compared with the toroidal components so that
the field lines look almost straight. This level of braiding would
be observationally difficult to distinguish from a potential field.

To initialise the simulation the dimensionless plasma density
(Sect. 2.1) is set at ρ = 1 throughout the domain and the internal
energy as e = 0.1. The result is a plasma-β at t = 0 that lies in
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Fig. 3. Maximum absolute value of the current a); velocity b); Lorentz
force c); and total kinetic energy d) in the domain with time for a se-
quence of decreasing uniform resistivies as indicated in the figures.

the range β ∈ [0.1, 0.14]. For the results described in the main
section of this paper (Sect. 3) we consider the early evolution
of the system (up to t = 14) with time measured in units of the
Alfvén time. A uniform resistivity of η = 0.001 has been taken
and the effect of changing the resistivity is discussed at various
points in the following text.

3. Results

3.1. Basic properties

Figure 3 shows the maximum absolute values of the current, ve-
locity and Lorentz force, and the kinetic energy (

∫

1
2 v

2dV) for
the time interval (t ∈ [0, 14]) under consideration. The domain
taken in all cases is the central section, [−3, 3]2×[−24, 24], of the
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Fig. 4. Isosurfaces of current, |J |, at 50% of the domain maximum for a sequence of increasing times (from left to right, t = 4, 6, 8, 10, 12) showing
the formation of the two initial current layers.

full box. The variation in quantities is shown for a sequence of
uniform resistivities decreasing by over an order of magnitude,
specifically η = 0.005, 0.001 and η = 0.0002.

The initially high maximum Lorentz force, | j×B|max = 0.501
decreases rapidly over the first few time units. Both the high
value and the decrease are artifacts of the method used to create
the initial state. The interpolation required to transfer the state
to the Eulerian grid (as described in Sect. 2.2) results in some
noise in the initial magnetic field and current density. Some noise
persists even with the application of a smoothing algorithm to
the vector potential for the magnetic field and this is particu-
larly noticeable in the Lorentz force rather than the magnetic
field and current density alone. Thus whilst the final state of the
Lagrangian relaxation experiment had a very small maximum
Lorentz force (specifically | j×B|max ≈ 2×10−2), the initial state
here is further from force-free. The decrease over t ∈ [0, 2] then
arises though a smoothing of the noise in the initial state.

Turning now to the remaining quantities shown in Fig. 3 two
primary features are found. Firstly a growth in the kinetic energy
and maximum velocity for t ∈ [0, 4] occurs, and this growth is
independent of resistivity, η. For the remaining time considered
there is no significant change in kinetic energy. Secondly, a lin-
ear growth in the current density occurs for t ∈ [8, 12]. The rate
at which the maximum current density increases is higher for
lower resistivity, η. At t = 12 the maximum current density is
achieved; this maximum is higher for lower resistivity but for all
three resistivities the growth phase ends at the same time.

The lack of dependence of kinetic energy on resistivity may
suggest an ideal instability is present. The subsequent linear
growth of current would then be a non-linear consequence of
this instability rather than its initial appearance. This growth is
clearly dependent on resistivity, being slower for higher values
of η. Little is known about the non-linear phase of instabilities
and such a dependence may still be consistent with an ideal in-
stability with a non-linear phase damped by η. Strong conclu-
sions are clearly difficult to draw at this stage. An additional
consideration is that the implementation of the field on the new
grid has resulted in significant Lorentz forces in the initial state.

We return to these questions in Sect. 4 but now proceed to con-
sider the the nature of the currents within the domain, now fixing
η = 0.001.

3.2. Formation of current layers

Figure 4 shows isosurfaces of current at 50% of the domain max-
imum (|J | = |J |max/2) for a sequence of increasing times (for the
initial state see Fig. 2). In the early stages (t ∈ [0, 4]) the current
diffuses slightly while maintaining its large scales in the perpen-
dicular direction. A symmetric evolution follows and after the
phase of current growth two current concentrations are present,
centered at z = 3.4 and z = −3.6. We call these the two “initial
current layers”.

The formation of these two initial current layers is best il-
lustrated by considering a horizontal cross section through the
central plane (z = 0). Figure 5 shows contours of the vertical
component of current (|Jz|) in that plane at t = 0, 6, 12. The
z-component is taken since it significantly dominates over the
two horizontal components, as evident in the shape of the cur-
rent sheets (Fig. 4). Note that in order to incorporate both sheets
the cross-sectional plane chosen, z = 0, does not intersect the
centre of either current sheet and so the magnitude of current in
this plane is somewhat low in comparison to the domain maxi-
mum. The collapse of the two oppositely signed large-scale fin-
gers of current present in the initial state into two thin current
sheets of correspondingly the same sign is clearly shown. Also
evident is the formation of a weaker current envelope around the
braided flux, separating it from the uniform background field.
Cross-sections of |Jz| in the horizontal planes through the cen-
tres of the two current sheets are shown in the final two images
of Fig. 7.

3.3. Predictors of current layers

The field lines along which these two current sheets form turns
out to be well predicted by the regions of high integrated parallel
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Fig. 5. Contours of the vertical component of the current, Jz, in the central plane, z = 0, at increasing times, illustrating the formation of the
two initial current layers (first three images). The lower right-hand image shows contours of integrated parallel current along field lines in the
initial state at the central plane z = 0. From this quantity field line tracers for the locations of initially high integrated parallel current have been
determined and marked in crosses in the previous frames, as described in the main text.

current in the initial state. In resistive MHD the integrated par-
allel current is related to the integrated parallel electric field via
the relation

∫

J‖dl = η
∫

E‖dl (in the case of a uniform resistivity
η, as considered here). The integrated parallel electric field is a
key quantity for 3D magnetic reconnection; for a localised re-
connection region the maximum value of

∫

E‖dl determines the
rate of reconnection.

Shown in the lower right-hand panel of Fig. 5 are contours
of the integrated parallel current,

∫

J‖dl, in the initial state, t = 0,
where the path of the integral is taken over magnetic field lines.
Again the contour is shown in the central plane (z = 0). To ob-
tain this contour map, field lines have been integrated through
1602 grid of points covering the domain x, y ∈ [−3, 3]2, z = 0.
Two peaks in the quantity are present and the structure is quite
different to that of the current itself in the initial state. We now
identify those field lines in this tracing procedure for which the
value of |

∫

J‖dl| is greater than or equal to 75% of the domain
maximum, noting the locations where they intersect the lower
boundary (where the locations of the field lines are held fixed).
For the sequence of times of Fig. 5 we trace field lines starting
from those locations on the lower boundary up through the do-
main and mark with a cross in that same figure their point of
intersection with the z = 0 plane. Here the difference in colours
indicates field lines with positive (black crosses) and negative
(white crosses) integrated parallel current, although this distinc-
tion is made only to facilitate identification of the locations. It
is found that these field lines, traced from the initial locations
of high integrated parallel current, are good indicators for the

locations of formation of the two current layers. Since the flux
on the lower boundary is held fixed these may be identified as
the same field lines for as long as the evolution remains ideal.
Whilst the evolution will be ideal only during the early stages of
the simulation it is clear that the tracers do, nevertheless, provide
a useful predictor for the locations of current sheet formation.

Locations of high integrated parallel current are not a com-
monly used indicator for current sheet formation. Indeed it is
quasi-separatrix layers (QSLs), regions where the field-line con-
nectivity varies strongly (Priest & Démoulin 1995) that are
widely thought of as likely sites of current sheet formation. To
identify QSLs (as well as their intersections, hyperbolic flux
tubes or HFTs) the squashing factor (Titov et al. 2002) is used.
Usually denoted by Q, the squashing factor is an indictor of field
line connectivity and takes on high values in regions where the
field line mapping is strongly distorted. Regions of high Q out-
line QSLs. As discussed in Wilmot-Smith et al. (2009b), the
braided magnetic field taken as the initial state here contains
several QSLs. Contours of the squashing factor, Q, in the cen-
tral plane (z = 0) are shown in Fig. 6 at t = 0 (upper) and t = 12
(lower). For the calculation again 1602 points over the region
x, y ∈ [−3, 3]2 have been used, a number comparable to the grid
resolution.

Several regions of high Q are present in both snapshots. The
two regions of highest Q in the initial state are associated with
the two initial current layers at the later time, that is, the current
sheets have formed along QSLs of the field. At the same time,
several other regions of high Q are present (both at t = 0 and
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Fig. 6. Contours of the squashing factor, specifically log10 (Q), in the
central plane, z = 0, for (upper) the initial state, t = 0 and (lower) the
time t = 12.

t = 12) that are not associated with any particular current fea-
tures. For example, in the initial state there are eight distinct re-
gions where log10 (Q) is greater than 85% of its maximum value
but only two of these regions correspond to particular current
features at t = 12. These results suggest that the integrated par-
allel electric current and the squashing factor could be used in
conjunction for predicting current sheet formation more accu-
rately than by using Q alone.

3.4. Plasma flows and reconnection

We move now to consider the nature of the plasma flows within
the domain. First recall that the low values of the plasma beta
(Sect. 2) imply the dynamics will be dominated by the Lorentz
force rather than the gas pressure. With both the magnetic field
and the current having stronger vertical than horizontal compo-
nents we have that the Lorentz force is primarily in the horizon-
tal direction and so, similarly, are the plasma flows. The Lorentz
force drives a flow with a dipolar structure in the six regions of
initially strongest current with direction dependent on the sign of
the twist in that region. An illustration of such a flow is shown
for the plane z = 3.4 (a negative twist region corresponding to
one of the sites of current sheet formation) in the first (upper left)
image of Fig. 7.

The next four images in that figure show the development
of the flow for a sequence of increasing times up to the point
of maximum current. In the sequence the length of the arrows
indicating flow direction have been normalized to each image.
The background contours show the vertical component of cur-
rent in that plane with the colour scale normalised to the cur-
rent at t = 12 (lower–left-hand image), given by the first colour-
bar. The sequence clearly shows the association of the stagnation
part of the dipolar flow with the current intensification. The out-
flowing plasma from the location of stagnation sets up a counter-
flow to the initial dipolar structure leading to oppositely directed
flows on either side of the weak enclosing current sheath. The fi-
nal image shows plasma flows and current in the plane z = −3.6
at t = 12. This cross-section is across the second current sheet
and shows the naturally expected inversion of the flow direction.
The result is that the global flow structure is dominated by rota-
tional components the direction of which varies both vertically
along the structure and on either side (y > 0, y < 0) of the
braided field.

As already indicated by Fig. 3, at t = 12 the maximum
magnitude of the plasma flows (|V|max ∼ 0.24) is a significant
fraction of the Alfvén speed (VA ∼ 1.2). These strongest flows
are associated with the global rotation and not with outflows
from the two initial current layers (which have an associated
|V|max ∼ 0.15). However, we do expect magnetic reconnection
to be taking place across these current sheets and so proceed to
consider the nature of this reconnection. For this we concentrate
again on the initial current layer centered at z = 3.4 (a similar
situation occurs about the other current layer) and focus on the
structure of the field and flows in the plane perpendicular to the
magnetic field at the location of maximum current magnitude,
|J|.

In the left-hand image of Fig. 8 we indicate in more de-
tail the nature of the stagnation flow about the current sheet.
Superimposed on the background are contours of the out-of
plane component of vorticity, i.e. the component of vorticity in
the direction of the magnetic field at the location of maximum
current. The vorticity shows a quadrupolar configuration around
the current sheet.

Perhaps more of a surprise is the structure of the magnetic
field in the region. The right-hand image of Fig. 8 shows the
components of the magnetic field in the cross-sectional plane un-
der consideration. The magnetic field is shown to have an elliptic
configuration about the current sheet, i.e. about the reconnection
region. This finding contrasts with the two-dimensional picture
of magnetic reconnection under which the process can only oc-
cur at a hyperbolic (X-type) null-point of the magnetic field. In
three-dimensions a much wider variety of possible reconnection
sites exist. Reconnection may be associated with 3D null-points
(e.g. Lau & Finn 1990; Priest & Pontin 2009), magnetic sepa-
rators (which connect two null-points, e.g. Longcope & Cowley
1996; Pontin & Craig 2006; Haynes et al. 2007), or may oc-
cur in the absence of any such topological features (Schindler
et al. 1988), the latter sometimes termed “non-null reconnec-
tion”. In particular, the local magnetic field structure need not
be hyperbolic but may be elliptic (Hornig & Priest 2003), as re-
cently found in some 3D numerical simulations of reconnection.
For example, Wilmot-Smith & De Moortel (2007) considered re-
connection occurring along a quasi-separator and found an ellip-
tic field structure in perpendicular cross-sections. The separator
configuration of Parnell et al. (2010) showed an elliptic structure
along a significant length of the separator under consideration.
Parnell et al. (2010) also discussed the separator case theoret-
ically, concluding an elliptic configuration would be a generic
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Fig. 7. Arrows indicate plasma velocities [Vx,Vy] in horizontal cross-sectional planes, superimposed on the vertical component of current, Jz. The
first five images show structures about the upper current sheet (taking the plane z = 3.4) while the final image is for the lower current sheet (taking
the plane z = −3.6). The images are given at various times, as indicated in the figures.

situation given a sufficiently strong current density along the
separator. Our findings demonstrate that an elliptic field con-
figuration may be present about reconnection sites in the non-
null case. Additionally, tracking these field lines back to the ini-
tial setup, an elliptic perpendicular field configuration is again
found indicating that locally hyperbolic structures are not nec-
essary for current intensification. As previously discussed, the
squashing factor (Q) at the two reconnection sites is very high
which demonstrates a further point; regions of highest-Q within
a domain may have a locally elliptic field configuration.

4. Nature of instability

Evidently the initial magnetic field configuration is not in a sta-
ble equilibrium. Since an exact equilibrium of the ideal relax-
ation code employed in Wilmot-Smith et al. (2009a) is known to
be linearly ideally stable, the lack of stability could arise from
one of a number of factors:

1. A resistive instability. The relaxed state of Wilmot-Smith
et al. (2009a) contains small scales in the integrated parallel
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Fig. 8. Here various quantities are considered in the plane perpendicular to the magnetic field at the region of maximum (negative) current. (Left)
Arrows indicate plasma flows in that plane while the coloured contours show the out-of-plane component of vorticity. (Right) Arrows indicate
magnetic field components in the plane superimposed on contours of the out-of-plane current. The colour table for each is blue–yellow for negative
– positive.

current. Small enough scales (for a given resistivity) in this
quantity are incompatible with a resistive equilibrium.

2. A non-linear ideal instability not previously found in the
ideal evolution of Wilmot-Smith et al. (2009a) since that
evolution only guaranteed linear stability.

3. A lack of equilibrium in the initial state either since:
– The path to equilibrium of the ideal relaxation is fic-

titious and an exact equilibrium had not been reached.
Numerical difficulties (described in Pontin et al. 2009)
result in the final state of the ideal relaxation having
|J×B|max ≈ 2×10−2, i.e. is not perfectly force-free. Thus
the final state of Wilmot-Smith et al. (2009a) need not be
stable (or, indeed accessible via a real MHD relaxation
dynamics).

– The technique used to transfer the initial state between
codes has perturbed the magnetic field further from
force-free.

At the beginning of Sect. 3 we gave one suggestion, that the for-
mation of the current layers may be due to an ideal instability as
evidenced by the lack of dependence of kinetic energy on resis-
tivity (see Fig. 3). Here we seek to determine additional informa-
tion that may identify the cause of the dynamical evolution. We
have noted that the integrated parallel current is a good predictor
of the location of the two initial current layers. The integrated
parallel current is a global quantity and so the global structure
of the field may play a key role. The global structure is also
important in, for example, the kink instability where a magnetic
field with a set number of turns per unit length becomes unstable
as more turns are added by increasing the length of the system.
Whilst the kink-instability as it is usually considered applies to a
tube with a well-defined single axis a similar kink-like instabil-
ity, dependent on the total twist of the system, may apply to our
braided field.

With these considerations in mind we examine the evolu-
tion of only the middle section of the initial state of the braided
magnetic field that is, we cut-out the section of the field in the
above described experiment that lies in z ∈ [−8, 8], x, y ∈ [−6, 6]
at t = 0. This field is inserted as an initial condition in a new
run, now keeping the flux fixed on z = ±8, the new upper and
lower boundaries of the domain. To maintain consistency we use
the same resolution in the horizontal direction 3202 and a sim-
ilar effective resolution in the vertical direction, 128 cells over
z ∈ [−8, 8].

t=20, middle-third
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-2

-1

0

1

2

y

-0.8596

-0.5689

-0.2783

0.0123

0.3030

0.5936

0.8842

Fig. 9. (Upper) Vertical component of current in the central plane (z =
0) at t = 20 for the an MHD evolution on only the central section,
z ∈ [−8.0, 8.0] of the full field, as described in the main text. (Lower)
Maximum current |J | (solid line) and total kinetic energy (dashed line)
and maximum Lorentz force (dot-dashed line) over time for the same
field.

In the evolution of this new “middle-third” field we find the
system adjusts from its initial condition (with zero plasma veloc-
ity) to an approximate equilibrium in which the current structure
is qualitatively similar to that of the initial state. To illustrate,
contours of current in the central plane (z = 0) are shown at
t = 20 in Fig. 9 (upper panel) which may be compared with
Fig. 5 (upper left) where the corresponding contours in the initial
state, t = 0, are shown. The maximum current in the domain is
shown as a solid line in the upper panel of Fig. 9 (left-hand axis),
the kinetic energy integrated over x, y ∈ [−3, 3], z ∈ [−8, 8] as
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a dashed line (left-hand axis) and the maximum Lorentz force
within the domain as a dot-dashed line (right-hand axis). As in
the evolution of the full field, the Lorentz force in this initial state
is high as a result of the transfer between grids and decreases
rapidly over the first few time units. However, the Lorentz force
subsequently stabilises at a low value as the system readjusts to
equilibrium. The result that the middle section of the braid alone
is in an equilibrium state suggests that an instability is present
in the full braided field (rather than a lack of equilibrium due
to numerical artefacts). Furthermore the instability is of a long-
wavelength type with the full structure of the braided field being
key.

Returning to the evidence of Figure 3, during the time t ∈
[8, 12] where the instability is clear in the current growth there
is only a very slight dependence of the maximum velocity within
the domain on resistivity and no increase in kinetic energy. This
effect may be due to the confining nature of the strong back-
ground field external to the braided field structure which results
in a deflection of the outflowing plasma around the boundary
of the braided field (see Fig. 7). Prior to t ≈ 8 no dependence
of the flow on resistivity is seen suggesting an ideal dynamics
where the system is adjusting to the distance from equilibrium.
The current growth in t ∈ [8, 12] does have a clear separation
according to resistivity η. However the increase is linear (rather
than exponential) suggesting a dominant non-linear phase and
the growth is slower for higher resistivity suggesting the non-
linear phase is damped by resistive effects.

5. Conclusions

A previous paper (Wilmot-Smith et al. 2009a) considered the
ideal relaxation of a braided magnetic field towards a force-free
equilibrium. Here we have taken the final state of that relaxation
and used it as an initial condition for a full resistive MHD simu-
lation.

The braided field is not in a stable equilibrium; two thin cur-
rent sheets form after a short time (around a quarter of the time
for an Alfvén wave to cross the numerical box in the vertical
direction). The linear rate of increase of current density and the
maximum strength of the current is found to increase with de-
creasing resistivity although the evolution of the total kinetic en-
ergy in the domain is independent of resolution. We conclude
that the instability is possibly an ideal one although the details
of how it occurs have not been determined. The wavelength of
the instability was tested by considering the MHD evolution of
the middle third section of the braid alone and this new field
was found to be stable. Hence a long-wavelength dependence is
implied.

The initial configuration contains many regions of high
squashing factor, Q, corresponding to quasi-separatrix layers.
Plasma flow across QSLs is often thought likely to lead to cur-
rent sheet formation. The two current sheets that form here do
align with two of the highest regions of Q although the remain-
ing regions of high Q do not correspond to any particular cur-
rent features. The locations of the two current layers are well
predicted by the peak values of the integrated parallel current in
the initial state. In the central plane this quantity shows two clear
peaks and it is at these regions that the two current layers later
form.

These two current layers correspond to reconnection sites.
Perpendicular to the layers the magnetic field has an elliptic
structure, an admissible property of three dimensional recon-
nection that has only recently been found. The flow about the
reconnection sites is of an asymmetric stagnation type, although

large-scale rotational flows dominate the global structure; the ef-
fect of reconnection is not a strong acceleration of the flow but
a more subtle untwisting process leading to the change in mag-
netic field topology.

The longer-term evolution of the system will be considered
in a future paper.

Appendix A: Appendix

Equation (7) can be derived from an evolution for the vector
potential of a frozen-in magnetic field:

∂A

∂t
+ ∇ (V · A) − V × ∇ × A = 0. (A.1)

This equation is equivalent to the Lie-derivative for a differential
one-form, α = Aidxi, associated with the vector field A (Hornig
1997). Hence (A.1) can be written as

∂α

∂t
+ Lvα = 0, (A.2)

and we can express α(t = 0) = F∗α(t) (Abraham et al. 1988), or
more conveniently α(t) = (F−1)∗α(t = 0), where F : X −→ x
maps the initial to the final coordinates and the star indicates the
pull-back operation. This last equation written in components of
the vector potential is (7).

Acknowledgements. The authors would like to thank Nasser Al-Salti for helpful
suggestions and Klaus Galsgaard for the use of his code. A.W.S. and G.H. ac-
knowledge financial support from the UK’s STFC. The simulations described
were carried out on the STFC and SFC (SRIF) funded linux clusters of the
UKMHD consortium at the University of St Andrews.
The Transition Region and Coronal Explorer, TRACE, is a mission of
the Stanford-Lockheed Institute for Space Research (a joint program of
the Lockheed-Martin Advanced Technology Centre’s Solar and Astrophysics
Laboratory and Stanford’s Solar Observatories Group), and part of the NASA
Small Explorer program.

References

Abraham, R., Marsden, J. E., & Ratiu, T. 1988, Manifolds Tensor Analysis and
Applications, Applied Mathematical Sciences (New York: Springer-Verlag),
75, 370

Berger, M. A., & Asgari-Targhi, M. 2009, ApJ, 705, 347
Craig, I. J. D., & Sneyd, A. D. 1986, ApJ, 311, 451
Craig, I. J. D., & Sneyd, A. D. 2005, Sol. Phys., 232, 41
Galsgaard, K., Titov, V. S., & Neukirch, T. 2003, ApJ, 595, 505
Haynes, A. L., Parnell, C. E., Galsgaard, K., & Priest, E. R. 2007, Proc. Roy.

Soc. A, 463, 1097
Hornig, G. 1997, Phys. Plasmas, 4, 646
Hornig, G., & Priest, E. R. 2003, Phys. Plasmas, 10, 2712
Janse, Å. M., & Low, B. C. 2009, ApJ, 690, 1089
Lau, Y.-T., & Finn, J. M. 1990, ApJ, 350, 672
Longcope, D. W., & Cowley, S. C. 1996, Phys. Plasmas, 3, 2885
Longcope, D., & Strauss, H. R. 1994, ApJ, 437, 851
Ng, C. S., & Bhattacharjee, A. 1998, Phys. Plasmas, 5, 4028
Nordlund, A., & Galsgaard, K. 1997, A 3D MHD code for parallel computers.

Technical report, Astronomical Observatory, Copenhagen University
Parker, E. N. 1972, ApJ, 174, 499
Parker, E. N. 1994, Spontaneous Current Sheets in Magnetic Fields With

Applications to Stellar X-Rays. (New York: Oxford University Press, Inc.),
23

Parnell, C. E., Haynes, A. L., & Galsgaard, K. 2010, JGR, 115, A02102
Pontin, D. I., & Craig, I. J. D. 2006, ApJ, 642, 568
Pontin, D. I., Hornig, G., Wilmot-Smith, A. L., & Craig, I. J. D. 2009, ApJ, 700,

1449
Priest, E. R., & Demoulin, P. 1995, JGR, 100 (A12), 23443
Priest, E. R., & Pontin, D. I. 2009, Phys. Plasmas, 16, 122101
Schindler, K., Hesse, M., & Birn, J. 1988, JGR, 93, 5547
Titov, V. S., Hornig, G., & Démoulin, P. 2002, JGR, (A8) SSH 3-1, 1164
van Ballegooijen, A. A. 1985, ApJ, 298, 421
Wilmot-Smith, A. L., & De Moortel, I. 2007, A&A, 473, 615
Wilmot-Smith, A. L., Hornig, G., & Pontin, D. I. 2009a, ApJ, 696, 1339
Wilmot-Smith, A. L., Hornig, G., & Pontin, D. I. 2009b, ApJ, 704, 1288

Page 9 of 9


	Introduction
	Numerical scheme and simulation setup
	Numerical scheme
	Creating the initial condition
	Initial state

	Results
	Basic properties
	Formation of current layers
	Predictors of current layers
	Plasma flows and reconnection

	Nature of instability
	Conclusions
	Appendix
	References 

