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ABSTRACT

Aims. Our aim is to investigate the resistive relaxation of a magnetic loop that contains braided magnetic flux but no net current or
helicity. The loop is subject to line-tied boundary conditions. We investigate the dynamical processes that occur during this relaxation,
in particular the magnetic reconnection that occurs, and discuss the nature of the final equilibrium.
Methods. The three-dimensional evolution of a braided magnetic field is followed in a series of resistive MHD simulations.
Results. It is found that, following an instability within the loop, a myriad of thin current layers forms, via a cascade-like process.
This cascade becomes more developed and continues for a longer period of time for higher magnetic Reynolds number. During the
cascade, magnetic flux is reconnected multiple times, with the level of this “multiple reconnection” positively correlated with the
magnetic Reynolds number. Eventually the system evolves into a state with no more small-scale current layers. This final state is
found to approximate a non-linear force-free field consisting of two flux tubes of oppositely-signed twist embedded in a uniform
background field.
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1. Introduction

The braiding of magnetic loops in the solar corona, via convec-
tive motions at the solar surface, has long been suggested as a
potential mechanism for heating the corona. Parker (1972) pro-
posed that in response to arbitrary footpoint motions at the pho-
tosphere, the coronal magnetic field will ideally relax towards a
force-free equilibrium containing tangential discontinuities, cor-
responding to current sheets. Therefore, it was argued, as such a
singular state is approached during the relaxation, the diffusivity
of the plasma must always become important, leading to mag-
netic reconnection and plasma heating. Since this idea was first
proposed, there have been many arguments for and against its
validity (e.g., van Ballegooijen 1985; Longcope & Strauss 1994;
Ng & Bhattacharjee 1998).

In Parker’s original “topological dissipation” model, an ini-
tially uniform magnetic field is taken between two perfectly con-
ducting parallel plates. Then random (smooth) motions are ap-
plied on the perfectly conducting plates. A number of attempts
have been made to simulate such a scenario numerically, using
a variety of numerical approaches. Craig & Sneyd (2005) em-
ployed an ideal relaxation scheme which includes a fictitious
frictional term in the equation of motion (Craig & Sneyd 1986).
They applied various complex deformations at the boundaries
of the domain. They found that regardless of the nature or ex-
tent of the deformation, no tangential discontinuities developed
in the relaxed state, with the current concentrations remaining
large-scale in all cases. Mikić et al. (1989) employed a slightly
different approach. They began with a uniform field and then se-
quentially applied large-scale shear flows of random orientation
on one boundary (while the field at the other boundary was held
fixed). In the time between each boundary shear, they solved
the ideal MHD equations (neglecting the pressure and advective

terms in the equation of motion), including a large spatially-
uniform viscosity in order to relax the magnetic field towards
equilibrium. They found, once again, that no discontinuities
were formed during any of these relaxation processes. However,
progressively smaller scale current structures were found to de-
velop as the number of shear disturbances increased. The impli-
cation is therefore that after a sufficient length of time, the scales
would reach those appropriate for dissipation in the corona. They
found, furthermore, that the current density in the domain in-
creased exponentially in time, which is consistent with the ear-
lier analysis of van Ballegooijen (1985), who predicted thin non-
singular current layers rather than tangential discontinuities.

Galsgaard & Nordlund (1996) employed a further different
approach to those discussed above, solving the full set of re-
sistive MHD equations without employing any artificial force
(such as enhanced viscosity) to inhibit the plasma dynamics.
They applied a similar sequence of large-scale shearing motions
as Mikić et al. (1989), this time at both driving boundaries. The
amplitude and orientation of the shearing were chosen at random
(from a normal distribution). The results were similar to those
of Mikić et al. (1989), in that after only a few Alfvén cross-
ing times, multiple small-scale current filaments were found
to form in the domain. However, with the shearing applied on
both boundaries, exponentially growing currents were already
obtained after the second shear motion due to the interlocking
of the field lines, with the tension force setting up a stagnation
flow. Due to the finite resistivity in their simulations, magnetic
reconnection and Joule dissipation occurred in these filaments.
This energy release was found to be intermittent or “bursty”
when the time scale for energy input (via the boundary shear-
ing) was long compared with the Alfvén crossing time. The work
was extended by Galsgaard (2002) with the inclusion of a strat-
ified atmosphere. Furthermore, the generation and properties of
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turbulence in Parker’s model have been studied in the framework
of reduced MHD by a number of authors. In the initial stud-
ies, two-dimensional simulations were performed, with imposed
“forcing terms” taking the place of the boundary driving (e.g.,
Einaudi et al. 1996; Dmitruk & Gómez 1997; Georgoulis et al.
1998). More recently, three-dimensional simulations of Parker’s
model with the reduced MHD equations have been performed
(e.g., Dmitruk et al. 2003; Rappazzo et al. 2008), and the result-
ing energy spectra and heating event statistics investigated.

In the present work, we approach the topological dissipa-
tion problem discussed above from a different angle to previous
studies. We take a braided magnetic field that is close to force-
free as an initial condition, and concentrate on the details of the
subsequent evolution, including current sheet formation. In gen-
eral, braided force-free fields could arise in the solar corona ei-
ther through the emergence of braided flux from the interior or
through random footpoint motions at the solar surface, accom-
panied by some intermediate relaxation processes. The ideal re-
laxation of this field towards a force-free state was considered in
Wilmot-Smith et al. (2009a) where only large-scale current fea-
tures were found in the end state. We now follow the evolution
of the system in a resistive MHD simulation. In a previous pa-
per (Wilmot-Smith et al. 2010, hereafter referred to as Paper I)
we described how during the early evolution an instability oc-
curs which moves the system away from equilibrium, leading to
the formation of current sheets and thus the onset of magnetic
reconnection. In the present paper we address the following key
questions:

1. as the plasma seeks a new equilibrium, what is the nature of
the resistive relaxation process?

2. in particular what are the properties of the magnetic recon-
nection processes that take place?

3. what is the nature of the final state of the relaxation?
4. what is the dependence of each of the above on the magnetic

Reynolds number?

In Sect. 2 we introduce the numerical method and summarise
the results of our previous investigations. In Sect. 3 we describe
qualitatively the evolution of the system, and in Sect. 4 we dis-
cuss the nature of the final state. In Sect. 5 we investigate the
reconnection in the system in more detail, and then in Sect. 6 dis-
cuss the dependence on the plasma resistivity. Finally in Sect. 7
we present our conclusions.

2. Numerical method and early evolution

2.1. Numerical scheme

The numerical scheme employed in the simulations that fol-
low is described briefly below (further details may be found in
Nordlund & Galsgaard (1997) and at http://www.astro.ku.
dk/~kg). We solve the three-dimensional resistive MHD equa-
tions in the form

∂B

∂t
= −∇ × E, (1)

E = − (u × B) + ηJ , (2)

J = ∇ × B, (3)

∂ρ

∂t
= −∇ · (ρu) , (4)

∂

∂t
(ρu) = −∇ ·

(

ρuu + τ

)

− ∇P + J × B, (5)

∂e

∂t
= −∇ · (eu) − P ∇ · u + Qvisc + QJ , (6)

where B is the magnetic field, E the electric field, u the plasma
velocity, ρ the density, η the resistivity, J the electric current
density, τ the viscous stress tensor, P the pressure, e the thermal

energy, Qvisc the viscous dissipation and QJ the Joule dissipa-
tion. An ideal gas is assumed, and hence P = (γ − 1) e = 2

3
e.

The equations above have been non-dimensionalised by setting
the magnetic permeability µ0 = 1, and the gas constant equal to
the mean molecular weight. The result is that for a volume in
which |ρ| = |B| = 1, time units are such that an Alfvén wave
would travel one space unit in one unit of time.

In all simulation runs we employ an explicitly prescribed,
spatially uniform resistivity, and thus we have simply QJ =

ηJ2. Viscosity is calculated using a combined second-order
and fourth-order method (sometimes termed “hyper-viscosity”),
which is capable of providing sufficient localised dissipation
where necessary to handle the development of numerical in-
stabilities (Nordlund & Galsgaard 1997). The effect is to
“switch on” the viscosity where very short length scales de-
velop in u, while maintaining a minimal amount of viscous dis-
sipation where the velocity field is smooth. As such, the total
viscous dissipation in the domain is negligible when compared
with the Joule dissipation. All simulations are carried out on
a grid with 5123 nodes. The dimensionless plasma density is
initialised to have value ρ = 1 throughout the domain, while
the thermal energy is initialised with value e = 0.1. The result
is a plasma-β that varies throughout the domain between 0.10
and 0.14 at t = 0.

We have checked our numerical results by repeating the stan-
dard run described below (with η = 10−3) using the Lare3d
MHD code (Arber et al. 2001). The qualitative results described
in Sects. 3−6 have been verified with this different scheme,
demonstrating their robustness.

2.2. Initial conditions and early time evolution

We use as an initial condition for our resistive MHD simulations
a magnetic field that is close to being force-free (Wilmot-Smith
et al. 2009a), and that is obtained via an ideal Lagrangian re-
laxation scheme (Craig & Sneyd 1986; Pontin et al. 2009). This
is explained in detail in Paper I. In what follows, we term the
input field for the ideal relaxation scheme the “pre-initial” mag-
netic field. The final state of this relaxation, which is the initial
condition for the resistive MHD simulations described herein,
is termed the “initial” magnetic field. The pre-initial and initial
magnetic fields have the same braided magnetic topology (as the
relaxation is exactly ideal). The magnetic field is modelled on
the so-called pigtail braid, with a subset of the field lines be-
ing linked in a non-trivial way – see Fig. 1a. The pre-initial
structure consists of six localised regions of twisted flux in an
otherwise homogeneous field. These twists are of equal magni-
tude, but with opposite sign in three of the regions, such that the
net current density and net helicity in the computational volume
are both zero. (To be precise we calculate the relative helicity
(Berger & Field 1984) using the potential field (Bp = [0, 0, 1]) as
the reference field. In our case we can choose a gauge such that
Ap = A on the boundary so that the relative helicity reduces to
an integral over A · B only.) In the initial magnetic field used for
our MHD simulations, there are two large-scale, diffuse current
structures within the domain, but no thin current layers – see
Fig. 1b and Wilmot-Smith et al. (2009a,b) for a full description.

The numerical domain has dimensions [x, y, z] ∈

[±6,±6,±24]. The magnetic field is line-tied on z = ±24,
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(a) (b)

Fig. 1. a) Three representative magnetic field lines from the initial mag-
netic field (t = 0) which demonstrate the braiding present in the field.
b) Isosurface of current density |J | at t = 0, at 25% of its maximum
value.

where the plasma velocity is fixed at zero for the whole experi-
ment, while the x and y boundary conditions are periodic. Since
B = [0, 0, 1] at the x- and y-boundaries, these boundaries are
closed with respect to the magnetic field at t = 0. We find that
the dynamics is confined within the domain (x, y ∈ [−4, 4]) and,
with the confining background field, field lines do not leave the
numerical box through the side boundaries at any stage of the
simulation. We note finally that the simulations are run for a
sufficient time that in the final state the resistive dissipation is
occurring on the global length scale of the regions of twist that
were present in the pre-initial field (see below).

The evolution of the system at early stages can be sum-
marised as follows, and is described in detail in Paper I. The
system initially remains relatively stationary, being close to a
force-free equilibrium. However, at approximately t = 8 an in-
stability sets in, and the current intensifies in two thin layers.
At present the nature of this instability is not fully understood,
though we propose that it may be a resistive instability analogous
to the internal kink instability. This time interval corresponds to
the Alfvén travel time between two of the imposed regions of
twist in the pre-initial magnetic field. We go on below to inves-
tigate the continued evolution of the system.

3. Long time evolution

3.1. Qualitative behaviour

Following the instability which gives rise to the initial current
layers, the system goes on to develop an increasing number of
thin current layers, as illustrated in Fig. 2 where isosurfaces of
current density at 50% of the domain maximum are shown. It
is worth noting that the two initial current layers are stronger
than any of those that form in the subsequent evolution (see

the following section and Fig. 4). The development of a highly
fragmented current structure means that magnetic reconnection
also occurs in a highly fragmented portion of the domain. This
magnetic reconnection is investigated in detail in Sect. 5. The
evolution resembles qualitatively the onset of a turbulent-like
behaviour, with the current layers forming a highly disordered
pattern which fills the central portion (in xy) of the computa-
tional domain (the region in which the initial field line mapping
is non-trivial). Investigating the power spectra of relevant physi-
cal quantities to ascertain whether indeed true turbulence devel-
ops is beyond the scope of this paper. It is in any case likely to
require higher numerical resolution (and the lower value of im-
posed η that this permits) in order to resolve a sufficient number
of decades of spatial scales. Thus, in the remainder of this paper
we use the terms turbulence and cascade only in a very loose
sense.

In Paper I, it was shown that the locations where the first pair
of current sheets form are well predicted by analysing in com-
bination the squashing factor Q of the field line mapping (Titov
et al. 2002; Titov 2007) and the integrated parallel current along

field lines,J =
∫

J‖dl. The initial current layers form in regions
threaded by field lines with high values of both quantities (for
an explanation of the importance of J see Wilmot-Smith et al.
2009a). The question naturally arises: do the secondary, tertiary
and subsequent current layers form in response to the dynamics
that are set in motion by the initial instability and reconnection
process? Or are they the result of multiple instabilities which oc-
cur throughout the domain with different growth rates – with the
initial current sheets that we observe being simply those asso-
ciated with the fastest growing instabilities? The myriad of thin
layers of high Q and J found in the domain would support the
latter idea. The evidence suggests that neither of these alterna-
tives is solely responsible, but rather a combination of the two.
However, this is another aspect of the simulations that warrants
further investigation.

In an attempt to gain some insight, one can look at individual
reconnection events in the domain. One can identify the outflow
from certain current layers with the inflow to another reconnec-
tion process (this being one typical picture of how a multitude of
current layers may form, where one reconnection process drives
the next and so on, see e.g., Galsgaard & Nordlund 1996; Watson
& Craig 2003; Hood et al. 2009). However, there are many other
current layers for which this is clearly not the case. Moreover,
determining the local relationship between reconnection pro-
cesses is not straightforward – in three dimensions reconnection
need not necessarily occur in a region of hyperbolic field, and is
also not always associated with a hyperbolic flow structure with
well-defined inflow and outflow. In fact, in three dimensions the
characteristic property for reconnection in the absence of null
points is a counter-rotational plasma flow on either side (with
respect to the direction of B) of the diffusion region (Hornig
& Priest 2003). Thus, determining the dynamic interaction be-
tween different reconnection processes within the volume is a
non-trivial problem.

The increase in the complexity of the current distribution
continues until around t = 80, after which the number of current
layers begins to decrease. Eventually, the current concentrations
again attain large scales (see Figs. 2 and 3). The properties of the
final state of the simulation are considered in detail in Sect. 4.
The extent and duration of the fragmentation of the current lay-
ers – and the subsequent time taken to return to a configuration
with currents on system-size scales – is found to be dependent on
the value taken for the resisitvity, η. This is discussed in Sect. 6.
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Fig. 2. Isosurfaces of the current density |J | at t = 15, 27.5, 35, 50, 290, at 50% of the corresponding maximum value of |J |. For the run with
η = 10−3.

Fig. 3. Current density |J | at z = 0 for [x, y] ∈ [±3.5,±3.5] every t =
20 units from t = 0 to t = 340 (top-left to bottom-right). The shading
intensity is scaled individually to the maximum at each time, for clarity.
For the run with η = 10−3.

3.2. Relaxation properties

The magnetic field begins in a state that is close to a (non-linear)
force-free equilibrium. As mentioned above (and described in
more detail in Paper I), an instability is then triggered forcing the

system away from equilibrium. The subsequent resistive evolu-
tion can be described as a relaxation process, which is mediated
by magnetic reconnection (see Sect. 5). This relaxation process
is demonstrated in Fig. 4 where the evolution of various quan-
tities with time is shown. The top panel shows a time series of
the peak current in the domain. After an initial sharp drop (that
is likely due largely to the change from one discretisation to an-
other), this soon peaks (at t = 12, see Paper I) before gradually
declining towards the end of the simulation run. The current set-
tles to a constant value after t ≈ 200. After this point the config-
uration is approximately stationary, although the simulation has
been run to t = 350 to be sure we are in a state whose topology is
stable. The Joule dissipation per unit volume shows a similar pat-
tern of evolution to the peak current. The free magnetic energy in
the initial state is relatively modest, with only 0.5% magnetic en-
ergy per unit volume above that of the potential (homogenous)
field. As time progresses, this magnetic energy decays, being
converted into kinetic and thermal energy (see the lower panel
of the figure). We note that in the final state, the magnetic en-
ergy is still around 0.2% above that of the homogeneous field.
In total over 60% of the free energy in the initial configuration
is converted to other forms. The nature of the equilibrium ap-
proached is discussed in detail in the following section.

As noted above the relaxation process has a turbulent ap-
pearance. However, due to the moderate Reynolds numbers that
we are able to use with the present resolution, the system is
unlikely to be in a state of fully developed turbulence, though
we anticipate that such a state would be reached were we able
to perform simulations with lower values of the resistivity. In
terms of the categorisation described by Biskamp (2003), the
system would then be described as undergoing decaying turbu-
lence, since the additional energy in the system is included as
excess magnetic energy in the system at large scales at t = 0
(in contrast with the forced turbulence simulations in which a
mechanical stressing is continually applied, e.g., Einaudi et al.
1996; Dmitruk & Gómez 1997; Georgoulis et al. 1998; Dmitruk
et al. 2003; Rappazzo et al. 2008). The sum of the magnetic and
kinetic energies is expected to decay exponentially in time dur-
ing decaying turbulence (Biskamp 2003). In Fig. 5 this quantity
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Fig. 4. From top to bottom: time evolution of the spatial maximum of
|J |; the Joule dissipation ηJ2 per unit volume, the magnetic energy per
unit volume, and the thermal energy per unit volume, for the run with
η = 10−3.
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Fig. 5. Total per unit volume of the kinetic energy plus the magnetic
energy in excess of that of the background field, plotted on a log-log
scale, for the run with η = 10−3.

is plotted versus time on a log-log scale, where we have sub-
tracted the constant contribution to the magnetic energy arising
from the uniform background field, for clarity. The dashed line
shows a least-squares fit for the data points between t = 20 and
t = 180 when the current distribution contains small scales. It
is clear that we do indeed see a power law dependence during
this time, which is suggestive that we are at least approaching

a regime of decaying turbulence. It is also apparent from the
plot that after t ≈ 180 (after which physical quantities vary on
system-size scales), this power law is no longer followed, with a
steepening of the curve suggesting a possible transition towards
an exponential decay.

While the simulation has been run to t = 350, it is found that
after t ≈ 200 the topology of the magnetic field changes only
due to diffusion in the two tubular current structures which have
system-size dimensions both along B and perpendicular to B

(see Figs. 2 and 3, and Fig. 9 bottom panel). Owing to the enor-
mous diffusive timescale in the corona, this diffusive evolution
is not relevant for the coronal field. We therefore consider the
state reached at the end of our simulations to characterise the
physically relevant final state. We therefore take t = 290 as
the final state of the simulation for our investigations into its
nature that follow. It should be noted that this final state is not an
exact force-free equilibrium, due to the finite plasma pressure,
as well the residual Alfvénic oscillation of the structure about its
equilibrium (our use of a hyper viscosity means that these os-
cillations are damped only very slowly). However, it is close to
force-free, in that in terms of the dimensionless measure of the
proximity to a force-free field, ǫl, given in Wilmot-Smith et al.
(2009a), we have ǫl ≈ 6 × 10−3 (where ǫl ∈ [0, 1] and ǫl = 0 for
a perfectly force-free field).

4. Nature of the final state

4.1. Properties of the relaxation

In order to investigate the nature of the final state, we take a
grid of starting points on the lower boundary z = −24 (taking
1602 points over the region [−3, 3]2) and trace field lines through
the volume to the upper boundary. For each field line, we cal-
culate α∗, the mean value along the field line of the quantity
α∗ = (J ·B)/(B ·B). Note that for a perfectly force-free field this
simply reduces to the force-free parameter α (where J = αB)
which is constant along field lines. Figure 6 shows contours of
α∗ found in this way for the initial state (top panel) and the final
state (t = 290, lower panel). In both cases the sum of α∗ over all
field lines in the domain is zero. In the final state the small scales
in α∗ have been smoothed out leaving two large-scale patches of
opposite signs. Note in addition that the extremes of the value
of α∗ have been reduced.

The two patches of α∗ shown in Fig. 6 are signatures of
the separation of the braided field during the relaxation into
a simpler structure consisting of two weakly twisted magnetic
flux tubes of oppositely signed twist, embedded in an approx-
imately uniform field. Here we provide two simple visualiza-
tions of the field structure in order to demonstrate this process.
In Fig. 7 we show sample magnetic field lines in the initial
(left) and final (right) states. In each case two sets of field lines
are shown. First, a set of field lines is traced from three cir-
cles of radius 0.1, 0.3 and 0.5 lying in the z = −24 plane and
centered at x1 = (1.415,−0.4875,−24). A second set of field
lines is traced from three circles of the same radii centered at
x2 = (−1.06, 0.0375,−24). The centers x1 and x2 of the two flux
tubes have been chosen to lie at the maximum and minimum
values of α∗ (at z = −24) in the final state.

In the lower panels of Fig. 7 a two dimensional represen-
tation of this separation is shown. We trace field lines from a
regular grid of points (over the region [x, y] ∈ [±6,±6]) on the
lower boundary. In the figure we plot the intersections of these
field lines with the upper boundary z = 24, colour-coded such
that those field lines that begin at x ≥ 0 at z = −24 are coloured
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Fig. 6. The mean value of α∗ along field lines shown on a section of
the lower boundary (z = −24) of the domain in the initial (top, t = 0)
and final (bottom, t = 290) states showing a smoothing of α∗ during the
resistive relaxation with η = 10−3.

white, while those with x < 0 at z = −24 are coloured black. The
left panel demonstrates the complexity of the footpoint mapping
generated by the braided field in the initial state. The right panel
shows the much simpler mapping obtained in the final state.

In summary, we have found that in the final state of our sim-
ulation the magnetic field has two important properties:

1. the magnetic field has been “unbraided”, becoming much
more topologically simple;

2. the field relaxes towards a non-linear, rather than a linear,
force-free field.

4.2. Discussion

The nature of the relaxed state following the resistive relax-
ation of astrophysical magnetic fields (such as found in the Solar
corona) is an important and unresolved issue. A linear force-
free field is often conjectured to be the end-state of general
turbulent relaxation processes. This notion was put forward by
Taylor (1974) to explain the turbulent relaxation of a reversed
field pinch (RFP), and was applied to the corona by Heyvaerts
& Priest (1984, 1992). Noting that the full set of invariants of
ideal MHD do not hold in a resistive situation, Taylor suggested
that as the magnetic field of an RFP decays toward a state of
minimum energy, a single invariant – the total magnetic helicity

(H =
∫

A·B dV) – will serve as a constraint on the minimization.
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Fig. 7. Above: field lines traced from fixed locations on the lower bound-
ary (and coloured according to location on the lower boundary). Below:
locations of intersection with the plane z = +24 of field lines traced
from a regular grid in the plane z = −24. Field lines traced from lo-
cations x ≥ 0 on the lower boundary are coloured white, from x < 0
black. Plots are made for t = 0 (left) and t = 290 (right) for the run with
η = 10−3.

Formulating this as a variational problem the end state of relax-
ation is found to be a linear force-free field, which matches ex-
perimental data of the RFP rather well (e.g., Taylor 1986). In
the solar coronal case, on the other hand, it is not yet known
whether the total helicity is the only constraint on relaxation. It
is certainly true that there are fundamental differences between
the two plasma environments, the most obvious being that field
lines in the solar corona do not close there, but rather can be
considered to be anchored in the solar photosphere.

In a series of numerical simulations Browning and coworkers
(Browning & Van der Linden 2003; Browning et al. 2008; Hood
et al. 2009) have followed the development of the kink instability
in an initially non-linear force-free cylindrical loop. In their sim-
ulations, various initial distributions of α take the form of cylin-
drically symmetric step-functions with different profiles. The au-
thors find the end-state of relaxation to be a linear force-free
field. By contrast, Amari & Luciani (2000) – who also tracked
a turbulent resistive evolution subsequent to a kink instability
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– found as an end state a non-linear force-free field containing
two distinct flux tubes.

Hood et al. (2009) have suggested that a smoothing of α over
the full domain is natural in the presence of fully developed
turbulence, i.e. with reconnection regions sufficiently spatially
overlapping (in the case in which a dominant vertical magnetic
field Bz is present this implies an overlapping of current sheets
when projected along field lines onto the xy plane). However,
as we proceed to demonstrate below, our study indeed satisfies
such a criterion, though we do not obtain a linear force-free field,
as discussed above. We have recently discovered one additional
constraint on the resistive relaxation of line-tied magnetic flux
tubes, which demonstrates why a Taylor relaxation to the lin-
ear force-free state is prohibited in the braided field studied here
(Yeates et al. 2010). It is clear that further studies are neces-
sary to determine the end state of relaxation even in isolated flux
tubes or braids.

To qualify the above discussion, it is worth emphasising at
this point that the final state of our simulations is not an exact
force-free field, due to the finite plasma pressure and residual
oscillations, as discussed above. Within each twisted flux tube,
there is a balance between magnetic tension associated with their
internal twist, and a combination of magnetic and plasma pres-
sure. That the plasma pressure is enhanced in the central part
of the domain is not a surprise, since the plasma has been heated
there by a multitude of reconnection events. Although the Taylor
relaxation scenario assumes a very small plasma-β, and we have
used a plasma-β of order 0.1, we do not expect that the plasma
pressure plays a crucial role in determining the qualitative prop-
erties of the final state. We have repeated the simulation run with
η = 10−3 with the plasma-β reduced by a factor of 10 with no
change in the qualitative results.

5. Magnetic reconnection

5.1. Introduction

In order for the magnetic field to resistively relax, it is necessary
that magnetic reconnection occurs, since a subset of the field
lines in the volume have a non-trivial topology – see Fig. 1a.
Reconnection allows a change of the magnetic topology, and
thus release of the energy stored in the magnetic field. It is be-
coming apparent that magnetic reconnection processes are fun-
damentally different in two dimensions (2D) and three dimen-
sions (3D, clearly the regime applicable to the solar corona). In
2D, the rate at which the magnetic flux is transferred from one
flux domain to another (through a magnetic X-point) is given
by the value of the electric field evaluated at the null point.
However, in 3D, the electric field E and magnetic field B are
no longer perpendicular, and it is the component of E parallel
to B (denoted E‖) that is the crucial quantity. More specifically,
magnetic reconnection can be defined to occur within a region
in which

F =

∫

E‖ ds � 0 (7)

where s is a parameter that runs along magnetic field lines, and
where the quantity E‖ should be spatially localised (Schindler
et al. 1988; Hesse & Schindler 1988). The rate of reconnection in
this case is given by the maximum value of F over all field lines
threading the diffusion region. Thus, the efficiency of the recon-
nection process is determined not by a local quantity evaluated
at a given point, but rather by a “global” property of the field

in the vicinity of the diffusion region. Furthermore, the interpre-
tation of this reconnection rate is far more complicated in 3D.
The way in which the magnetic flux evolves during the recon-
nection process has been shown to be fundamentally different
in 2D and 3D (Priest et al. 2003; Hornig & Priest 2003; Pontin
et al. 2005a). One crucial difference is that the magnetic field
lines change their connectivity continuously throughout the dif-
fusion region. A key result of this property is that magnetic field
lines do not reconnect in a one-to-one “cut and paste” fashion, as
in simple 2D models. This has a profound effect on the way that
the magnetic flux is restructured by the reconnection process.
The issue is further complicated by the fact that many different
modes of magnetic reconnection may occur in 3D, depending
on the local magnetic field structure in the vicinity of the diffu-
sion region, with each having different characteristic behaviour
in terms of the evolution of the flux (e.g., Hornig & Priest 2003;
Pontin et al. 2004, 2005b; Wilmot-Smith & De Moortel 2007;
Parnell et al. 2010).

5.2. Method of measurement

Thus far we have described the formation of multiple current
sheets during our simulations. We now examine the properties
of the magnetic reconnection that occurs in these current sheets,
in particular the rate of the reconnection. Due to the strong back-
ground (“guide”) field in the z-direction, there are no null points
or closed field lines in our volume. The magnetic reconnection
takes place in the absence of such topological features, as de-
scribed for example in the models of Hesse & Schindler (1988);
Priest & Forbes (1992); Hornig & Priest (2003); Wilmot-Smith
et al. (2006, 2009c). As discussed above, the rate of reconnec-
tion is determined, for an isolated diffusion region in 3D, by the

maximum value of F =
∫

E‖ ds attained along any field line
threading the diffusion region.

It is clear from Sect. 3.1 that there are multiple diffusion
regions, at which reconnection is occurring, during the simu-
lations. Therefore the first step towards calculating the recon-
nection rate is to first identify all of the individual reconnection
regions that exist at each time. The global reconnection rate is
then obtained by summing the moduli of the maxima of F (see
Eq. (7)) over all such regions.

At periodic intervals during the simulations, the data of all
physical fields is output, providing a “snapshot” of the evolution.
We proceed as follows, treating each individual snapshot in turn.

1. Integrate E‖ along a set of field lines which intersect the
z = 0 plane in a rectangular grid with resolution approxi-
mately twice that of the computational mesh (to ensure that
no information is lost in areas where the field line mapping
shows expansion). For clarity we integrate field lines only
over the positive half-space, with the domain having sym-
metry about the z = 0 plane. This yields a two-dimensional
quantity

Φ(x0, y0) =

s(z=24)
∫

s0

E‖ ds (8)

subject to (x, y, z) = (x0, y0, 0) at s = s0, i.e. (x0, y0) is the
intersection of the appropriate field line with the z = 0 plane.

2. Search for the maxima and minima of Φ. We want to count
only the reconnection rate for “isolated” diffusion regions,
and so we require thatΦ falls below some threshold between
peaks in order to class two regions as corresponding to sep-
arate reconnection processes. The threshold we choose to

A57, page 7 of 12



A&A 525, A57 (2011)

Fig. 8. Plot of Φ(x0, y0) (as defined in Eq. (8)) for t = 50 for the run
with η = 10−3.

class two given maxima as “separate” is that Φ must drop
below 60% of the lower of the two peak values between the
peaks. (In principle we would like Φ to fall to zero, but the
effect of projecting along the field lines is likely to mean that
regions that may be isolated in 3D overlap to some extent in
the 2D projection. In addition, numerical quantities are never
exactly zero in practice, so it is not realistic to enforce such
a condition.)

3. To be classed as a reconnection region, maxima/minima are
required to contain at least 500 field lines. This corresponds
to a cross-sectional area of around 0.02, or around 40 grid
cells. (This does not dramatically alter the reconnection rate
obtained. However, it discounts large numbers of false pos-
itives in the algorithm used to identify isolated maxima,
which otherwise selects many peaks which are sufficiently
small (both in spatial coverage and modulus) to be close to
the noise threshold.)

4. To obtain the global reconnection rate, sum the moduli of the
identified peak values, and multiply by 2 to obtain a value for
the whole domain (since the above procedure is only imple-
mented on the positive half-space in z).

Below we present the results of implementing this procedure for
the standard run with η = 10−3, before going on in the next
section to describe the effect of varying the value of η. As a
frame of reference for the numerical values obtained for the re-
connection rate, we note the following characteristic values in
our simulations. Since ρ ≈ 1 and the equations have been non-
dimensionalised by setting µ0 = 1, we have |uA | ≈ |B| ≈ 1. The
“guide field” Bz has magnitude of order 1 for all time, and at
t = 0 for example we have peak values of Bx, By of approxi-
mately 0.3, and rms values of approximately 0.05.

5.3. Nature and rate of reconnection process

A sample Φ plot is presented in Fig. 8, where the shading in-
tensity shows the value of Φ. It is clear that there exist multi-
ple distinct reconnection regions, which is consistent with the
3D visualisation of the current density presented in Fig. 2. We
now consider the qualitative evolution of Φ in time, shown in
Fig. 9. For clarity only one sign of Φ is shown (Φ < 0). At t = 0
only a single reconnection region exists, which we see split and
then intensify (t = 15) as time progresses, consistent with the
formation of the initial pair of current sheets. As the evolution
continues we see the formation of multiple distinct reconnec-
tion regions which fill the majority of the central portion of the

Fig. 9. Plots of Φ for Φ < 0 only, at times t = 0, 15, 50, 140, 290, for the
run with η = 10−3.

x0y0-plane where the twisted and braided flux is located (this
filling is even more apparent when Φ of both signs is plotted,
see Fig. 8). As the simulation continues, and the current again
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Fig. 10. Left: reconnection rate versus time (solid line) for the run
with η = 10−3, defined by 2 ×

∑

|Φmax |. Also plotted (dashed line) is
2×(absolute maximum of |Φ|). Right: cumulative reconnected flux ver-
sus time, for the same run.

assumes a large-scale structure as described above, the number
of distinct reconnection regions diminishes once more.

Quantitative measures of the behaviour described above are
presented in Fig. 10. The global reconnection rate – plotted
as the solid curve in the left panel of Fig. 10 – is defined by
2×
∑

|Φmax|, as discussed above, where we multiply by 2 to take
into account the lower half-space z < 0. The plot shows that ini-
tially the reconnection rate grows steadily, peaking at t = 35.
There is then a gradual decay until t = 170 when the rate set-
tles to an approximately constant value (representing large-scale
diffusion). The first thing to note is that the time of the peak re-
connection rate (t = 35) does not coincide with the time of the
peak current in the domain (t = 15). Furthermore, it does not
occur at the time when the reconnection rate for any given sin-
gle region is a maximum (t = 15). Rather, the reconnection rate
continues to increase after this time, as a result of the fragmen-
tation of the spatial location of the reconnection process. So the
reconnection rate grows not because of an intensification of the
current or an increase of the rate in any one region, but because
of an increase in the fragmentation of the volume in which recon-
nection processes take place. This is demonstrated by the dashed
line in the left panel of Fig. 10, which shows the maximum rate
for the fastest reconnection process (of either sign), defined by
|Φ|global max, multiplied again by 2 for consistency. The number of
individual reconnection regions identified throughout the simu-
lation is shown by the dashed line in the top panel of Fig. 12.

The reconnection rate as calculated above is of course only
an estimation. We would argue that it provides a lower bound
on the reconnection rate for the system. There are a number of
reasons why it should give a conservative estimate:

– finite spatial resolution of the simulation grid, which will in
general underestimate the true current maxima;

– finite spatial resolution of the field line grid means the actual
peak Φ will not be exactly obtained;

– finite temporal resolution will mean that we fail to capture
the highest global peak value;

– partial cancellation of positive/negative E‖ along some field
lines will degrade some maxima;

– exclusion of small regions (step 3 above);
– projection along field lines may lead to regions distinct in

3D failing the test for separate regions, criterion described in
step 2 above.

5.4. Reconnected flux

It is straightforward to estimate the total reconnected magnetic
flux from the reconnection rate obtained as described in the pre-
vious section, by performing a simple time integral. The cumu-
lative reconnected flux is plotted against time in the right panel
of Fig. 10. It turns out that the total number of (non-dimensional)
units of flux reconnected during the simulation is ≈41.2. It is re-
vealing to compare this figure with the total poloidal flux in the
initial state, which is 30 units. (During the ideal relaxation used
to define the initial condition for the present resistive MHD sim-
ulations, this quantity is conserved. In the symmetric pre-initial
field, which is known in closed form, the poloidal flux is equiv-
alent to the total flux of either sign passing through the y = 0
plane.) Furthermore, as we saw in Sect. 4, the final state of the
relaxation is not the homogeneous field, but rather contains a
finite amount of twist and thus poloidal flux. Due to the high de-
gree of symmetry in the final state, the remaining poloidal flux
may be estimated by integrating the positive (say) flux B through
the y = 0 plane. The result that we obtain is 15.3 units, indicating
that around half of the initial poloidal flux has been cancelled.

To recap then, beginning with 30 units of poloidal flux,
41.2 units are reconnected and 15.3 remain. So the total recon-
nected flux is greater than the quantity that would appear to be
available. The only conclusion is that (at least some of) this flux
is reconnected multiple times, most likely in different reconnec-
tion regions, during the relaxation and “unbraiding” of the field.
On average, each unit of flux is reconnected around 2.8 times.
This demonstrates the highly complex nature of the reconnec-
tion process that occurs in complex (realistic) magnetic fields
such is the one considered here.

The result should be compared with that of Parnell et al.
(2008), who observed what they termed “recursive reconnec-
tion” in a numerical simulation in which two opposite-polarity
flux sources were driven past one another in the presence of an
overlying field. In their simulation, a number of separator lines
(field lines connecting one magnetic null point to another) were
formed through which the reconnection took place. Thus the re-
connection regions were long-lived and individually identifiable
from one time-frame of their simulation to another. They cal-
culated that the magnetic flux was reconnected on average 1.8
times, and argued that this occurred cyclically around the same
circuit of reconnection regions (separators). It is clear that we
observe a very similar phenomenon occurring here, even though
the magnetic field configuration is completely different (and, ad-
ditionally, isn’t continually being driven). The difference in the
present case is that due to the lack of topological features present
in the magnetic field and the high degree of complexity, it is dif-
ficult to label individual reconnection processes and follow them
in time. The magnetic flux undergoing the reconnection process
described above then may be best described as being “multiply”
rather than “recursively” reconnected. Given that such similar
processes occur in such vastly different configurations, this sug-
gests that such “multiple” or “recursive” reconnection is likely
to be ubiquitous in astrophysical magnetic fields.

6. Dependence on resistivity

So far we have analysed the resistive relaxation properties of
our model braided magnetic field for a fixed value of the resis-
tivity. However, the dissipative length scale in the run we have
so far analysed is some orders of magnitude larger than length
scales present in the complex field line mapping at t = 0 (see
Wilmot-Smith et al. 2009a). We therefore proceed in this section
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Fig. 11. Plots of Φ for Φ < 0 only, at times t = 50, 140, 290, for the run
with η = 2 × 10−4.

to describe the dependence of our relaxation process on the value
of the constant resistivity, η. We have repeated our simulation
at one higher and one lower value of η, namely η = 10−2 and
η = 2 × 10−4 (the latter being the lowest value we can use at the
present grid resolution while maintaining a reasonable resolution
of current sheets in the system).

Qualitatively, the differences between the simulation runs
can be described as follows. The initial magnetic field loses sta-
bility at a time that is independent of η, with two current layers
forming at locations that are also independent of η (see Paper I).
However, the subsequent evolution does vary greatly between
the simulation runs. First, the lower the value of η used, the
greater the degree of fragmentation of the current structure. This
is quantified below where we also discuss the reconnection rate
and evolution of the magnetic flux. It can also be seen by com-
parison of the frames showing one sign of Φ in Figs. 9 and 11.
The second main effect of reducing η is to increase the timescale
of the relaxation process. In other words, the plasma resistiv-
ity acts to inhibit the tendency to form an increasingly com-
plex system of current layers, such that for larger η the system
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Fig. 12. Number of identified reconnection regions (upper panel), re-
connection rate (middle panel) and cumulative reconnected flux (lower
panel) for runs with η = 10−2 (grey solid line), η = 10−3 (black, dashed)
and η = 2 × 10−4 (black, solid).

transitions to a diffusive-timescale evolution in a shorter period
of time (again, compare Figs. 9 and 11).

The above description can be quantified by analysing the
global reconnection rate in the same way as before. First, in
Fig. 12 (top panel) we plot the time evolution of the number of
individual localised reconnection processes within the domain,
for the runs with different η. It is clear that for lower η not
only is the peak number higher, but the period over which the
reconnection process occurs in a fragmented volume is signifi-
cantly longer. Of course our algorithm is not sufficiently robust
for the exact numbers of regions identified to have any physi-
cal meaning – however, we are confident that the trends that are
demonstrated when varying η are physical. Next, in the middle
panel of Fig. 12 we compare the measured global reconnection
rate versus time. The plots indicate that there is a dependence
of reconnection rate on resistivity – albeit a rather weak one.
However, once again the robustness of our algorithm for cal-
culating Φ could be questioned here. It is also possible that if
some small amount of numerical dissipation is present for the
low η run, then we may under-estimate the reconnection rate by
under-estimating η.
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The greatest insight into the changing nature of the relax-
ation process is gained by plotting the cumulative reconnected
flux versus time for the different simulation runs – see the lower
panel of Fig. 12. Here we see that the lower η becomes, the
greater the total amount of flux reconnected in the cascade phase
of our simulations. This in itself is not an absolute quantity (there
is no precise criterion that we can apply for the transition from
a fast, “reconnective” evolution to a slow diffusive evolution),
but we can compare this number both with the initial poloidal
flux and with the net twist remaining in the field at the end of
our runs. Note that in the final state of each simulation the field
has the same structure as described in Sect. 4 of two oppositely
twisted flux tubes. In the run with η = 10−2 our measured cu-
mulative reconnected flux is 24.5 units while 13.1 units remain
(compare this with the 30 units of poloidal flux in the initial con-
dition). As discussed in Sect. 5.4, for η = 10−3 we measure 41.2
units reconnected and 15.3 units remaining. Finally, for the run
with η = 2×10−4 we measure 61.8 total units reconnected, while
16.2 units remain. We observe that there is a clear trend as η is
reduced for more reconnection to be required to “unbraid” the
field: the flux is reconnected on average 1.4 times for η = 10−2,
2.8 times for η = 10−3 and 4.4 times for η = 2× 10−4. We would
expect this trend to continue, at least until η has a sufficiently low
value that structures on the scale of the initial field line mapping
are resolved. As noted by Wilmot-Smith et al. (2009b), these
length scales decrease exponentially with increasing braid com-
plexity. Therefore in a true braided coronal loop we would ex-
pect a highly complex network of current sheets threading the
loop, in which the flux is multiply reconnected to a high degree.

7. Conclusions

We have described a series of numerical experiments in which
we considered the resistive MHD evolution of a braided mag-
netic field between two perfectly conducting parallel plates.
Although the magnetic field in the simulations is initially ap-
proximately force-free, it was described in Paper I that the
field experiences an instability on some characteristic time-scale.
Here we considered the subsequent evolution of the system,
which is best described as a resistive relaxation. The route taken
to find a new equilibrium involves the formation of a complex ar-
ray of current sheets which are scattered throughout the domain.
The current sheets have a ribbon-like appearance, tending to be
highly elongated in the direction along the loop, i.e. parallel to
the strong axial field. The formation of this myriad of current
layers suggests that a turbulent cascade may develop for higher
Reynolds numbers than we have been able to use. Due to the ab-
sence of boundary forcing, this turbulence would fall under the
heading of decaying turbulence. It would be of interest to push
the spatial resolution of our simulations (thus allowing the re-
duction of η) to investigate whether a regime of fully-developed
turbulence arises, by examining spectral properties of the mag-
netic and velocity fields. This is beyond the scope of this paper,
and we leave it to a future investigation.

The relaxation process as described above results in a sim-
plification of the magnetic field structure as demonstrated by the
mapping of field lines from one line-tied boundary to the other
(Fig. 7). The magnetic field lines are untangled, such that no
three field lines are braided about one another any longer in the
final state. The final state in fact consists of two (weakly) twisted
flux tubes, of oppositely signed twist, embedded in an approxi-
mately uniform field. This final state approximates a force-free
field, ∇ × B = αB, in which field lines in one twisted flux tube
have positive α and in the other negative α. Thus the system

approaches a non-linear force-free field, which is not consistent
with the Taylor relaxation picture put forward by Heyvaerts &
Priest (1984). In principle since the net current in the system is
zero, a Taylor relaxation would lead to a final state with α = 0
on every field line, i.e. the homogeneous potential field. Clearly
the single constraint (global helicity conservation) of the Taylor
hypothesis is not sufficient to describe this relaxation. Extra con-
straints on the relaxation which prevent some of the helicity can-
cellation must be present. Although it is always dangerous to
place too much trust in the extrapolation of simulation results to
the extremely high Reynolds number coronal plasma, it appears
unlikely that the cause could be related to the “turbulence” in the
system not being sufficiently developed. In fact we retain more
twist in our flux tubes in the final state for lower η, where the tur-
bulence is better developed. In fact, an additional constraint on
the relaxation has recently been discovered (Yeates et al. 2010).

The “unbraiding” of the magnetic flux during the relaxation
to a non-linear force-free field occurs by magnetic reconnection.
This reconnection occurs in the absence of magnetic nulls or
closed field lines (note the presence of a strong background field
throughout the domain). Furthermore, reconnection occurs in a
multitude of regions that are spread throughout the volume. In
order to determine the efficiency of the reconnection process, we
must therefore sum the reconnection rate over all reconnection
diffusion regions within the volume. The outcomes of perform-
ing such an analysis are as follows:

1. The global reconnection rate continues to grow for some
time after the peak current in the domain begins to fall. That
is, during the intermediate stages of the simulations, the re-
connection rate grows not because of an intensification of the
current or an increase of the rate in any one region, but rather
because of an increase in the fragmentation of the volume in
which the reconnection processes take place.

2. The peak value of the global reconnection rate is at most
weakly dependent on the resistivity.

3. The number of identifiable reconnection regions increases as
the resistivity is decreased.

4. The total quantity of magnetic flux that is reconnected is
greater than the total poloidal flux present. This implies that
the magnetic flux is “multiply-reconnected” in the complex
array of reconnection regions.

5. As the resistivity is decreased – resulting in an increase in the
complexity of the multitude of current layers – the average
number of reconnections for each unit of flux increases.

In summary, the loss of stability and subsequent relaxation of
braided coronal loops results in a complex array of current layers
which permit a dissipation of the stored magnetic energy and the
attainment of a lower energy non-linear force-free field. These
results yield a new and intriguing potential resolution to the
long-standing debate over the validity of Parker’s model of coro-
nal heating by topological dissipation. Specifically, while current
singularities are not an inevitable result of random field line tan-
gling, once the field line mapping becomes sufficiently complex,
an instability will be triggered, causing the electric current struc-
tures to collapse to small scales. The complexity that is inherent
in the field then results in the formation of a fragmented system
of current layers (the sum of the associated reconnection pro-
cesses being “fast” in the sense that the rate of energy release is
only weakly dependent on the magnetic Reynolds number). The
global result is a turbulent dissipation of the excess magnetic en-
ergy stored in the field, ultimately in the form of heat. There are
many interesting aspects of the above study that warrant further
investigation, such as determining what parameters and physical
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quantities govern the nature of the final state, the possible turbu-
lence properties of the relaxation, and the spatial and temporal
distribution of the resulting heating in the loop.
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