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One-sentence summary  
 

We identified common genetic variants associated with the rate of brain 

development and aging, in longitudinal MRI scans worldwide. 

 

Abstract  

 
Human brain structure changes throughout our lives. Altered brain growth or 

rates of decline are implicated in a vast range of psychiatric, developmental, 

and neurodegenerative diseases. While heritable, specific loci in the genome 

that influence these rates are largely unknown. Here, we sought to find 

common genetic variants that affect rates of brain growth or atrophy, in the 

first genome-wide association analysis of longitudinal changes in brain 

morphology across the lifespan. Longitudinal magnetic resonance imaging 

data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, 

were used to compute rates of morphological change for 15 brain structures. 

We discovered 5 genome-wide significant loci and 15 genes associated with 

brain structural changes. Most individual variants exerted age-dependent 

effects. All identified genes are expressed in fetal and adult brain tissue, and 

some exhibit developmentally regulated expression across the lifespan. We 

demonstrate genetic overlap with depression, schizophrenia, cognitive 

functioning, height, body mass index and smoking. Several of the discovered 

loci are implicated in early brain development and point to involvement of 

metabolic processes. Gene-set findings also implicate immune processes in 

the rates of brain changes. Taken together, in the world’s largest longitudinal 

imaging genetics dataset we identified genetic variants that alter age-

dependent brain growth and atrophy throughout our lives. 

 

Introduction 
 

Under the influence of genes and a varying environment, human brain 

structure changes throughout the lifespan. Even in adulthood, when the brain 

seems relatively stable, individuals differ in the profile and rate of brain 

changes (Hedman et al., 2012). Longitudinal studies are crucial to identify 

genetic and environmental factors that influence the rate of these brain 

changes throughout development (Giedd et al., 1999; Gogtay et al., 2004; 

Shaw, Gogtay, & Rapoport, 2010) and aging (Raz et al., 2005). Inter-

individual differences in brain development are associated with general 

cognitive function (Ramsden et al., 2011; Schnack et al.,  2015; Oschwald et 

al., 2019), and risk for psychiatric disorders (Shaw et al., 2009; Liberg et al., 

2016) and neurological diseases (Reiter et al., 2017; Eshaghi et al., 2018; 

Jiskoot et al., 2019). Genetic factors involved in brain development and aging 

overlap with those for cognition (Brans et al., 2010; Brouwer et al., 2014) and 

risk for neuropsychiatric disorders (Brans et al., 2008). A recent cross-

sectional study showed a genetic component to advanced brain age in 
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several brain disorders (Kaufmann et al., 2019). Yet, we still lack information 

on which genetic variants influence individual brain changes throughout life, 

since this requires longitudinal data. Discovering genetic factors for brain 

changes may reveal key biological pathways that drive normal development 

and ageing, and may contribute to identifying disease risk and resilience: a 

crucial goal given the urgent need for new treatments for aberrant brain 

development and aging worldwide.  

As part of the Enhancing Imaging Genetics through Meta-Analysis 

(ENIGMA) consortium (Thompson et al., 2014; 2020), the ENIGMA Plasticity 

Working Group recently quantified the overall genetic contribution to 

longitudinal brain changes by combining evidence from multiple twin cohorts 

across the world (Brouwer et al., 2017). Most global and subcortical brain 

measures showed genetic influences on change over time, with a higher 

genetic contribution in the elderly (heritability 16 – 42%). Genetic factors that 

influence longitudinal changes were partially independent of those that 

influence baseline volumes of brain structures, suggesting that there might be 

genetic variants that specifically affect the rate of development or aging. Even 

so, the genes involved in these processes are still not known. So far, only a 

single, small-scale genome-wide association study (GWAS) was performed 

for brain change (Szekely et al., 2018; N=715). Here, we set out to find 

genetic variants that may influence rates of brain changes over time, using 

genome-wide analysis in individuals scanned with magnetic resonance 

imaging (MRI) on more than one occasion. We also aimed to identify age-

dependent effects of genomic variation on longitudinal brain changes in 

mostly healthy, but also neurological and psychiatric, populations. 

In our GWAS meta-analysis, we sought genetic loci associated with 

annual change rates in 8 global and 7 subcortical morphological brain 

measures. We performed a coordinated analysis of 37 longitudinal cohorts (N 

= 10,163, with a 3.5-year interval between scans on average, 22% of 

participants with a neurological or psychiatric diagnosis, 50% females, mainly 

of European descent (95%), aged 4 to 99 years (Supplementary Figure S1, 

Supplementary Tables S1-S3). Global and subcortical brain measures were 

extracted, and annual change rates were analyzed using additive genetic 

association analyses to estimate effects of genetic variants on rates of change 

within each cohort. As brain change is not constant over age (Hedman et al., 

2012), and gene expression also changes during development and aging 

(Kang et al., 2011), we determined whether the estimated genetic variants 

were age-dependent, i.e., differentially affected rates of brain changes at 

different stages of life using genome-wide meta-regression models with linear 

or quadratic age effects (Materials and Methods).  

 

Results 
 

Longitudinal trajectories 

 

Change in global brain measures showed different trajectories of change with 

age (Figure 1 and Supplementary Video), characterized by either monotonic 

increases (lateral ventricles), monotonic decreases (cortex volume, cerebellar 
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gray matter volume, cortical thickness, surface area, total brain volume), or 

increases followed by stabilization and subsequently decreases (cerebral and 

cerebellar white matter, thalamus, caudate, putamen, nucleus accumbens, 

pallidum, hippocampus and amygdala). Each brain structure showed a 

characteristic trajectory of change, as reflected by generally low correlation 

coefficients between rates of change (Supplementary Figure S2). Using the 

correlation structure, we estimated the effective number of independent 

variables through matrix spectral decomposition on the rates of change 

(Nyholt, 2004), yielding 14 independent traits for multiple testing corrections 

(Materials and Methods).   

 

Age-independent associations with brain-structural change rates  

 

Two loci showed genome-wide significant effects on the rate of brain change 

in cohorts of European ancestry (Table 1; Supplementary Figure S3 provides 

Manhattan plots, QQ plots, and locus plots; Supplementary Figure S4). The 

first lead SNP, rs72772740 on chromosome 16, is an intronic variant located 

in the GPR139 gene and was associated with change in lateral ventricle 

volume (Figure 2). Functional annotation identified numerous significant eQTL 

associations (FDR < 0.05) in different datasets and highlighted genes by 

either eQTL mapping (GPRC5B, IQCK, KNOP1, C16orf62) or chromatin 

interaction mapping (ACSM1, ACSM5, UMOD, GP2). GPR139 is the G-

protein-coupling receptor gene 139, which encodes a member of the 

rhodopsin family of G-protein coupled receptors. The gene is almost 

exclusively expressed in the central nervous system, with highest expression 

from 12 to 26 weeks post-conception, and has been suggested as a 

therapeutic target for metabolic syndromes and motor diseases (Nohr 2019). 

GPR139 may play a role in fetal brain development (Süsens et al., 2006). The 

second lead SNP, rs449998, an intronic variant on chromosome 21 located in 

the Down Syndrome Cell Adhesion Molecule (DSCAM) gene, was associated 

with change in nucleus accumbens volume. Chromatin interactions 

highlighted DSCAM and additional genes as likely effector transcripts at this 

locus. DSCAM encodes a member of the immunoglobulin superfamily of cell 

adhesion molecules (Ig-CAMs), and is involved in the development of the 

human central and peripheral nervous system (Yamakawa et al., 1998). This 

gene has been identified in the critical Down syndrome region and is also a 

candidate risk gene for congenital heart disease (Agarwala et al., 2000).  

 

Age-dependent associations with brain-structural change rates  

 

The association of three additional loci with rate of change was variable 

across the lifespan (Table 1; Supplementary Figure S3 provides Manhattan 

plots, QQ plots, and locus plots; Supplementary Figure S4): white matter 

cerebellum volume change was affected by the intronic rs10674957 in the 

Thyrotropin Releasing Hormone Degrading Enzyme (TRHDE) gene, white 

matter cerebrum volume change was affected by rs573983368 (intronic 

variant) in the Dachshund Family Transcription Factor 1 (DACH1) gene, and 

rs6864758 (intergenic and located in long intergenic non-protein coding RNA 
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Table 1: SNPs for age-(in)dependent effect on longitudinal brain changes.   
 
 

Phenotype 
(change rate) 

SNP id Chr Positiona Tested 
Allele 
/Non-
tested 
Allele 

Frequency  
Tested  
Allele 

Age-
dependency 
model 

Effect on  
change rate:  
Estimated model 

P-valueb  
 

Gene in 
locus 

Description of effect of tested allelec:  

Surface Area* rs6864758  5  157750349  a/g  0.6341  linear -95.91 + 2.181 x 
age in mm2/year 

1.96e-08  intergenic; 
located in 
long 
intergenic 
non-protein 
coding RNA 
(LINC02227) 

less growth in children, less decline in 
older age 

Cerebellum 
White Matter 

rs10674957 
 

12 72717608 
 

g/gagat 0.3051 
 

linear -47.49 + 1.242 x 
age in mm3/year 

1.30e-08 intron 
variant, 
TRHDE 

less growth in children, less decline in 
older age 

Cerebral 
White Matter 

rs573983368 13 72353395 

 

a/g 0.3113 

 

quadratic 899.15 - 56.726 
x age + 0.683 x 
age2 in mm3/year 

1.41e-09 intron 
variant, 
DACH1 

more growth in children, less decline in 
older age 

Lateral 
Ventricles 

rs72772740  16 20064855  t/g 0.8841  constant 63.255 in 
mm3/year 

1.06e-08  intron 
variant, 

GPR139 

more growth over the whole lifespan 

Nucleus 

Accumbens  
 

rs449998  21  41467826  a/g  0.2423  constant -1.954 in 

mm3/year 

4.65e-08  intron 

variant, 
DSCAM 

less growth in children, less decline in 

adults 

 

 

a Position based on build hg19.  Data was clumped (p < 1e-04) to identify significant and LD-independent SNPs. bP-values are obtained by testing the 
age-independent effect versus no effect at all (age-dependency is "none") or age-related effects versus main effect only (age-dependency is linear – 
1 degree of freedom - or quadratic – two degrees of freedom). *This locus also showed a genome-wide significant quadratic age effect. The most 
parsimonious model is listed in this table.  Single significant SNPs without strong LD neighbors were omitted from this table. cSee Figure 1, 
Supplementary Figures S4 for the lifespan trajectories and a visualization of the effect of this locus.   
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LINC02227) on chromosome 5 had an age-dependent effect on the change in 

surface area (Figure 2; Table 1). Both the TRHDE and DACH1 loci show 

significant chromatin interaction. TRHDE encodes a member of the peptidase 

M1 family. The encoded protein is an extracellular peptidase that specifically 

cleaves and inactivates the neuropeptide thyrotropin-releasing hormone 

(Bauer et al., 1999). Concurring with this, knockdown of TRHDE in Drosophila 

sensory neurons is known to result in altered cellular morphology, impaired 

nociception and the sensory response to (potentially) harmful stimuli (Nagy et 

al., 2015). In our study, carriers of the minor allele showed a slower increase 

of cerebellum white matter, followed by reduced decline in older age 

(Supplementary Figure S5). DACH1 encodes a chromatin-associated protein 

that associates with DNA-binding transcription factors to regulate gene 

expression and cell fate determination during development. DACH1 is highly 

expressed in the proliferating neuroprogenitor cells of the developing cortical 

ventricular and subventricular regions, and in the striatum (Castiglioni et al., 

2019). We found the effect of DACH1 to have a quadratic age-dependence, 

with the variant being associated with faster growth in childhood and earlier 

but slower decline with aging (Figure 2). To visualize the age-dependent 

effects, we plotted the meta-regression results for the significant loci 

(Materials and Methods, Supplementary Figure S5). The top-10 loci for each 

phenotype and age model are presented in Supplementary Tables S4 to S6. 

 

Gene-based analyses  

 

Gene-based associations with all phenotypes were estimated using MAGMA 

(version 1.07b; de Leeuw et al., 2015) based on summary statistics from our 

GWAS meta-analyses and meta-regressions. Gene names and locations 

were derived based on ENSG v92 (Zerbino et al., 2018). We found 15 

genome-wide significant genes influencing structural rates of change (Table 

2); among these, two genes reached study-wide significance, GPR139 and 

TMCO2. GPR139 was again associated with change in lateral ventricle 

volume in this analysis, and the Trans-Membrane and Coiled-coil domains 2 

gene, TMCO2, was associated with an age-dependent change in thalamic 

volume. DACH1 and GPR39, which were implicated through SNP-based 

GWAS, also reached genome-wide significance in this gene-based GWAS. 

Additional genome-wide significant findings included age-related effects of the 

Alzheimer’s disease (AD)-related Apolipoprotein E gene (APOE) on change 

rates for both hippocampus and amygdala (Figure 2). Of note, this finding was 

based on GWAS and subsequent gene analysis, and we did not investigate 

the classical APOE status, since that is determined by a combination of two 

SNPs. However, we found that the effect of APOE on both phenotypes was 

fully driven by rs429358, with the risk variant for AD causing faster increases 

in childhood for amygdala and faster decay for both amygdala and 

hippocampus later in life (Figure 2). To visualize the age-dependent effects, 

we plotted the meta-regression results for the top SNP in each of the 

significant genes (Supplementary Figure S5). Supplementary Table S7 details 

putative biological functions of associated genes and genes harboring 
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Table 2: Genes contributing to longitudinal brain changes. 
 

Phenotype (change rate) Gene Chr Start positiona Stop 
positiona 

# 
independent 
SNPs 

Age dependency Z P-value 

 

Thalamus* TMCO2 1 40711619 40717363 3 linear 5.410 3.14e-08 

Cerebellum Gray Matter EPAS1 2 46520806 46613836 18 constant 4.590 2.22e-06 

Cerebellum Gray Matter PID1 2 229715242 230136001 79 quadratic 4.697 1.32e-06 

Cortical Thickness AC027309.1 5 172036245 1720364361 1 linear 4.572 2.42e-06 

Putamen TMEM30A 6 75962640 75994684 3 constant 4.911 4.53e-07 

Total Brain STEAP1B 7 22459063 22672544 39 quadratic 4.815 7.36e-07 

Cerebellum Gray Matter TMC1 9 75136717 75451267 20 quadratic 4.708 1.25e-06 

Cerebral White Matter DACH1 13 72012098 72441330 21 quadratic 4.984 3.11e-07 

Lateral Ventricles GPR139 16 20042807 20085239 16 constant 5.724 5.20e-09 

Cortex ABR 17 906758 1132315 53 quadratic 4.626 1.86e-06 

Cerebral White Matter MYOCD-AS1 17 12626199 12661542 10 linear 4.709 1.24e-06 

Caudate PLCD3 17 43186335 43210721 13 linear 4.692 1.35e-06 

Cerebellum White Matter OR7D2 19 9296279 9299493 2 linear 4.637 1.77e-06 

Amygdala APOE 19 45409011 45412650 2 linear 4.607 2.05e-06 

Hippocampus APOE 19 45409011 45412650 2 quadratic 4.889 5.07e-07 
 

a Position based on build hg19. Study-wide significant hits are displayed in bold. *This gene also showed a genome-wide significant quadratic age 
effect. The most parsimonious model is listed in this table.  
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genome-wide significant associated loci. Supplementary Table S8 displays 

the top-10 genes for each phenotype and each age model.  

 

Gene-set analyses 

 

To test whether genetic findings for brain structure change converged onto 

functional gene sets and pathways, we conducted gene-set analyses using 

MAGMA (see Methods). We tested the associations of 9,975 gene sets 

derived from the MSigDB 7.0 (Subramanian et al., 2005) using gene-based p-

values. Competitive testing was used and revealed five genome-wide 

significant gene sets (Table 3, see Supplementary Table S9 for top-10 gene 

sets and genes included). Two of these reached study-wide significance: the 

interleukin-1 (IL-1) receptor activity gene set for age-dependent genetic 

associations with cortical volume change and the response to interleukin-2 

(IL-2) gene set for age-independent genetic associations with thalamic 

change. There were no overlapping genes in these gene sets. These gene 

sets are immune system-related, and both IL-1 and IL-2 are known to affect 

the growth and survival of neural cells (Hanisch and Quirion, 1996; Borsini et 

al., 2015). The finding of immune-related gene sets in both these structures is 

intriguing given the extensive reciprocal structural connections of thalamus 

with the cerebral cortex (Zhang et al., 2010; Bolkan et al.,  2017) and the 

known phenotypic and genetic link between psychiatric and immune-related 

disorders (Lambert et al., 2013, Psychiatric Genomics Consortium, 2014; 

Wang et al., 2015; Jeppesen et al., 2019; Pouget et al., 2019). 

 

Post-hoc analyses 

 

Overlap with cross-sectional findings  

 

SNP-based heritability estimates (h2) of the rates of change based on linkage 

disequilibrium score regression (LDSC; Bulik-Sullivan et al., 2015) were small 

overall (Supplementary Table S10). For all phenotypes, the h2 z-score was 

below 4, so we tested for genetic overlap with cross-sectional brain data and 

other phenotypes by applying approaches other than LDSC: to investigate 

whether cross-sectional GWAS for brain structure and our GWAS on rates of 

change identify the same or different genetic variants, we investigated overlap 

between rate of change and earlier published data on cross-sectional brain 

structure of the same structure (where available, Materials and Methods). 

Supplementary Figure S6 displays the number of overlapping genes tested 

against the expected number of overlapping genes that would occur by 

chance, in the first 1-1,000 ranked genes. Supplementary Table S8 lists the 

top-10 gene findings for each of the 15 change rate phenotypes and 

compares these with the gene ranks from cross-sectional data. In the top-10 

ranked genes, no overlap was seen for 11 of the measured phenotypes, and 

only up to 2 overlapping genes were observed for the remaining 4 

phenotypes. These genes included APOE, a major genetic risk factor for AD 

(Wolfe et al., 2019), which influenced change in both amygdala and 

hippocampus differentially across the lifespan. Additional top genes for 
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Table 3: Gene-sets for age-(in)dependent effect on longitudinal brain changes.   
 

Phenotype 
(change 
rate) 

Age-
dependency 

GO-term 
 

# 
genesa 

P-value       
 

Brief description 

Cortex linear GO_SECRETORY_GRANULE_LOCALIZATION 11 6.39e-07      Any process in which a secretory granule is transported to, and/or 
maintained in, a specific location within the cell) 

Cortex linear GO_INTERLEUKIN_1_RECEPTOR_ACTIVITY 6 6.80e-08       Combining with interleukin-1 to initiate a change in cell activity. 
Interleukin-1 is produced mainly by activated macrophages and is 
involved in the inflammatory response 

Pallidum constant GO_FLAVONOID_GLUCURONIDATION 9 1.51e-06  
 

The modification of a flavonoid by the conjugation of glucuronic 
acid. The resultant flavonoid glucuronosides are often much more 
water-soluble than the precursor. 

Thalamus constant GO_RESPONSE_TO_INTERLEUKIN_2 12 1.12e-07      Any process that results in a change in state or activity of a cell or 
an organism (in terms of movement, secretion, enzyme production, 
gene expression, etc.) as a result of an interleukin-2 stimulus. 

Thalamus linear GO_GTPASE_REGULATOR_ACTIVITY 259 2.63e-06  Modulates the rate of GTP hydrolysis by a GTPase. 

 
 

Genome-wide significant gene sets based on gene ontology. Study-wide significant gene sets are displayed in bold. aSee Supplementary Table S9 
for genes included in the gene set. Genes included in GO_INTERLEUKIN_1_RECEPTOR_ACTIVITY and GO_RESPONSE_TO_INTERLEUKIN_2 
do not overlap.  
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volume change that had previously been identified in GWAS of cross-

sectional volumes of the same structures were KTN1 (kinectin 1 gene) for 

putamen (Hibar et al., 2015), C16orf95 for ventricle volume (Elliot et al., 

2018), and APOC1 (Apolipoprotein C-1) for amygdala and hippocampus 

(Hibar 2017, Satizabal 2019). Extending this search to the top 200 (~1% of 

genes), we found no other overlapping genes above chance level. In the top 

1,000 ranked genes (~5% of genes), overlapping genes did emerge 

(Supplementary Figure S6).  

To test for global genomic overlap between our findings and GWAS of 

cross-sectional volumes we applied independent SNP-Effect Concordance 

Analyses (iSECA) (Nyholt, 2014; Materials and Methods) and tested for 

pleiotropy. We found no significant pleiotropy between longitudinal and cross-

sectional results, confirming a largely different genetic background for 

changes in brain structure and brain structure per se (Figure 3).  

 

Overlap with other traits 

 

We applied iSECA for overlap between our age-independent summary 

statistics for structural brain changes and several neuropsychiatric, 

neurological, physical, aging and disease-related phenotypes and 

psychological traits (Materials and Methods). We found significant genomic 

overlap (p < 1.6e-04) with genetic variants associated with depression 

(Howard et al., 2019), schizophrenia (Psychiatric Genomics Consortium, 

2014), cognitive functioning (Savage et al., 2018), height (Yengo et al., 2018), 

body mass index (BMI; Yengo et al., 2018), and ever smoking (Watanabe et 

al., 2019). Despite significant pleiotropy between rates of change and these 

traits, the directions of effects varied across loci. (Figure 3, Supplementary 

Figure S7).  

Of note, there was little overlap in the genetic loci associated with the 

longitudinal brain measures and intracranial volume at baseline, indicating 

that overall head size did not drive our findings (Figure 3).  

 

Gene expression in the brain across the lifespan 

 

We determined mRNA expression for genome-wide significant genes and 

genes associated with genome-wide significant SNPs (Tables 1 and 2) in 54 

tissue types and in both the developing and adult human brain, through 

GENE2FUNC (Watanabe et al., 2017). For the prioritized genes, a gene 

expression heatmap was created, based on GTEx v8 RNAseq data (GTEx 

Consortium, 2015). This revealed considerable expression levels across 

several brain tissues for the following genes: ABR, TMEM30A, APOE, 

EPAS1, PLCD3, and DSCAM, the latter showing higher relative expression in 

brain tissue compared to all other tissue types (Supplementary Figure S8A). 

TMCO2 was predominantly expressed in the testis. Expression heatmaps 

based on BrainSpan data (Miller et al., 2014) revealed that DACH1 shows 

highest relative expression during early prenatal stages (8-9 post conception 

weeks), compared to postnatal stages. A second cluster of genes 

demonstrated stable high relative expression levels throughout development 
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and across the lifespan (APOE, ABR, TMEM30A, PID1). Two additional 

genes, EPAS1 and PLCD3, showed lower relative expression in the early 

prenatal stages and higher expression later in life (Supplementary Figure 8B). 

 

Phenome-wide associations  

 

For the prioritized SNPs and genes (Table 1 and 2), exploratory pheWAS (i.e., 

“phenome‐wide”) analysis was performed to systematically analyze many 

phenotypes for association with the genotype and individual genes 

(Supplementary Table S11). PheWAS was performed using publically 

available data from the GWASAtlas (https://atlas.ctglab.nl; Watanabe et al., 

2019). Both a single variant (rs72772740) and gene associations of DACH1, 

GPR139 showed pleiotropic effects mainly in the metabolic domain, e.g., with 

estimated glomerular filtration rate and BMI (Supplementary Table S11, 

Supplementary Figure S9). APOE showed strong associations with 

cholesterol and lipids. Similarly, TMCO2 and PLCD3 showed significant 

associations with BMI-related phenotypes (Supplementary Table S11, 

Supplementary Figure S9).  

 

Sensitivity analyses 

 

We repeated the main analyses in various subgroups: 1) by adding four 

cohorts of non-European or mixed ancestry (N=540), 2) by omitting cohorts 

that did not meet a minimum sample size criterion (N>75) or a minimum 

scanning interval (> 0.5 years) leaving N=9,105, 3) by excluding diagnostic 

groups in each cohort leaving N=7,309, and 4) by including a covariate 

adjusting for disease status (Supplementary Tables S12-S14). In SNP-based 

analyses, effects sizes of SNPs were very similar in all subgroups, suggesting 

that our results are also applicable for individuals of non-European ancestry, 

the smaller cohorts, and in individuals irrespective of disease (Supplementary 

Table S12). For the gene-based analyses, a similar pattern was observed, 

with one notable exception: the APOE finding for hippocampus rate of change 

showing increasing influence of the top SNP with age, was no longer present 

when correcting for disease. This suggests that the APOE finding for 

hippocampus was driven by the presence of patients (Supplementary Table 

S13).  

Given that our main analyses included patients and iSECA analyses 

showed several associations with disease, we repeated iSECA analyses 

excluding diagnostic groups in each cohort, which did not change the findings 

(Supplementary Figure S7D). 

 

Discussion 

 

Here, we present the first GWAS investigating influences of common genetic 

variants on brain-structural changes in over 10,000 subjects. The longitudinal 

design of our study combined with the large age range assessed provides a 

flexible framework to detect age-independent and age-dependent effects of 

genetic variants on rates of structural brain changes. We discovered novel 
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genetic effects that influence inter-individual differences in both development 

and aging of brain structures. Many of the genes implicated play a crucial role 

in early, prenatal brain development. We identified these genes in a 

population aged 4 to 99, suggesting that the same genetic variants are also 

crucial for brain-structural changes later in life.  

Our findings show genomic overlap with psychiatric and physiological 

phenotypes that are associated with longitudinal brain-structural changes 

such as schizophrenia, smoking, cognitive functioning, and body mass index 

(Hulshoff Pol and Kahn, 2008; Bobb et al., 2014; Schnack et al., 2015; Kim et 

al., 2018). Additionally, we find the APOE gene, a major risk factor for AD 

(Wolfe et al., 2019), to influence amygdala and hippocampus rates of change 

with varying effects across the lifespan, with probably most pronounced 

effects in those affected with brain disorders. Gene-set findings imply a role 

for immune-related processes. Several of the identified genetic variants and 

genes were linked to metabolic phenotypes, and we found genetic overlap 

with body mass index, suggesting a role for metabolic processes in 

longitudinal brain changes.  

Given the dynamics of brain structural changes during the lifespan, we 

investigated both age-independent and age-dependent genetic effects. The 

age-independent effects can be interpreted as neurodevelopmental influences 

that also impact brain structure at older ages (Fjell et al., 2015; Walhovd et al., 

2016), whereas the age-dependent effects can be interpreted as possible 

changing effects of genes or gene expression during life (Kang et al., 2011). 

The genome-wide meta-regression approach employed here may enable 

future GWAS for other phenotypes that change over the human lifespan.  

How exactly variation in these genes impacts brain changes in health 

and disease cannot be answered based on genome-wide association studies. 

In this, our findings may direct future studies into brain development and 

aging, and prevention and treatment of brain disorders. For 

neurodegenerative disorders, for example, identifying genetic variants that 

influence brain atrophy over time might well be equally or more important than 

the identification of static genetic differences. In conclusion, our study shows 

that our genetic architecture is associated with the dynamics of human brain 

structure throughout life. 

 

 

Materials and Methods 

 

Ethical approval and data availability  

 

All participants gave written informed consent and all participating sites 

obtained approval from local research ethics committees/institutional review 

boards. Ethics approval for meta-analyses within the ENIGMA consortium 

was granted by the QIMR Berghofer Medical Research Institute Human 

Research Ethics Committee in Australia (approval: P2204). Upon publication, 

the meta-analytic results will be made available from the ENIGMA consortium 

webpage http://enigma.ini.usc.edu/research/download-enigma-gwas-results.  
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Inclusion criteria 

 

Cohorts that had longitudinal magnetic resonance imaging (MRI) data of the 

brain and genotyped data extracted from blood or saliva available were invited 

to participate, irrespective of disease status and age. Patients were not 

excluded as aberrant brain trajectories are often observed and we 

hypothesize that genetic risk for disease may be associated with genetic 

influences on rates of change. We included cohorts that had a preferred 

sample size of at least 75 subjects and a follow up duration (for repeated MRI 

scans) of at least six months. After quality control of individual subject’s 

imaging and genotyping data, not all the cohorts could meet these criteria. In 

total, we included 10,163 subjects aged 4 to 99 (50% female, 22% patients). 

Please see Supplementary Figure S1 and Supplementary Table S1 for further 

description of the cohorts.  

 

Longitudinal imaging 

 

Eight global brain measures (total brain including cerebellum and excluding 

brainstem, surface area measured at the grey-white matter boundary, 

average cortical thickness, total lateral ventricle volume, and cortical and 

cerebellar grey and white matter volume) and seven subcortical structures 

(thalamus, caudate, putamen, pallidum, hippocampus, amygdala and nucleus 

accumbens) were extracted from the FreeSurfer processing pipeline (Fischl et 

al., 2002, 2004; Reuter, Schmansky, Rosas, & Fischl, 2012; see 

Supplementary Table S2 for details per cohort). We chose these measures 

based on the fact that they show generally high test-retest reliability for cross-

sectional measures e.g. (Iscan et al., 2015; Liem et al., 2015; Wonderlick 

2009), thereby selecting those measures that would have sufficient signal to 

noise in change measures. Image processing and quality control were 

performed at the level of the cohorts, following harmonized protocols 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/) which included visual 

inspection of the segmentation. Annual rates of change were computed in 

each individual for each phenotype by subtracting baseline brain measures 

from follow up measures and dividing by the number of years of follow-up 

duration. We chose not to correct for overall head size in this analysis: while 

this is common practice for investigating cross-sectional brain volumes 

(Voevodskaya et al., 2014), the influence of overall head size on brain 

changes over time is small (Supplementary Figure S2). Distributions of 

baseline and follow-up measures - as well as annual rates of changes - were 

visually inspected and change rates were centrally compared for consistency.  

Longitudinal trajectories of brain structure rates of change were 

estimated by applying locally, cohort-size weighted, estimated scatterplot 

smoothing with a Gaussian kernel, local polynomials of degree 2 and a span 

of 1 (LOWESS; Cleveland, 1979) implemented in R (R Core Team, 2018). 

Integrating these trajectories and then fitting these to the baseline values of 

the phenotypes in the cohorts provides trajectories throughout the lifespan. 

Trajectories were estimated in the full dataset including patients and by 

excluding diagnostic groups in each cohort separately.  
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Genome-wide association analysis 

 

At each participating site, genotypes were imputed using the 1000 Genomes 

project dataset (1000 Genomes Project Consortium, 2015) through the 

Michigan imputation server (https://imputationserver.sph.umich.edu/ - Das et 

al., 2016) or the Sanger imputation server (McCarthy et al., 2016) 

(Supplementary Table S3). Subsequently, each site ran the same 

multidimensional scaling (MDS) analysis protocol, computing MDS 

components from the combination of their cohort's data with the HapMap3 

population (International HapMap Consortium, 2010). This ensured that all 

sites corrected for ancestry in a consistent manner. See 

http://enigma.ini.usc.edu/protocols/genetics-protocols/ for the imputation and 

MDS analysis protocol. Within each cohort genome-wide association was 

conducted using an additive model, modelling change rate as a function of the 

genetic variant plus covariates age, sex, age*sex, age2, age2*sex and 

ancestry (the first four MDS components). Dummy variables were added 

where appropriate, e.g., when multiple scanners were used. We re-ran these 

analyses adding a covariate for disease status if the cohorts contained 

patients and controls. Most sites used our harmonized GWAS protocol, which 

used raremetalworker (Feng et al., 2014) for analysis (Supplementary Table 

S3). Regardless of the study design, a kinship matrix was incorporated in 

these analyses, accounting for relatedness in family studies, or possible 

unknown kinship in the other studies.  

Given the small sample sizes of the individual cohorts, a stringent 

cohort level quality control was enforced, to exclude variants with a minor 

allele frequency (MAF) < 0.05 or variants with imputation R2 / info score < 

0.75. Across cohorts and phenotypes, GWAS summary plots (Manhattan 

plots and QQ plots) were visually inspected at the central site. If a given 

cohort / trait showed deviation from expectations, sites were asked to re-

analyze their data, which usually involved removal of outliers in the 

phenotypic data.  

 

Meta-analysis and Meta-regression 

 

In the cohorts of European ancestry (N=9,604) we tested three models 

aggregating the cohort-level data for each phenotype, using standard-error 

weighted meta-analysis or meta-regression: Under the assumption that effect 

sizes of single nucleotide polymorphisms (SNPs) were consistent across the 

lifespan, where the subscript C denotes a cohort and e an error term.   

 

1) Effect_SNPC ~ b0 + eC, under the null hypothesis that b0 = 0. 

 

Given that brain changes throughout life are dependent on age, the effects 

of a genetic variant on brain change is likely to depend on age too. Within 

cohorts such an age by SNP effect analysis would not have been feasible 

since longitudinal cohorts that span the age-range between 4-99 years do not 

exist. Given the widespread mean age among the cohorts included 

(Supplementary Table 1 and Supplementary Figure S1), it was possible to 
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calculate the age-dependent effects across the life span comparing effects of 

loci between cohorts, through meta-regression. Meta-regression is a 

sophisticated tool for addressing heterogeneity between cohorts in meta-

analyses when the source of heterogeneity is known (in this case, age) (Baker 

et al., 2009). We estimated the following model under the assumption that the 

effects of SNPs may vary in size or direction across the lifespan: 

 

       2) Effect_SNPC ~ b0 + b1*ageC + eC under the null hypothesis that b1=0 (1 

degree of freedom), and 

       3) Effect_SNPC ~ b0 + b1*ageC + b2*ageC
2 + eC under the null hypothesis 

that (b1=b2=0, 2 degrees of freedom).  

 

SNP data were aligned using METAL (Willer, Li, & Abecasis, 2010) for 

all three analyses. The age-independent effect of SNPs (model 1) was 

computed in METAL. For the age-dependent analyses the aligned data were 

imported into R (version 3.5.0, R Core Team, 2018) and fixed effects meta-

regression was performed using the R-package metafor (version 2.0-0, 

Viechtbauer, 2010). Results were filtered on SNPs that were present for at 

least 50% of the cohorts and in at least 50% of the subjects.  

 

Functional mapping 

 

Functional mapping was performed using the FUMA platform designed for 

prioritization, annotation and interpretation of GWAS results (Watanabe, 

Taskesen, Van Bochoven, & Posthuma, 2017). As the first step, independent 

significant SNPs in the individual GWAS meta-analysis summary statistics 

were identified based on their p-value (p < 5 x 10-8) and independence of 

each other (r2 < 0.6 in the 1000G phase 3 reference) within a 1Mb window. 

Thereafter, lead SNPs were identified from independent significant SNPs, 

which are independent of each other (r2 < 0.1). We used FUMA to annotate 

lead SNPs in genomic risk loci based on the following functional 

consequences on genes: eQTL data (GTEx v6 and v7 (Lonsdale et al., 

2013)), blood eQTL browser (Westra et al., 2013), BIOS QTL browser 

(Zhernakova et al., 2017), BRAINEAC (Ramasamy et al., 2014), MuTHER 

(Grundberg et al., 2012), xQTLServer (Ng et al., 2017), the CommonMind 

Consortium (Fromer et al., 2016) and 3D chromatin interactions from HI-C 

experiments of 21 tissues/cell types (Schmitt et al., 2016). Next for eQTL 

mapping and chromatin interaction mapping, genes were mapped using 

positional mapping, which is based on a maximum distance between SNPs 

(default 10kb) and genes. Chromatin interaction mapping was performed with 

significant chromatin interactions (defined as FDR < 1 × 10-6). The two ends 

of significant chromatin interactions were defined as follows: region 1 – a 

region overlapping with one of the candidate SNPs, and region 2 – another 

end of the significant interaction, used to map to genes based on overlap with 

a promoter region (250bp upstream and 50bp downstream of the transcription 

start site). 
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Visualization of SNP effects 

 

We visualized the effects of our top SNPs on the lifespan trajectory, assuming 

no effects of the other SNPs, for easier interpretation of the direction of effect. 

Similar to the estimation of the lifespan trajectory, we estimated a smoothed 

version f(x) of the phenotypic change rate using LOWESS (see above) and 

integrated the rate of change. We added the unknown volume C at the start of 

our age range by fitting the integrated curve to the baseline data. Suppose 

h(x) is the unknown rate of change for non-carriers. The additional change 

rate g(x) for carriers was estimated through the meta-analysis or meta-

regression. The full dataset contained a fraction p of the carriers of the tested 

allele. Assuming p + q = 1, f(x) = p*(h(x) + g(x)) + q*h(x) = h(x) + p*g(x). We 

created a rate of change curve for non-carriers as f(x)-p*g(x) and a rate of 

change curve of carriers as f(x)+q*g(x). The offset C is potentially different in 

carriers and non-carriers, so we estimated this difference by taking the effect 

of the cross-sectional GWAS data (see below) in this SNP, or a proxy SNP in 

high linkage disequilibrium (LD).  

 

Gene-based and gene-set analyses 

 

Gene-based associations with 15 phenotypes were estimated using MAGMA 

(version 1.07b; de Leeuw et al., 2015) using the summary statistics from age-

independent and age-dependent GWAS meta-analyses of rate of change of 

global brain measures. Gene names and locations were based on ENSG v92 

(Zerbino et al., 2018) as is used in the FUMA pipeline (Watanabe et al., 

2017). Association was tested using the SNP-wise mean model, in which the 

sum of -log(SNP p-value) for SNPs located within the transcribed region 

(defined using NCBI 37.3 gene definitions) was used as the test statistic. LD 

correction was based on estimates from the 1000 Genomes Project Phase 3 

European ancestry samples (1000 Genomes Project Consortium, 2015). To 

describe the direction of the age effect for significant genes in the age-

dependent analyses, we subsequently identified the SNPs that were used in 

the gene-based p-value and plotted the age-dependent effect of the top SNP 

that contributed to the gene-based p-value. 

The generated gene-based p-values were used to analyze sets of 

genes in order to test for association of genes belonging to specific biological 

pathways or processes. MAGMA applies a competitive test to analyze if the 

genes of a gene set are more strongly associated with the trait than other 

genes, while correcting for a series of confounding effects such as gene 

length and size of the gene set. For gene sets we used 9,975 sets with 10 –

1,000 genes from the Gene Ontology sets (Gene Ontology Consortium, 2015) 

curated from MsigDB 7.0 (Subramanian et al., 2005). 

 

Multiple testing corrections 

 

We investigated annual rates of change for 15 brain phenotypes, but these 

are correlated to some extent (Supplementary Figure S2). We therefore 

estimated the effective number of independent variables based on matrix 
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spectral decomposition (Nyholt, 2004) for the largest adolescent cohort 

(IMAGEN; N=1,068) and for the largest elderly cohort (ADNI2; N=626). The 

most conservative estimate of the number of independent traits was 13.93. 

Despite the fact that models 2 and 3 are nested and therefore not 

independent, we also corrected for the fact that we performed three analyses 

per trait. The study-wide significant threshold for the genome was therefore 

set at p < 1.2e-09 (5e-08/13.93*3). For gene-based significance, we applied a 

genome-wide significance level of 0.05/18,217= 2.64e-06, and a study wide 

significance of 2.64e-06/(13.93*3), i.e. p < 6.6e-08. For gene-set significance, 

we applied a genome-wide significance level of 0.05/9,975 = 5.01e-06 and a 

study-wide significance level of 5.01e-06/(13.93*3), i.e. p < 1.20e-07. 
 

Post-hoc analyses 

SNP heritability  

SNP heritabilities, h2
SNP, were estimated by using linkage disequilibrium (LD)      

score regression (LDSR; Bulik-Sullivan et al., 2015) for the European-

ancestry brain change GWASs to ensure matching of population LD structure. 

For LDSR, we used precomputed LD scores based on the European-ancestry 

samples of the 1000 Genomes Project (1000 Genomes Project Consortium, 

2015) restricted to HapMap3 SNPs (International HapMap Consortium, 2010). 

The summary statistics with standard LDSC filtering were regressed onto 

these scores. SNP heritabilities were estimated based on the slope of the LD 

score regression, with heritabilities on the observed scale calculated. To 

ensure sufficient power for the genetic correlations, rg was calculated if the Z-

score of the h2
SNP for the corresponding GWAS was 4 or higher (Bulik-

Sullivan et al., 2015). 

Comparison with cross-sectional results  

 

For the genome-wide significant genes and genes associated with genome-

wide significant SNPs, we compared our findings with cross-sectional GWAS 

summary statistics when available. To this end datasets from (Elliott et al., 

2018; Hibar et al., 2017; Satizabal et al., 2019; Grasby et al., 2020) were 

requested/downloaded from (http://enigma.ini.usc.edu/research/download-

enigma-gwas-results/; http://big.stats.ox.ac.uk/download_page). Gene-based 

association analyses for cross-sectional brain GWAS summary statistics were 

performed using MAGMA (as described above). Additionally, we compared 

the overlap in the first 1,000 ranked genes to the expected number of 

overlapping genes based on chance. False discovery rate correction 

(Benjamini and Hochberg, 1995) was applied to determine over- or under-

representation of genes from our longitudinal GWAS to the cross-sectional 

previously published GWAS.  
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Genetic overlap with cross-sectional results and other traits 

 

To investigate genetic overlap with other traits across the genome we applied 

an adapted version of iSECA (independent SNP effect concordance analysis; 

Nyholt, 2014) which examines pleiotropy and concordance of the direction of 

effects between two phenotypes by comparing expected and observed 

overlap in sets of SNPs from both phenotypes that are thresholded at different 

levels. From the results at each threshold, heatmap plots are generated 

containing binomial tests for pleiotropy and Fisher’s exact tests for 

concordance. An empirical p-value for overall pleiotropy and concordance is 

then generated through permutation testing. Our implementation of iSECA 

also included a p-value for overall discordance, as we expect some 

phenotypes to negatively influence brain-structural change rates. P-values 

were computed using a two-step approach: we first ran 1,000 permutations. If 

the p-value for pleiotropy was below 0.05/15 we reran the analyses with 

10,000 permutations to obtain a more precise p-value. Summary statistics of 

change rates were first filtered on SNPs for which > 95% of the subjects 

contributed data to remove the sample size dependency of p-values and 

subsequently clumped (p=1,kb=1000) to ensure independence of input SNPs.   

We investigated the genetic overlap between brain-structural changes 

and risk for 20 neuropsychiatric, neurological and somatic disorders, and 

physical and psychological traits. Summary statistics were downloaded or 

requested for aggression (Pappa et al., 2016), alcohol dependence (Walters 

et al., 2018), Alzheimer's disease (Lambert et al., 2013), attention-

deficit/hyperactivity disorder (Demontis et al., 2019), autism (Psychiatric 

Genomics Consortium, 2017), bipolar disorder (Stahl et al., 2019), body mass 

index (Yengo et al., 2018), brain age gap (Kauffman et al., 2019), cognitive 

functioning (Savage et al., 2018), depression (Howard et al., 2019), diabetes 

type 2 (Scott et al., 2017), ever smoking (Watanabe et al., 2019), focal 

epilepsy (The International League Against Epilepsy Consortium on Complex 

Epilepsies, 2018), height (Yengo et al., 2018), inflammatory bowel disease 

(Liu et al., 2015), insomnia (Jansen et al., 2019), multiple sclerosis (Sawcer et 

al., 2011), Parkinson's disease (Nalls et al., 2018), rheumatoid arthritis 

(Okada et al., 2014) and schizophrenia (Psychiatric Genomics Consortium, 

2014). These phenotypes were chosen because of known associations with 

brain structure or function, and availability of summary statistics based on 

large GWA-studies.  

Apart from these, we also 1) included intracranial volume (Adams et 

al., 2016) to investigate the effect of overall head size and 2) tested the 

overlap between each structure’s longitudinal change measure against its 

cross-sectional brain structure. Pleiotropy, concordance or discordance was 

considered significant when the p-value was smaller than 0.05/15*22 

(#change rates * #phenotypes tested) = 1.6e-04. 

 

Brain gene expression 

 

GENE2FUNC, a core process of FUMA (Functional Mapping and Annotation 

of Genome-wide Association Studies; http://fuma.ctglab.nl; Watanabe et al., 
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2017), was employed to analyze gene expression patterns. For this, a set of 

16 genes was used as input, including all genome-wide significant genes and 

genes harboring genome-wide significant SNPs (compare Table 1 and 2). 

Gene expression heatmap was constructed employing GTEx v8 (GTEx 

Consortium, 2015; 54 tissue types) and BrainSpan RNA-seq data across 29 

different ages or 11 different developmental stages (Miller et al., 2014). The 

average of normalized expression per label (zero means across samples) was 

displayed on the corresponding heatmaps. Expression values are TPM 

(Transcripts Per Million) for GTEx v8 and RPKM (Read per Kilobase Million) 

in the case of BrainSpan data set.  

 

Phenome-wide association studies 

 

To identify phenotypes associated with the candidate SNPs and genes 

(defined as genome-wide significant SNPs and the genome-wide significant 

genes and genes associated with genome-wide significant SNPs), a 

phenome-wide association study (pheWAS) was done for each SNP and/or 

gene. PheWAS was performed using public data provided by GWASAtlas 

(https://atlas.ctglab.nl; Watanabe et al., 2019). To correct for multiple testing, 

the total number of GWASs (4,756) was considered (including GWASs in 

which the searched SNP or gene was not tested) and the number of tested 

SNPs and genes, resulting in a Bonferroni corrected p-value threshold of 

1.05e-05/19, i.e., p < 5.53e-07. 

 

Sensitivity analyses 

 

The main analyses include available data from all cohorts with European 

ancestry (N=9,623). The four cohorts of non-European and mixed ancestry 

together consist of 540 subjects, who are predominantly children and 

adolescents (Supplementary Table S3). The number of subjects, 

heterogeneity in ancestry and the age-distribution do not allow for separate 

meta-analysis or meta-regression. We therefore added the cohorts of non-

European ancestry to the original datasets and reran analyses (N=10,163). In 

a second analysis, we excluded the 9 cohorts that had N < 75 or mean 

scanning interval < 0.5 years (Supplementary Table S2), leaving N=9,105 

subjects. The main analyses include data from all subjects combined, without 

correction for disease. This approach was chosen because many neurological 

and neuropsychiatric diseases are characterized by aberrant brain changes 

over time, and genes involved in the disease may also be involved in these 

brain changes. To check whether our results were confounded by disease, we 

repeated the main analyses excluding diagnostic groups of each cohort 

(N=7,309) and by correcting for disease status. 
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Figure legends 

 

Figure 1: Phenotypic brain changes throughout the lifespan.  

Visualization of growth and decline of brain structures throughout the lifespan. 

The subcortical structures are shown in exploded view (a). Individual change 

rates are shown for (b) amygdala, (c) caudate, (d) cerebral white matter 

volume, (e) cerebellum cortex volume, (f) cerebellum white matter volume, (g) 

cortex volume, (h) cortical thickness, (i) hippocampus, (j) lateral ventricle 

volume, (k) nucleus accumbens, (l) pallidum, (m) putamen, (n) surface area, 

(o) thalamus and (p) total brain. Annual rates of change Δ per cohort. “For 

each structure, the estimated trajectories with confidence intervals (in green) 

are displayed in the top row (b-p). The size of the points represents the 

relative size of the cohorts. Standard errors are displayed in gray. Means and 

standard deviations are based on raw data – no covariates were included. 

Only cohorts that satisfy N>75 and mean interval > 0.5 years are shown. The 

estimated trajectories of the volumes themselves are displayed in the bottom 

row, for all subjects (solid line) and for subjects not part of diagnostic groups 

(dashed line).  

 

Figure 2: Genetic effects on rates of brain changes throughout the 

lifespan. a) genome-wide significant SNPs and genes with effects on brain 

changes at their respective loci across the human genome; Illustrations of the 

two significant genome-wide loci with significant associated genes for b) age-

independent effect of GPR139 and rs72772740 on lateral ventricle change 

and c) age-dependent effect of DACH1 and rs573983368 on white matter 

change; both b) and c) are represented by Manhattan plot, locus plot, meta-

regression plot with the meta-regression curve with 95% confidence interval in 

red and effect size of cohorts represented by circle size, and trajectory plot 

with the estimated trajectories of the volumes themselves for carriers and 

non-carriers of the top SNP; Illustrations of the three other genome-wide 

genetic effects with d) age-dependent effect of top SNP of APOE on 

amygdala change and e) age-dependent effect of the top SNP of APOE on 

hippocampus change; d) and e) are represented by meta-regression curve 

and estimated trajectories for carriers and non-carriers of the effect allele.  

 

Figure 3: Overlap with other phenotypes 

P-values for pleiotropy between change rates of structural brain measures 

(rows, indicated by Δ for change rate) and neuropsychiatric, disease-related 

and psychological traits (columns left of color legend). P-values for pleiotropy 

between change rates of structural brain measures and head size (total brain 

volume) and the cross-sectional brain measure are displayed on the right 

(columns right of color legend). Significant overlap (p < 1.6e-04) is marked 

with *.  
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Investigator, Raina Carter – Past Investigator, Sara Dolen – Past Investigator. University of 
Southern California: Lon S. Schneider, Sonia Pawluczyk, Mauricio Becerra, Liberty Teodoro, 
Bryan M. Spann – Past Investigator. University of California – San Diego: James Brewer, 
Helen Vanderswag, Adam Fleisher – Past Investigator. University of Michigan: Jaimie 
Ziolkowski, Judith L. Heidebrink, Joanne L. Lord – Past Investigator. Mayo Clinic, Rochester: 
Ronald Petersen, Sara S. Mason, Colleen S. Albers, David Knopman, Kris Johnson – Past 
Investigator. Baylor College of Medicine: Javier Villanueva-Meyer, Valory Pavlik, Nathaniel 
Pacini, Ashley Lamb, Joseph S. Kass, Rachelle S. Doody – Past Investigator, Victoria Shibley 
– Past Investigator, Munir Chowdhury – Past Investigator, Susan Rountree – Past 
Investigator, Mimi Dang – Past Investigator. Columbia University Medical Center: Yaakov 
Stern, Lawrence S. Honig, Karen L. Bell, Randy Yeh. Washington University, St. Louis: Beau 
Ances, John C. Morris, David Winkfield, Maria Carroll, Angela Oliver, Mary L. Creech – Past 
Investigator, Mark A. Mintun – Past Investigator, Stacy Schneider – Past Investigator. 
University of Alabama - Birmingham: Daniel Marson, David Geldmacher, Marissa Natelson 
Love, Randall Griffith – Past Investigator, David Clark – Past Investigator, John Brockington – 
Past Investigator. Mount Sinai School of Medicine: Hillel Grossman, Effie Mitsis – Past 
Investigator. Rush University Medical Center: Raj C. Shah, Melissa Lamar, Patricia Samuels. 
Wien Center: Ranjan Duara, Maria T. Greig-Custo, Rosemarie Rodriguez. Johns Hopkins 
University: Marilyn Albert, Chiadi Onyike, Daniel D’Agostino II, Stephanie Kielb – Past 
Investigator. New York University: Martin Sadowski, Mohammed O. Sheikh, Jamika 
Singleton-Garvin, Anaztasia Ulysse, Mrunalini Gaikwad. Duke University Medical Center: P. 
Murali Doraiswamy, Jeffrey R. Petrella, Olga James, Salvador Borges-Neto, Terence Z. 
Wong – Past Investigator, Edward Coleman – Past Investigator. University of Pennsylvania: 
Jason H. Karlawish, David A. Wolk, Sanjeev Vaishnavi, Christopher M. Clark – Past 
Investigator, Steven E. Arnold – Past Investigator. University of Kentucky: Charles D. Smith, 
Greg Jicha, Peter Hardy, Riham El Khouli, Elizabeth Oates, Gary Conrad. University of 
Pittsburgh: Oscar L. Lopez, MaryAnn Oakley, Donna M. Simpson. University of Rochester 
Medical Center: Anton P. Porsteinsson, Kim Martin, Nancy Kowalksi, Melanie Keltz, Bonnie 
S. Goldstein – Past Investigator, Kelly M. Makino – Past Investigator, M. Saleem Ismail – 
Past Investigator, Connie Brand – Past Investigator. University of California Irvine IMIND: 

Gaby Thai, Aimee Pierce, Beatriz Yanez, Elizabeth Sosa, Megan Witbracht. University of 
Texas Southwestern Medical School: Kyle Womack, Dana Mathews, Mary Quiceno. Emory 
University: Allan I. Levey, James J. Lah, Janet S. Cellar. University of Kansas, Medical 
Center: Jeffrey M. Burns, Russell H. Swerdlow, William M. Brooks. University of California, 
Los Angeles: Ellen Woo, Daniel H.S. Silverman, Edmond Teng, Sarah Kremen, Liana 
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Apostolova – Past Investigator, Kathleen Tingus – Past Investigator, Po H. Lu – Past 
Investigator, George Bartzokis – Past Investigator. Mayo Clinic, Jacksonville: Neill R Graff-
Radford (London), Francine Parfitt, Kim Poki-Walker. Indiana University: Martin R. Farlow, 
Ann Marie Hake, Brandy R. Matthews – Past Investigator, Jared R. Brosch, Scott Herring. 
Yale University School of Medicine: Christopher H. van Dyck, Richard E. Carson, Pradeep 
Varma. McGill Univ., Montreal-Jewish General Hospital: Howard Chertkow, Howard 
Bergman, Chris Hosein. Sunnybrook Health Sciences, Ontario: Sandra Black, Bojana 
Stefanovic, Chris (Chinthaka) Heyn. U.B.C. Clinic for AD & Related Disorders: Ging-Yuek 
Robin Hsiung, Benita Mudge, Vesna Sossi, Howard Feldman – Past Investigator, Michele 
Assaly – Past Investigator. Cognitive Neurology - St. Joseph's, Ontario: Elizabeth Finger, 
Stephen Pasternak, William Pavlosky, Irina Rachinsky – Past Investigator, Dick Drost – Past 
Investigator, Andrew Kertesz – Past Investigator. Cleveland Clinic Lou Ruvo Center for Brain 
Health: Charles Bernick, Donna Muni. Northwestern University: Marek-Marsel Mesulam, 
Emily Rogalski, Kristine Lipowski, Sandra Weintraub, Borna Bonakdarpour, Diana Kerwin – 
Past Investigator, Chuang-Kuo Wu – Past Investigator, Nancy Johnson – Past Investigator. 
Premiere Research Inst (Palm Beach Neurology): Carl Sadowsky, Teresa Villena. 
Georgetown University Medical Center: Raymond Scott Turner, Kathleen Johnson, Brigid 
Reynolds. Brigham and Women's Hospital: Reisa A. Sperling, Keith A. Johnson, Gad A. 
Marshall. Stanford University: Jerome Yesavage, Joy L. Taylor, Steven Chao, Barton Lane – 
Past Investigator, Allyson Rosen – Past Investigator, Jared Tinklenberg – Past Investigator. 
Banner Sun Health Research Institute: Edward Zamrini, Christine M. Belden, Sherye A. Sirrel. 
Boston University: Neil Kowall, Ronald Killiany, Andrew E. Budson, Alexander Norbash – 
Past Investigator, Patricia Lynn Johnson – Past Investigator. Howard University: Thomas O. 
Obisesan, Ntekim E. Oyonumo, Joanne Allard, Olu Ogunlana. Case Western Reserve 
University: Alan Lerner, Paula Ogrocki, Curtis Tatsuoka, Parianne Fatica. University of 
California, Davis – Sacramento: Evan Fletcher, Pauline Maillard, John Olichney, Charles 
DeCarli, Owen Carmichael – Past Investigator. Neurological Care of CNY: Smita Kittur – Past 
Investigator. Parkwood Institute: Michael Borrie, T-Y Lee, Dr Rob Bartha. University of 
Wisconsin: Sterling Johnson, Sanjay Asthana, Cynthia M. Carlsson. Banner Alzheimer's 
Institute: Pierre Tariot, Anna Burke, Joel Hetelle, Kathryn DeMarco, Nadira Trncic – Past 
Investigator, Adam Fleisher – Past Investigator, Stephanie Reeder – Past Investigator. Dent 
Neurologic Institute: Vernice Bates, Horacio Capote, Michelle Rainka. Ohio State University: 
Douglas W. Scharre, Maria Kataki, Rawan Tarawneh. Albany Medical College: Earl A. 
Zimmerman, Dzintra Celmins, David Hart. Hartford Hospital, Olin Neuropsychiatry Research 
Center: Godfrey D. Pearlson, Karen Blank, Karen Anderson. Dartmouth-Hitchcock Medical 
Center: Laura A. Flashman, Marc Seltzer, Mary L. Hynes, Robert B. Santulli – Past 
Investigator. Wake Forest University Health Sciences: Kaycee M. Sink, Mia Yang, Akiva 
Mintz. Rhode Island Hospital: Brian R. Ott, Geoffrey Tremont, Lori A. Daiello. Butler Hospital: 
Courtney Bodge, Stephen Salloway, Paul Malloy, Stephen Correia, Athena Lee. UC San 
Francisco: Howard J. Rosen, Bruce L. Miller, David Perry. Medical University South Carolina: 
Jacobo Mintzer, Kenneth Spicer, David Bachman. St. Joseph’s Health Care: Elizabeth Finger, 
Stephen Pasternak, Irina Rachinsky, John Rogers, Andrew Kertesz – Past Investigator, Dick 
Drost – Past Investigator. Nathan Kline Institute: Nunzio Pomara, Raymundo Hernando, 
Antero Sarrael. University of Iowa College of Medicine: Delwyn D. Miller, Karen Ekstam 
Smith, Hristina Koleva, Ki Won Nam, Hyungsub Shim, Susan K. Schultz – Past Investigator. 
Cornell University: Norman Relkin, Gloria Chiang, Michael Lin, Lisa Ravdin. University of 
South Florida: USF Health Byrd Alzheimer’s Institute: Amanda Smith, Christi Leach, Balebail 
Ashok Raj – Past Investigator, Kristin Fargher – Past Investigator. 
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